lemon-project-template-glpk
comparison deps/glpk/src/glpspx01.c @ 11:4fc6ad2fb8a6
Test GLPK in src/main.cc
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 21:43:29 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:6beff57e9a02 |
---|---|
1 /* glpspx01.c (primal simplex method) */ | |
2 | |
3 /*********************************************************************** | |
4 * This code is part of GLPK (GNU Linear Programming Kit). | |
5 * | |
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, | |
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, | |
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. | |
9 * E-mail: <mao@gnu.org>. | |
10 * | |
11 * GLPK is free software: you can redistribute it and/or modify it | |
12 * under the terms of the GNU General Public License as published by | |
13 * the Free Software Foundation, either version 3 of the License, or | |
14 * (at your option) any later version. | |
15 * | |
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT | |
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | |
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public | |
19 * License for more details. | |
20 * | |
21 * You should have received a copy of the GNU General Public License | |
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. | |
23 ***********************************************************************/ | |
24 | |
25 #include "glpspx.h" | |
26 | |
27 struct csa | |
28 { /* common storage area */ | |
29 /*--------------------------------------------------------------*/ | |
30 /* LP data */ | |
31 int m; | |
32 /* number of rows (auxiliary variables), m > 0 */ | |
33 int n; | |
34 /* number of columns (structural variables), n > 0 */ | |
35 char *type; /* char type[1+m+n]; */ | |
36 /* type[0] is not used; | |
37 type[k], 1 <= k <= m+n, is the type of variable x[k]: | |
38 GLP_FR - free variable | |
39 GLP_LO - variable with lower bound | |
40 GLP_UP - variable with upper bound | |
41 GLP_DB - double-bounded variable | |
42 GLP_FX - fixed variable */ | |
43 double *lb; /* double lb[1+m+n]; */ | |
44 /* lb[0] is not used; | |
45 lb[k], 1 <= k <= m+n, is an lower bound of variable x[k]; | |
46 if x[k] has no lower bound, lb[k] is zero */ | |
47 double *ub; /* double ub[1+m+n]; */ | |
48 /* ub[0] is not used; | |
49 ub[k], 1 <= k <= m+n, is an upper bound of variable x[k]; | |
50 if x[k] has no upper bound, ub[k] is zero; | |
51 if x[k] is of fixed type, ub[k] is the same as lb[k] */ | |
52 double *coef; /* double coef[1+m+n]; */ | |
53 /* coef[0] is not used; | |
54 coef[k], 1 <= k <= m+n, is an objective coefficient at | |
55 variable x[k] (note that on phase I auxiliary variables also | |
56 may have non-zero objective coefficients) */ | |
57 /*--------------------------------------------------------------*/ | |
58 /* original objective function */ | |
59 double *obj; /* double obj[1+n]; */ | |
60 /* obj[0] is a constant term of the original objective function; | |
61 obj[j], 1 <= j <= n, is an original objective coefficient at | |
62 structural variable x[m+j] */ | |
63 double zeta; | |
64 /* factor used to scale original objective coefficients; its | |
65 sign defines original optimization direction: zeta > 0 means | |
66 minimization, zeta < 0 means maximization */ | |
67 /*--------------------------------------------------------------*/ | |
68 /* constraint matrix A; it has m rows and n columns and is stored | |
69 by columns */ | |
70 int *A_ptr; /* int A_ptr[1+n+1]; */ | |
71 /* A_ptr[0] is not used; | |
72 A_ptr[j], 1 <= j <= n, is starting position of j-th column in | |
