rev |
line source |
alpar@9
|
1 /* glpspx01.c (primal simplex method) */
|
alpar@9
|
2
|
alpar@9
|
3 /***********************************************************************
|
alpar@9
|
4 * This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@9
|
5 *
|
alpar@9
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@9
|
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics,
|
alpar@9
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@9
|
9 * E-mail: <mao@gnu.org>.
|
alpar@9
|
10 *
|
alpar@9
|
11 * GLPK is free software: you can redistribute it and/or modify it
|
alpar@9
|
12 * under the terms of the GNU General Public License as published by
|
alpar@9
|
13 * the Free Software Foundation, either version 3 of the License, or
|
alpar@9
|
14 * (at your option) any later version.
|
alpar@9
|
15 *
|
alpar@9
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@9
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@9
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@9
|
19 * License for more details.
|
alpar@9
|
20 *
|
alpar@9
|
21 * You should have received a copy of the GNU General Public License
|
alpar@9
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@9
|
23 ***********************************************************************/
|
alpar@9
|
24
|
alpar@9
|
25 #include "glpspx.h"
|
alpar@9
|
26
|
alpar@9
|
27 struct csa
|
alpar@9
|
28 { /* common storage area */
|
alpar@9
|
29 /*--------------------------------------------------------------*/
|
alpar@9
|
30 /* LP data */
|
alpar@9
|
31 int m;
|
alpar@9
|
32 /* number of rows (auxiliary variables), m > 0 */
|
alpar@9
|
33 int n;
|
alpar@9
|
34 /* number of columns (structural variables), n > 0 */
|
alpar@9
|
35 char *type; /* char type[1+m+n]; */
|
alpar@9
|
36 /* type[0] is not used;
|
alpar@9
|
37 type[k], 1 <= k <= m+n, is the type of variable x[k]:
|
alpar@9
|
38 GLP_FR - free variable
|
alpar@9
|
39 GLP_LO - variable with lower bound
|
alpar@9
|
40 GLP_UP - variable with upper bound
|
alpar@9
|
41 GLP_DB - double-bounded variable
|
alpar@9
|
42 GLP_FX - fixed variable */
|
alpar@9
|
43 double *lb; /* double lb[1+m+n]; */
|
alpar@9
|
44 /* lb[0] is not used;
|
alpar@9
|
45 lb[k], 1 <= k <= m+n, is an lower bound of variable x[k];
|
alpar@9
|
46 if x[k] has no lower bound, lb[k] is zero */
|
alpar@9
|
47 double *ub; /* double ub[1+m+n]; */
|
alpar@9
|
48 /* ub[0] is not used;
|
alpar@9
|
49 ub[k], 1 <= k <= m+n, is an upper bound of variable x[k];
|
alpar@9
|
50 if x[k] has no upper bound, ub[k] is zero;
|
alpar@9
|
51 if x[k] is of fixed type, ub[k] is the same as lb[k] */
|
alpar@9
|
52 double *coef; /* double coef[1+m+n]; */
|
alpar@9
|
53 /* coef[0] is not used;
|
alpar@9
|
54 coef[k], 1 <= k <= m+n, is an objective coefficient at
|
alpar@9
|
55 variable x[k] (note that on phase I auxiliary variables also
|
alpar@9
|
56 may have non-zero objective coefficients) */
|
alpar@9
|
57 /*--------------------------------------------------------------*/
|
alpar@9
|
58 /* original objective function */
|
alpar@9
|
59 double *obj; /* double obj[1+n]; */
|
alpar@9
|
60 /* obj[0] is a constant term of the original objective function;
|
alpar@9
|
61 obj[j], 1 <= j <= n, is an original objective coefficient at
|
alpar@9
|
62 structural variable x[m+j] */
|
alpar@9
|
63 double zeta;
|
alpar@9
|
64 /* factor used to scale original objective coefficients; its
|
alpar@9
|
65 sign defines original optimization direction: zeta > 0 means
|
alpar@9
|
66 minimization, zeta < 0 means maximization */
|
alpar@9
|
67 /*--------------------------------------------------------------*/
|
alpar@9
|
68 /* constraint matrix A; it has m rows and n columns and is stored
|
alpar@9
|
69 by columns */
|
alpar@9
|
70 int *A_ptr; /* int A_ptr[1+n+1]; */
|
alpar@9
|
71 /* A_ptr[0] is not used;
|
alpar@9
|
72 A_ptr[j], 1 <= j <= n, is starting position of j-th column in
|
alpar@9
|
73 arrays A_ind and A_val; note that A_ptr[1] is always 1;
|
alpar@9
|
74 A_ptr[n+1] indicates the position after the last element in
|
alpar@9
|
75 arrays A_ind and A_val */
|
alpar@9
|
76 int *A_ind; /* int A_ind[A_ptr[n+1]]; */
|
alpar@9
|
77 /* row indices */
|
alpar@9
|
78 double *A_val; /* double A_val[A_ptr[n+1]]; */
|
alpar@9
|
79 /* non-zero element values */
|
alpar@9
|
80 /*--------------------------------------------------------------*/
|
alpar@9
|
81 /* basis header */
|
alpar@9
|
82 int *head; /* int head[1+m+n]; */
|
alpar@9
|
83 /* head[0] is not used;
|
alpar@9
|
84 head[i], 1 <= i <= m, is the ordinal number of basic variable
|
alpar@9
|
85 xB[i]; head[i] = k means that xB[i] = x[k] and i-th column of
|
alpar@9
|
86 matrix B is k-th column of matrix (I|-A);
|
alpar@9
|
87 head[m+j], 1 <= j <= n, is the ordinal number of non-basic
|
alpar@9
|
88 variable xN[j]; head[m+j] = k means that xN[j] = x[k] and j-th
|
alpar@9
|
89 column of matrix N is k-th column of matrix (I|-A) */
|
alpar@9
|
90 char *stat; /* char stat[1+n]; */
|
alpar@9
|
91 /* stat[0] is not used;
|
alpar@9
|
92 stat[j], 1 <= j <= n, is the status of non-basic variable
|
alpar@9
|
93 xN[j], which defines its active bound:
|
alpar@9
|
94 GLP_NL - lower bound is active
|
alpar@9
|
95 GLP_NU - upper bound is active
|
alpar@9
|
96 GLP_NF - free variable
|
alpar@9
|
97 GLP_NS - fixed variable */
|
alpar@9
|
98 /*--------------------------------------------------------------*/
|
alpar@9
|
99 /* matrix B is the basis matrix; it is composed from columns of
|
alpar@9
|
100 the augmented constraint matrix (I|-A) corresponding to basic
|
alpar@9
|
101 variables and stored in a factorized (invertable) form */
|
alpar@9
|
102 int valid;
|
alpar@9
|
103 /* factorization is valid only if this flag is set */
|
alpar@9
|
104 BFD *bfd; /* BFD bfd[1:m,1:m]; */
|
alpar@9
|
105 /* factorized (invertable) form of the basis matrix */
|
alpar@9
|
106 /*--------------------------------------------------------------*/
|
alpar@9
|
107 /* matrix N is a matrix composed from columns of the augmented
|
alpar@9
|
108 constraint matrix (I|-A) corresponding to non-basic variables
|
alpar@9
|
109 except fixed ones; it is stored by rows and changes every time
|
alpar@9
|
110 the basis changes */
|
alpar@9
|
111 int *N_ptr; /* int N_ptr[1+m+1]; */
|
alpar@9
|
112 /* N_ptr[0] is not used;
|
alpar@9
|
113 N_ptr[i], 1 <= i <= m, is starting position of i-th row in
|
alpar@9
|
114 arrays N_ind and N_val; note that N_ptr[1] is always 1;
|
alpar@9
|
115 N_ptr[m+1] indicates the position after the last element in
|
alpar@9
|
116 arrays N_ind and N_val */
|
alpar@9
|
117 int *N_len; /* int N_len[1+m]; */
|
alpar@9
|
118 /* N_len[0] is not used;
|
alpar@9
|
119 N_len[i], 1 <= i <= m, is length of i-th row (0 to n) */
|
alpar@9
|
120 int *N_ind; /* int N_ind[N_ptr[m+1]]; */
|
alpar@9
|
121 /* column indices */
|
alpar@9
|
122 double *N_val; /* double N_val[N_ptr[m+1]]; */
|
alpar@9
|
123 /* non-zero element values */
|
alpar@9
|
124 /*--------------------------------------------------------------*/
|
alpar@9
|
125 /* working parameters */
|
alpar@9
|
126 int phase;
|
alpar@9
|
127 /* search phase:
|
alpar@9
|
128 0 - not determined yet
|
alpar@9
|
129 1 - search for primal feasible solution
|
alpar@9
|
130 2 - search for optimal solution */
|
alpar@9
|
131 glp_long tm_beg;
|
alpar@9
|
132 /* time value at the beginning of the search */
|
alpar@9
|
133 int it_beg;
|
alpar@9
|
134 /* simplex iteration count at the beginning of the search */
|
alpar@9
|
135 int it_cnt;
|
alpar@9
|
136 /* simplex iteration count; it increases by one every time the
|
alpar@9
|
137 basis changes (including the case when a non-basic variable
|
alpar@9
|
138 jumps to its opposite bound) */
|
alpar@9
|
139 int it_dpy;
|
alpar@9
|
140 /* simplex iteration count at the most recent display output */
|
alpar@9
|
141 /*--------------------------------------------------------------*/
|
alpar@9
|
142 /* basic solution components */
|
alpar@9
|
143 double *bbar; /* double bbar[1+m]; */
|
alpar@9
|
144 /* bbar[0] is not used;
|
alpar@9
|
145 bbar[i], 1 <= i <= m, is primal value of basic variable xB[i]
|
alpar@9
|
146 (if xB[i] is free, its primal value is not updated) */
|
alpar@9
|
147 double *cbar; /* double cbar[1+n]; */
|
alpar@9
|
148 /* cbar[0] is not used;
|
alpar@9
|
149 cbar[j], 1 <= j <= n, is reduced cost of non-basic variable
|
alpar@9
|
150 xN[j] (if xN[j] is fixed, its reduced cost is not updated) */
|
alpar@9
|
151 /*--------------------------------------------------------------*/
|
alpar@9
|
152 /* the following pricing technique options may be used:
|
alpar@9
|
153 GLP_PT_STD - standard ("textbook") pricing;
|
alpar@9
|
154 GLP_PT_PSE - projected steepest edge;
|
alpar@9
|
155 GLP_PT_DVX - Devex pricing (not implemented yet);
|
alpar@9
|
156 in case of GLP_PT_STD the reference space is not used, and all
|
alpar@9
|
157 steepest edge coefficients are set to 1 */
|
alpar@9
|
158 int refct;
|
alpar@9
|
159 /* this count is set to an initial value when the reference space
|
alpar@9
|
160 is defined and decreases by one every time the basis changes;
|
alpar@9
|
161 once this count reaches zero, the reference space is redefined
|
alpar@9
|
162 again */
|
alpar@9
|
163 char *refsp; /* char refsp[1+m+n]; */
|
alpar@9
|
164 /* refsp[0] is not used;
|
alpar@9
|
165 refsp[k], 1 <= k <= m+n, is the flag which means that variable
|
alpar@9
|
166 x[k] belongs to the current reference space */
|
alpar@9
|
167 double *gamma; /* double gamma[1+n]; */
|
alpar@9
|
168 /* gamma[0] is not used;
|
alpar@9
|
169 gamma[j], 1 <= j <= n, is the steepest edge coefficient for
|
alpar@9
|
170 non-basic variable xN[j]; if xN[j] is fixed, gamma[j] is not
|
alpar@9
|
171 used and just set to 1 */
|
alpar@9
|
172 /*--------------------------------------------------------------*/
|
alpar@9
|
173 /* non-basic variable xN[q] chosen to enter the basis */
|
alpar@9
|
174 int q;
|
alpar@9
|
175 /* index of the non-basic variable xN[q] chosen, 1 <= q <= n;
|
alpar@9
|
176 if the set of eligible non-basic variables is empty and thus
|
alpar@9
|
177 no variable has been chosen, q is set to 0 */
|
alpar@9
|
178 /*--------------------------------------------------------------*/
|
alpar@9
|
179 /* pivot column of the simplex table corresponding to non-basic
|
alpar@9
|
180 variable xN[q] chosen is the following vector:
|
alpar@9
|
181 T * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q],
|
alpar@9
|
182 where B is the current basis matrix, N[q] is a column of the
|
alpar@9
|
183 matrix (I|-A) corresponding to xN[q] */
|
alpar@9
|
184 int tcol_nnz;
|
alpar@9
|
185 /* number of non-zero components, 0 <= nnz <= m */
|
alpar@9
|
186 int *tcol_ind; /* int tcol_ind[1+m]; */
|
alpar@9
|
187 /* tcol_ind[0] is not used;
|
alpar@9
|
188 tcol_ind[t], 1 <= t <= nnz, is an index of non-zero component,
|
alpar@9
|
189 i.e. tcol_ind[t] = i means that tcol_vec[i] != 0 */
|
alpar@9
|
190 double *tcol_vec; /* double tcol_vec[1+m]; */
|
alpar@9
|
191 /* tcol_vec[0] is not used;
|
alpar@9
|
192 tcol_vec[i], 1 <= i <= m, is a numeric value of i-th component
|
alpar@9
|
193 of the column */
|
alpar@9
|
194 double tcol_max;
|
alpar@9
|
195 /* infinity (maximum) norm of the column (max |tcol_vec[i]|) */
|
alpar@9
|
196 int tcol_num;
|
alpar@9
|
197 /* number of significant non-zero components, which means that:
|
alpar@9
|
198 |tcol_vec[i]| >= eps for i in tcol_ind[1,...,num],
|
alpar@9
|
199 |tcol_vec[i]| < eps for i in tcol_ind[num+1,...,nnz],
|
alpar@9
|
200 where eps is a pivot tolerance */
|
alpar@9
|
201 /*--------------------------------------------------------------*/
|
alpar@9
|
202 /* basic variable xB[p] chosen to leave the basis */
|
alpar@9
|
203 int p;
|
alpar@9
|
204 /* index of the basic variable xB[p] chosen, 1 <= p <= m;
|
alpar@9
|
205 p = 0 means that no basic variable reaches its bound;
|
alpar@9
|
206 p < 0 means that non-basic variable xN[q] reaches its opposite
|
alpar@9
|
207 bound before any basic variable */
|
alpar@9
|
208 int p_stat;
|
alpar@9
|
209 /* new status (GLP_NL, GLP_NU, or GLP_NS) to be assigned to xB[p]
|
alpar@9
|
210 once it has left the basis */
|
alpar@9
|
211 double teta;
|
alpar@9
|
212 /* change of non-basic variable xN[q] (see above), on which xB[p]
|
alpar@9
|
213 (or, if p < 0, xN[q] itself) reaches its bound */
|
alpar@9
|
214 /*--------------------------------------------------------------*/
|
alpar@9
|
215 /* pivot row of the simplex table corresponding to basic variable
|
alpar@9
|
216 xB[p] chosen is the following vector:
|
alpar@9
|
217 T' * e[p] = - N' * inv(B') * e[p] = - N' * rho,
|
alpar@9
|
218 where B' is a matrix transposed to the current basis matrix,
|
alpar@9
|
219 N' is a matrix, whose rows are columns of the matrix (I|-A)
|
alpar@9
|
220 corresponding to non-basic non-fixed variables */
|
alpar@9
|
221 int trow_nnz;
|
alpar@9
|
222 /* number of non-zero components, 0 <= nnz <= n */
|
alpar@9
|
223 int *trow_ind; /* int trow_ind[1+n]; */
|
alpar@9
|
224 /* trow_ind[0] is not used;
|
alpar@9
|
225 trow_ind[t], 1 <= t <= nnz, is an index of non-zero component,
|
alpar@9
|
226 i.e. trow_ind[t] = j means that trow_vec[j] != 0 */
|
alpar@9
|
227 double *trow_vec; /* int trow_vec[1+n]; */
|
alpar@9
|
228 /* trow_vec[0] is not used;
|
alpar@9
|
229 trow_vec[j], 1 <= j <= n, is a numeric value of j-th component
|
alpar@9
|
230 of the row */
|
alpar@9
|
231 /*--------------------------------------------------------------*/
|
alpar@9
|
232 /* working arrays */
|
alpar@9
|
233 double *work1; /* double work1[1+m]; */
|
alpar@9
|
234 double *work2; /* double work2[1+m]; */
|
alpar@9
|
235 double *work3; /* double work3[1+m]; */
|
alpar@9
|
236 double *work4; /* double work4[1+m]; */
|
alpar@9
|
237 };
|
alpar@9
|
238
|
alpar@9
|
239 static const double kappa = 0.10;
|
alpar@9
|
240
|
alpar@9
|
241 /***********************************************************************
|
alpar@9
|
242 * alloc_csa - allocate common storage area
|
alpar@9
|
243 *
|
alpar@9
|
244 * This routine allocates all arrays in the common storage area (CSA)
|
alpar@9
|
245 * and returns a pointer to the CSA. */
|
alpar@9
|
246
|
alpar@9
|
247 static struct csa *alloc_csa(glp_prob *lp)
|
alpar@9
|
248 { struct csa *csa;
|
alpar@9
|
249 int m = lp->m;
|
alpar@9
|
250 int n = lp->n;
|
alpar@9
|
251 int nnz = lp->nnz;
|
alpar@9
|
252 csa = xmalloc(sizeof(struct csa));
|
alpar@9
|
253 xassert(m > 0 && n > 0);
|
alpar@9
|
254 csa->m = m;
|
alpar@9
|
255 csa->n = n;
|
alpar@9
|
256 csa->type = xcalloc(1+m+n, sizeof(char));
|
alpar@9
|
257 csa->lb = xcalloc(1+m+n, sizeof(double));
|
alpar@9
|
258 csa->ub = xcalloc(1+m+n, sizeof(double));
|
alpar@9
|
259 csa->coef = xcalloc(1+m+n, sizeof(double));
|
alpar@9
|
260 csa->obj = xcalloc(1+n, sizeof(double));
|
alpar@9
|
261 csa->A_ptr = xcalloc(1+n+1, sizeof(int));
|
alpar@9
|
262 csa->A_ind = xcalloc(1+nnz, sizeof(int));
|
alpar@9
|
263 csa->A_val = xcalloc(1+nnz, sizeof(double));
|
alpar@9
|
264 csa->head = xcalloc(1+m+n, sizeof(int));
|
alpar@9
|
265 csa->stat = xcalloc(1+n, sizeof(char));
|
alpar@9
|
266 csa->N_ptr = xcalloc(1+m+1, sizeof(int));
|
alpar@9
|
267 csa->N_len = xcalloc(1+m, sizeof(int));
|
alpar@9
|
268 csa->N_ind = NULL; /* will be allocated later */
|
alpar@9
|
269 csa->N_val = NULL; /* will be allocated later */
|
alpar@9
|
270 csa->bbar = xcalloc(1+m, sizeof(double));
|
alpar@9
|
271 csa->cbar = xcalloc(1+n, sizeof(double));
|
alpar@9
|
272 csa->refsp = xcalloc(1+m+n, sizeof(char));
|
alpar@9
|
273 csa->gamma = xcalloc(1+n, sizeof(double));
|
alpar@9
|
274 csa->tcol_ind = xcalloc(1+m, sizeof(int));
|
alpar@9
|
275 csa->tcol_vec = xcalloc(1+m, sizeof(double));
|
alpar@9
|
276 csa->trow_ind = xcalloc(1+n, sizeof(int));
|
alpar@9
|
277 csa->trow_vec = xcalloc(1+n, sizeof(double));
|
alpar@9
|
278 csa->work1 = xcalloc(1+m, sizeof(double));
|
alpar@9
|
279 csa->work2 = xcalloc(1+m, sizeof(double));
|
alpar@9
|
280 csa->work3 = xcalloc(1+m, sizeof(double));
|
alpar@9
|
281 csa->work4 = xcalloc(1+m, sizeof(double));
|
alpar@9
|
282 return csa;
|
alpar@9
|
283 }
|
alpar@9
|
284
|
alpar@9
|
285 /***********************************************************************
|
alpar@9
|
286 * init_csa - initialize common storage area
|
alpar@9
|
287 *
|
alpar@9
|
288 * This routine initializes all data structures in the common storage
|
alpar@9
|
289 * area (CSA). */
|
alpar@9
|
290
|
alpar@9
|
291 static void alloc_N(struct csa *csa);
|
alpar@9
|
292 static void build_N(struct csa *csa);
|
alpar@9
|
293
|
alpar@9
|
294 static void init_csa(struct csa *csa, glp_prob *lp)
|
alpar@9
|
295 { int m = csa->m;
|
alpar@9
|
296 int n = csa->n;
|
alpar@9
|
297 char *type = csa->type;
|
alpar@9
|
298 double *lb = csa->lb;
|
alpar@9
|
299 double *ub = csa->ub;
|
alpar@9
|
300 double *coef = csa->coef;
|
alpar@9
|
301 double *obj = csa->obj;
|
alpar@9
|
302 int *A_ptr = csa->A_ptr;
|
alpar@9
|
303 int *A_ind = csa->A_ind;
|
alpar@9
|
304 double *A_val = csa->A_val;
|
alpar@9
|
305 int *head = csa->head;
|
alpar@9
|
306 char *stat = csa->stat;
|
alpar@9
|
307 char *refsp = csa->refsp;
|
alpar@9
|
308 double *gamma = csa->gamma;
|
alpar@9
|
309 int i, j, k, loc;
|
alpar@9
|
310 double cmax;
|
alpar@9
|
311 /* auxiliary variables */
|
alpar@9
|
312 for (i = 1; i <= m; i++)
|
alpar@9
|
313 { GLPROW *row = lp->row[i];
|
alpar@9
|
314 type[i] = (char)row->type;
|
alpar@9
|
315 lb[i] = row->lb * row->rii;
|
alpar@9
|
316 ub[i] = row->ub * row->rii;
|
alpar@9
|
317 coef[i] = 0.0;
|
alpar@9
|
318 }
|
alpar@9
|
319 /* structural variables */
|
alpar@9
|
320 for (j = 1; j <= n; j++)
|
alpar@9
|
321 { GLPCOL *col = lp->col[j];
|
alpar@9
|
322 type[m+j] = (char)col->type;
|
alpar@9
|
323 lb[m+j] = col->lb / col->sjj;
|
alpar@9
|
324 ub[m+j] = col->ub / col->sjj;
|
alpar@9
|
325 coef[m+j] = col->coef * col->sjj;
|
alpar@9
|
326 }
|
alpar@9
|
327 /* original objective function */
|
alpar@9
|
328 obj[0] = lp->c0;
|
alpar@9
|
329 memcpy(&obj[1], &coef[m+1], n * sizeof(double));
|
alpar@9
|
330 /* factor used to scale original objective coefficients */
|
alpar@9
|
331 cmax = 0.0;
|
alpar@9
|
332 for (j = 1; j <= n; j++)
|
alpar@9
|
333 if (cmax < fabs(obj[j])) cmax = fabs(obj[j]);
|
alpar@9
|
334 if (cmax == 0.0) cmax = 1.0;
|
alpar@9
|
335 switch (lp->dir)
|
alpar@9
|
336 { case GLP_MIN:
|
alpar@9
|
337 csa->zeta = + 1.0 / cmax;
|
alpar@9
|
338 break;
|
alpar@9
|
339 case GLP_MAX:
|
alpar@9
|
340 csa->zeta = - 1.0 / cmax;
|
alpar@9
|
341 break;
|
alpar@9
|
342 default:
|
alpar@9
|
343 xassert(lp != lp);
|
alpar@9
|
344 }
|
alpar@9
|
345 #if 1
|
alpar@9
|
346 if (fabs(csa->zeta) < 1.0) csa->zeta *= 1000.0;
|
alpar@9
|
347 #endif
|
alpar@9
|
348 /* matrix A (by columns) */
|
alpar@9
|
349 loc = 1;
|
alpar@9
|
350 for (j = 1; j <= n; j++)
|
alpar@9
|
351 { GLPAIJ *aij;
|
alpar@9
|
352 A_ptr[j] = loc;
|
alpar@9
|
353 for (aij = lp->col[j]->ptr; aij != NULL; aij = aij->c_next)
|
alpar@9
|
354 { A_ind[loc] = aij->row->i;
|
alpar@9
|
355 A_val[loc] = aij->row->rii * aij->val * aij->col->sjj;
|
alpar@9
|
356 loc++;
|
alpar@9
|
357 }
|
alpar@9
|
358 }
|
alpar@9
|
359 A_ptr[n+1] = loc;
|
alpar@9
|
360 xassert(loc == lp->nnz+1);
|
alpar@9
|
361 /* basis header */
|
alpar@9
|
362 xassert(lp->valid);
|
alpar@9
|
363 memcpy(&head[1], &lp->head[1], m * sizeof(int));
|
alpar@9
|
364 k = 0;
|
alpar@9
|
365 for (i = 1; i <= m; i++)
|
alpar@9
|
366 { GLPROW *row = lp->row[i];
|
alpar@9
|
367 if (row->stat != GLP_BS)
|
alpar@9
|
368 { k++;
|
alpar@9
|
369 xassert(k <= n);
|
alpar@9
|
370 head[m+k] = i;
|
alpar@9
|
371 stat[k] = (char)row->stat;
|
alpar@9
|
372 }
|
alpar@9
|
373 }
|
alpar@9
|
374 for (j = 1; j <= n; j++)
|
alpar@9
|
375 { GLPCOL *col = lp->col[j];
|
alpar@9
|
376 if (col->stat != GLP_BS)
|
alpar@9
|
377 { k++;
|
alpar@9
|
378 xassert(k <= n);
|
alpar@9
|
379 head[m+k] = m + j;
|
alpar@9
|
380 stat[k] = (char)col->stat;
|
alpar@9
|
381 }
|
alpar@9
|
382 }
|
alpar@9
|
383 xassert(k == n);
|
alpar@9
|
384 /* factorization of matrix B */
|
alpar@9
|
385 csa->valid = 1, lp->valid = 0;
|
alpar@9
|
386 csa->bfd = lp->bfd, lp->bfd = NULL;
|
alpar@9
|
387 /* matrix N (by rows) */
|
alpar@9
|
388 alloc_N(csa);
|
alpar@9
|
389 build_N(csa);
|
alpar@9
|
390 /* working parameters */
|
alpar@9
|
391 csa->phase = 0;
|
alpar@9
|
392 csa->tm_beg = xtime();
|
alpar@9
|
393 csa->it_beg = csa->it_cnt = lp->it_cnt;
|
alpar@9
|
394 csa->it_dpy = -1;
|
alpar@9
|
395 /* reference space and steepest edge coefficients */
|
alpar@9
|
396 csa->refct = 0;
|
alpar@9
|
397 memset(&refsp[1], 0, (m+n) * sizeof(char));
|
alpar@9
|
398 for (j = 1; j <= n; j++) gamma[j] = 1.0;
|
alpar@9
|
399 return;
|
alpar@9
|
400 }
|
alpar@9
|
401
|
alpar@9
|
402 /***********************************************************************
|
alpar@9
|
403 * invert_B - compute factorization of the basis matrix
|
alpar@9
|
404 *
|
alpar@9
|
405 * This routine computes factorization of the current basis matrix B.