73 arrays A_ind and A_val; note that A_ptr[1] is always 1; | |
74 A_ptr[n+1] indicates the position after the last element in | |
75 arrays A_ind and A_val */ | |
76 int *A_ind; /* int A_ind[A_ptr[n+1]]; */ | |
77 /* row indices */ | |
78 double *A_val; /* double A_val[A_ptr[n+1]]; */ | |
79 /* non-zero element values */ | |
80 /*--------------------------------------------------------------*/ | |
81 /* basis header */ | |
82 int *head; /* int head[1+m+n]; */ | |
83 /* head[0] is not used; | |
84 head[i], 1 <= i <= m, is the ordinal number of basic variable | |
85 xB[i]; head[i] = k means that xB[i] = x[k] and i-th column of | |
86 matrix B is k-th column of matrix (I|-A); | |
87 head[m+j], 1 <= j <= n, is the ordinal number of non-basic | |
88 variable xN[j]; head[m+j] = k means that xN[j] = x[k] and j-th | |
89 column of matrix N is k-th column of matrix (I|-A) */ | |
90 char *stat; /* char stat[1+n]; */ | |
91 /* stat[0] is not used; | |
92 stat[j], 1 <= j <= n, is the status of non-basic variable | |
93 xN[j], which defines its active bound: | |
94 GLP_NL - lower bound is active | |
95 GLP_NU - upper bound is active | |
96 GLP_NF - free variable | |
97 GLP_NS - fixed variable */ | |
98 /*--------------------------------------------------------------*/ | |
99 /* matrix B is the basis matrix; it is composed from columns of | |
100 the augmented constraint matrix (I|-A) corresponding to basic | |
101 variables and stored in a factorized (invertable) form */ | |
102 int valid; | |
103 /* factorization is valid only if this flag is set */ | |
104 BFD *bfd; /* BFD bfd[1:m,1:m]; */ | |
105 /* factorized (invertable) form of the basis matrix */ | |
106 /*--------------------------------------------------------------*/ | |
107 /* matrix N is a matrix composed from columns of the augmented | |
108 constraint matrix (I|-A) corresponding to non-basic variables | |
109 except fixed ones; it is stored by rows and changes every time | |
110 the basis changes */ | |
111 int *N_ptr; /* int N_ptr[1+m+1]; */ | |
112 /* N_ptr[0] is not used; | |
113 N_ptr[i], 1 <= i <= m, is starting position of i-th row in | |
114 arrays N_ind and N_val; note that N_ptr[1] is always 1; | |
115 N_ptr[m+1] indicates the position after the last element in | |
116 arrays N_ind and N_val */ | |
117 int *N_len; /* int N_len[1+m]; */ | |
118 /* N_len[0] is not used; | |
119 N_len[i], 1 <= i <= m, is length of i-th row (0 to n) */ | |
120 int *N_ind; /* int N_ind[N_ptr[m+1]]; */ | |
121 /* column indices */ | |
122 double *N_val; /* double N_val[N_ptr[m+1]]; */ | |
123 /* non-zero element values */ | |
124 /*--------------------------------------------------------------*/ | |
125 /* working parameters */ | |
126 int phase; | |
127 /* search phase: | |
128 0 - not determined yet | |
129 1 - search for primal feasible solution | |
130 2 - search for optimal solution */ | |
131 glp_long tm_beg; | |
132 /* time value at the beginning of the search */ | |
133 int it_beg; | |
134 /* simplex iteration count at the beginning of the search */ | |
135 int it_cnt; | |
136 /* simplex iteration count; it increases by one every time the | |
137 basis changes (including the case when a non-basic variable | |
138 jumps to its opposite bound) */ | |
139 int it_dpy; | |
140 /* simplex iteration count at the most recent display output */ | |
141 /*--------------------------------------------------------------*/ | |
142 /* basic solution components */ | |
143 double *bbar; /* double bbar[1+m]; */ | |
144 /* bbar[0] is not used; | |