|
alpar@9
|
406 *
|
alpar@9
|
407 * If the operation is successful, the routine returns zero, otherwise
|
alpar@9
|
408 * non-zero. */
|
alpar@9
|
409
|
alpar@9
|
410 static int inv_col(void *info, int i, int ind[], double val[])
|
alpar@9
|
411 { /* this auxiliary routine returns row indices and numeric values
|
alpar@9
|
412 of non-zero elements of i-th column of the basis matrix */
|
alpar@9
|
413 struct csa *csa = info;
|
alpar@9
|
414 int m = csa->m;
|
alpar@9
|
415 #ifdef GLP_DEBUG
|
alpar@9
|
416 int n = csa->n;
|
alpar@9
|
417 #endif
|
alpar@9
|
418 int *A_ptr = csa->A_ptr;
|
alpar@9
|
419 int *A_ind = csa->A_ind;
|
alpar@9
|
420 double *A_val = csa->A_val;
|
alpar@9
|
421 int *head = csa->head;
|
alpar@9
|
422 int k, len, ptr, t;
|
alpar@9
|
423 #ifdef GLP_DEBUG
|
alpar@9
|
424 xassert(1 <= i && i <= m);
|
alpar@9
|
425 #endif
|
alpar@9
|
426 k = head[i]; /* B[i] is k-th column of (I|-A) */
|
alpar@9
|
427 #ifdef GLP_DEBUG
|
alpar@9
|
428 xassert(1 <= k && k <= m+n);
|
alpar@9
|
429 #endif
|
alpar@9
|
430 if (k <= m)
|
alpar@9
|
431 { /* B[i] is k-th column of submatrix I */
|
alpar@9
|
432 len = 1;
|
alpar@9
|
433 ind[1] = k;
|
alpar@9
|
434 val[1] = 1.0;
|
alpar@9
|
435 }
|
alpar@9
|
436 else
|
alpar@9
|
437 { /* B[i] is (k-m)-th column of submatrix (-A) */
|
alpar@9
|
438 ptr = A_ptr[k-m];
|
alpar@9
|
439 len = A_ptr[k-m+1] - ptr;
|
alpar@9
|
440 memcpy(&ind[1], &A_ind[ptr], len * sizeof(int));
|
alpar@9
|
441 memcpy(&val[1], &A_val[ptr], len * sizeof(double));
|
alpar@9
|
442 for (t = 1; t <= len; t++) val[t] = - val[t];
|
alpar@9
|
443 }
|
alpar@9
|
444 return len;
|
alpar@9
|
445 }
|
alpar@9
|
446
|
alpar@9
|
447 static int invert_B(struct csa *csa)
|
alpar@9
|
448 { int ret;
|
alpar@9
|
449 ret = bfd_factorize(csa->bfd, csa->m, NULL, inv_col, csa);
|
alpar@9
|
450 csa->valid = (ret == 0);
|
alpar@9
|
451 return ret;
|
alpar@9
|
452 }
|
alpar@9
|
453
|
alpar@9
|
454 /***********************************************************************
|
alpar@9
|
455 * update_B - update factorization of the basis matrix
|
alpar@9
|
456 *
|
alpar@9
|
457 * This routine replaces i-th column of the basis matrix B by k-th
|
alpar@9
|
458 * column of the augmented constraint matrix (I|-A) and then updates
|
alpar@9
|
459 * the factorization of B.
|
alpar@9
|
460 *
|
alpar@9
|
461 * If the factorization has been successfully updated, the routine
|
alpar@9
|
462 * returns zero, otherwise non-zero. */
|
alpar@9
|
463
|
alpar@9
|
464 static int update_B(struct csa *csa, int i, int k)
|
alpar@9
|
465 { int m = csa->m;
|
alpar@9
|
466 #ifdef GLP_DEBUG
|
alpar@9
|
467 int n = csa->n;
|
alpar@9
|
468 #endif
|
alpar@9
|
469 int ret;
|
alpar@9
|
470 #ifdef GLP_DEBUG
|
alpar@9
|
471 xassert(1 <= i && i <= m);
|
alpar@9
|
472 xassert(1 <= k && k <= m+n);
|
alpar@9
|
473 #endif
|
alpar@9
|
474 if (k <= m)
|
alpar@9
|
475 { /* new i-th column of B is k-th column of I */
|
alpar@9
|
476 int ind[1+1];
|
alpar@9
|
477 double val[1+1];
|
alpar@9
|
478 ind[1] = k;
|
alpar@9
|
479 val[1] = 1.0;
|
alpar@9
|
480 xassert(csa->valid);
|
alpar@9
|
481 ret = bfd_update_it(csa->bfd, i, 0, 1, ind, val);
|
alpar@9
|
482 }
|
alpar@9
|
483 else
|
alpar@9
|
484 { /* new i-th column of B is (k-m)-th column of (-A) */
|
alpar@9
|
485 int *A_ptr = csa->A_ptr;
|
alpar@9
|
486 int *A_ind = csa->A_ind;
|
alpar@9
|
487 double *A_val = csa->A_val;
|
alpar@9
|
488 double *val = csa->work1;
|
alpar@9
|
489 int beg, end, ptr, len;
|
alpar@9
|
490 beg = A_ptr[k-m];
|
alpar@9
|
491 end = A_ptr[k-m+1];
|
alpar@9
|
492 len = 0;
|
alpar@9
|
493 for (ptr = beg; ptr < end; ptr++)
|
alpar@9
|
494 val[++len] = - A_val[ptr];
|
alpar@9
|
495 xassert(csa->valid);
|
alpar@9
|
496 ret = bfd_update_it(csa->bfd, i, 0, len, &A_ind[beg-1], val);
|
alpar@9
|
497 }
|
alpar@9
|
498 csa->valid = (ret == 0);
|
alpar@9
|
499 return ret;
|
alpar@9
|
500 }
|
alpar@9
|
501
|
alpar@9
|
502 /***********************************************************************
|
alpar@9
|
503 * error_ftran - compute residual vector r = h - B * x
|
alpar@9
|
504 *
|
alpar@9
|
505 * This routine computes the residual vector r = h - B * x, where B is
|
alpar@9
|
506 * the current basis matrix, h is the vector of right-hand sides, x is
|
alpar@9
|
507 * the solution vector. */
|
alpar@9
|
508
|
alpar@9
|
509 static void error_ftran(struct csa *csa, double h[], double x[],
|
alpar@9
|
510 double r[])
|
alpar@9
|
511 { int m = csa->m;
|
alpar@9
|
512 #ifdef GLP_DEBUG
|
alpar@9
|
513 int n = csa->n;
|
alpar@9
|
514 #endif
|
alpar@9
|
515 int *A_ptr = csa->A_ptr;
|
alpar@9
|
516 int *A_ind = csa->A_ind;
|
alpar@9
|
517 double *A_val = csa->A_val;
|
alpar@9
|
518 int *head = csa->head;
|
alpar@9
|
519 int i, k, beg, end, ptr;
|
alpar@9
|
520 double temp;
|
alpar@9
|
521 /* compute the residual vector:
|
alpar@9
|
522 r = h - B * x = h - B[1] * x[1] - ... - B[m] * x[m],
|
alpar@9
|
523 where B[1], ..., B[m] are columns of matrix B */
|
alpar@9
|
524 memcpy(&r[1], &h[1], m * sizeof(double));
|
alpar@9
|
525 for (i = 1; i <= m; i++)
|
alpar@9
|
526 { temp = x[i];
|
alpar@9
|
527 if (temp == 0.0) continue;
|
alpar@9
|
528 k = head[i]; /* B[i] is k-th column of (I|-A) */
|
alpar@9
|
529 #ifdef GLP_DEBUG
|
alpar@9
|
530 xassert(1 <= k && k <= m+n);
|
alpar@9
|
531 #endif
|
alpar@9
|
532 if (k <= m)
|
alpar@9
|
533 { /* B[i] is k-th column of submatrix I */
|
alpar@9
|
534 r[k] -= temp;
|
alpar@9
|
535 }
|
alpar@9
|
536 else
|
alpar@9
|
537 { /* B[i] is (k-m)-th column of submatrix (-A) */
|
alpar@9
|
538 beg = A_ptr[k-m];
|
alpar@9
|
539 end = A_ptr[k-m+1];
|
alpar@9
|
540 for (ptr = beg; ptr < end; ptr++)
|
alpar@9
|
541 r[A_ind[ptr]] += A_val[ptr] * temp;
|
alpar@9
|
542 }
|
alpar@9
|
543 }
|
alpar@9
|
544 return;
|
alpar@9
|
545 }
|
alpar@9
|
546
|
alpar@9
|
547 /***********************************************************************
|
alpar@9
|
548 * refine_ftran - refine solution of B * x = h
|
alpar@9
|
549 *
|
alpar@9
|
550 * This routine performs one iteration to refine the solution of
|
alpar@9
|
551 * the system B * x = h, where B is the current basis matrix, h is the
|
alpar@9
|
552 * vector of right-hand sides, x is the solution vector. */
|
alpar@9
|
553
|
alpar@9
|
554 static void refine_ftran(struct csa *csa, double h[], double x[])
|
alpar@9
|
555 { int m = csa->m;
|
alpar@9
|
556 double *r = csa->work1;
|
alpar@9
|
557 double *d = csa->work1;
|
alpar@9
|
558 int i;
|
alpar@9
|
559 /* compute the residual vector r = h - B * x */
|
alpar@9
|
560 error_ftran(csa, h, x, r);
|
alpar@9
|
561 /* compute the correction vector d = inv(B) * r */
|
alpar@9
|
562 xassert(csa->valid);
|
alpar@9
|
563 bfd_ftran(csa->bfd, d);
|
alpar@9
|
564 /* refine the solution vector (new x) = (old x) + d */
|
alpar@9
|
565 for (i = 1; i <= m; i++) x[i] += d[i];
|
alpar@9
|
566 return;
|
alpar@9
|
567 }
|
alpar@9
|
568
|
alpar@9
|
569 /***********************************************************************
|
alpar@9
|
570 * error_btran - compute residual vector r = h - B'* x
|
alpar@9
|
571 *
|
alpar@9
|
572 * This routine computes the residual vector r = h - B'* x, where B'
|
alpar@9
|
573 * is a matrix transposed to the current basis matrix, h is the vector
|
alpar@9
|
574 * of right-hand sides, x is the solution vector. */
|
alpar@9
|
575
|
alpar@9
|
576 static void error_btran(struct csa *csa, double h[], double x[],
|
alpar@9
|
577 double r[])
|
alpar@9
|
578 { int m = csa->m;
|
alpar@9
|
579 #ifdef GLP_DEBUG
|
alpar@9
|
580 int n = csa->n;
|
alpar@9
|
581 #endif
|
alpar@9
|
582 int *A_ptr = csa->A_ptr;
|
alpar@9
|
583 int *A_ind = csa->A_ind;
|
alpar@9
|
584 double *A_val = csa->A_val;
|
alpar@9
|
585 int *head = csa->head;
|
alpar@9
|
586 int i, k, beg, end, ptr;
|
alpar@9
|
587 double temp;
|
alpar@9
|
588 /* compute the residual vector r = b - B'* x */
|
alpar@9
|
589 for (i = 1; i <= m; i++)
|
alpar@9
|
590 { /* r[i] := b[i] - (i-th column of B)'* x */
|
alpar@9
|
591 k = head[i]; /* B[i] is k-th column of (I|-A) */
|
alpar@9
|
592 #ifdef GLP_DEBUG
|
alpar@9
|
593 xassert(1 <= k && k <= m+n);
|
alpar@9
|
594 #endif
|
alpar@9
|
595 temp = h[i];
|
alpar@9
|
596 if (k <= m)
|
alpar@9
|
597 { /* B[i] is k-th column of submatrix I */
|
alpar@9
|
598 temp -= x[k];
|
alpar@9
|
599 }
|
alpar@9
|
600 else
|
alpar@9
|
601 { /* B[i] is (k-m)-th column of submatrix (-A) */
|
alpar@9
|
602 beg = A_ptr[k-m];
|
alpar@9
|
603 end = A_ptr[k-m+1];
|
alpar@9
|
604 for (ptr = beg; ptr < end; ptr++)
|
alpar@9
|
605 temp += A_val[ptr] * x[A_ind[ptr]];
|
alpar@9
|
606 }
|
alpar@9
|
607 r[i] = temp;
|
alpar@9
|
608 }
|
alpar@9
|
609 return;
|
alpar@9
|
610 }
|
alpar@9
|
611
|
alpar@9
|
612 /***********************************************************************
|
alpar@9
|
613 * refine_btran - refine solution of B'* x = h
|
alpar@9
|
614 *
|
alpar@9
|
615 * This routine performs one iteration to refine the solution of the
|
alpar@9
|
616 * system B'* x = h, where B' is a matrix transposed to the current
|
alpar@9
|
617 * basis matrix, h is the vector of right-hand sides, x is the solution
|
alpar@9
|
618 * vector. */
|
alpar@9
|
619
|
alpar@9
|
620 static void refine_btran(struct csa *csa, double h[], double x[])
|
alpar@9
|
621 { int m = csa->m;
|
alpar@9
|
622 double *r = csa->work1;
|
alpar@9
|
623 double *d = csa->work1;
|
alpar@9
|
624 int i;
|
alpar@9
|
625 /* compute the residual vector r = h - B'* x */
|
alpar@9
|
626 error_btran(csa, h, x, r);
|
alpar@9
|
627 /* compute the correction vector d = inv(B') * r */
|
alpar@9
|
628 xassert(csa->valid);
|
alpar@9
|
629 bfd_btran(csa->bfd, d);
|
alpar@9
|
630 /* refine the solution vector (new x) = (old x) + d */
|
alpar@9
|
631 for (i = 1; i <= m; i++) x[i] += d[i];
|
alpar@9
|
632 return;
|
alpar@9
|
633 }
|
alpar@9
|
634
|
alpar@9
|
635 /***********************************************************************
|
alpar@9
|
636 * alloc_N - allocate matrix N
|
alpar@9
|
637 *
|
alpar@9
|
638 * This routine determines maximal row lengths of matrix N, sets its
|
alpar@9
|
639 * row pointers, and then allocates arrays N_ind and N_val.
|
alpar@9
|
640 *
|
alpar@9
|
641 * Note that some fixed structural variables may temporarily become
|
alpar@9
|
642 * double-bounded, so corresponding columns of matrix A should not be
|
alpar@9
|
643 * ignored on calculating maximal row lengths of matrix N. */
|
alpar@9
|
644
|
alpar@9
|
645 static void alloc_N(struct csa *csa)
|
alpar@9
|
646 { int m = csa->m;
|
alpar@9
|
647 int n = csa->n;
|
alpar@9
|
648 int *A_ptr = csa->A_ptr;
|
alpar@9
|
649 int *A_ind = csa->A_ind;
|
alpar@9
|
650 int *N_ptr = csa->N_ptr;
|
alpar@9
|
651 int *N_len = csa->N_len;
|
alpar@9
|
652 int i, j, beg, end, ptr;
|
alpar@9
|
653 /* determine number of non-zeros in each row of the augmented
|
alpar@9
|
654 constraint matrix (I|-A) */
|
alpar@9
|
655 for (i = 1; i <= m; i++)
|
alpar@9
|
656 N_len[i] = 1;
|
alpar@9
|
657 for (j = 1; j <= n; j++)
|
alpar@9
|
658 { beg = A_ptr[j];
|
alpar@9
|
659 end = A_ptr[j+1];
|
alpar@9
|
660 for (ptr = beg; ptr < end; ptr++)
|
alpar@9
|
661 N_len[A_ind[ptr]]++;
|
alpar@9
|
662 }
|
alpar@9
|
663 /* determine maximal row lengths of matrix N and set its row
|
alpar@9
|
664 pointers */
|
alpar@9
|
665 N_ptr[1] = 1;
|
alpar@9
|
666 for (i = 1; i <= m; i++)
|
alpar@9
|
667 { /* row of matrix N cannot have more than n non-zeros */
|
alpar@9
|
668 if (N_len[i] > n) N_len[i] = n;
|
alpar@9
|
669 N_ptr[i+1] = N_ptr[i] + N_len[i];
|
alpar@9
|
670 }
|
alpar@9
|
671 /* now maximal number of non-zeros in matrix N is known */
|
alpar@9
|
672 csa->N_ind = xcalloc(N_ptr[m+1], sizeof(int));
|
alpar@9
|
673 csa->N_val = xcalloc(N_ptr[m+1], sizeof(double));
|
alpar@9
|
674 return;
|
alpar@9
|
675 }
|
alpar@9
|
676
|
alpar@9
|
677 /***********************************************************************
|
alpar@9
|
678 * add_N_col - add column of matrix (I|-A) to matrix N
|
alpar@9
|
679 *
|
alpar@9
|
680 * This routine adds j-th column to matrix N which is k-th column of
|
alpar@9
|
681 * the augmented constraint matrix (I|-A). (It is assumed that old j-th
|
alpar@9
|
682 * column was previously removed from matrix N.) */
|
alpar@9
|
683
|
alpar@9
|
684 static void add_N_col(struct csa *csa, int j, int k)
|
alpar@9
|
685 { int m = csa->m;
|
alpar@9
|
686 #ifdef GLP_DEBUG
|
alpar@9
|
687 int n = csa->n;
|
alpar@9
|
688 #endif
|
alpar@9
|
689 int *N_ptr = csa->N_ptr;
|
alpar@9
|
690 int *N_len = csa->N_len;
|
alpar@9
|
691 int *N_ind = csa->N_ind;
|
alpar@9
|
692 double *N_val = csa->N_val;
|
alpar@9
|
693 int pos;
|
alpar@9
|
694 #ifdef GLP_DEBUG
|
alpar@9
|
695 xassert(1 <= j && j <= n);
|
alpar@9
|
696 xassert(1 <= k && k <= m+n);
|
alpar@9
|
697 #endif
|
alpar@9
|
698 if (k <= m)
|
alpar@9
|
699 { /* N[j] is k-th column of submatrix I */
|
alpar@9
|
700 pos = N_ptr[k] + (N_len[k]++);
|
alpar@9
|
701 #ifdef GLP_DEBUG
|
alpar@9
|
702 xassert(pos < N_ptr[k+1]);
|
alpar@9
|
703 #endif
|
alpar@9
|
704 N_ind[pos] = j;
|
alpar@9
|
705 N_val[pos] = 1.0;
|
alpar@9
|
706 }
|
alpar@9
|
707 else
|
alpar@9
|
708 { /* N[j] is (k-m)-th column of submatrix (-A) */
|
alpar@9
|
709 int *A_ptr = csa->A_ptr;
|
alpar@9
|
710 int *A_ind = csa->A_ind;
|
alpar@9
|
711 double *A_val = csa->A_val;
|
alpar@9
|
712 int i, beg, end, ptr;
|
alpar@9
|
713 beg = A_ptr[k-m];
|
alpar@9
|
714 end = A_ptr[k-m+1];
|
alpar@9
|
715 for (ptr = beg; ptr < end; ptr++)
|
alpar@9
|
716 { i = A_ind[ptr]; /* row number */
|
alpar@9
|
717 pos = N_ptr[i] + (N_len[i]++);
|
alpar@9
|
718 #ifdef GLP_DEBUG
|
alpar@9
|
719 xassert(pos < N_ptr[i+1]);
|
alpar@9
|
720 #endif
|
alpar@9
|
721 N_ind[pos] = j;
|
alpar@9
|
722 N_val[pos] = - A_val[ptr];
|
alpar@9
|
723 }
|
alpar@9
|
724 }
|
alpar@9
|
725 return;
|
alpar@9
|
726 }
|
alpar@9
|
727
|
alpar@9
|
728 /***********************************************************************
|
alpar@9
|
729 * del_N_col - remove column of matrix (I|-A) from matrix N
|
alpar@9
|
730 *
|
alpar@9
|
731 * This routine removes j-th column from matrix N which is k-th column
|
alpar@9
|
732 * of the augmented constraint matrix (I|-A). */
|
alpar@9
|
733
|
alpar@9
|
734 static void del_N_col(struct csa *csa, int j, int k)
|
alpar@9
|
735 { int m = csa->m;
|
alpar@9
|
736 #ifdef GLP_DEBUG
|
alpar@9
|
737 int n = csa->n;
|
alpar@9
|
738 #endif
|
alpar@9
|
739 int *N_ptr = csa->N_ptr;
|
alpar@9
|
740 int *N_len = csa->N_len;
|
alpar@9
|
741 int *N_ind = csa->N_ind;
|
alpar@9
|
742 double *N_val = csa->N_val;
|
alpar@9
|
743 int pos, head, tail;
|
alpar@9
|
744 #ifdef GLP_DEBUG
|
alpar@9
|
745 xassert(1 <= j && j <= n);
|
alpar@9
|
746 xassert(1 <= k && k <= m+n);
|
alpar@9
|
747 #endif
|
alpar@9
|
748 if (k <= m)
|
alpar@9
|
749 { /* N[j] is k-th column of submatrix I */
|
alpar@9
|
750 /* find element in k-th row of N */
|
alpar@9
|
751 head = N_ptr[k];
|
alpar@9
|
752 for (pos = head; N_ind[pos] != j; pos++) /* nop */;
|
alpar@9
|
753 /* and remove it from the row list */
|
alpar@9
|
754 tail = head + (--N_len[k]);
|
alpar@9
|
755 #ifdef GLP_DEBUG
|
alpar@9
|
756 xassert(pos <= tail);
|
alpar@9
|
757 #endif
|
alpar@9
|
758 N_ind[pos] = N_ind[tail];
|
alpar@9
|
759 N_val[pos] = N_val[tail];
|
alpar@9
|
760 }
|
alpar@9
|
761 else
|
alpar@9
|
762 { /* N[j] is (k-m)-th column of submatrix (-A) */
|
alpar@9
|
763 int *A_ptr = csa->A_ptr;
|
alpar@9
|
764 int *A_ind = csa->A_ind;
|
alpar@9
|
765 int i, beg, end, ptr;
|
alpar@9
|
766 beg = A_ptr[k-m];
|
alpar@9
|
767 end = A_ptr[k-m+1];
|
alpar@9
|
768 for (ptr = beg; ptr < end; ptr++)
|
alpar@9
|
769 { i = A_ind[ptr]; /* row number */
|
alpar@9
|
770 /* find element in i-th row of N */
|
alpar@9
|
771 head = N_ptr[i];
|
alpar@9
|
772 for (pos = head; N_ind[pos] != j; pos++) /* nop */;
|
alpar@9
|
773 /* and remove it from the row list */
|
alpar@9
|
774 tail = head + (--N_len[i]);
|
alpar@9
|
775 #ifdef GLP_DEBUG
|
alpar@9
|
776 xassert(pos <= tail);
|
alpar@9
|
777 #endif
|
alpar@9
|
778 N_ind[pos] = N_ind[tail];
|
alpar@9
|
779 N_val[pos] = N_val[tail];
|
alpar@9
|
780 }
|
alpar@9
|
781 }
|
alpar@9
|
782 return;
|
alpar@9
|
783 }
|
alpar@9
|
784
|
alpar@9
|
785 /***********************************************************************
|
alpar@9
|
786 * build_N - build matrix N for current basis
|
alpar@9
|
787 *
|
alpar@9
|
788 * This routine builds matrix N for the current basis from columns
|
alpar@9
|
789 * of the augmented constraint matrix (I|-A) corresponding to non-basic
|
alpar@9
|
790 * non-fixed variables. */
|
alpar@9
|
791
|
alpar@9
|
792 static void build_N(struct csa *csa)
|
alpar@9
|
793 { int m = csa->m;
|
alpar@9
|
794 int n = csa->n;
|
alpar@9
|
795 int *head = csa->head;
|
alpar@9
|
796 char *stat = csa->stat;
|
alpar@9
|
797 int *N_len = csa->N_len;
|
alpar@9
|
798 int j, k;
|
alpar@9
|
799 /* N := empty matrix */
|
alpar@9
|
800 memset(&N_len[1], 0, m * sizeof(int));
|
alpar@9
|
801 /* go through non-basic columns of matrix (I|-A) */
|
alpar@9
|
802 for (j = 1; j <= n; j++)
|
alpar@9
|
803 { if (stat[j] != GLP_NS)
|
alpar@9
|
804 { /* xN[j] is non-fixed; add j-th column to matrix N which is
|
alpar@9
|
805 k-th column of matrix (I|-A) */
|
alpar@9
|
806 k = head[m+j]; /* x[k] = xN[j] */
|
alpar@9
|
807 #ifdef GLP_DEBUG
|
alpar@9
|
808 xassert(1 <= k && k <= m+n);
|
alpar@9
|
809 #endif
|
alpar@9
|
810 add_N_col(csa, j, k);
|
alpar@9
|
811 }
|
alpar@9
|
812 }
|
alpar@9
|
813 return;
|
alpar@9
|
814 }
|
alpar@9
|
815
|
alpar@9
|
816 /***********************************************************************
|
alpar@9
|
817 * get_xN - determine current value of non-basic variable xN[j]
|
alpar@9
|
818 *
|
alpar@9
|
819 * This routine returns the current value of non-basic variable xN[j],
|
alpar@9
|
820 * which is a value of its active bound. */
|
alpar@9
|
821
|
alpar@9
|
822 static double get_xN(struct csa *csa, int j)
|
alpar@9
|
823 { int m = csa->m;
|
alpar@9
|
824 #ifdef GLP_DEBUG
|
alpar@9
|
825 int n = csa->n;
|
alpar@9
|
826 #endif
|
alpar@9
|
827 double *lb = csa->lb;
|
alpar@9
|
828 double *ub = csa->ub;
|
alpar@9
|
829 int *head = csa->head;
|
alpar@9
|
830 char *stat = csa->stat;
|
alpar@9
|
831 int k;
|
alpar@9
|
832 double xN;
|
alpar@9
|
833 #ifdef GLP_DEBUG
|
alpar@9
|
834 xassert(1 <= j && j <= n);
|
alpar@9
|
835 #endif
|
alpar@9
|
836 k = head[m+j]; /* x[k] = xN[j] */
|
alpar@9
|
837 #ifdef GLP_DEBUG
|
alpar@9
|
838 xassert(1 <= k && k <= m+n);
|
alpar@9
|
839 #endif
|
alpar@9
|
840 switch (stat[j])
|
alpar@9
|
841 { case GLP_NL:
|
alpar@9
|
842 /* x[k] is on its lower bound */
|
alpar@9
|
843 xN = lb[k]; break;
|
alpar@9
|
844 case GLP_NU:
|
alpar@9
|
845 /* x[k] is on its upper bound */
|
alpar@9
|
846 xN = ub[k]; break;
|
alpar@9
|
847 case GLP_NF:
|
alpar@9
|
848 /* x[k] is free non-basic variable */
|
alpar@9
|
849 xN = 0.0; break;
|
alpar@9
|
850 case GLP_NS:
|
alpar@9
|
851 /* x[k] is fixed non-basic variable */
|
alpar@9
|
852 xN = lb[k]; break;
|
alpar@9
|
853 default:
|
alpar@9
|
854 xassert(stat != stat);
|
alpar@9
|
855 }
|
alpar@9
|
856 return xN;
|
alpar@9
|
857 }
|
alpar@9
|
858
|
alpar@9
|
859 /***********************************************************************
|
alpar@9
|
860 * eval_beta - compute primal values of basic variables
|
alpar@9
|
861 *
|
alpar@9
|
862 * This routine computes current primal values of all basic variables:
|
alpar@9
|
863 *
|
alpar@9
|
864 * beta = - inv(B) * N * xN,
|
alpar@9
|
865 *
|
alpar@9
|
866 * where B is the current basis matrix, N is a matrix built of columns
|
alpar@9
|
867 * of matrix (I|-A) corresponding to non-basic variables, and xN is the
|
alpar@9
|
868 * vector of current values of non-basic variables. */
|
alpar@9
|
869
|
alpar@9
|
870 static void eval_beta(struct csa *csa, double beta[])
|
alpar@9
|
871 { int m = csa->m;
|
alpar@9
|
872 int n = csa->n;
|
alpar@9
|
873 int *A_ptr = csa->A_ptr;
|
alpar@9
|
874 int *A_ind = csa->A_ind;
|
alpar@9
|
875 double *A_val = csa->A_val;
|
alpar@9
|
876 int *head = csa->head;
|
alpar@9
|
877 double *h = csa->work2;
|
alpar@9
|
878 int i, j, k, beg, end, ptr;
|
alpar@9
|
879 double xN;
|
alpar@9
|
880 /* compute the right-hand side vector:
|
alpar@9
|
881 h := - N * xN = - N[1] * xN[1] - ... - N[n] * xN[n],
|
alpar@9
|
882 where N[1], ..., N[n] are columns of matrix N */
|
alpar@9
|
883 for (i = 1; i <= m; i++)
|
alpar@9
|
884 h[i] = 0.0;
|
alpar@9
|
885 for (j = 1; j <= n; j++)
|
alpar@9
|
886 { k = head[m+j]; /* x[k] = xN[j] */
|
alpar@9
|
887 #ifdef GLP_DEBUG
|
alpar@9
|
888 xassert(1 <= k && k <= m+n);
|
alpar@9
|
889 #endif
|
alpar@9
|
890 /* determine current value of xN[j] */
|
alpar@9
|
891 xN = get_xN(csa, j);
|
alpar@9
|
892 if (xN == 0.0) continue;
|
alpar@9
|
893 if (k <= m)
|
alpar@9
|
894 { /* N[j] is k-th column of submatrix I */
|
alpar@9
|
895 h[k] -= xN;
|
alpar@9
|
896 }
|
alpar@9
|
897 else
|
alpar@9
|
898 { /* N[j] is (k-m)-th column of submatrix (-A) */
|
alpar@9
|
899 beg = A_ptr[k-m];
|
alpar@9
|
900 end = A_ptr[k-m+1];
|
alpar@9
|
901 for (ptr = beg; ptr < end; ptr++)
|
alpar@9
|
902 h[A_ind[ptr]] += xN * A_val[ptr];
|
alpar@9
|
903 }
|
alpar@9
|
904 }
|
alpar@9
|
905 /* solve system B * beta = h */
|
alpar@9
|
906 memcpy(&beta[1], &h[1], m * sizeof(double));
|
alpar@9
|
907 xassert(csa->valid);
|
alpar@9
|
908 bfd_ftran(csa->bfd, beta);
|
alpar@9
|
909 /* and refine the solution */
|
alpar@9
|
910 refine_ftran(csa, h, beta);
|
alpar@9
|
911 return;
|
alpar@9
|
912 }
|
alpar@9
|
913
|
alpar@9
|
914 /***********************************************************************
|
alpar@9
|
915 * eval_pi - compute vector of simplex multipliers
|
alpar@9
|
916 *
|
alpar@9
|
917 * This routine computes the vector of current simplex multipliers:
|
alpar@9
|
918 *
|
alpar@9
|
919 * pi = inv(B') * cB,
|
alpar@9
|
920 *
|
alpar@9
|
921 * where B' is a matrix transposed to the current basis matrix, cB is
|
alpar@9
|
922 * a subvector of objective coefficients at basic variables. */
|
alpar@9
|
923
|
alpar@9
|
924 static void eval_pi(struct csa *csa, double pi[])
|
alpar@9
|
925 { int m = csa->m;
|
alpar@9
|
926 double *c = csa->coef;
|
alpar@9
|
927 int *head = csa->head;
|
alpar@9
|
928 double *cB = csa->work2;
|
alpar@9
|
929 int i;
|
alpar@9
|
930 /* construct the right-hand side vector cB */
|
alpar@9
|
931 for (i = 1; i <= m; i++)
|
alpar@9
|
932 cB[i] = c[head[i]];
|
alpar@9
|
933 /* solve system B'* pi = cB */
|
alpar@9
|
934 memcpy(&pi[1], &cB[1], m * sizeof(double));
|
alpar@9
|
935 xassert(csa->valid);
|
alpar@9
|
936 bfd_btran(csa->bfd, pi);
|
alpar@9
|
937 /* and refine the solution */
|
alpar@9
|
938 refine_btran(csa, cB, pi);
|
alpar@9
|
939 return;
|
alpar@9
|
940 }
|
alpar@9
|
941
|
alpar@9
|
942 /***********************************************************************
|
alpar@9
|
943 * eval_cost - compute reduced cost of non-basic variable xN[j]
|
alpar@9
|
944 *
|
alpar@9
|
945 * This routine computes the current reduced cost of non-basic variable
|
alpar@9
|
946 * xN[j]:
|
alpar@9
|
947 *
|
alpar@9
|
948 * d[j] = cN[j] - N'[j] * pi,
|
alpar@9
|
949 *
|
alpar@9
|
950 * where cN[j] is the objective coefficient at variable xN[j], N[j] is
|
alpar@9
|
951 * a column of the augmented constraint matrix (I|-A) corresponding to
|
alpar@9
|
952 * xN[j], pi is the vector of simplex multipliers. */
|
alpar@9
|
953
|
alpar@9
|
954 static double eval_cost(struct csa *csa, double pi[], int j)
|
alpar@9
|
955 { int m = csa->m;
|
alpar@9
|
956 #ifdef GLP_DEBUG
|
alpar@9
|
957 int n = csa->n;
|
alpar@9
|
958 #endif
|
alpar@9
|
959 double *coef = csa->coef;
|
alpar@9
|
960 int *head = csa->head;
|
alpar@9
|
961 int k;
|
alpar@9
|
962 double dj;
|
alpar@9
|
963 #ifdef GLP_DEBUG
|
alpar@9
|
964 xassert(1 <= j && j <= n);
|
alpar@9
|
965 #endif
|
alpar@9
|
966 k = head[m+j]; /* x[k] = xN[j] */
|
alpar@9
|
967 #ifdef GLP_DEBUG
|
alpar@9
|
968 xassert(1 <= k && k <= m+n);
|
alpar@9
|
969 #endif
|
alpar@9
|
970 dj = coef[k];
|
alpar@9
|
971 if (k <= m)
|
alpar@9
|
972 { /* N[j] is k-th column of submatrix I */
|
alpar@9
|
973 dj -= pi[k];
|
alpar@9
|
974 }
|
alpar@9
|
975 else
|
alpar@9
|
976 { /* N[j] is (k-m)-th column of submatrix (-A) */
|
alpar@9
|
977 int *A_ptr = csa->A_ptr;
|
alpar@9
|
978 int *A_ind = csa->A_ind;
|
alpar@9
|
979 double *A_val = csa->A_val;
|
alpar@9
|
980 int beg, end, ptr;
|
alpar@9
|
981 beg = A_ptr[k-m];
|
alpar@9
|
982 end = A_ptr[k-m+1];
|
alpar@9
|
983 for (ptr = beg; ptr < end; ptr++)
|
alpar@9
|
984 dj += A_val[ptr] * pi[A_ind[ptr]];
|
alpar@9
|
985 }
|
alpar@9
|
986 return dj;
|
alpar@9
|
987 }
|
alpar@9
|
988
|
alpar@9
|
989 /***********************************************************************
|
alpar@9
|
990 * eval_bbar - compute and store primal values of basic variables
|
alpar@9
|
991 *
|
alpar@9
|
992 * This routine computes primal values of all basic variables and then
|
alpar@9
|
993 * stores them in the solution array. */
|
alpar@9
|
994
|
alpar@9
|
995 static void eval_bbar(struct csa *csa)
|
alpar@9
|
996 { eval_beta(csa, csa->bbar);
|
alpar@9
|
997 return;
|
alpar@9
|
998 }
|
alpar@9
|
999
|
alpar@9
|
1000 /***********************************************************************
|
alpar@9
|
1001 * eval_cbar - compute and store reduced costs of non-basic variables
|
alpar@9
|
1002 *
|
alpar@9
|
1003 * This routine computes reduced costs of all non-basic variables and
|
alpar@9
|
1004 * then stores them in the solution array. */
|
alpar@9
|
1005
|
alpar@9
|
1006 static void eval_cbar(struct csa *csa)
|
alpar@9
|
1007 {
|
alpar@9
|
1008 #ifdef GLP_DEBUG
|
alpar@9
|
1009 int m = csa->m;
|
alpar@9
|
1010 #endif
|
alpar@9
|
1011 int n = csa->n;
|
alpar@9
|
1012 #ifdef GLP_DEBUG
|
alpar@9
|
1013 int *head = csa->head;
|
alpar@9
|
1014 #endif
|
alpar@9
|
1015 double *cbar = csa->cbar;
|
alpar@9
|
1016 double *pi = csa->work3;
|
alpar@9
|
1017 int j;
|
alpar@9
|
1018 #ifdef GLP_DEBUG
|
alpar@9
|
1019 int k;
|
alpar@9
|
1020 #endif
|
alpar@9
|
1021 /* compute simplex multipliers */
|
alpar@9
|
1022 eval_pi(csa, pi);
|
alpar@9
|
1023 /* compute and store reduced costs */
|
alpar@9
|
1024 for (j = 1; j <= n; j++)
|
alpar@9
|
1025 {
|
alpar@9
|
1026 #ifdef GLP_DEBUG
|
alpar@9
|
1027 k = head[m+j]; /* x[k] = xN[j] */
|
alpar@9
|
1028 xassert(1 <= k && k <= m+n);
|
alpar@9
|
1029 #endif
|
alpar@9
|
1030 cbar[j] = eval_cost(csa, pi, j);
|
alpar@9
|
1031 }
|
alpar@9
|
1032 return;
|
alpar@9
|
1033 }
|
alpar@9
|
1034
|
alpar@9
|
1035 /***********************************************************************
|
alpar@9
|
1036 * reset_refsp - reset the reference space
|
alpar@9
|
1037 *
|
alpar@9
|
1038 * This routine resets (redefines) the reference space used in the
|
alpar@9
|
1039 * projected steepest edge pricing algorithm. */
|
alpar@9
|
1040
|
alpar@9
|
1041 static void reset_refsp(struct csa *csa)
|
alpar@9
|
1042 { int m = csa->m;
|
alpar@9
|
1043 int n = csa->n;
|
alpar@9
|
1044 int *head = csa->head;
|
alpar@9
|
1045 char *refsp = csa->refsp;
|
alpar@9
|
1046 double *gamma = csa->gamma;
|
alpar@9
|
1047 int j, k;
|
alpar@9
|
1048 xassert(csa->refct == 0);
|
alpar@9
|
1049 csa->refct = 1000;
|
alpar@9
|
1050 memset(&refsp[1], 0, (m+n) * sizeof(char));
|
alpar@9
|
1051 for (j = 1; j <= n; j++)
|
alpar@9
|
1052 { k = head[m+j]; /* x[k] = xN[j] */
|
alpar@9
|
1053 refsp[k] = 1;
|
alpar@9
|
1054 gamma[j] = 1.0;
|
alpar@9
|
1055 }
|
alpar@9
|
1056 return;
|
alpar@9
|
1057 }
|
alpar@9
|
1058
|
alpar@9
|
1059 /***********************************************************************
|
alpar@9
|
1060 * eval_gamma - compute steepest edge coefficient
|
alpar@9
|
1061 *
|
alpar@9
|
1062 * This routine computes the steepest edge coefficient for non-basic
|
alpar@9
|
1063 * variable xN[j] using its direct definition:
|
alpar@9
|
1064 *
|
alpar@9
|
1065 * gamma[j] = delta[j] + sum alfa[i,j]^2,
|
alpar@9
|
1066 * i in R
|
alpar@9
|
1067 *
|
alpar@9
|
1068 * where delta[j] = 1, if xN[j] is in the current reference space,
|
alpar@9
|
1069 * and 0 otherwise; R is a set of basic variables xB[i], which are in
|
alpar@9
|
1070 * the current reference space; alfa[i,j] are elements of the current
|
alpar@9
|
1071 * simplex table.
|
alpar@9
|
1072 *
|
alpar@9
|
1073 * NOTE: The routine is intended only for debugginig purposes. */
|
alpar@9
|
1074
|
alpar@9
|
1075 static double eval_gamma(struct csa *csa, int j)
|
alpar@9
|
1076 { int m = csa->m;
|
alpar@9
|
1077 #ifdef GLP_DEBUG
|
alpar@9
|
1078 int n = csa->n;
|
alpar@9
|
1079 #endif
|
alpar@9
|
1080 int *head = csa->head;
|
alpar@9
|
1081 char *refsp = csa->refsp;
|
alpar@9
|
1082 double *alfa = csa->work3;
|
alpar@9
|
1083 double *h = csa->work3;
|
alpar@9
|
1084 int i, k;
|
alpar@9
|
1085 double gamma;
|
alpar@9
|
1086 #ifdef GLP_DEBUG
|
alpar@9
|
1087 xassert(1 <= j && j <= n);
|
alpar@9
|
1088 #endif
|
alpar@9
|
1089 k = head[m+j]; /* x[k] = xN[j] */
|
alpar@9
|
1090 #ifdef GLP_DEBUG
|
alpar@9
|
1091 xassert(1 <= k && k <= m+n);
|
alpar@9
|
1092 #endif
|
alpar@9
|
1093 /* construct the right-hand side vector h = - N[j] */
|
alpar@9
|
1094 for (i = 1; i <= m; i++)
|
alpar@9
|
1095 h[i] = 0.0;
|
alpar@9
|
1096 if (k <= m)
|
alpar@9
|
1097 { /* N[j] is k-th column of submatrix I */
|
alpar@9
|
1098 h[k] = -1.0;
|
alpar@9
|
1099 }
|
alpar@9
|
1100 else
|
alpar@9
|
1101 { /* N[j] is (k-m)-th column of submatrix (-A) */
|
alpar@9
|
1102 int *A_ptr = csa->A_ptr;
|
alpar@9
|
1103 int *A_ind = csa->A_ind;
|
alpar@9
|
1104 double *A_val = csa->A_val;
|
alpar@9
|
1105 int beg, end, ptr;
|
alpar@9
|
1106 beg = A_ptr[k-m];
|
alpar@9
|
1107 end = A_ptr[k-m+1];
|
alpar@9
|
1108 for (ptr = beg; ptr < end; ptr++)
|
alpar@9
|
1109 h[A_ind[ptr]] = A_val[ptr];
|
alpar@9
|
1110 }
|
alpar@9
|
1111 /* solve system B * alfa = h */
|
alpar@9
|
1112 xassert(csa->valid);
|
alpar@9
|
1113 bfd_ftran(csa->bfd, alfa);
|
alpar@9
|
1114 /* compute gamma */
|
alpar@9
|
1115 gamma = (refsp[k] ? 1.0 : 0.0);
|
alpar@9
|
1116 for (i = 1; i <= m; i++)
|
alpar@9
|
1117 { k = head[i];
|
alpar@9
|
1118 #ifdef GLP_DEBUG
|
alpar@9
|
1119 xassert(1 <= k && k <= m+n);
|
alpar@9
|
1120 #endif
|
alpar@9
|
1121 if (refsp[k]) gamma += alfa[i] * alfa[i];
|
alpar@9
|
1122 }
|
alpar@9
|
1123 return gamma;
|
alpar@9
|
1124 }
|
alpar@9
|
1125
|
alpar@9
|
1126 /***********************************************************************
|
alpar@9
|
1127 * chuzc - choose non-basic variable (column of the simplex table)
|
alpar@9
|
1128 *
|
alpar@9
|
1129 * This routine chooses non-basic variable xN[q], which has largest
|
alpar@9
|
1130 * weighted reduced cost:
|
alpar@9
|
1131 *
|
alpar@9
|
1132 * |d[q]| / sqrt(gamma[q]) = max |d[j]| / sqrt(gamma[j]),
|
alpar@9
|
1133 * j in J
|
alpar@9
|
1134 *
|
alpar@9
|
1135 * where J is a subset of eligible non-basic variables xN[j], d[j] is
|
alpar@9
|
1136 * reduced cost of xN[j], gamma[j] is the steepest edge coefficient.