145 bbar[i], 1 <= i <= m, is primal value of basic variable xB[i] | |
146 (if xB[i] is free, its primal value is not updated) */ | |
147 double *cbar; /* double cbar[1+n]; */ | |
148 /* cbar[0] is not used; | |
149 cbar[j], 1 <= j <= n, is reduced cost of non-basic variable | |
150 xN[j] (if xN[j] is fixed, its reduced cost is not updated) */ | |
151 /*--------------------------------------------------------------*/ | |
152 /* the following pricing technique options may be used: | |
153 GLP_PT_STD - standard ("textbook") pricing; | |
154 GLP_PT_PSE - projected steepest edge; | |
155 GLP_PT_DVX - Devex pricing (not implemented yet); | |
156 in case of GLP_PT_STD the reference space is not used, and all | |
157 steepest edge coefficients are set to 1 */ | |
158 int refct; | |
159 /* this count is set to an initial value when the reference space | |
160 is defined and decreases by one every time the basis changes; | |
161 once this count reaches zero, the reference space is redefined | |
162 again */ | |
163 char *refsp; /* char refsp[1+m+n]; */ | |
164 /* refsp[0] is not used; | |
165 refsp[k], 1 <= k <= m+n, is the flag which means that variable | |
166 x[k] belongs to the current reference space */ | |
167 double *gamma; /* double gamma[1+n]; */ | |
168 /* gamma[0] is not used; | |
169 gamma[j], 1 <= j <= n, is the steepest edge coefficient for | |
170 non-basic variable xN[j]; if xN[j] is fixed, gamma[j] is not | |
171 used and just set to 1 */ | |
172 /*--------------------------------------------------------------*/ | |
173 /* non-basic variable xN[q] chosen to enter the basis */ | |
174 int q; | |
175 /* index of the non-basic variable xN[q] chosen, 1 <= q <= n; | |
176 if the set of eligible non-basic variables is empty and thus | |
177 no variable has been chosen, q is set to 0 */ | |
178 /*--------------------------------------------------------------*/ | |
179 /* pivot column of the simplex table corresponding to non-basic | |
180 variable xN[q] chosen is the following vector: | |
181 T * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q], | |
182 where B is the current basis matrix, N[q] is a column of the | |
183 matrix (I|-A) corresponding to xN[q] */ | |
184 int tcol_nnz; | |
185 /* number of non-zero components, 0 <= nnz <= m */ | |
186 int *tcol_ind; /* int tcol_ind[1+m]; */ | |
187 /* tcol_ind[0] is not used; | |
188 tcol_ind[t], 1 <= t <= nnz, is an index of non-zero component, | |
189 i.e. tcol_ind[t] = i means that tcol_vec[i] != 0 */ | |
190 double *tcol_vec; /* double tcol_vec[1+m]; */ | |
191 /* tcol_vec[0] is not used; | |
192 tcol_vec[i], 1 <= i <= m, is a numeric value of i-th component | |
193 of the column */ | |
194 double tcol_max; | |
195 /* infinity (maximum) norm of the column (max |tcol_vec[i]|) */ | |
196 int tcol_num; | |
197 /* number of significant non-zero components, which means that: | |
198 |tcol_vec[i]| >= eps for i in tcol_ind[1,...,num], | |
199 |tcol_vec[i]| < eps for i in tcol_ind[num+1,...,nnz], | |
200 where eps is a pivot tolerance */ | |
201 /*--------------------------------------------------------------*/ | |
202 /* basic variable xB[p] chosen to leave the basis */ | |
203 int p; | |
204 /* index of the basic variable xB[p] chosen, 1 <= p <= m; | |
205 p = 0 means that no basic variable reaches its bound; | |
206 p < 0 means that non-basic variable xN[q] reaches its opposite | |
207 bound before any basic variable */ | |
208 int p_stat; | |
209 /* new status (GLP_NL, GLP_NU, or GLP_NS) to be assigned to xB[p] | |
210 once it has left the basis */ | |
211 double teta; | |