|
alpar@9
|
1137 *
|
alpar@9
|
1138 * The working objective function is always minimized, so the sign of
|
alpar@9
|
1139 * d[q] determines direction, in which xN[q] has to change:
|
alpar@9
|
1140 *
|
alpar@9
|
1141 * if d[q] < 0, xN[q] has to increase;
|
alpar@9
|
1142 *
|
alpar@9
|
1143 * if d[q] > 0, xN[q] has to decrease.
|
alpar@9
|
1144 *
|
alpar@9
|
1145 * If |d[j]| <= tol_dj, where tol_dj is a specified tolerance, xN[j]
|
alpar@9
|
1146 * is not included in J and therefore ignored. (It is assumed that the
|
alpar@9
|
1147 * working objective row is appropriately scaled, i.e. max|c[k]| = 1.)
|
alpar@9
|
1148 *
|
alpar@9
|
1149 * If J is empty and no variable has been chosen, q is set to 0. */
|
alpar@9
|
1150
|
alpar@9
|
1151 static void chuzc(struct csa *csa, double tol_dj)
|
alpar@9
|
1152 { int n = csa->n;
|
alpar@9
|
1153 char *stat = csa->stat;
|
alpar@9
|
1154 double *cbar = csa->cbar;
|
alpar@9
|
1155 double *gamma = csa->gamma;
|
alpar@9
|
1156 int j, q;
|
alpar@9
|
1157 double dj, best, temp;
|
alpar@9
|
1158 /* nothing is chosen so far */
|
alpar@9
|
1159 q = 0, best = 0.0;
|
alpar@9
|
1160 /* look through the list of non-basic variables */
|
alpar@9
|
1161 for (j = 1; j <= n; j++)
|
alpar@9
|
1162 { dj = cbar[j];
|
alpar@9
|
1163 switch (stat[j])
|
alpar@9
|
1164 { case GLP_NL:
|
alpar@9
|
1165 /* xN[j] can increase */
|
alpar@9
|
1166 if (dj >= - tol_dj) continue;
|
alpar@9
|
1167 break;
|
alpar@9
|
1168 case GLP_NU:
|
alpar@9
|
1169 /* xN[j] can decrease */
|
alpar@9
|
1170 if (dj <= + tol_dj) continue;
|
alpar@9
|
1171 break;
|
alpar@9
|
1172 case GLP_NF:
|
alpar@9
|
1173 /* xN[j] can change in any direction */
|
alpar@9
|
1174 if (- tol_dj <= dj && dj <= + tol_dj) continue;
|
alpar@9
|
1175 break;
|
alpar@9
|
1176 case GLP_NS:
|
alpar@9
|
1177 /* xN[j] cannot change at all */
|
alpar@9
|
1178 continue;
|
alpar@9
|
1179 default:
|
alpar@9
|
1180 xassert(stat != stat);
|
alpar@9
|
1181 }
|
alpar@9
|
1182 /* xN[j] is eligible non-basic variable; choose one which has
|
alpar@9
|
1183 largest weighted reduced cost */
|
alpar@9
|
1184 #ifdef GLP_DEBUG
|
alpar@9
|
1185 xassert(gamma[j] > 0.0);
|
alpar@9
|
1186 #endif
|
alpar@9
|
1187 temp = (dj * dj) / gamma[j];
|
alpar@9
|
1188 if (best < temp)
|
alpar@9
|
1189 q = j, best = temp;
|
alpar@9
|
1190 }
|
alpar@9
|
1191 /* store the index of non-basic variable xN[q] chosen */
|
alpar@9
|
1192 csa->q = q;
|
alpar@9
|
1193 return;
|
alpar@9
|
1194 }
|
alpar@9
|
1195
|
alpar@9
|
1196 /***********************************************************************
|
alpar@9
|
1197 * eval_tcol - compute pivot column of the simplex table
|
alpar@9
|
1198 *
|
alpar@9
|
1199 * This routine computes the pivot column of the simplex table, which
|
alpar@9
|
1200 * corresponds to non-basic variable xN[q] chosen.
|
alpar@9
|
1201 *
|
alpar@9
|
1202 * The pivot column is the following vector:
|
alpar@9
|
1203 *
|
alpar@9
|
1204 * tcol = T * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q],
|
alpar@9
|
1205 *
|
alpar@9
|
1206 * where B is the current basis matrix, N[q] is a column of the matrix
|
alpar@9
|
1207 * (I|-A) corresponding to variable xN[q]. */
|
alpar@9
|
1208
|
alpar@9
|
1209 static void eval_tcol(struct csa *csa)
|
alpar@9
|
1210 { int m = csa->m;
|
alpar@9
|
1211 #ifdef GLP_DEBUG
|
alpar@9
|
1212 int n = csa->n;
|
alpar@9
|
1213 #endif
|
alpar@9
|
1214 int *head = csa->head;
|
alpar@9
|
1215 int q = csa->q;
|
alpar@9
|
1216 int *tcol_ind = csa->tcol_ind;
|
alpar@9
|
1217 double *tcol_vec = csa->tcol_vec;
|
alpar@9
|
1218 double *h = csa->tcol_vec;
|
alpar@9
|
1219 int i, k, nnz;
|
alpar@9
|
1220 #ifdef GLP_DEBUG
|
alpar@9
|
1221 xassert(1 <= q && q <= n);
|
alpar@9
|
1222 #endif
|
alpar@9
|
1223 k = head[m+q]; /* x[k] = xN[q] */
|
alpar@9
|
1224 #ifdef GLP_DEBUG
|
alpar@9
|
1225 xassert(1 <= k && k <= m+n);
|
alpar@9
|
1226 #endif
|
alpar@9
|
1227 /* construct the right-hand side vector h = - N[q] */
|
alpar@9
|
1228 for (i = 1; i <= m; i++)
|
alpar@9
|
1229 h[i] = 0.0;
|
alpar@9
|
1230 if (k <= m)
|
alpar@9
|
1231 { /* N[q] is k-th column of submatrix I */
|
alpar@9
|
1232 h[k] = -1.0;
|
alpar@9
|
1233 }
|
alpar@9
|
1234 else
|
alpar@9
|
1235 { /* N[q] is (k-m)-th column of submatrix (-A) */
|
alpar@9
|
1236 int *A_ptr = csa->A_ptr;
|
alpar@9
|
1237 int *A_ind = csa->A_ind;
|
alpar@9
|
1238 double *A_val = csa->A_val;
|
alpar@9
|
1239 int beg, end, ptr;
|
alpar@9
|
1240 beg = A_ptr[k-m];
|
alpar@9
|
1241 end = A_ptr[k-m+1];
|
alpar@9
|
1242 for (ptr = beg; ptr < end; ptr++)
|
alpar@9
|
1243 h[A_ind[ptr]] = A_val[ptr];
|
alpar@9
|
1244 }
|
alpar@9
|
1245 /* solve system B * tcol = h */
|
alpar@9
|
1246 xassert(csa->valid);
|
alpar@9
|
1247 bfd_ftran(csa->bfd, tcol_vec);
|
alpar@9
|
1248 /* construct sparse pattern of the pivot column */
|
alpar@9
|
1249 nnz = 0;
|
alpar@9
|
1250 for (i = 1; i <= m; i++)
|
alpar@9
|
1251 { if (tcol_vec[i] != 0.0)
|
alpar@9
|
1252 tcol_ind[++nnz] = i;
|
alpar@9
|
1253 }
|
alpar@9
|
1254 csa->tcol_nnz = nnz;
|
alpar@9
|
1255 return;
|
alpar@9
|
1256 }
|
alpar@9
|
1257
|
alpar@9
|
1258 /***********************************************************************
|
alpar@9
|
1259 * refine_tcol - refine pivot column of the simplex table
|
alpar@9
|
1260 *
|
alpar@9
|
1261 * This routine refines the pivot column of the simplex table assuming
|
alpar@9
|
1262 * that it was previously computed by the routine eval_tcol. */
|
alpar@9
|
1263
|
alpar@9
|
1264 static void refine_tcol(struct csa *csa)
|
alpar@9
|
1265 { int m = csa->m;
|
alpar@9
|
1266 #ifdef GLP_DEBUG
|
alpar@9
|
1267 int n = csa->n;
|
alpar@9
|
1268 #endif
|
alpar@9
|
1269 int *head = csa->head;
|
alpar@9
|
1270 int q = csa->q;
|
alpar@9
|
1271 int *tcol_ind = csa->tcol_ind;
|
alpar@9
|
1272 double *tcol_vec = csa->tcol_vec;
|
alpar@9
|
1273 double *h = csa->work3;
|
alpar@9
|
1274 int i, k, nnz;
|
alpar@9
|
1275 #ifdef GLP_DEBUG
|
alpar@9
|
1276 xassert(1 <= q && q <= n);
|
alpar@9
|
1277 #endif
|
alpar@9
|
1278 k = head[m+q]; /* x[k] = xN[q] */
|
alpar@9
|
1279 #ifdef GLP_DEBUG
|
alpar@9
|
1280 xassert(1 <= k && k <= m+n);
|
alpar@9
|
1281 #endif
|
alpar@9
|
1282 /* construct the right-hand side vector h = - N[q] */
|
alpar@9
|
1283 for (i = 1; i <= m; i++)
|
alpar@9
|
1284 h[i] = 0.0;
|
alpar@9
|
1285 if (k <= m)
|
alpar@9
|
1286 { /* N[q] is k-th column of submatrix I */
|
alpar@9
|
1287 h[k] = -1.0;
|
alpar@9
|
1288 }
|
alpar@9
|
1289 else
|
alpar@9
|
1290 { /* N[q] is (k-m)-th column of submatrix (-A) */
|
alpar@9
|
1291 int *A_ptr = csa->A_ptr;
|
alpar@9
|
1292 int *A_ind = csa->A_ind;
|
alpar@9
|
1293 double *A_val = csa->A_val;
|
alpar@9
|
1294 int beg, end, ptr;
|
alpar@9
|
1295 beg = A_ptr[k-m];
|
alpar@9
|
1296 end = A_ptr[k-m+1];
|
alpar@9
|
1297 for (ptr = beg; ptr < end; ptr++)
|
alpar@9
|
1298 h[A_ind[ptr]] = A_val[ptr];
|
alpar@9
|
1299 }
|
alpar@9
|
1300 /* refine solution of B * tcol = h */
|
alpar@9
|
1301 refine_ftran(csa, h, tcol_vec);
|
alpar@9
|
1302 /* construct sparse pattern of the pivot column */
|
alpar@9
|
1303 nnz = 0;
|
alpar@9
|
1304 for (i = 1; i <= m; i++)
|
alpar@9
|
1305 { if (tcol_vec[i] != 0.0)
|
alpar@9
|
1306 tcol_ind[++nnz] = i;
|
alpar@9
|
1307 }
|
alpar@9
|
1308 csa->tcol_nnz = nnz;
|
alpar@9
|
1309 return;
|
alpar@9
|
1310 }
|
alpar@9
|
1311
|
alpar@9
|
1312 /***********************************************************************
|
alpar@9
|
1313 * sort_tcol - sort pivot column of the simplex table
|
alpar@9
|
1314 *
|
alpar@9
|
1315 * This routine reorders the list of non-zero elements of the pivot
|
alpar@9
|
1316 * column to put significant elements, whose magnitude is not less than
|
alpar@9
|
1317 * a specified tolerance, in front of the list, and stores the number
|
alpar@9
|
1318 * of significant elements in tcol_num. */
|
alpar@9
|
1319
|
alpar@9
|
1320 static void sort_tcol(struct csa *csa, double tol_piv)
|
alpar@9
|
1321 {
|
alpar@9
|
1322 #ifdef GLP_DEBUG
|
alpar@9
|
1323 int m = csa->m;
|
alpar@9
|
1324 #endif
|
alpar@9
|
1325 int nnz = csa->tcol_nnz;
|
alpar@9
|
1326 int *tcol_ind = csa->tcol_ind;
|
alpar@9
|
1327 double *tcol_vec = csa->tcol_vec;
|
alpar@9
|
1328 int i, num, pos;
|
alpar@9
|
1329 double big, eps, temp;
|
alpar@9
|
1330 /* compute infinity (maximum) norm of the column */
|
alpar@9
|
1331 big = 0.0;
|
alpar@9
|
1332 for (pos = 1; pos <= nnz; pos++)
|
alpar@9
|
1333 {
|
alpar@9
|
1334 #ifdef GLP_DEBUG
|
alpar@9
|
1335 i = tcol_ind[pos];
|
alpar@9
|
1336 xassert(1 <= i && i <= m);
|
alpar@9
|
1337 #endif
|
alpar@9
|
1338 temp = fabs(tcol_vec[tcol_ind[pos]]);
|
alpar@9
|
1339 if (big < temp) big = temp;
|
alpar@9
|
1340 }
|
alpar@9
|
1341 csa->tcol_max = big;
|
alpar@9
|
1342 /* determine absolute pivot tolerance */
|
alpar@9
|
1343 eps = tol_piv * (1.0 + 0.01 * big);
|
alpar@9
|
1344 /* move significant column components to front of the list */
|
alpar@9
|
1345 for (num = 0; num < nnz; )
|
alpar@9
|
1346 { i = tcol_ind[nnz];
|
alpar@9
|
1347 if (fabs(tcol_vec[i]) < eps)
|
alpar@9
|
1348 nnz--;
|
alpar@9
|
1349 else
|
alpar@9
|
1350 { num++;
|
alpar@9
|
1351 tcol_ind[nnz] = tcol_ind[num];
|
alpar@9
|
1352 tcol_ind[num] = i;
|
alpar@9
|
1353 }
|
alpar@9
|
1354 }
|
alpar@9
|
1355 csa->tcol_num = num;
|
alpar@9
|
1356 return;
|
alpar@9
|
1357 }
|
alpar@9
|
1358
|
alpar@9
|
1359 /***********************************************************************
|
alpar@9
|
1360 * chuzr - choose basic variable (row of the simplex table)
|
alpar@9
|
1361 *
|
alpar@9
|
1362 * This routine chooses basic variable xB[p], which reaches its bound
|
alpar@9
|
1363 * first on changing non-basic variable xN[q] in valid direction.
|
alpar@9
|
1364 *
|
alpar@9
|
1365 * The parameter rtol is a relative tolerance used to relax bounds of
|
alpar@9
|
1366 * basic variables. If rtol = 0, the routine implements the standard
|
alpar@9
|
1367 * ratio test. Otherwise, if rtol > 0, the routine implements Harris'
|
alpar@9
|
1368 * two-pass ratio test. In the latter case rtol should be about three
|
alpar@9
|
1369 * times less than a tolerance used to check primal feasibility. */
|
alpar@9
|
1370
|
alpar@9
|
1371 static void chuzr(struct csa *csa, double rtol)
|
alpar@9
|
1372 { int m = csa->m;
|
alpar@9
|
1373 #ifdef GLP_DEBUG
|
alpar@9
|
1374 int n = csa->n;
|
alpar@9
|
1375 #endif
|
alpar@9
|
1376 char *type = csa->type;
|
alpar@9
|
1377 double *lb = csa->lb;
|
alpar@9
|
1378 double *ub = csa->ub;
|
alpar@9
|
1379 double *coef = csa->coef;
|
alpar@9
|
1380 int *head = csa->head;
|
alpar@9
|
1381 int phase = csa->phase;
|
alpar@9
|
1382 double *bbar = csa->bbar;
|
alpar@9
|
1383 double *cbar = csa->cbar;
|
alpar@9
|
1384 int q = csa->q;
|
alpar@9
|
1385 int *tcol_ind = csa->tcol_ind;
|
alpar@9
|
1386 double *tcol_vec = csa->tcol_vec;
|
alpar@9
|
1387 int tcol_num = csa->tcol_num;
|
alpar@9
|
1388 int i, i_stat, k, p, p_stat, pos;
|
alpar@9
|
1389 double alfa, big, delta, s, t, teta, tmax;
|
alpar@9
|
1390 #ifdef GLP_DEBUG
|
alpar@9
|
1391 xassert(1 <= q && q <= n);
|
alpar@9
|
1392 #endif
|
alpar@9
|
1393 /* s := - sign(d[q]), where d[q] is reduced cost of xN[q] */
|
alpar@9
|
1394 #ifdef GLP_DEBUG
|
alpar@9
|
1395 xassert(cbar[q] != 0.0);
|
alpar@9
|
1396 #endif
|
alpar@9
|
1397 s = (cbar[q] > 0.0 ? -1.0 : +1.0);
|
alpar@9
|
1398 /*** FIRST PASS ***/
|
alpar@9
|
1399 k = head[m+q]; /* x[k] = xN[q] */
|
alpar@9
|
1400 #ifdef GLP_DEBUG
|
alpar@9
|
1401 xassert(1 <= k && k <= m+n);
|
alpar@9
|
1402 #endif
|
alpar@9
|
1403 if (type[k] == GLP_DB)
|
alpar@9
|
1404 { /* xN[q] has both lower and upper bounds */
|
alpar@9
|
1405 p = -1, p_stat = 0, teta = ub[k] - lb[k], big = 1.0;
|
alpar@9
|
1406 }
|
alpar@9
|
1407 else
|
alpar@9
|
1408 { /* xN[q] has no opposite bound */
|
alpar@9
|
1409 p = 0, p_stat = 0, teta = DBL_MAX, big = 0.0;
|
alpar@9
|
1410 }
|
alpar@9
|
1411 /* walk through significant elements of the pivot column */
|
alpar@9
|
1412 for (pos = 1; pos <= tcol_num; pos++)
|
alpar@9
|
1413 { i = tcol_ind[pos];
|
alpar@9
|
1414 #ifdef GLP_DEBUG
|
alpar@9
|
1415 xassert(1 <= i && i <= m);
|
alpar@9
|
1416 #endif
|
alpar@9
|
1417 k = head[i]; /* x[k] = xB[i] */
|
alpar@9
|
1418 #ifdef GLP_DEBUG
|
alpar@9
|
1419 xassert(1 <= k && k <= m+n);
|
alpar@9
|
1420 #endif
|
alpar@9
|
1421 alfa = s * tcol_vec[i];
|
alpar@9
|
1422 #ifdef GLP_DEBUG
|
alpar@9
|
1423 xassert(alfa != 0.0);
|
alpar@9
|
1424 #endif
|
alpar@9
|
1425 /* xB[i] = ... + alfa * xN[q] + ..., and due to s we need to
|
alpar@9
|
1426 consider the only case when xN[q] is increasing */
|
alpar@9
|
1427 if (alfa > 0.0)
|
alpar@9
|
1428 { /* xB[i] is increasing */
|
alpar@9
|
1429 if (phase == 1 && coef[k] < 0.0)
|
alpar@9
|
1430 { /* xB[i] violates its lower bound, which plays the role
|
alpar@9
|
1431 of an upper bound on phase I */
|
alpar@9
|
1432 delta = rtol * (1.0 + kappa * fabs(lb[k]));
|
alpar@9
|
1433 t = ((lb[k] + delta) - bbar[i]) / alfa;
|
alpar@9
|
1434 i_stat = GLP_NL;
|
alpar@9
|
1435 }
|
alpar@9
|
1436 else if (phase == 1 && coef[k] > 0.0)
|
alpar@9
|
1437 { /* xB[i] violates its upper bound, which plays the role
|
alpar@9
|
1438 of an lower bound on phase I */
|
alpar@9
|
1439 continue;
|
alpar@9
|
1440 }
|
alpar@9
|
1441 else if (type[k] == GLP_UP || type[k] == GLP_DB ||
|
alpar@9
|
1442 type[k] == GLP_FX)
|
alpar@9
|
1443 { /* xB[i] is within its bounds and has an upper bound */
|
alpar@9
|
1444 delta = rtol * (1.0 + kappa * fabs(ub[k]));
|
alpar@9
|
1445 t = ((ub[k] + delta) - bbar[i]) / alfa;
|
alpar@9
|
1446 i_stat = GLP_NU;
|
alpar@9
|
1447 }
|
alpar@9
|
1448 else
|
alpar@9
|
1449 { /* xB[i] is within its bounds and has no upper bound */
|
alpar@9
|
1450 continue;
|
alpar@9
|
1451 }
|
alpar@9
|
1452 }
|
alpar@9
|
1453 else
|
alpar@9
|
1454 { /* xB[i] is decreasing */
|
alpar@9
|
1455 if (phase == 1 && coef[k] > 0.0)
|
alpar@9
|
1456 { /* xB[i] violates its upper bound, which plays the role
|
alpar@9
|
1457 of an lower bound on phase I */
|
alpar@9
|
1458 delta = rtol * (1.0 + kappa * fabs(ub[k]));
|
alpar@9
|
1459 t = ((ub[k] - delta) - bbar[i]) / alfa;
|
alpar@9
|
1460 i_stat = GLP_NU;
|
alpar@9
|
1461 }
|
alpar@9
|
1462 else if (phase == 1 && coef[k] < 0.0)
|
alpar@9
|
1463 { /* xB[i] violates its lower bound, which plays the role
|
alpar@9
|
1464 of an upper bound on phase I */
|
alpar@9
|
1465 continue;
|
alpar@9
|
1466 }
|
alpar@9
|
1467 else if (type[k] == GLP_LO || type[k] == GLP_DB ||
|
alpar@9
|
1468 type[k] == GLP_FX)
|
alpar@9
|
1469 { /* xB[i] is within its bounds and has an lower bound */
|
alpar@9
|
1470 delta = rtol * (1.0 + kappa * fabs(lb[k]));
|
alpar@9
|
1471 t = ((lb[k] - delta) - bbar[i]) / alfa;
|
alpar@9
|
1472 i_stat = GLP_NL;
|
alpar@9
|
1473 }
|
alpar@9
|
1474 else
|
alpar@9
|
1475 { /* xB[i] is within its bounds and has no lower bound */
|
alpar@9
|
1476 continue;
|
alpar@9
|
1477 }
|
alpar@9
|
1478 }
|
alpar@9
|
1479 /* t is a change of xN[q], on which xB[i] reaches its bound
|
alpar@9
|
1480 (possibly relaxed); since the basic solution is assumed to
|
alpar@9
|
1481 be primal feasible (or pseudo feasible on phase I), t has
|
alpar@9
|
1482 to be non-negative by definition; however, it may happen
|
alpar@9
|
1483 that xB[i] slightly (i.e. within a tolerance) violates its
|
alpar@9
|
1484 bound, that leads to negative t; in the latter case, if
|
alpar@9
|
1485 xB[i] is chosen, negative t means that xN[q] changes in
|
alpar@9
|
1486 wrong direction; if pivot alfa[i,q] is close to zero, even
|
alpar@9
|
1487 small bound violation of xB[i] may lead to a large change
|
alpar@9
|
1488 of xN[q] in wrong direction; let, for example, xB[i] >= 0
|
alpar@9
|
1489 and in the current basis its value be -5e-9; let also xN[q]
|
alpar@9
|
1490 be on its zero bound and should increase; from the ratio
|
alpar@9
|
1491 test rule it follows that the pivot alfa[i,q] < 0; however,
|
alpar@9
|
1492 if alfa[i,q] is, say, -1e-9, the change of xN[q] in wrong
|
alpar@9
|
1493 direction is 5e-9 / (-1e-9) = -5, and using it for updating
|
alpar@9
|
1494 values of other basic variables will give absolutely wrong
|
alpar@9
|
1495 results; therefore, if t is negative, we should replace it
|
alpar@9
|
1496 by exact zero assuming that xB[i] is exactly on its bound,
|
alpar@9
|
1497 and the violation appears due to round-off errors */
|
alpar@9
|
1498 if (t < 0.0) t = 0.0;
|
alpar@9
|
1499 /* apply minimal ratio test */
|
alpar@9
|
1500 if (teta > t || teta == t && big < fabs(alfa))
|
alpar@9
|
1501 p = i, p_stat = i_stat, teta = t, big = fabs(alfa);
|
alpar@9
|
1502 }
|
alpar@9
|
1503 /* the second pass is skipped in the following cases: */
|
alpar@9
|
1504 /* if the standard ratio test is used */
|
alpar@9
|
1505 if (rtol == 0.0) goto done;
|
alpar@9
|
1506 /* if xN[q] reaches its opposite bound or if no basic variable
|
alpar@9
|
1507 has been chosen on the first pass */
|
alpar@9
|
1508 if (p <= 0) goto done;
|
alpar@9
|
1509 /* if xB[p] is a blocking variable, i.e. if it prevents xN[q]
|
alpar@9
|
1510 from any change */
|
alpar@9
|
1511 if (teta == 0.0) goto done;
|
alpar@9
|
1512 /*** SECOND PASS ***/
|
alpar@9
|
1513 /* here tmax is a maximal change of xN[q], on which the solution
|
alpar@9
|
1514 remains primal feasible (or pseudo feasible on phase I) within
|
alpar@9
|
1515 a tolerance */
|
alpar@9
|
1516 #if 0
|
alpar@9
|
1517 tmax = (1.0 + 10.0 * DBL_EPSILON) * teta;
|
alpar@9
|
1518 #else
|
alpar@9
|
1519 tmax = teta;
|
alpar@9
|
1520 #endif
|
alpar@9
|
1521 /* nothing is chosen so far */
|
alpar@9
|
1522 p = 0, p_stat = 0, teta = DBL_MAX, big = 0.0;
|
alpar@9
|
1523 /* walk through significant elements of the pivot column */
|
alpar@9
|
1524 for (pos = 1; pos <= tcol_num; pos++)
|
alpar@9
|
1525 { i = tcol_ind[pos];
|
alpar@9
|
1526 #ifdef GLP_DEBUG
|
alpar@9
|
1527 xassert(1 <= i && i <= m);
|
alpar@9
|
1528 #endif
|
alpar@9
|
1529 k = head[i]; /* x[k] = xB[i] */
|
alpar@9
|
1530 #ifdef GLP_DEBUG
|
alpar@9
|
1531 xassert(1 <= k && k <= m+n);
|
alpar@9
|
1532 #endif
|
alpar@9
|
1533 alfa = s * tcol_vec[i];
|
alpar@9
|
1534 #ifdef GLP_DEBUG
|
alpar@9
|
1535 xassert(alfa != 0.0);
|
alpar@9
|
1536 #endif
|
alpar@9
|
1537 /* xB[i] = ... + alfa * xN[q] + ..., and due to s we need to
|
alpar@9
|
1538 consider the only case when xN[q] is increasing */
|
alpar@9
|
1539 if (alfa > 0.0)
|
alpar@9
|
1540 { /* xB[i] is increasing */
|
alpar@9
|
1541 if (phase == 1 && coef[k] < 0.0)
|
alpar@9
|
1542 { /* xB[i] violates its lower bound, which plays the role
|
alpar@9
|
1543 of an upper bound on phase I */
|
alpar@9
|
1544 t = (lb[k] - bbar[i]) / alfa;
|
alpar@9
|
1545 i_stat = GLP_NL;
|
alpar@9
|
1546 }
|
alpar@9
|
1547 else if (phase == 1 && coef[k] > 0.0)
|
alpar@9
|
1548 { /* xB[i] violates its upper bound, which plays the role
|
alpar@9
|
1549 of an lower bound on phase I */
|
alpar@9
|
1550 continue;
|
alpar@9
|
1551 }
|
alpar@9
|
1552 else if (type[k] == GLP_UP || type[k] == GLP_DB ||
|
alpar@9
|
1553 type[k] == GLP_FX)
|
alpar@9
|
1554 { /* xB[i] is within its bounds and has an upper bound */
|
alpar@9
|
1555 t = (ub[k] - bbar[i]) / alfa;
|
alpar@9
|
1556 i_stat = GLP_NU;
|
alpar@9
|
1557 }
|
alpar@9
|
1558 else
|
alpar@9
|
1559 { /* xB[i] is within its bounds and has no upper bound */
|
alpar@9
|
1560 continue;
|
alpar@9
|
1561 }
|
alpar@9
|
1562 }
|
alpar@9
|
1563 else
|
alpar@9
|
1564 { /* xB[i] is decreasing */
|
alpar@9
|
1565 if (phase == 1 && coef[k] > 0.0)
|
alpar@9
|
1566 { /* xB[i] violates its upper bound, which plays the role
|
alpar@9
|
1567 of an lower bound on phase I */
|
alpar@9
|
1568 t = (ub[k] - bbar[i]) / alfa;
|
alpar@9
|
1569 i_stat = GLP_NU;
|
alpar@9
|
1570 }
|
alpar@9
|
1571 else if (phase == 1 && coef[k] < 0.0)
|
alpar@9
|
1572 { /* xB[i] violates its lower bound, which plays the role
|
alpar@9
|
1573 of an upper bound on phase I */
|
alpar@9
|
1574 continue;
|
alpar@9
|
1575 }
|
alpar@9
|
1576 else if (type[k] == GLP_LO || type[k] == GLP_DB ||
|
alpar@9
|
1577 type[k] == GLP_FX)
|
alpar@9
|
1578 { /* xB[i] is within its bounds and has an lower bound */
|
alpar@9
|
1579 t = (lb[k] - bbar[i]) / alfa;
|
alpar@9
|
1580 i_stat = GLP_NL;
|
alpar@9
|
1581 }
|
alpar@9
|
1582 else
|
alpar@9
|
1583 { /* xB[i] is within its bounds and has no lower bound */
|
alpar@9
|
1584 continue;
|
alpar@9
|
1585 }
|
alpar@9
|
1586 }
|
alpar@9
|
1587 /* (see comments for the first pass) */
|
alpar@9
|
1588 if (t < 0.0) t = 0.0;
|
alpar@9
|
1589 /* t is a change of xN[q], on which xB[i] reaches its bound;
|
alpar@9
|
1590 if t <= tmax, all basic variables can violate their bounds
|
alpar@9
|
1591 only within relaxation tolerance delta; we can use this
|
alpar@9
|
1592 freedom and choose basic variable having largest influence
|
alpar@9
|
1593 coefficient to avoid possible numeric instability */
|
alpar@9
|
1594 if (t <= tmax && big < fabs(alfa))
|
alpar@9
|
1595 p = i, p_stat = i_stat, teta = t, big = fabs(alfa);
|
alpar@9
|
1596 }
|
alpar@9
|
1597 /* something must be chosen on the second pass */
|
alpar@9
|
1598 xassert(p != 0);
|
alpar@9
|
1599 done: /* store the index and status of basic variable xB[p] chosen */
|
alpar@9
|
1600 csa->p = p;
|
alpar@9
|
1601 if (p > 0 && type[head[p]] == GLP_FX)
|
alpar@9
|
1602 csa->p_stat = GLP_NS;
|
alpar@9
|
1603 else
|
alpar@9
|
1604 csa->p_stat = p_stat;
|
alpar@9
|
1605 /* store corresponding change of non-basic variable xN[q] */
|
alpar@9
|
1606 #ifdef GLP_DEBUG
|
alpar@9
|
1607 xassert(teta >= 0.0);
|
alpar@9
|
1608 #endif
|
alpar@9
|
1609 csa->teta = s * teta;
|
alpar@9
|
1610 return;
|
alpar@9
|
1611 }
|
alpar@9
|
1612
|
alpar@9
|
1613 /***********************************************************************
|
alpar@9
|
1614 * eval_rho - compute pivot row of the inverse
|
alpar@9
|
1615 *
|
alpar@9
|
1616 * This routine computes the pivot (p-th) row of the inverse inv(B),
|
alpar@9
|
1617 * which corresponds to basic variable xB[p] chosen:
|
alpar@9
|
1618 *
|
alpar@9
|
1619 * rho = inv(B') * e[p],
|
alpar@9
|
1620 *
|
alpar@9
|
1621 * where B' is a matrix transposed to the current basis matrix, e[p]
|
alpar@9
|
1622 * is unity vector. */
|
alpar@9
|
1623
|
alpar@9
|
1624 static void eval_rho(struct csa *csa, double rho[])
|
alpar@9
|
1625 { int m = csa->m;
|
alpar@9
|
1626 int p = csa->p;
|
alpar@9
|
1627 double *e = rho;
|
alpar@9
|
1628 int i;
|
alpar@9
|
1629 #ifdef GLP_DEBUG
|
alpar@9
|
1630 xassert(1 <= p && p <= m);
|
alpar@9
|
1631 #endif
|
alpar@9
|
1632 /* construct the right-hand side vector e[p] */
|
alpar@9
|
1633 for (i = 1; i <= m; i++)
|
alpar@9
|
1634 e[i] = 0.0;
|
alpar@9
|
1635 e[p] = 1.0;
|
alpar@9
|
1636 /* solve system B'* rho = e[p] */
|
alpar@9
|
1637 xassert(csa->valid);
|
alpar@9
|
1638 bfd_btran(csa->bfd, rho);
|
alpar@9
|
1639 return;
|
alpar@9
|
1640 }
|
alpar@9
|
1641
|
alpar@9
|
1642 /***********************************************************************
|
alpar@9
|
1643 * refine_rho - refine pivot row of the inverse
|
alpar@9
|
1644 *
|
alpar@9
|
1645 * This routine refines the pivot row of the inverse inv(B) assuming
|
alpar@9
|
1646 * that it was previously computed by the routine eval_rho. */
|
alpar@9
|
1647
|
alpar@9
|
1648 static void refine_rho(struct csa *csa, double rho[])
|
alpar@9
|
1649 { int m = csa->m;
|
alpar@9
|
1650 int p = csa->p;
|
alpar@9
|
1651 double *e = csa->work3;
|
alpar@9
|
1652 int i;
|
alpar@9
|
1653 #ifdef GLP_DEBUG
|
alpar@9
|
1654 xassert(1 <= p && p <= m);
|
alpar@9
|
1655 #endif
|
alpar@9
|
1656 /* construct the right-hand side vector e[p] */
|
alpar@9
|
1657 for (i = 1; i <= m; i++)
|
alpar@9
|
1658 e[i] = 0.0;
|
alpar@9
|
1659 e[p] = 1.0;
|
alpar@9
|
1660 /* refine solution of B'* rho = e[p] */
|
alpar@9
|
1661 refine_btran(csa, e, rho);
|
alpar@9
|
1662 return;
|
alpar@9
|
1663 }
|
alpar@9
|
1664
|
alpar@9
|
1665 /***********************************************************************
|
alpar@9
|
1666 * eval_trow - compute pivot row of the simplex table
|
alpar@9
|
1667 *
|
alpar@9
|
1668 * This routine computes the pivot row of the simplex table, which
|
alpar@9
|
1669 * corresponds to basic variable xB[p] chosen.
|
alpar@9
|
1670 *
|
alpar@9
|
1671 * The pivot row is the following vector:
|
alpar@9
|
1672 *
|
alpar@9
|
1673 * trow = T'* e[p] = - N'* inv(B') * e[p] = - N' * rho,
|
alpar@9
|
1674 *
|
alpar@9
|
1675 * where rho is the pivot row of the inverse inv(B) previously computed
|
alpar@9
|
1676 * by the routine eval_rho.
|
alpar@9
|
1677 *
|
alpar@9
|
1678 * Note that elements of the pivot row corresponding to fixed non-basic
|
alpar@9
|
1679 * variables are not computed. */
|
alpar@9
|
1680
|
alpar@9
|
1681 static void eval_trow(struct csa *csa, double rho[])
|
alpar@9
|
1682 { int m = csa->m;
|
alpar@9
|
1683 int n = csa->n;
|
alpar@9
|
1684 #ifdef GLP_DEBUG
|
alpar@9
|
1685 char *stat = csa->stat;
|
alpar@9
|
1686 #endif
|
alpar@9
|
1687 int *N_ptr = csa->N_ptr;
|
alpar@9
|
1688 int *N_len = csa->N_len;
|
alpar@9
|
1689 int *N_ind = csa->N_ind;
|
alpar@9
|
1690 double *N_val = csa->N_val;
|
alpar@9
|
1691 int *trow_ind = csa->trow_ind;
|
alpar@9
|
1692 double *trow_vec = csa->trow_vec;
|
alpar@9
|
1693 int i, j, beg, end, ptr, nnz;
|
alpar@9
|
1694 double temp;
|
alpar@9
|
1695 /* clear the pivot row */
|
alpar@9
|
1696 for (j = 1; j <= n; j++)
|
alpar@9
|
1697 trow_vec[j] = 0.0;
|
alpar@9
|
1698 /* compute the pivot row as a linear combination of rows of the
|
alpar@9
|
1699 matrix N: trow = - rho[1] * N'[1] - ... - rho[m] * N'[m] */
|
alpar@9
|
1700 for (i = 1; i <= m; i++)
|
alpar@9
|
1701 { temp = rho[i];
|
alpar@9
|
1702 if (temp == 0.0) continue;
|
alpar@9
|
1703 /* trow := trow - rho[i] * N'[i] */
|
alpar@9
|
1704 beg = N_ptr[i];
|
alpar@9
|
1705 end = beg + N_len[i];
|
alpar@9
|
1706 for (ptr = beg; ptr < end; ptr++)
|
alpar@9
|
1707 {
|
alpar@9
|
1708 #ifdef GLP_DEBUG
|
alpar@9
|
1709 j = N_ind[ptr];
|
alpar@9
|
1710 xassert(1 <= j && j <= n);
|
alpar@9
|
1711 xassert(stat[j] != GLP_NS);
|
alpar@9
|
1712 #endif
|
alpar@9
|
1713 trow_vec[N_ind[ptr]] -= temp * N_val[ptr];
|
alpar@9
|
1714 }
|
alpar@9
|
1715 }
|
alpar@9
|
1716 /* construct sparse pattern of the pivot row */
|
alpar@9
|
1717 nnz = 0;
|
alpar@9
|
1718 for (j = 1; j <= n; j++)
|
alpar@9
|
1719 { if (trow_vec[j] != 0.0)
|
alpar@9
|
1720 trow_ind[++nnz] = j;
|
alpar@9
|
1721 }
|
alpar@9
|
1722 csa->trow_nnz = nnz;
|
alpar@9
|
1723 return;
|
alpar@9
|
1724 }
|
alpar@9
|
1725
|
alpar@9
|
1726 /***********************************************************************
|
alpar@9
|
1727 * update_bbar - update values of basic variables
|
alpar@9
|
1728 *
|
alpar@9
|
1729 * This routine updates values of all basic variables for the adjacent
|
alpar@9
|
1730 * basis. */
|
alpar@9
|
1731
|
alpar@9
|
1732 static void update_bbar(struct csa *csa)
|
alpar@9
|
1733 {
|
alpar@9
|
1734 #ifdef GLP_DEBUG
|
alpar@9
|
1735 int m = csa->m;
|
alpar@9
|
1736 int n = csa->n;
|
alpar@9
|
1737 #endif
|
alpar@9
|
1738 double *bbar = csa->bbar;
|
alpar@9
|
1739 int q = csa->q;
|
alpar@9
|
1740 int tcol_nnz = csa->tcol_nnz;
|
alpar@9
|
1741 int *tcol_ind = csa->tcol_ind;
|
alpar@9
|
1742 double *tcol_vec = csa->tcol_vec;
|
alpar@9
|
1743 int p = csa->p;
|
alpar@9
|
1744 double teta = csa->teta;
|
alpar@9
|
1745 int i, pos;
|
alpar@9
|
1746 #ifdef GLP_DEBUG
|
alpar@9
|
1747 xassert(1 <= q && q <= n);
|
alpar@9
|
1748 xassert(p < 0 || 1 <= p && p <= m);
|
alpar@9
|
1749 #endif
|
alpar@9
|
1750 /* if xN[q] leaves the basis, compute its value in the adjacent
|
alpar@9
|
1751 basis, where it will replace xB[p] */
|
alpar@9
|
1752 if (p > 0)
|
alpar@9
|
1753 bbar[p] = get_xN(csa, q) + teta;
|
alpar@9
|
1754 /* update values of other basic variables (except xB[p], because
|
alpar@9
|
1755 it will be replaced by xN[q]) */
|
alpar@9
|
1756 if (teta == 0.0) goto done;
|
alpar@9
|
1757 for (pos = 1; pos <= tcol_nnz; pos++)
|
alpar@9
|
1758 { i = tcol_ind[pos];
|
alpar@9
|
1759 /* skip xB[p] */
|
alpar@9
|
1760 if (i == p) continue;
|
alpar@9
|
1761 /* (change of xB[i]) = alfa[i,q] * (change of xN[q]) */
|
alpar@9
|
1762 bbar[i] += tcol_vec[i] * teta;
|
alpar@9
|
1763 }
|
alpar@9
|
1764 done: return;
|
alpar@9
|
1765 }
|
alpar@9
|
1766
|
alpar@9
|
1767 /***********************************************************************
|
alpar@9
|
1768 * reeval_cost - recompute reduced cost of non-basic variable xN[q]
|
alpar@9
|
1769 *
|
alpar@9
|
1770 * This routine recomputes reduced cost of non-basic variable xN[q] for
|
alpar@9
|
1771 * the current basis more accurately using its direct definition:
|
alpar@9
|
1772 *
|
alpar@9
|
1773 * d[q] = cN[q] - N'[q] * pi =
|
alpar@9
|
1774 *
|
alpar@9
|
1775 * = cN[q] - N'[q] * (inv(B') * cB) =
|
alpar@9
|
1776 *
|
alpar@9
|
1777 * = cN[q] - (cB' * inv(B) * N[q]) =
|
alpar@9
|
1778 *
|
alpar@9
|
1779 * = cN[q] + cB' * (pivot column).