212 /* change of non-basic variable xN[q] (see above), on which xB[p] | |
213 (or, if p < 0, xN[q] itself) reaches its bound */ | |
214 /*--------------------------------------------------------------*/ | |
215 /* pivot row of the simplex table corresponding to basic variable | |
216 xB[p] chosen is the following vector: | |
217 T' * e[p] = - N' * inv(B') * e[p] = - N' * rho, | |
218 where B' is a matrix transposed to the current basis matrix, | |
219 N' is a matrix, whose rows are columns of the matrix (I|-A) | |
220 corresponding to non-basic non-fixed variables */ | |
221 int trow_nnz; | |
222 /* number of non-zero components, 0 <= nnz <= n */ | |
223 int *trow_ind; /* int trow_ind[1+n]; */ | |
224 /* trow_ind[0] is not used; | |
225 trow_ind[t], 1 <= t <= nnz, is an index of non-zero component, | |
226 i.e. trow_ind[t] = j means that trow_vec[j] != 0 */ | |
227 double *trow_vec; /* int trow_vec[1+n]; */ | |
228 /* trow_vec[0] is not used; | |
229 trow_vec[j], 1 <= j <= n, is a numeric value of j-th component | |
230 of the row */ | |
231 /*--------------------------------------------------------------*/ | |
232 /* working arrays */ | |
233 double *work1; /* double work1[1+m]; */ | |
234 double *work2; /* double work2[1+m]; */ | |
235 double *work3; /* double work3[1+m]; */ | |
236 double *work4; /* double work4[1+m]; */ | |
237 }; | |
238 | |
239 static const double kappa = 0.10; | |
240 | |
241 /*********************************************************************** | |
242 * alloc_csa - allocate common storage area | |
243 * | |
244 * This routine allocates all arrays in the common storage area (CSA) | |
245 * and returns a pointer to the CSA. */ | |
246 | |
247 static struct csa *alloc_csa(glp_prob *lp) | |
248 { struct csa *csa; | |
249 int m = lp->m; | |
250 int n = lp->n; | |
251 int nnz = lp->nnz; | |
252 csa = xmalloc(sizeof(struct csa)); | |
253 xassert(m > 0 && n > 0); | |
254 csa->m = m; | |
255 csa->n = n; | |
256 csa->type = xcalloc(1+m+n, sizeof(char)); | |
257 csa->lb = xcalloc(1+m+n, sizeof(double)); | |
258 csa->ub = xcalloc(1+m+n, sizeof(double)); | |
259 csa->coef = xcalloc(1+m+n, sizeof(double)); | |
260 csa->obj = xcalloc(1+n, sizeof(double)); | |
261 csa->A_ptr = xcalloc(1+n+1, sizeof(int)); | |
262 csa->A_ind = xcalloc(1+nnz, sizeof(int)); | |
263 csa->A_val = xcalloc(1+nnz, sizeof(double)); | |
264 csa->head = xcalloc(1+m+n, sizeof(int)); | |
265 csa->stat = xcalloc(1+n, sizeof(char)); | |
266 csa->N_ptr = xcalloc(1+m+1, sizeof(int)); | |
267 csa->N_len = xcalloc(1+m, sizeof(int)); | |
268 csa->N_ind = NULL; /* will be allocated later */ | |
269 csa->N_val = NULL; /* will be allocated later */ | |
270 csa->bbar = xcalloc(1+m, sizeof(double)); | |
271 csa->cbar = xcalloc(1+n, sizeof(double)); | |
272 csa->refsp = xcalloc(1+m+n, sizeof(char)); | |
273 csa->gamma = xcalloc(1+n, sizeof(double)); | |
274 csa->tcol_ind = xcalloc(1+m, sizeof(int)); | |
275 csa->tcol_vec = xcalloc(1+m, sizeof(double)); | |
276 csa->trow_ind = xcalloc(1+n, sizeof(int)); | |
277 csa->trow_vec = xcalloc(1+n, sizeof(double)); | |
278 csa->work1 = xcalloc(1+m, sizeof(double)); | |
279 csa->work2 = xcalloc(1+m, sizeof(double)); | |
280 csa->work3 = xcalloc(1+m, sizeof(double)); | |
281 csa->work4 = xcalloc(1+m, sizeof(double)); | |
282 return csa; | |
283 } | |
284 | |
285 /*********************************************************************** | |
286 * init_csa - initialize common storage area | |
287 * | |
288 * This routine initializes all data structures in the common storage | |
289 * area (CSA). */ | |