|
alpar@9
|
1780 *
|
alpar@9
|
1781 * It is assumed that the pivot column of the simplex table is already
|
alpar@9
|
1782 * computed. */
|
alpar@9
|
1783
|
alpar@9
|
1784 static double reeval_cost(struct csa *csa)
|
alpar@9
|
1785 { int m = csa->m;
|
alpar@9
|
1786 #ifdef GLP_DEBUG
|
alpar@9
|
1787 int n = csa->n;
|
alpar@9
|
1788 #endif
|
alpar@9
|
1789 double *coef = csa->coef;
|
alpar@9
|
1790 int *head = csa->head;
|
alpar@9
|
1791 int q = csa->q;
|
alpar@9
|
1792 int tcol_nnz = csa->tcol_nnz;
|
alpar@9
|
1793 int *tcol_ind = csa->tcol_ind;
|
alpar@9
|
1794 double *tcol_vec = csa->tcol_vec;
|
alpar@9
|
1795 int i, pos;
|
alpar@9
|
1796 double dq;
|
alpar@9
|
1797 #ifdef GLP_DEBUG
|
alpar@9
|
1798 xassert(1 <= q && q <= n);
|
alpar@9
|
1799 #endif
|
alpar@9
|
1800 dq = coef[head[m+q]];
|
alpar@9
|
1801 for (pos = 1; pos <= tcol_nnz; pos++)
|
alpar@9
|
1802 { i = tcol_ind[pos];
|
alpar@9
|
1803 #ifdef GLP_DEBUG
|
alpar@9
|
1804 xassert(1 <= i && i <= m);
|
alpar@9
|
1805 #endif
|
alpar@9
|
1806 dq += coef[head[i]] * tcol_vec[i];
|
alpar@9
|
1807 }
|
alpar@9
|
1808 return dq;
|
alpar@9
|
1809 }
|
alpar@9
|
1810
|
alpar@9
|
1811 /***********************************************************************
|
alpar@9
|
1812 * update_cbar - update reduced costs of non-basic variables
|
alpar@9
|
1813 *
|
alpar@9
|
1814 * This routine updates reduced costs of all (except fixed) non-basic
|
alpar@9
|
1815 * variables for the adjacent basis. */
|
alpar@9
|
1816
|
alpar@9
|
1817 static void update_cbar(struct csa *csa)
|
alpar@9
|
1818 {
|
alpar@9
|
1819 #ifdef GLP_DEBUG
|
alpar@9
|
1820 int n = csa->n;
|
alpar@9
|
1821 #endif
|
alpar@9
|
1822 double *cbar = csa->cbar;
|
alpar@9
|
1823 int q = csa->q;
|
alpar@9
|
1824 int trow_nnz = csa->trow_nnz;
|
alpar@9
|
1825 int *trow_ind = csa->trow_ind;
|
alpar@9
|
1826 double *trow_vec = csa->trow_vec;
|
alpar@9
|
1827 int j, pos;
|
alpar@9
|
1828 double new_dq;
|
alpar@9
|
1829 #ifdef GLP_DEBUG
|
alpar@9
|
1830 xassert(1 <= q && q <= n);
|
alpar@9
|
1831 #endif
|
alpar@9
|
1832 /* compute reduced cost of xB[p] in the adjacent basis, where it
|
alpar@9
|
1833 will replace xN[q] */
|
alpar@9
|
1834 #ifdef GLP_DEBUG
|
alpar@9
|
1835 xassert(trow_vec[q] != 0.0);
|
alpar@9
|
1836 #endif
|
alpar@9
|
1837 new_dq = (cbar[q] /= trow_vec[q]);
|
alpar@9
|
1838 /* update reduced costs of other non-basic variables (except
|
alpar@9
|
1839 xN[q], because it will be replaced by xB[p]) */
|
alpar@9
|
1840 for (pos = 1; pos <= trow_nnz; pos++)
|
alpar@9
|
1841 { j = trow_ind[pos];
|
alpar@9
|
1842 /* skip xN[q] */
|
alpar@9
|
1843 if (j == q) continue;
|
alpar@9
|
1844 cbar[j] -= trow_vec[j] * new_dq;
|
alpar@9
|
1845 }
|
alpar@9
|
1846 return;
|
alpar@9
|
1847 }
|
alpar@9
|
1848
|
alpar@9
|
1849 /***********************************************************************
|
alpar@9
|
1850 * update_gamma - update steepest edge coefficients
|
alpar@9
|
1851 *
|
alpar@9
|
1852 * This routine updates steepest-edge coefficients for the adjacent
|
alpar@9
|
1853 * basis. */
|
alpar@9
|
1854
|
alpar@9
|
1855 static void update_gamma(struct csa *csa)
|
alpar@9
|
1856 { int m = csa->m;
|
alpar@9
|
1857 #ifdef GLP_DEBUG
|
alpar@9
|
1858 int n = csa->n;
|
alpar@9
|
1859 #endif
|
alpar@9
|
1860 char *type = csa->type;
|
alpar@9
|
1861 int *A_ptr = csa->A_ptr;
|
alpar@9
|
1862 int *A_ind = csa->A_ind;
|
alpar@9
|
1863 double *A_val = csa->A_val;
|
alpar@9
|
1864 int *head = csa->head;
|
alpar@9
|
1865 char *refsp = csa->refsp;
|
alpar@9
|
1866 double *gamma = csa->gamma;
|
alpar@9
|
1867 int q = csa->q;
|
alpar@9
|
1868 int tcol_nnz = csa->tcol_nnz;
|
alpar@9
|
1869 int *tcol_ind = csa->tcol_ind;
|
alpar@9
|
1870 double *tcol_vec = csa->tcol_vec;
|
alpar@9
|
1871 int p = csa->p;
|
alpar@9
|
1872 int trow_nnz = csa->trow_nnz;
|
alpar@9
|
1873 int *trow_ind = csa->trow_ind;
|
alpar@9
|
1874 double *trow_vec = csa->trow_vec;
|
alpar@9
|
1875 double *u = csa->work3;
|
alpar@9
|
1876 int i, j, k, pos, beg, end, ptr;
|
alpar@9
|
1877 double gamma_q, delta_q, pivot, s, t, t1, t2;
|
alpar@9
|
1878 #ifdef GLP_DEBUG
|
alpar@9
|
1879 xassert(1 <= p && p <= m);
|
alpar@9
|
1880 xassert(1 <= q && q <= n);
|
alpar@9
|
1881 #endif
|
alpar@9
|
1882 /* the basis changes, so decrease the count */
|
alpar@9
|
1883 xassert(csa->refct > 0);
|
alpar@9
|
1884 csa->refct--;
|
alpar@9
|
1885 /* recompute gamma[q] for the current basis more accurately and
|
alpar@9
|
1886 compute auxiliary vector u */
|
alpar@9
|
1887 gamma_q = delta_q = (refsp[head[m+q]] ? 1.0 : 0.0);
|
alpar@9
|
1888 for (i = 1; i <= m; i++) u[i] = 0.0;
|
alpar@9
|
1889 for (pos = 1; pos <= tcol_nnz; pos++)
|
alpar@9
|
1890 { i = tcol_ind[pos];
|
alpar@9
|
1891 if (refsp[head[i]])
|
alpar@9
|
1892 { u[i] = t = tcol_vec[i];
|
alpar@9
|
1893 gamma_q += t * t;
|
alpar@9
|
1894 }
|
alpar@9
|
1895 else
|
alpar@9
|
1896 u[i] = 0.0;
|
alpar@9
|
1897 }
|
alpar@9
|
1898 xassert(csa->valid);
|
alpar@9
|
1899 bfd_btran(csa->bfd, u);
|
alpar@9
|
1900 /* update gamma[k] for other non-basic variables (except fixed
|
alpar@9
|
1901 variables and xN[q], because it will be replaced by xB[p]) */
|
alpar@9
|
1902 pivot = trow_vec[q];
|
alpar@9
|
1903 #ifdef GLP_DEBUG
|
alpar@9
|
1904 xassert(pivot != 0.0);
|
alpar@9
|
1905 #endif
|
alpar@9
|
1906 for (pos = 1; pos <= trow_nnz; pos++)
|
alpar@9
|
1907 { j = trow_ind[pos];
|
alpar@9
|
1908 /* skip xN[q] */
|
alpar@9
|
1909 if (j == q) continue;
|
alpar@9
|
1910 /* compute t */
|
alpar@9
|
1911 t = trow_vec[j] / pivot;
|
alpar@9
|
1912 /* compute inner product s = N'[j] * u */
|
alpar@9
|
1913 k = head[m+j]; /* x[k] = xN[j] */
|
alpar@9
|
1914 if (k <= m)
|
alpar@9
|
1915 s = u[k];
|
alpar@9
|
1916 else
|
alpar@9
|
1917 { s = 0.0;
|
alpar@9
|
1918 beg = A_ptr[k-m];
|
alpar@9
|
1919 end = A_ptr[k-m+1];
|
alpar@9
|
1920 for (ptr = beg; ptr < end; ptr++)
|
alpar@9
|
1921 s -= A_val[ptr] * u[A_ind[ptr]];
|
alpar@9
|
1922 }
|
alpar@9
|
1923 /* compute gamma[k] for the adjacent basis */
|
alpar@9
|
1924 t1 = gamma[j] + t * t * gamma_q + 2.0 * t * s;
|
alpar@9
|
1925 t2 = (refsp[k] ? 1.0 : 0.0) + delta_q * t * t;
|
alpar@9
|
1926 gamma[j] = (t1 >= t2 ? t1 : t2);
|
alpar@9
|
1927 if (gamma[j] < DBL_EPSILON) gamma[j] = DBL_EPSILON;
|
alpar@9
|
1928 }
|
alpar@9
|
1929 /* compute gamma[q] for the adjacent basis */
|
alpar@9
|
1930 if (type[head[p]] == GLP_FX)
|
alpar@9
|
1931 gamma[q] = 1.0;
|
alpar@9
|
1932 else
|
alpar@9
|
1933 { gamma[q] = gamma_q / (pivot * pivot);
|
alpar@9
|
1934 if (gamma[q] < DBL_EPSILON) gamma[q] = DBL_EPSILON;
|
alpar@9
|
1935 }
|
alpar@9
|
1936 return;
|
alpar@9
|
1937 }
|
alpar@9
|
1938
|
alpar@9
|
1939 /***********************************************************************
|
alpar@9
|
1940 * err_in_bbar - compute maximal relative error in primal solution
|
alpar@9
|
1941 *
|
alpar@9
|
1942 * This routine returns maximal relative error:
|
alpar@9
|
1943 *
|
alpar@9
|
1944 * max |beta[i] - bbar[i]| / (1 + |beta[i]|),
|
alpar@9
|
1945 *
|
alpar@9
|
1946 * where beta and bbar are, respectively, directly computed and the
|
alpar@9
|
1947 * current (updated) values of basic variables.
|
alpar@9
|
1948 *
|
alpar@9
|
1949 * NOTE: The routine is intended only for debugginig purposes. */
|
alpar@9
|
1950
|
alpar@9
|
1951 static double err_in_bbar(struct csa *csa)
|
alpar@9
|
1952 { int m = csa->m;
|
alpar@9
|
1953 double *bbar = csa->bbar;
|
alpar@9
|
1954 int i;
|
alpar@9
|
1955 double e, emax, *beta;
|
alpar@9
|
1956 beta = xcalloc(1+m, sizeof(double));
|
alpar@9
|
1957 eval_beta(csa, beta);
|
alpar@9
|
1958 emax = 0.0;
|
alpar@9
|
1959 for (i = 1; i <= m; i++)
|
alpar@9
|
1960 { e = fabs(beta[i] - bbar[i]) / (1.0 + fabs(beta[i]));
|
alpar@9
|
1961 if (emax < e) emax = e;
|
alpar@9
|
1962 }
|
alpar@9
|
1963 xfree(beta);
|
alpar@9
|
1964 return emax;
|
alpar@9
|
1965 }
|
alpar@9
|
1966
|
alpar@9
|
1967 /***********************************************************************
|
alpar@9
|
1968 * err_in_cbar - compute maximal relative error in dual solution
|
alpar@9
|
1969 *
|
alpar@9
|
1970 * This routine returns maximal relative error:
|
alpar@9
|
1971 *
|
alpar@9
|
1972 * max |cost[j] - cbar[j]| / (1 + |cost[j]|),
|
alpar@9
|
1973 *
|
alpar@9
|
1974 * where cost and cbar are, respectively, directly computed and the
|
alpar@9
|
1975 * current (updated) reduced costs of non-basic non-fixed variables.
|
alpar@9
|
1976 *
|
alpar@9
|
1977 * NOTE: The routine is intended only for debugginig purposes. */
|
alpar@9
|
1978
|
alpar@9
|
1979 static double err_in_cbar(struct csa *csa)
|
alpar@9
|
1980 { int m = csa->m;
|
alpar@9
|
1981 int n = csa->n;
|
alpar@9
|
1982 char *stat = csa->stat;
|
alpar@9
|
1983 double *cbar = csa->cbar;
|
alpar@9
|
1984 int j;
|
alpar@9
|
1985 double e, emax, cost, *pi;
|
alpar@9
|
1986 pi = xcalloc(1+m, sizeof(double));
|
alpar@9
|
1987 eval_pi(csa, pi);
|
alpar@9
|
1988 emax = 0.0;
|
alpar@9
|
1989 for (j = 1; j <= n; j++)
|
alpar@9
|
1990 { if (stat[j] == GLP_NS) continue;
|
alpar@9
|
1991 cost = eval_cost(csa, pi, j);
|
alpar@9
|
1992 e = fabs(cost - cbar[j]) / (1.0 + fabs(cost));
|
alpar@9
|
1993 if (emax < e) emax = e;
|
alpar@9
|
1994 }
|
alpar@9
|
1995 xfree(pi);
|
alpar@9
|
1996 return emax;
|
alpar@9
|
1997 }
|
alpar@9
|
1998
|
alpar@9
|
1999 /***********************************************************************
|
alpar@9
|
2000 * err_in_gamma - compute maximal relative error in steepest edge cff.
|
alpar@9
|
2001 *
|
alpar@9
|
2002 * This routine returns maximal relative error:
|
alpar@9
|
2003 *
|
alpar@9
|
2004 * max |gamma'[j] - gamma[j]| / (1 + |gamma'[j]),
|
alpar@9
|
2005 *
|
alpar@9
|
2006 * where gamma'[j] and gamma[j] are, respectively, directly computed
|
alpar@9
|
2007 * and the current (updated) steepest edge coefficients for non-basic
|
alpar@9
|
2008 * non-fixed variable x[j].
|
alpar@9
|
2009 *
|
alpar@9
|
2010 * NOTE: The routine is intended only for debugginig purposes. */
|
alpar@9
|
2011
|
alpar@9
|
2012 static double err_in_gamma(struct csa *csa)
|
alpar@9
|
2013 { int n = csa->n;
|
alpar@9
|
2014 char *stat = csa->stat;
|
alpar@9
|
2015 double *gamma = csa->gamma;
|
alpar@9
|
2016 int j;
|
alpar@9
|
2017 double e, emax, temp;
|
alpar@9
|
2018 emax = 0.0;
|
alpar@9
|
2019 for (j = 1; j <= n; j++)
|
alpar@9
|
2020 { if (stat[j] == GLP_NS)
|
alpar@9
|
2021 { xassert(gamma[j] == 1.0);
|
alpar@9
|
2022 continue;
|
alpar@9
|
2023 }
|
alpar@9
|
2024 temp = eval_gamma(csa, j);
|
alpar@9
|
2025 e = fabs(temp - gamma[j]) / (1.0 + fabs(temp));
|
alpar@9
|
2026 if (emax < e) emax = e;
|
alpar@9
|
2027 }
|
alpar@9
|
2028 return emax;
|
alpar@9
|
2029 }
|
alpar@9
|
2030
|
alpar@9
|
2031 /***********************************************************************
|
alpar@9
|
2032 * change_basis - change basis header
|
alpar@9
|
2033 *
|
alpar@9
|
2034 * This routine changes the basis header to make it corresponding to
|
alpar@9
|
2035 * the adjacent basis. */
|
alpar@9
|
2036
|
alpar@9
|
2037 static void change_basis(struct csa *csa)
|
alpar@9
|
2038 { int m = csa->m;
|
alpar@9
|
2039 #ifdef GLP_DEBUG
|
alpar@9
|
2040 int n = csa->n;
|
alpar@9
|
2041 char *type = csa->type;
|
alpar@9
|
2042 #endif
|
alpar@9
|
2043 int *head = csa->head;
|
alpar@9
|
2044 char *stat = csa->stat;
|
alpar@9
|
2045 int q = csa->q;
|
alpar@9
|
2046 int p = csa->p;
|
alpar@9
|
2047 int p_stat = csa->p_stat;
|
alpar@9
|
2048 int k;
|
alpar@9
|
2049 #ifdef GLP_DEBUG
|
alpar@9
|
2050 xassert(1 <= q && q <= n);
|
alpar@9
|
2051 #endif
|
alpar@9
|
2052 if (p < 0)
|
alpar@9
|
2053 { /* xN[q] goes to its opposite bound */
|
alpar@9
|
2054 #ifdef GLP_DEBUG
|
alpar@9
|
2055 k = head[m+q]; /* x[k] = xN[q] */
|
alpar@9
|
2056 xassert(1 <= k && k <= m+n);
|
alpar@9
|
2057 xassert(type[k] == GLP_DB);
|
alpar@9
|
2058 #endif
|
alpar@9
|
2059 switch (stat[q])
|
alpar@9
|
2060 { case GLP_NL:
|
alpar@9
|
2061 /* xN[q] increases */
|
alpar@9
|
2062 stat[q] = GLP_NU;
|
alpar@9
|
2063 break;
|
alpar@9
|
2064 case GLP_NU:
|
alpar@9
|
2065 /* xN[q] decreases */
|
alpar@9
|
2066 stat[q] = GLP_NL;
|
alpar@9
|
2067 break;
|
alpar@9
|
2068 default:
|
alpar@9
|
2069 xassert(stat != stat);
|
alpar@9
|
2070 }
|
alpar@9
|
2071 }
|
alpar@9
|
2072 else
|
alpar@9
|
2073 { /* xB[p] leaves the basis, xN[q] enters the basis */
|
alpar@9
|
2074 #ifdef GLP_DEBUG
|
alpar@9
|
2075 xassert(1 <= p && p <= m);
|
alpar@9
|
2076 k = head[p]; /* x[k] = xB[p] */
|
alpar@9
|
2077 switch (p_stat)
|
alpar@9
|
2078 { case GLP_NL:
|
alpar@9
|
2079 /* xB[p] goes to its lower bound */
|
alpar@9
|
2080 xassert(type[k] == GLP_LO || type[k] == GLP_DB);
|
alpar@9
|
2081 break;
|
alpar@9
|
2082 case GLP_NU:
|
alpar@9
|
2083 /* xB[p] goes to its upper bound */
|
alpar@9
|
2084 xassert(type[k] == GLP_UP || type[k] == GLP_DB);
|
alpar@9
|
2085 break;
|
alpar@9
|
2086 case GLP_NS:
|
alpar@9
|
2087 /* xB[p] goes to its fixed value */
|
alpar@9
|
2088 xassert(type[k] == GLP_NS);
|
alpar@9
|
2089 break;
|
alpar@9
|
2090 default:
|
alpar@9
|
2091 xassert(p_stat != p_stat);
|
alpar@9
|
2092 }
|
alpar@9
|
2093 #endif
|
alpar@9
|
2094 /* xB[p] <-> xN[q] */
|
alpar@9
|
2095 k = head[p], head[p] = head[m+q], head[m+q] = k;
|
alpar@9
|
2096 stat[q] = (char)p_stat;
|
alpar@9
|
2097 }
|
alpar@9
|
2098 return;
|
alpar@9
|
2099 }
|
alpar@9
|
2100
|
alpar@9
|
2101 /***********************************************************************
|
alpar@9
|
2102 * set_aux_obj - construct auxiliary objective function
|
alpar@9
|
2103 *
|
alpar@9
|
2104 * The auxiliary objective function is a separable piecewise linear
|
alpar@9
|
2105 * convex function, which is the sum of primal infeasibilities:
|
alpar@9
|
2106 *
|
alpar@9
|
2107 * z = t[1] + ... + t[m+n] -> minimize,
|
alpar@9
|
2108 *
|
alpar@9
|
2109 * where:
|
alpar@9
|
2110 *
|
alpar@9
|
2111 * / lb[k] - x[k], if x[k] < lb[k]
|
alpar@9
|
2112 * |
|
alpar@9
|
2113 * t[k] = < 0, if lb[k] <= x[k] <= ub[k]
|
alpar@9
|
2114 * |
|
alpar@9
|
2115 * \ x[k] - ub[k], if x[k] > ub[k]
|
alpar@9
|
2116 *
|
alpar@9
|
2117 * This routine computes objective coefficients for the current basis
|
alpar@9
|
2118 * and returns the number of non-zero terms t[k]. */
|
alpar@9
|
2119
|
alpar@9
|
2120 static int set_aux_obj(struct csa *csa, double tol_bnd)
|
alpar@9
|
2121 { int m = csa->m;
|
alpar@9
|
2122 int n = csa->n;
|
alpar@9
|
2123 char *type = csa->type;
|
alpar@9
|
2124 double *lb = csa->lb;
|
alpar@9
|
2125 double *ub = csa->ub;
|
alpar@9
|
2126 double *coef = csa->coef;
|
alpar@9
|
2127 int *head = csa->head;
|
alpar@9
|
2128 double *bbar = csa->bbar;
|
alpar@9
|
2129 int i, k, cnt = 0;
|
alpar@9
|
2130 double eps;
|
alpar@9
|
2131 /* use a bit more restrictive tolerance */
|
alpar@9
|
2132 tol_bnd *= 0.90;
|
alpar@9
|
2133 /* clear all objective coefficients */
|
alpar@9
|
2134 for (k = 1; k <= m+n; k++)
|
alpar@9
|
2135 coef[k] = 0.0;
|
alpar@9
|
2136 /* walk through the list of basic variables */
|
alpar@9
|
2137 for (i = 1; i <= m; i++)
|
alpar@9
|
2138 { k = head[i]; /* x[k] = xB[i] */
|
alpar@9
|
2139 if (type[k] == GLP_LO || type[k] == GLP_DB ||
|
alpar@9
|
2140 type[k] == GLP_FX)
|
alpar@9
|
2141 { /* x[k] has lower bound */
|
alpar@9
|
2142 eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
|
alpar@9
|
2143 if (bbar[i] < lb[k] - eps)
|
alpar@9
|
2144 { /* and violates it */
|
alpar@9
|
2145 coef[k] = -1.0;
|
alpar@9
|
2146 cnt++;
|
alpar@9
|
2147 }
|
alpar@9
|
2148 }
|
alpar@9
|
2149 if (type[k] == GLP_UP || type[k] == GLP_DB ||
|
alpar@9
|
2150 type[k] == GLP_FX)
|
alpar@9
|
2151 { /* x[k] has upper bound */
|
alpar@9
|
2152 eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
|
alpar@9
|
2153 if (bbar[i] > ub[k] + eps)
|
alpar@9
|
2154 { /* and violates it */
|
alpar@9
|
2155 coef[k] = +1.0;
|
alpar@9
|
2156 cnt++;
|
alpar@9
|
2157 }
|
alpar@9
|
2158 }
|
alpar@9
|
2159 }
|
alpar@9
|
2160 return cnt;
|
alpar@9
|
2161 }
|
alpar@9
|
2162
|
alpar@9
|
2163 /***********************************************************************
|
alpar@9
|
2164 * set_orig_obj - restore original objective function
|
alpar@9
|
2165 *
|
alpar@9
|
2166 * This routine assigns scaled original objective coefficients to the
|
alpar@9
|
2167 * working objective function. */
|
alpar@9
|
2168
|
alpar@9
|
2169 static void set_orig_obj(struct csa *csa)
|
alpar@9
|