290 | |
291 static void alloc_N(struct csa *csa); | |
292 static void build_N(struct csa *csa); | |
293 | |
294 static void init_csa(struct csa *csa, glp_prob *lp) | |
295 { int m = csa->m; | |
296 int n = csa->n; | |
297 char *type = csa->type; | |
298 double *lb = csa->lb; | |
299 double *ub = csa->ub; | |
300 double *coef = csa->coef; | |
301 double *obj = csa->obj; | |
302 int *A_ptr = csa->A_ptr; | |
303 int *A_ind = csa->A_ind; | |
304 double *A_val = csa->A_val; | |
305 int *head = csa->head; | |
306 char *stat = csa->stat; | |
307 char *refsp = csa->refsp; | |
308 double *gamma = csa->gamma; | |
309 int i, j, k, loc; | |
310 double cmax; | |
311 /* auxiliary variables */ | |
312 for (i = 1; i <= m; i++) | |
313 { GLPROW *row = lp->row[i]; | |
314 type[i] = (char)row->type; | |
315 lb[i] = row->lb * row->rii; | |
316 ub[i] = row->ub * row->rii; | |
317 coef[i] = 0.0; | |
318 } | |
319 /* structural variables */ | |
320 for (j = 1; j <= n; j++) | |
321 { GLPCOL *col = lp->col[j]; | |
322 type[m+j] = (char)col->type; | |
323 lb[m+j] = col->lb / col->sjj; | |
324 ub[m+j] = col->ub / col->sjj; | |
325 coef[m+j] = col->coef * col->sjj; | |
326 } | |
327 /* original objective function */ | |
328 obj[0] = lp->c0; | |
329 memcpy(&obj[1], &coef[m+1], n * sizeof(double)); | |
330 /* factor used to scale original objective coefficients */ | |
331 cmax = 0.0; | |
332 for (j = 1; j <= n; j++) | |
333 if (cmax < fabs(obj[j])) cmax = fabs(obj[j]); | |
334 if (cmax == 0.0) cmax = 1.0; | |
335 switch (lp->dir) | |
336 { case GLP_MIN: | |
337 csa->zeta = + 1.0 / cmax; | |
338 break; | |
339 case GLP_MAX: | |
340 csa->zeta = - 1.0 / cmax; | |
341 break; | |
342 default: | |
343 xassert(lp != lp); | |
344 } | |
345 #if 1 | |
346 if (fabs(csa->zeta) < 1.0) csa->zeta *= 1000.0; | |
347 #endif | |
348 /* matrix A (by columns) */ | |
349 loc = 1; | |
350 for (j = 1; j <= n; j++) | |
351 { GLPAIJ *aij; | |
352 A_ptr[j] = loc; | |
353 for (aij = lp->col[j]->ptr; aij != NULL; aij = aij->c_next) | |
354 { A_ind[loc] = aij->row->i; | |
355 A_val[loc] = aij->row->rii * aij->val * aij->col->sjj; | |
356 loc++; | |
357 } | |
358 } | |
359 A_ptr[n+1] = loc; | |
360 xassert(loc == lp->nnz+1); | |
361 /* basis header */ | |
362 xassert(lp->valid); | |
363 memcpy(&head[1], &lp->head[1], m * sizeof(int)); | |
364 k = 0; | |
365 for (i = 1; i <= m; i++) | |
366 { GLPROW *row = lp->row[i]; | |
367 if (row->stat != GLP_BS) | |
368 { k++; | |
369 xassert(k <= n); | |
370 head[m+k] = i; | |
371 stat[k] = (char)row->stat; | |
372 } | |
373 } | |
374 for (j = 1; j <= n; j++) | |
375 { GLPCOL *col = lp->col[j]; | |
376 if (col->stat != GLP_BS) | |
377 { k++; | |
378 xassert(k <= n); | |
379 head[m+k] = m + j; | |
380 stat[k] = (char)col->stat; | |
381 } | |
382 } | |
383 xassert(k == n); | |
384 /* factorization of matrix B */ | |
385 csa->valid = 1, lp->valid = 0; | |
386 csa->bfd = lp->bfd, lp->bfd = NULL; | |
387 /* matrix N (by rows) */ | |
388 alloc_N(csa); | |
389 build_N(csa); | |
390 /* working parameters */ | |
391 csa->phase = 0; | |
392 csa->tm_beg = xtime(); | |
393 csa->it_beg = csa->it_cnt = lp->it_cnt; | |
394 csa->it_dpy = -1; | |
395 /* reference space and steepest edge coefficients */ | |
396 csa->refct = 0; | |
397 memset(&refsp[1], 0, (m+n) * sizeof(char)); | |
398 for (j = 1; j <= n; j++) gamma[j] = 1.0; | |
399 return; | |
400 } | |
401 | |
402 /*********************************************************************** | |
403 * invert_B - compute factorization of the basis matrix | |
404 * | |
405 * This routine computes factorization of the current basis matrix B. | |
406 * | |
407 * If the operation is successful, the routine returns zero, otherwise | |
408 * non-zero. */ | |
409 | |
410 static int inv_col(void *info, int i, int ind[], double val[]) | |
411 { /* this auxiliary routine returns row indices and numeric values | |
412 of non-zero elements of i-th column of the basis matrix */ | |
413 struct csa *csa = info; | |
414 int m = csa->m; | |
415 #ifdef GLP_DEBUG | |
416 int n = csa->n; | |
417 #endif | |
418 int *A_ptr = csa->A_ptr; | |
419 int *A_ind = csa->A_ind; | |
420 double *A_val = csa->A_val; | |
421 int *head = csa->head; | |
422 int k, len, ptr, t; | |
423 #ifdef GLP_DEBUG | |
424 xassert(1 <= i && i <= m); | |
425 #endif | |
426 k = head[i]; /* B[i] is k-th column of (I|-A) */ | |
427 #ifdef GLP_DEBUG | |
428 xassert(1 <= k && k <= m+n); | |
429 #endif | |
430 if (k <= m) | |
431 { /* B[i] is k-th column of submatrix I */ | |
432 len = 1; | |
433 ind[1] = k; | |
434 val[1] = 1.0; | |
435 } | |
436 else | |
437 { /* B[i] is (k-m)-th column of submatrix (-A) */ | |
438 ptr = A_ptr[k-m]; | |
439 len = A_ptr[k-m+1] - ptr; | |
440 memcpy(&ind[1], &A_ind[ptr], len * sizeof(int)); | |
441 memcpy(&val[1], &A_val[ptr], len * sizeof(double)); | |
442 for (t = 1; t <= len; t++) val[t] = - val[t]; | |
443 } | |
444 return len; | |
445 } | |
446 | |
447 static int invert_B(struct csa *csa) | |
448 { int ret; | |
449 ret = bfd_factorize(csa->bfd, csa->m, NULL, inv_col, csa); | |
450 csa->valid = (ret == 0); | |
451 return ret; | |
452 } | |
453 | |
454 /*********************************************************************** | |
455 * update_B - update factorization of the basis matrix | |
456 * | |
457 * This routine replaces i-th column of the basis matrix B by k-th | |
458 * column of the augmented constraint matrix (I|-A) and then updates | |
459 * the factorization of B. | |
460 * | |
461 * If the factorization has been successfully updated, the routine | |
462 * returns zero, otherwise non-zero. */ | |
463 | |
464 static int update_B(struct csa *csa, int i, int k) | |
465 { int m = csa->m; | |
466 #ifdef GLP_DEBUG | |
467 int n = csa->n; | |
468 #endif | |
469 int ret; | |
470 #ifdef GLP_DEBUG | |
471 xassert(1 <= i && i <= m); | |
472 xassert(1 <= k && k <= m+n); | |
473 #endif | |
474 if (k <= m) | |
475 { /* new i-th column of B is k-th column of I */ | |
476 int ind[1+1]; | |
477 double val[1+1]; | |
478 ind[1] = k; | |
479 val[1] = 1.0; | |
480 xassert(csa->valid); | |
481 ret = bfd_update_it(csa->bfd, i, 0, 1, ind, val); | |
482 } | |
483 else | |
484 { /* new i-th column of B is (k-m)-th column of (-A) */ | |
485 int *A_ptr = csa->A_ptr; | |
486 int *A_ind = csa->A_ind; | |
487 double *A_val = csa->A_val; | |
488 double *val = csa->work1; | |
489 int beg, end, ptr, len; | |
490 beg = A_ptr[k-m]; | |
491 end = A_ptr[k-m+1]; | |
492 len = 0; | |
493 for (ptr = beg; ptr < end; ptr++) | |
494 val[++len] = - A_val[ptr]; | |
495 xassert(csa->valid); | |
496 ret = bfd_update_it(csa->bfd, i, 0, len, &A_ind[beg-1], val); | |
497 } | |
498 csa->valid = (ret == 0); | |
499 return ret; | |
500 } | |
501 | |
502 /*********************************************************************** | |
503 * error_ftran - compute residual vector r = h - B * x | |
504 * | |
505 * This routine computes the residual vector r = h - B * x, where B is | |
506 * the current basis matrix, h is the vector of right-hand sides, x is | |
507 * the solution vector. */ | |
508 | |
509 static void error_ftran(struct csa *csa, double h[], double x[], | |