2170 { int m = csa->m;
|
alpar@9
|
2171 int n = csa->n;
|
alpar@9
|
2172 double *coef = csa->coef;
|
alpar@9
|
2173 double *obj = csa->obj;
|
alpar@9
|
2174 double zeta = csa->zeta;
|
alpar@9
|
2175 int i, j;
|
alpar@9
|
2176 for (i = 1; i <= m; i++)
|
alpar@9
|
2177 coef[i] = 0.0;
|
alpar@9
|
2178 for (j = 1; j <= n; j++)
|
alpar@9
|
2179 coef[m+j] = zeta * obj[j];
|
alpar@9
|
2180 return;
|
alpar@9
|
2181 }
|
alpar@9
|
2182
|
alpar@9
|
2183 /***********************************************************************
|
alpar@9
|
2184 * check_stab - check numerical stability of basic solution
|
alpar@9
|
2185 *
|
alpar@9
|
2186 * If the current basic solution is primal feasible (or pseudo feasible
|
alpar@9
|
2187 * on phase I) within a tolerance, this routine returns zero, otherwise
|
alpar@9
|
2188 * it returns non-zero. */
|
alpar@9
|
2189
|
alpar@9
|
2190 static int check_stab(struct csa *csa, double tol_bnd)
|
alpar@9
|
2191 { int m = csa->m;
|
alpar@9
|
2192 #ifdef GLP_DEBUG
|
alpar@9
|
2193 int n = csa->n;
|
alpar@9
|
2194 #endif
|
alpar@9
|
2195 char *type = csa->type;
|
alpar@9
|
2196 double *lb = csa->lb;
|
alpar@9
|
2197 double *ub = csa->ub;
|
alpar@9
|
2198 double *coef = csa->coef;
|
alpar@9
|
2199 int *head = csa->head;
|
alpar@9
|
2200 int phase = csa->phase;
|
alpar@9
|
2201 double *bbar = csa->bbar;
|
alpar@9
|
2202 int i, k;
|
alpar@9
|
2203 double eps;
|
alpar@9
|
2204 /* walk through the list of basic variables */
|
alpar@9
|
2205 for (i = 1; i <= m; i++)
|
alpar@9
|
2206 { k = head[i]; /* x[k] = xB[i] */
|
alpar@9
|
2207 #ifdef GLP_DEBUG
|
alpar@9
|
2208 xassert(1 <= k && k <= m+n);
|
alpar@9
|
2209 #endif
|
alpar@9
|
2210 if (phase == 1 && coef[k] < 0.0)
|
alpar@9
|
2211 { /* x[k] must not be greater than its lower bound */
|
alpar@9
|
2212 #ifdef GLP_DEBUG
|
alpar@9
|
2213 xassert(type[k] == GLP_LO || type[k] == GLP_DB ||
|
alpar@9
|
2214 type[k] == GLP_FX);
|
alpar@9
|
2215 #endif
|
alpar@9
|
2216 eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
|
alpar@9
|
2217 if (bbar[i] > lb[k] + eps) return 1;
|
alpar@9
|
2218 }
|
alpar@9
|
2219 else if (phase == 1 && coef[k] > 0.0)
|
alpar@9
|
2220 { /* x[k] must not be less than its upper bound */
|
alpar@9
|
2221 #ifdef GLP_DEBUG
|
alpar@9
|
2222 xassert(type[k] == GLP_UP || type[k] == GLP_DB ||
|
alpar@9
|
2223 type[k] == GLP_FX);
|
alpar@9
|
2224 #endif
|
alpar@9
|
2225 eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
|
alpar@9
|
2226 if (bbar[i] < ub[k] - eps) return 1;
|
alpar@9
|
2227 }
|
alpar@9
|
2228 else
|
alpar@9
|
2229 { /* either phase = 1 and coef[k] = 0, or phase = 2 */
|
alpar@9
|
2230 if (type[k] == GLP_LO || type[k] == GLP_DB ||
|
alpar@9
|
2231 type[k] == GLP_FX)
|
alpar@9
|
2232 { /* x[k] must not be less than its lower bound */
|
alpar@9
|
2233 eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
|
alpar@9
|
2234 if (bbar[i] < lb[k] - eps) return 1;
|
alpar@9
|
2235 }
|
alpar@9
|
2236 if (type[k] == GLP_UP || type[k] == GLP_DB ||
|
alpar@9
|
2237 type[k] == GLP_FX)
|
alpar@9
|
2238 { /* x[k] must not be greater then its upper bound */
|
alpar@9
|
2239 eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
|
alpar@9
|
2240 if (bbar[i] > ub[k] + eps) return 1;
|
alpar@9
|
2241 }
|
alpar@9
|
2242 }
|
alpar@9
|
2243 }
|
alpar@9
|
2244 /* basic solution is primal feasible within a tolerance */
|
alpar@9
|
2245 return 0;
|
alpar@9
|
2246 }
|
alpar@9
|
2247
|
alpar@9
|
2248 /***********************************************************************
|
alpar@9
|
2249 * check_feas - check primal feasibility of basic solution
|
alpar@9
|
2250 *
|
alpar@9
|
2251 * If the current basic solution is primal feasible within a tolerance,
|
alpar@9
|
2252 * this routine returns zero, otherwise it returns non-zero. */
|
alpar@9
|
2253
|
alpar@9
|
2254 static int check_feas(struct csa *csa, double tol_bnd)
|
alpar@9
|
2255 { int m = csa->m;
|
alpar@9
|
2256 #ifdef GLP_DEBUG
|
alpar@9
|
2257 int n = csa->n;
|
alpar@9
|
2258 char *type = csa->type;
|
alpar@9
|
2259 #endif
|
alpar@9
|
2260 double *lb = csa->lb;
|
alpar@9
|
2261 double *ub = csa->ub;
|
alpar@9
|
2262 double *coef = csa->coef;
|
alpar@9
|
2263 int *head = csa->head;
|
alpar@9
|
2264 double *bbar = csa->bbar;
|
alpar@9
|
2265 int i, k;
|
alpar@9
|
2266 double eps;
|
alpar@9
|
2267 xassert(csa->phase == 1);
|
alpar@9
|
2268 /* walk through the list of basic variables */
|
alpar@9
|
2269 for (i = 1; i <= m; i++)
|
alpar@9
|
2270 { k = head[i]; /* x[k] = xB[i] */
|
alpar@9
|
2271 #ifdef GLP_DEBUG
|
alpar@9
|
2272 xassert(1 <= k && k <= m+n);
|
alpar@9
|
2273 #endif
|
alpar@9
|
2274 if (coef[k] < 0.0)
|
alpar@9
|
2275 { /* check if x[k] still violates its lower bound */
|
alpar@9
|
2276 #ifdef GLP_DEBUG
|
alpar@9
|
2277 xassert(type[k] == GLP_LO || type[k] == GLP_DB ||
|
alpar@9
|
2278 type[k] == GLP_FX);
|
alpar@9
|
2279 #endif
|
alpar@9
|
2280 eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
|
alpar@9
|
2281 if (bbar[i] < lb[k] - eps) return 1;
|
alpar@9
|
2282 }
|
alpar@9
|
2283 else if (coef[k] > 0.0)
|
alpar@9
|
2284 { /* check if x[k] still violates its upper bound */
|
alpar@9
|
2285 #ifdef GLP_DEBUG
|
alpar@9
|
2286 xassert(type[k] == GLP_UP || type[k] == GLP_DB ||
|
alpar@9
|
2287 type[k] == GLP_FX);
|
alpar@9
|
2288 #endif
|
alpar@9
|
2289 eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
|
alpar@9
|
2290 if (bbar[i] > ub[k] + eps) return 1;
|
alpar@9
|
2291 }
|
alpar@9
|
2292 }
|
alpar@9
|
2293 /* basic solution is primal feasible within a tolerance */
|
alpar@9
|
2294 return 0;
|
alpar@9
|
2295 }
|
alpar@9
|
2296
|
alpar@9
|
2297 /***********************************************************************
|
alpar@9
|
2298 * eval_obj - compute original objective function
|
alpar@9
|
2299 *
|
alpar@9
|
2300 * This routine computes the current value of the original objective
|
alpar@9
|
2301 * function. */
|
alpar@9
|
2302
|
alpar@9
|
2303 static double eval_obj(struct csa *csa)
|
alpar@9
|
2304 { int m = csa->m;
|
alpar@9
|
2305 int n = csa->n;
|
alpar@9
|
2306 double *obj = csa->obj;
|
alpar@9
|
2307 int *head = csa->head;
|
alpar@9
|
2308 double *bbar = csa->bbar;
|
alpar@9
|
2309 int i, j, k;
|
alpar@9
|
2310 double sum;
|
alpar@9
|
2311 sum = obj[0];
|
alpar@9
|
2312 /* walk through the list of basic variables */
|
alpar@9
|
2313 for (i = 1; i <= m; i++)
|
alpar@9
|
2314 { k = head[i]; /* x[k] = xB[i] */
|
alpar@9
|
2315 #ifdef GLP_DEBUG
|
alpar@9
|
2316 xassert(1 <= k && k <= m+n);
|
alpar@9
|
2317 #endif
|
alpar@9
|
2318 if (k > m)
|
alpar@9
|
2319 sum += obj[k-m] * bbar[i];
|
alpar@9
|
2320 }
|
alpar@9
|
2321 /* walk through the list of non-basic variables */
|
alpar@9
|
2322 for (j = 1; j <= n; j++)
|
alpar@9
|
2323 { k = head[m+j]; /* x[k] = xN[j] */
|
alpar@9
|
2324 #ifdef GLP_DEBUG
|
alpar@9
|
2325 xassert(1 <= k && k <= m+n);
|
alpar@9
|
2326 #endif
|
alpar@9
|
2327 if (k > m)
|
alpar@9
|
2328 sum += obj[k-m] * get_xN(csa, j);
|
alpar@9
|
2329 }
|
alpar@9
|
2330 return sum;
|
alpar@9
|
2331 }
|
alpar@9
|
2332
|
alpar@9
|
2333 /***********************************************************************
|
alpar@9
|
2334 * display - display the search progress
|
alpar@9
|
2335 *
|
alpar@9
|
2336 * This routine displays some information about the search progress
|
alpar@9
|
2337 * that includes:
|
alpar@9
|
2338 *
|
alpar@9
|
2339 * the search phase;
|
alpar@9
|
2340 *
|
alpar@9
|
2341 * the number of simplex iterations performed by the solver;
|
alpar@9
|
2342 *
|
alpar@9
|
2343 * the original objective value;
|
alpar@9
|
2344 *
|
alpar@9
|
2345 * the sum of (scaled) primal infeasibilities;
|
alpar@9
|
2346 *
|
alpar@9
|
2347 * the number of basic fixed variables. */
|
alpar@9
|
2348
|
alpar@9
|
2349 static void display(struct csa *csa, const glp_smcp *parm, int spec)
|
alpar@9
|
2350 { int m = csa->m;
|
alpar@9
|
2351 #ifdef GLP_DEBUG
|
alpar@9
|
2352 int n = csa->n;
|
alpar@9
|
2353 #endif
|
alpar@9
|
2354 char *type = csa->type;
|
alpar@9
|
2355 double *lb = csa->lb;
|
alpar@9
|
2356 double *ub = csa->ub;
|
alpar@9
|
2357 int phase = csa->phase;
|
alpar@9
|
2358 int *head = csa->head;
|
alpar@9
|
2359 double *bbar = csa->bbar;
|
alpar@9
|
2360 int i, k, cnt;
|
alpar@9
|
2361 double sum;
|
alpar@9
|
2362 if (parm->msg_lev < GLP_MSG_ON) goto skip;
|
alpar@9
|
2363 if (parm->out_dly > 0 &&
|
alpar@9
|
2364 1000.0 * xdifftime(xtime(), csa->tm_beg) < parm->out_dly)
|
alpar@9
|
2365 goto skip;
|
alpar@9
|
2366 if (csa->it_cnt == csa->it_dpy) goto skip;
|
alpar@9
|
2367 if (!spec && csa->it_cnt % parm->out_frq != 0) goto skip;
|
alpar@9
|
2368 /* compute the sum of primal infeasibilities and determine the
|
alpar@9
|
2369 number of basic fixed variables */
|
alpar@9
|
2370 sum = 0.0, cnt = 0;
|
alpar@9
|
2371 for (i = 1; i <= m; i++)
|
alpar@9
|
2372 { k = head[i]; /* x[k] = xB[i] */
|
alpar@9
|
2373 #ifdef GLP_DEBUG
|
alpar@9
|
2374 xassert(1 <= k && k <= m+n);
|
alpar@9
|
2375 #endif
|
alpar@9
|
2376 if (type[k] == GLP_LO || type[k] == GLP_DB ||
|
alpar@9
|
2377 type[k] == GLP_FX)
|
alpar@9
|
2378 { /* x[k] has lower bound */
|
alpar@9
|
2379 if (bbar[i] < lb[k])
|
alpar@9
|
2380 sum += (lb[k] - bbar[i]);
|
alpar@9
|
2381 }
|
alpar@9
|
2382 if (type[k] == GLP_UP || type[k] == GLP_DB ||
|
alpar@9
|
2383 type[k] == GLP_FX)
|
alpar@9
|
2384 { /* x[k] has upper bound */
|
alpar@9
|
2385 if (bbar[i] > ub[k])
|
alpar@9
|
2386 sum += (bbar[i] - ub[k]);
|
alpar@9
|
2387 }
|
alpar@9
|
2388 if (type[k] == GLP_FX) cnt++;
|
alpar@9
|
2389 }
|
alpar@9
|
2390 xprintf("%c%6d: obj = %17.9e infeas = %10.3e (%d)\n",
|
alpar@9
|
2391 phase == 1 ? ' ' : '*', csa->it_cnt, eval_obj(csa), sum, cnt);
|
alpar@9
|
2392 csa->it_dpy = csa->it_cnt;
|
alpar@9
|
2393 skip: return;
|
alpar@9
|
2394 }
|
alpar@9
|
2395
|
alpar@9
|
2396 /***********************************************************************
|
alpar@9
|
2397 * store_sol - store basic solution back to the problem object
|
alpar@9
|
2398 *
|
alpar@9
|
2399 * This routine stores basic solution components back to the problem
|
alpar@9
|
2400 * object. */
|
alpar@9
|
2401
|
alpar@9
|
2402 static void store_sol(struct csa *csa, glp_prob *lp, int p_stat,
|
alpar@9
|
2403 int d_stat, int ray)
|
alpar@9
|
2404 { int m = csa->m;
|
alpar@9
|
2405 int n = csa->n;
|
alpar@9
|
2406 double zeta = csa->zeta;
|
alpar@9
|
2407 int *head = csa->head;
|
alpar@9
|
2408 char *stat = csa->stat;
|
alpar@9
|
2409 double *bbar = csa->bbar;
|
alpar@9
|
2410 double *cbar = csa->cbar;
|
alpar@9
|
2411 int i, j, k;
|
alpar@9
|
2412 #ifdef GLP_DEBUG
|
alpar@9
|
2413 xassert(lp->m == m);
|
alpar@9
|
2414 xassert(lp->n == n);
|
alpar@9
|
2415 #endif
|
alpar@9
|
2416 /* basis factorization */
|
alpar@9
|
2417 #ifdef GLP_DEBUG
|
alpar@9
|
2418 xassert(!lp->valid && lp->bfd == NULL);
|
alpar@9
|
2419 xassert(csa->valid && csa->bfd != NULL);
|
alpar@9
|
2420 #endif
|
alpar@9
|
2421 lp->valid = 1, csa->valid = 0;
|
alpar@9
|
2422 lp->bfd = csa->bfd, csa->bfd = NULL;
|
alpar@9
|
2423 memcpy(&lp->head[1], &head[1], m * sizeof(int));
|
alpar@9
|
2424 /* basic solution status */
|
alpar@9
|
2425 lp->pbs_stat = p_stat;
|
alpar@9
|
2426 lp->dbs_stat = d_stat;
|
alpar@9
|
2427 /* objective function value */
|
alpar@9
|
2428 lp->obj_val = eval_obj(csa);
|
alpar@9
|
2429 /* simplex iteration count */
|
alpar@9
|
2430 lp->it_cnt = csa->it_cnt;
|
alpar@9
|
2431 /* unbounded ray */
|
alpar@9
|
2432 lp->some = ray;
|
alpar@9
|
2433 /* basic variables */
|
alpar@9
|
2434 for (i = 1; i <= m; i++)
|
alpar@9
|
2435 { k = head[i]; /* x[k] = xB[i] */
|
alpar@9
|
2436 #ifdef GLP_DEBUG
|
alpar@9
|
2437 xassert(1 <= k && k <= m+n);
|
alpar@9
|
2438 #endif
|
alpar@9
|
2439 if (k <= m)
|
alpar@9
|
2440 { GLPROW *row = lp->row[k];
|
alpar@9
|
2441 row->stat = GLP_BS;
|
alpar@9
|
2442 row->bind = i;
|
alpar@9
|
2443 row->prim = bbar[i] / row->rii;
|
alpar@9
|
2444 row->dual = 0.0;
|
alpar@9
|
2445 }
|
alpar@9
|
2446 else
|
alpar@9
|
2447 { GLPCOL *col = lp->col[k-m];
|
alpar@9
|
2448 col->stat = GLP_BS;
|
alpar@9
|
2449 col->bind = i;
|
alpar@9
|
2450 col->prim = bbar[i] * col->sjj;
|
alpar@9
|
2451 col->dual = 0.0;
|
alpar@9
|
2452 }
|
alpar@9
|
2453 }
|
alpar@9
|
2454 /* non-basic variables */
|
alpar@9
|
2455 for (j = 1; j <= n; j++)
|
alpar@9
|
2456 { k = head[m+j]; /* x[k] = xN[j] */
|
alpar@9
|
2457 #ifdef GLP_DEBUG
|
alpar@9
|
2458 xassert(1 <= k && k <= m+n);
|
alpar@9
|
2459 #endif
|
alpar@9
|
2460 if (k <= m)
|
alpar@9
|
2461 { GLPROW *row = lp->row[k];
|
alpar@9
|
2462 row->stat = stat[j];
|
alpar@9
|
2463 row->bind = 0;
|
alpar@9
|
2464 #if 0
|
alpar@9
|
2465 row->prim = get_xN(csa, j) / row->rii;
|
alpar@9
|
2466 #else
|
alpar@9
|
2467 switch (stat[j])
|
alpar@9
|
2468 { case GLP_NL:
|
alpar@9
|
2469 row->prim = row->lb; break;
|
alpar@9
|
2470 case GLP_NU:
|
alpar@9
|
2471 row->prim = row->ub; break;
|
alpar@9
|
2472 case GLP_NF:
|
alpar@9
|
2473 row->prim = 0.0; break;
|
alpar@9
|
2474 case GLP_NS:
|
alpar@9
|
2475 row->prim = row->lb; break;
|
alpar@9
|
2476 default:
|
alpar@9
|
2477 xassert(stat != stat);
|
alpar@9
|
2478 }
|
alpar@9
|
2479 #endif
|
alpar@9
|
2480 row->dual = (cbar[j] * row->rii) / zeta;
|
alpar@9
|
2481 }
|
alpar@9
|
2482 else
|
alpar@9
|
2483 { GLPCOL *col = lp->col[k-m];
|
alpar@9
|
2484 col->stat = stat[j];
|
alpar@9
|
2485 col->bind = 0;
|
alpar@9
|
2486 #if 0
|
alpar@9
|
2487 col->prim = get_xN(csa, j) * col->sjj;
|
alpar@9
|
2488 #else
|
alpar@9
|
2489 switch (stat[j])
|
alpar@9
|
2490 { case GLP_NL:
|
alpar@9
|
2491 col->prim = col->lb; break;
|
alpar@9
|
2492 case GLP_NU:
|
alpar@9
|
2493 col->prim = col->ub; break;
|
alpar@9
|
2494 case GLP_NF:
|
alpar@9
|
2495 col->prim = 0.0; break;
|
alpar@9
|
2496 case GLP_NS:
|
alpar@9
|
2497 col->prim = col->lb; break;
|
alpar@9
|
2498 default:
|
alpar@9
|
2499 xassert(stat != stat);
|
alpar@9
|
2500 }
|
alpar@9
|
2501 #endif
|
alpar@9
|
2502 col->dual = (cbar[j] / col->sjj) / zeta;
|
alpar@9
|
2503 }
|
alpar@9
|
2504 }
|
alpar@9
|
2505 return;
|
alpar@9
|
2506 }
|
alpar@9
|
2507
|
alpar@9
|
2508 /***********************************************************************
|
alpar@9
|
2509 * free_csa - deallocate common storage area
|
alpar@9
|
2510 *
|
alpar@9
|
2511 * This routine frees all the memory allocated to arrays in the common
|
alpar@9
|
2512 * storage area (CSA). */
|
alpar@9
|
2513
|
alpar@9
|
2514 static void free_csa(struct csa *csa)
|
alpar@9
|
2515 { xfree(csa->type);
|
alpar@9
|
2516 xfree(csa->lb);
|
alpar@9
|
2517 xfree(csa->ub);
|
alpar@9
|
2518 xfree(csa->coef);
|
alpar@9
|
2519 xfree(csa->obj);
|
alpar@9
|
2520 xfree(csa->A_ptr);
|
alpar@9
|
2521 xfree(csa->A_ind);
|
alpar@9
|
2522 xfree(csa->A_val);
|
alpar@9
|
2523 xfree(csa->head);
|
alpar@9
|
2524 xfree(csa->stat);
|
alpar@9
|
2525 xfree(csa->N_ptr);
|
alpar@9
|
2526 xfree(csa->N_len);
|
alpar@9
|
2527 xfree(csa->N_ind);
|
alpar@9
|
2528 xfree(csa->N_val);
|
alpar@9
|
2529 xfree(csa->bbar);
|
alpar@9
|
2530 xfree(csa->cbar);
|
alpar@9
|
2531 xfree(csa->refsp);
|
alpar@9
|
2532 xfree(csa->gamma);
|
alpar@9
|
2533 xfree(csa->tcol_ind);
|
alpar@9
|
2534 xfree(csa->tcol_vec);
|
alpar@9
|
2535 xfree(csa->trow_ind);
|
alpar@9
|
2536 xfree(csa->trow_vec);
|
alpar@9
|
2537 xfree(csa->work1);
|
alpar@9
|
2538 xfree(csa->work2);
|
alpar@9
|
2539 xfree(csa->work3);
|
alpar@9
|
2540 xfree(csa->work4);
|
alpar@9
|
2541 xfree(csa);
|
alpar@9
|
2542 return;
|
alpar@9
|
2543 }
|
alpar@9
|
2544
|
alpar@9
|
2545 /***********************************************************************
|
alpar@9
|
2546 * spx_primal - core LP solver based on the primal simplex method
|
alpar@9
|
2547 *
|
alpar@9
|
2548 * SYNOPSIS
|
alpar@9
|
2549 *
|
alpar@9
|
2550 * #include "glpspx.h"
|
alpar@9
|
2551 * int spx_primal(glp_prob *lp, const glp_smcp *parm);
|
alpar@9
|
2552 *
|
alpar@9
|
2553 * DESCRIPTION
|
alpar@9
|
2554 *
|
alpar@9
|
2555 * The routine spx_primal is a core LP solver based on the two-phase
|
alpar@9
|
2556 * primal simplex method.
|
alpar@9
|
2557 *
|
alpar@9
|
2558 * RETURNS
|
alpar@9
|
2559 *
|
alpar@9
|
2560 * 0 LP instance has been successfully solved.
|
alpar@9
|
2561 *
|
alpar@9
|
2562 * GLP_EITLIM
|
alpar@9
|
2563 * Iteration limit has been exhausted.
|
alpar@9
|
2564 *
|
alpar@9
|
2565 * GLP_ETMLIM
|
alpar@9
|
2566 * Time limit has been exhausted.
|
alpar@9
|
2567 *
|
alpar@9
|
2568 * GLP_EFAIL
|
alpar@9
|
2569 * The solver failed to solve LP instance. */
|
alpar@9
|
2570
|
alpar@9
|
2571 int spx_primal(glp_prob *lp, const glp_smcp *parm)
|
alpar@9
|
2572 { struct csa *csa;
|
alpar@9
|
2573 int binv_st = 2;
|
alpar@9
|
2574 /* status of basis matrix factorization:
|
alpar@9
|
2575 0 - invalid; 1 - just computed; 2 - updated */
|
alpar@9
|
2576 int bbar_st = 0;
|
alpar@9
|
2577 /* status of primal values of basic variables:
|
alpar@9
|
2578 0 - invalid; 1 - just computed; 2 - updated */
|
alpar@9
|
2579 int cbar_st = 0;
|
alpar@9
|
2580 /* status of reduced costs of non-basic variables:
|
alpar@9
|
2581 0 - invalid; 1 - just computed; 2 - updated */
|
alpar@9
|
2582 int rigorous = 0;
|
alpar@9
|
2583 /* rigorous mode flag; this flag is used to enable iterative
|
alpar@9
|
2584 refinement on computing pivot rows and columns of the simplex
|
alpar@9
|
2585 table */
|
alpar@9
|
2586 int check = 0;
|
alpar@9
|
2587 int p_stat, d_stat, ret;
|
alpar@9
|
2588 /* allocate and initialize the common storage area */
|
alpar@9
|
2589 csa = alloc_csa(lp);
|
alpar@9
|
2590 init_csa(csa, lp);
|
alpar@9
|
2591 if (parm->msg_lev >= GLP_MSG_DBG)
|
alpar@9
|
2592 xprintf("Objective scale factor = %g\n", csa->zeta);
|
alpar@9
|
2593 loop: /* main loop starts here */
|
alpar@9
|
2594 /* compute factorization of the basis matrix */
|
alpar@9
|
2595 if (binv_st == 0)
|
alpar@9
|
2596 { ret = invert_B(csa);
|
alpar@9
|
2597 if (ret != 0)
|
alpar@9
|
2598 { if (parm->msg_lev >= GLP_MSG_ERR)
|
alpar@9
|
2599 { xprintf("Error: unable to factorize the basis matrix (%d"
|
alpar@9
|
2600 ")\n", ret);
|
alpar@9
|
2601 xprintf("Sorry, basis recovery procedure not implemented"
|
alpar@9
|
2602 " yet\n");
|
alpar@9
|
2603 }
|
alpar@9
|
2604 xassert(!lp->valid && lp->bfd == NULL);
|
alpar@9
|
2605 lp->bfd = csa->bfd, csa->bfd = NULL;
|
alpar@9
|
2606 lp->pbs_stat = lp->dbs_stat = GLP_UNDEF;
|
alpar@9
|
2607 lp->obj_val = 0.0;
|
alpar@9
|
2608 lp->it_cnt = csa->it_cnt;
|
alpar@9
|
2609 lp->some = 0;
|
alpar@9
|
2610 ret = GLP_EFAIL;
|
alpar@9
|
2611 goto done;
|
alpar@9
|
2612 }
|
alpar@9
|
2613 csa->valid = 1;
|
alpar@9
|
2614 binv_st = 1; /* just computed */
|
alpar@9
|
2615 /* invalidate basic solution components */
|
alpar@9
|
2616 bbar_st = cbar_st = 0;
|
alpar@9
|
2617 }
|
alpar@9
|
2618 /* compute primal values of basic variables */
|
alpar@9
|
2619 if (bbar_st == 0)
|
alpar@9
|
2620 { eval_bbar(csa);
|
alpar@9
|
2621 bbar_st = 1; /* just computed */
|
alpar@9
|
2622 /* determine the search phase, if not determined yet */
|
alpar@9
|
2623 if (csa->phase == 0)
|
alpar@9
|
2624 { if (set_aux_obj(csa, parm->tol_bnd) > 0)
|
alpar@9
|
2625 { /* current basic solution is primal infeasible */
|
alpar@9
|
2626 /* start to minimize the sum of infeasibilities */
|
alpar@9
|
2627 csa->phase = 1;
|
alpar@9
|
2628 }
|
alpar@9
|
2629 else
|
alpar@9
|
2630 { /* current basic solution is primal feasible */
|
alpar@9
|
2631 /* start to minimize the original objective function */
|
alpar@9
|
2632 set_orig_obj(csa);
|
alpar@9
|
2633 csa->phase = 2;
|
alpar@9
|
2634 }
|
alpar@9
|
2635 xassert(check_stab(csa, parm->tol_bnd) == 0);
|
alpar@9
|
2636 /* working objective coefficients have been changed, so
|
alpar@9
|
2637 invalidate reduced costs */
|
alpar@9
|
2638 cbar_st = 0;
|
alpar@9
|
2639 display(csa, parm, 1);
|
alpar@9
|
2640 }
|
alpar@9
|
2641 /* make sure that the current basic solution remains primal
|
alpar@9
|
2642 feasible (or pseudo feasible on phase I) */
|
alpar@9
|
2643 if (check_stab(csa, parm->tol_bnd))
|
alpar@9
|
2644 { /* there are excessive bound violations due to round-off
|
alpar@9
|
2645 errors */
|
alpar@9
|
2646 if (parm->msg_lev >= GLP_MSG_ERR)
|
alpar@9
|
2647 xprintf("Warning: numerical instability (primal simplex,"
|
alpar@9
|
2648 " phase %s)\n", csa->phase == 1 ? "I" : "II");
|
alpar@9
|
2649 /* restart the search */
|
alpar@9
|
2650 csa->phase = 0;
|
alpar@9
|
2651 binv_st = 0;
|
alpar@9
|
2652 rigorous = 5;
|
alpar@9
|
2653 goto loop;
|
alpar@9
|
2654 }
|
alpar@9
|
2655 }
|
alpar@9
|
2656 xassert(csa->phase == 1 || csa->phase == 2);
|
alpar@9
|
2657 /* on phase I we do not need to wait until the current basic
|
alpar@9
|
2658 solution becomes dual feasible; it is sufficient to make sure
|
alpar@9
|
2659 that no basic variable violates its bounds */
|
alpar@9
|
2660 if (csa->phase == 1 && !check_feas(csa, parm->tol_bnd))
|
alpar@9
|
2661 { /* the current basis is primal feasible; switch to phase II */
|
alpar@9
|
2662 csa->phase = 2;
|
alpar@9
|
2663 set_orig_obj(csa);
|
alpar@9
|
2664 cbar_st = 0;
|
alpar@9
|
2665 display(csa, parm, 1);
|
alpar@9
|
2666 }
|
alpar@9
|
2667 /* compute reduced costs of non-basic variables */
|
alpar@9
|
2668 if (cbar_st == 0)
|
alpar@9
|
2669 { eval_cbar(csa);
|
alpar@9
|
2670 cbar_st = 1; /* just computed */
|
alpar@9
|
2671 }
|
alpar@9
|
2672 /* redefine the reference space, if required */
|
alpar@9
|
2673 switch (parm->pricing)
|
alpar@9
|
2674 { case GLP_PT_STD:
|
alpar@9
|
2675 break;
|
alpar@9
|
2676 case GLP_PT_PSE:
|
alpar@9
|
2677 if (csa->refct == 0) reset_refsp(csa);
|
alpar@9
|
2678 break;
|
alpar@9
|
2679 default:
|
alpar@9
|
2680 xassert(parm != parm);
|
alpar@9
|
2681 }
|
alpar@9
|
2682 /* at this point the basis factorization and all basic solution
|
alpar@9
|
2683 components are valid */
|
alpar@9
|
2684 xassert(binv_st && bbar_st && cbar_st);
|
alpar@9
|
2685 /* check accuracy of current basic solution components (only for
|
alpar@9
|
2686 debugging) */
|
alpar@9
|
2687 if (check)
|
alpar@9
|
2688 { double e_bbar = err_in_bbar(csa);
|
alpar@9
|
2689 double e_cbar = err_in_cbar(csa);
|
alpar@9
|
2690 double e_gamma =
|
alpar@9
|
2691 (parm->pricing == GLP_PT_PSE ? err_in_gamma(csa) : 0.0);
|
alpar@9
|
2692 xprintf("e_bbar = %10.3e; e_cbar = %10.3e; e_gamma = %10.3e\n",
|
alpar@9
|
2693 e_bbar, e_cbar, e_gamma);
|
alpar@9
|
2694 xassert(e_bbar <= 1e-5 && e_cbar <= 1e-5 && e_gamma <= 1e-3);
|
alpar@9
|
2695 }
|
alpar@9
|
2696 /* check if the iteration limit has been exhausted */
|
alpar@9
|
2697 if (parm->it_lim < INT_MAX &&
|
alpar@9
|
2698 csa->it_cnt - csa->it_beg >= parm->it_lim)
|
alpar@9
|
2699 { if (bbar_st != 1 || csa->phase == 2 && cbar_st != 1)
|
alpar@9
|
2700 { if (bbar_st != 1) bbar_st = 0;
|
alpar@9
|
2701 if (csa->phase == 2 && cbar_st != 1) cbar_st = 0;
|
alpar@9
|
2702 goto loop;
|
alpar@9
|
2703 }
|
alpar@9
|
2704 display(csa, parm, 1);
|
alpar@9
|
2705 if (parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
2706 xprintf("ITERATION LIMIT EXCEEDED; SEARCH TERMINATED\n");
|
alpar@9
|
2707 switch (csa->phase)
|
alpar@9
|
2708 { case 1:
|
alpar@9
|
2709 p_stat = GLP_INFEAS;
|
alpar@9
|
2710 set_orig_obj(csa);
|
alpar@9
|
2711 eval_cbar(csa);
|
alpar@9
|
2712 break;
|
alpar@9
|
2713 case 2:
|
alpar@9
|
2714 p_stat = GLP_FEAS;
|
alpar@9
|
2715 break;
|
alpar@9
|
2716 default:
|
alpar@9
|
2717 xassert(csa != csa);
|
alpar@9
|
2718 }
|
alpar@9
|
2719 chuzc(csa, parm->tol_dj);
|
alpar@9
|
2720 d_stat = (csa->q == 0 ? GLP_FEAS : GLP_INFEAS);
|
alpar@9
|
2721 store_sol(csa, lp, p_stat, d_stat, 0);
|
alpar@9
|
2722 ret = GLP_EITLIM;
|
alpar@9
|
2723 goto done;
|
alpar@9
|
2724 }
|
alpar@9
|
2725 /* check if the time limit has been exhausted */
|
alpar@9
|
2726 if (parm->tm_lim < INT_MAX &&
|
alpar@9
|
2727 1000.0 * xdifftime(xtime(), csa->tm_beg) >= parm->tm_lim)
|
alpar@9
|
2728 { if (bbar_st != 1 || csa->phase == 2 && cbar_st != 1)
|
alpar@9
|
2729 { if (bbar_st != 1) bbar_st = 0;
|
alpar@9
|
2730 if (csa->phase == 2 && cbar_st != 1) cbar_st = 0;
|
alpar@9
|
2731 goto loop;
|
alpar@9
|
2732 }
|
alpar@9
|
2733 display(csa, parm, 1);
|
alpar@9
|
2734 if (parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
2735 xprintf("TIME LIMIT EXCEEDED; SEARCH TERMINATED\n");
|
alpar@9
|
2736 switch (csa->phase)
|
alpar@9
|
2737 { case 1:
|
alpar@9
|
2738 p_stat = GLP_INFEAS;
|
alpar@9
|
2739 set_orig_obj(csa);
|
alpar@9
|
2740 eval_cbar(csa);
|
alpar@9
|
2741 break;
|
alpar@9
|
2742 case 2:
|
alpar@9
|
2743 p_stat = GLP_FEAS;
|
alpar@9
|
2744 break;
|
alpar@9
|
2745 default:
|
alpar@9
|
2746 xassert(csa != csa);
|
alpar@9
|
2747 }
|
alpar@9
|
2748 chuzc(csa, parm->tol_dj);
|
alpar@9
|
2749 d_stat = (csa->q == 0 ? GLP_FEAS : GLP_INFEAS);
|
alpar@9
|
2750 store_sol(csa, lp, p_stat, d_stat, 0);
|
alpar@9
|
2751 ret = GLP_ETMLIM;
|
alpar@9
|
2752 goto done;
|
alpar@9
|
2753 }
|
alpar@9
|
2754 /* display the search progress */
|
alpar@9
|
2755 display(csa, parm, 0);
|
alpar@9
|
2756 /* choose non-basic variable xN[q] */
|
alpar@9
|
2757 chuzc(csa, parm->tol_dj);
|
alpar@9
|
2758 if (csa->q == 0)
|
alpar@9
|
2759 { if (bbar_st != 1 || cbar_st != 1)
|
alpar@9
|
2760 { if (bbar_st != 1) bbar_st = 0;
|
alpar@9
|
2761 if (cbar_st != 1) cbar_st = 0;
|
alpar@9
|
2762 goto loop;
|
alpar@9
|
2763 }
|
alpar@9
|
2764 display(csa, parm, 1);
|
alpar@9
|
2765 switch (csa->phase)
|
alpar@9
|
2766 { case 1:
|
alpar@9
|
2767 if (parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
2768 xprintf("PROBLEM HAS NO FEASIBLE SOLUTION\n");
|
alpar@9
|
2769 p_stat = GLP_NOFEAS;
|
alpar@9
|
2770 set_orig_obj(csa);
|
alpar@9
|
2771 eval_cbar(csa);
|
alpar@9
|
2772 chuzc(csa, parm->tol_dj);
|
alpar@9
|
2773 d_stat = (csa->q == 0 ? GLP_FEAS : GLP_INFEAS);
|
alpar@9
|
2774 break;
|
alpar@9
|
2775 case 2:
|
alpar@9
|
2776 if (parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
2777 xprintf("OPTIMAL SOLUTION FOUND\n");
|
alpar@9
|
2778 p_stat = d_stat = GLP_FEAS;
|
alpar@9
|
2779 break;
|
alpar@9
|
2780 default:
|
alpar@9
|
2781 xassert(csa != csa);
|
alpar@9
|
2782 }
|
alpar@9
|
2783 store_sol(csa, lp, p_stat, d_stat, 0);
|
alpar@9
|
2784 ret = 0;
|
alpar@9
|
2785 goto done;
|
alpar@9
|
2786 }
|
alpar@9
|
2787 /* compute pivot column of the simplex table */
|
alpar@9
|
2788 eval_tcol(csa);
|
alpar@9
|
2789 if (rigorous) refine_tcol(csa);
|
alpar@9
|
2790 sort_tcol(csa, parm->tol_piv);
|
alpar@9
|
2791 /* check accuracy of the reduced cost of xN[q] */
|
alpar@9
|
2792 { double d1 = csa->cbar[csa->q]; /* less accurate */
|
alpar@9
|
2793 double d2 = reeval_cost(csa); /* more accurate */
|
alpar@9
|
2794 xassert(d1 != 0.0);
|
alpar@9
|
2795 if (fabs(d1 - d2) > 1e-5 * (1.0 + fabs(d2)) ||
|
alpar@9
|
2796 !(d1 < 0.0 && d2 < 0.0 || d1 > 0.0 && d2 > 0.0))
|
alpar@9
|
2797 { if (parm->msg_lev >= GLP_MSG_DBG)
|
alpar@9
|
2798 xprintf("d1 = %.12g; d2 = %.12g\n", d1, d2);
|
alpar@9
|
2799 if (cbar_st != 1 || !rigorous)
|
alpar@9
|
2800 { if (cbar_st != 1) cbar_st = 0;
|
alpar@9
|
2801 rigorous = 5;
|
alpar@9
|
2802 goto loop;
|
alpar@9
|
2803 }
|
alpar@9
|
2804 }
|
alpar@9
|
2805 /* replace cbar[q] by more accurate value keeping its sign */
|
alpar@9
|
2806 if (d1 > 0.0)
|
alpar@9
|
2807 csa->cbar[csa->q] = (d2 > 0.0 ? d2 : +DBL_EPSILON);
|
alpar@9
|
2808 else
|
alpar@9
|
2809 csa->cbar[csa->q] = (d2 < 0.0 ? d2 : -DBL_EPSILON);
|
alpar@9
|
2810 }
|
alpar@9
|
2811 /* choose basic variable xB[p] */
|
alpar@9
|
2812 switch (parm->r_test)
|
alpar@9
|
2813 { case GLP_RT_STD:
|
alpar@9
|
2814 chuzr(csa, 0.0);
|
alpar@9
|
2815 break;
|
alpar@9
|
2816 case GLP_RT_HAR:
|
alpar@9
|
2817 chuzr(csa, 0.30 * parm->tol_bnd);
|
alpar@9
|
2818 break;
|
alpar@9
|
2819 default:
|
alpar@9
|
2820 xassert(parm != parm);
|
alpar@9
|
2821 }
|
alpar@9
|
2822 if (csa->p == 0)
|
alpar@9
|
2823 { if (bbar_st != 1 || cbar_st != 1 || !rigorous)
|
alpar@9
|
2824 { if (bbar_st != 1) bbar_st = 0;
|
alpar@9
|
2825 if (cbar_st != 1) cbar_st = 0;
|
alpar@9
|
2826 rigorous = 1;
|
alpar@9
|
2827 goto loop;
|
alpar@9
|
2828 }
|
alpar@9
|
2829 display(csa, parm, 1);
|
alpar@9
|
2830 switch (csa->phase)
|
alpar@9
|
2831 { case 1:
|
alpar@9
|
2832 if (parm->msg_lev >= GLP_MSG_ERR)
|
alpar@9
|
2833 xprintf("Error: unable to choose basic variable on ph"
|
alpar@9
|
2834 "ase I\n");
|
alpar@9
|
2835 xassert(!lp->valid && lp->bfd == NULL);
|
alpar@9
|
2836 lp->bfd = csa->bfd, csa->bfd = NULL;
|
alpar@9
|
2837 lp->pbs_stat = lp->dbs_stat = GLP_UNDEF;
|
alpar@9
|
2838 lp->obj_val = 0.0;
|
alpar@9
|
2839 lp->it_cnt = csa->it_cnt;
|
alpar@9
|
2840 lp->some = 0;
|
alpar@9
|
2841 ret = GLP_EFAIL;
|
alpar@9
|
2842 break;
|
alpar@9
|
2843 case 2:
|
alpar@9
|
2844 if (parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
2845 xprintf("PROBLEM HAS UNBOUNDED SOLUTION\n");
|
alpar@9
|
2846 store_sol(csa, lp, GLP_FEAS, GLP_NOFEAS,
|
alpar@9
|
2847 csa->head[csa->m+csa->q]);
|
alpar@9
|
2848 ret = 0;
|
alpar@9
|
2849 break;
|
alpar@9
|
2850 default:
|
alpar@9
|
2851 xassert(csa != csa);
|
alpar@9
|
2852 }
|
alpar@9
|
2853 goto done;
|
alpar@9
|
2854 }
|
alpar@9
|
2855 /* check if the pivot element is acceptable */
|
alpar@9
|
2856 if (csa->p > 0)
|
alpar@9
|
2857 { double piv = csa->tcol_vec[csa->p];
|
alpar@9
|
2858 double eps = 1e-5 * (1.0 + 0.01 * csa->tcol_max);
|
alpar@9
|
2859 if (fabs(piv) < eps)
|
alpar@9
|
2860 { if (parm->msg_lev >= GLP_MSG_DBG)
|
alpar@9
|
2861 xprintf("piv = %.12g; eps = %g\n", piv, eps);
|
alpar@9
|
2862 if (!rigorous)
|
alpar@9
|
2863 { rigorous = 5;
|
alpar@9
|
2864 goto loop;
|
alpar@9
|
2865 }
|
alpar@9
|
2866 }
|
alpar@9
|
2867 }
|
alpar@9
|
2868 /* now xN[q] and xB[p] have been chosen anyhow */
|
alpar@9
|
2869 /* compute pivot row of the simplex table */
|
alpar@9
|
2870 if (csa->p > 0)
|
alpar@9
|
2871 { double *rho = csa->work4;
|
alpar@9
|
2872 eval_rho(csa, rho);
|
alpar@9
|
2873 if (rigorous) refine_rho(csa, rho);
|
alpar@9
|
2874 eval_trow(csa, rho);
|
alpar@9
|
2875 }
|
alpar@9
|
2876 /* accuracy check based on the pivot element */
|
alpar@9
|
2877 if (csa->p > 0)
|
alpar@9
|
2878 { double piv1 = csa->tcol_vec[csa->p]; /* more accurate */
|
alpar@9
|
2879 double piv2 = csa->trow_vec[csa->q]; /* less accurate */
|
alpar@9
|
2880 xassert(piv1 != 0.0);
|
alpar@9
|
2881 if (fabs(piv1 - piv2) > 1e-8 * (1.0 + fabs(piv1)) ||
|
alpar@9
|
2882 !(piv1 > 0.0 && piv2 > 0.0 || piv1 < 0.0 && piv2 < 0.0))
|
alpar@9
|
2883 { if (parm->msg_lev >= GLP_MSG_DBG)
|
alpar@9
|
2884 xprintf("piv1 = %.12g; piv2 = %.12g\n", piv1, piv2);
|
alpar@9
|
2885 if (binv_st != 1 || !rigorous)
|
alpar@9
|
2886 { if (binv_st != 1) binv_st = 0;
|
alpar@9
|
2887 rigorous = 5;
|
alpar@9
|
2888 goto loop;
|
alpar@9
|
2889 }
|
alpar@9
|
2890 /* use more accurate version in the pivot row */
|
alpar@9
|
2891 if (csa->trow_vec[csa->q] == 0.0)
|
alpar@9
|
2892 { csa->trow_nnz++;
|
alpar@9
|
2893 xassert(csa->trow_nnz <= csa->n);
|
alpar@9
|
2894 csa->trow_ind[csa->trow_nnz] = csa->q;
|
alpar@9
|
2895 }
|
alpar@9
|
2896 csa->trow_vec[csa->q] = piv1;
|
alpar@9
|
2897 }
|
alpar@9
|
2898 }
|
alpar@9
|
2899 /* update primal values of basic variables */
|
alpar@9
|
2900 update_bbar(csa);
|
alpar@9
|
2901 bbar_st = 2; /* updated */
|
alpar@9
|
2902 /* update reduced costs of non-basic variables */
|
alpar@9
|
2903 if (csa->p > 0)
|
alpar@9
|
2904 { update_cbar(csa);
|
alpar@9
|
2905 cbar_st = 2; /* updated */
|
alpar@9
|
2906 /* on phase I objective coefficient of xB[p] in the adjacent
|
alpar@9
|
2907 basis becomes zero */
|
alpar@9
|
2908 if (csa->phase == 1)
|
alpar@9
|
2909 { int k = csa->head[csa->p]; /* x[k] = xB[p] -> xN[q] */
|
alpar@9
|
2910 csa->cbar[csa->q] -= csa->coef[k];
|
alpar@9
|
2911 csa->coef[k] = 0.0;
|
alpar@9
|
2912 }
|
alpar@9
|
2913 }
|
alpar@9
|
2914 /* update steepest edge coefficients */
|
alpar@9
|
2915 if (csa->p > 0)
|
alpar@9
|
2916 { switch (parm->pricing)
|
alpar@9
|
2917 { case GLP_PT_STD:
|
alpar@9
|
2918 break;
|
alpar@9
|
2919 case GLP_PT_PSE:
|
alpar@9
|
2920 if (csa->refct > 0) update_gamma(csa);
|
alpar@9
|
2921 break;
|
alpar@9
|
2922 default:
|
alpar@9
|
2923 xassert(parm != parm);
|
alpar@9
|
2924 }
|
alpar@9
|
2925 }
|
alpar@9
|
2926 /* update factorization of the basis matrix */
|
alpar@9
|
2927 if (csa->p > 0)
|
alpar@9
|
2928 { ret = update_B(csa, csa->p, csa->head[csa->m+csa->q]);
|
alpar@9
|
2929 if (ret == 0)
|
alpar@9
|
2930 binv_st = 2; /* updated */
|
alpar@9
|
2931 else
|
alpar@9
|
2932 { csa->valid = 0;
|
alpar@9
|
2933 binv_st = 0; /* invalid */
|
alpar@9
|
2934 }
|
alpar@9
|
2935 }
|
alpar@9
|
2936 /* update matrix N */
|
alpar@9
|
2937 if (csa->p > 0)
|
alpar@9
|
2938 { del_N_col(csa, csa->q, csa->head[csa->m+csa->q]);
|
alpar@9
|
2939 if (csa->type[csa->head[csa->p]] != GLP_FX)
|
alpar@9
|
2940 add_N_col(csa, csa->q, csa->head[csa->p]);
|
alpar@9
|
2941 }
|
alpar@9
|
2942 /* change the basis header */
|
alpar@9
|
2943 change_basis(csa);
|
alpar@9
|
2944 /* iteration complete */
|
alpar@9
|
2945 csa->it_cnt++;
|
alpar@9
|
2946 if (rigorous > 0) rigorous--;
|
alpar@9
|
2947 goto loop;
|
alpar@9
|
2948 done: /* deallocate the common storage area */
|
alpar@9
|
2949 free_csa(csa);
|
alpar@9
|
2950 /* return to the calling program */
|
alpar@9
|
2951 return ret;
|
alpar@9
|
2952 }
|
alpar@9
|
2953
|
alpar@9
|
2954 /* eof */
|