510 double r[]) | |
511 { int m = csa->m; | |
512 #ifdef GLP_DEBUG | |
513 int n = csa->n; | |
514 #endif | |
515 int *A_ptr = csa->A_ptr; | |
516 int *A_ind = csa->A_ind; | |
517 double *A_val = csa->A_val; | |
518 int *head = csa->head; | |
519 int i, k, beg, end, ptr; | |
520 double temp; | |
521 /* compute the residual vector: | |
522 r = h - B * x = h - B[1] * x[1] - ... - B[m] * x[m], | |
523 where B[1], ..., B[m] are columns of matrix B */ | |
524 memcpy(&r[1], &h[1], m * sizeof(double)); | |
525 for (i = 1; i <= m; i++) | |
526 { temp = x[i]; | |
527 if (temp == 0.0) continue; | |
528 k = head[i]; /* B[i] is k-th column of (I|-A) */ | |
529 #ifdef GLP_DEBUG | |
530 xassert(1 <= k && k <= m+n); | |
531 #endif | |
532 if (k <= m) | |
533 { /* B[i] is k-th column of submatrix I */ | |
534 r[k] -= temp; | |
535 } | |
536 else | |
537 { /* B[i] is (k-m)-th column of submatrix (-A) */ | |
538 beg = A_ptr[k-m]; | |
539 end = A_ptr[k-m+1]; | |
540 for (ptr = beg; ptr < end; ptr++) | |
541 r[A_ind[ptr]] += A_val[ptr] * temp; | |
542 } | |
543 } | |
544 return; | |
545 } | |
546 | |
547 /*********************************************************************** | |
548 * refine_ftran - refine solution of B * x = h | |
549 * | |
550 * This routine performs one iteration to refine the solution of | |
551 * the system B * x = h, where B is the current basis matrix, h is the | |
552 * vector of right-hand sides, x is the solution vector. */ | |
553 | |
554 static void refine_ftran(struct csa *csa, double h[], double x[]) | |
555 { int m = csa->m; | |
556 double *r = csa->work1; | |
557 double *d = csa->work1; | |
558 int i; | |
559 /* compute the residual vector r = h - B * x */ | |
560 error_ftran(csa, h, x, r); | |
561 /* compute the correction vector d = inv(B) * r */ | |
562 xassert(csa->valid); | |
563 bfd_ftran(csa->bfd, d); | |
564 /* refine the solution vector (new x) = (old x) + d */ | |
565 for (i = 1; i <= m; i++) x[i] += d[i]; | |
566 return; | |
567 } | |
568 | |
569 /*********************************************************************** | |
570 * error_btran - compute residual vector r = h - B'* x | |
571 * | |
572 * This routine computes the residual vector r = h - B'* x, where B' | |
573 * is a matrix transposed to the current basis matrix, h is the vector | |
574 * of right-hand sides, x is the solution vector. */ | |
575 | |
576 static void error_btran(struct csa *csa, double h[], double x[], | |
577 double r[]) | |
578 { int m = csa->m; | |
579 #ifdef GLP_DEBUG | |
580 int n = csa->n; | |
581 #endif | |
582 int *A_ptr = csa->A_ptr; | |
583 int *A_ind = csa->A_ind; | |
584 double *A_val = csa->A_val; | |
585 int *head = csa->head; | |
586 int i, k, beg, end, ptr; | |
587 double temp; | |
588 /* compute the residual vector r = b - B'* x */ | |
589 for (i = 1; i <= m; i++) | |
590 { /* r[i] := b[i] - (i-th column of B)'* x */ | |
591 k = head[i]; /* B[i] is k-th column of (I|-A) */ | |
592 #ifdef GLP_DEBUG | |
593 xassert(1 <= k && k <= m+n); | |
594 #endif | |
595 temp = h[i]; | |
596 if (k <= m) | |
597 { /* B[i] is k-th column of submatrix I */ | |
598 temp -= x[k]; | |
599 } | |
600 else | |
601 { /* B[i] is (k-m)-th column of submatrix (-A) */ | |
602 beg = A_ptr[k-m]; | |
603 end = A_ptr[k-m+1]; | |
604 for (ptr = beg; ptr < end; ptr++) | |
605 temp += A_val[ptr] * x[A_ind[ptr]]; | |
606 } | |
607 r[i] = temp; | |
608 } | |
609 return; | |
610 } | |
611 | |
612 /*********************************************************************** | |
613 * refine_btran - refine solution of B'* x = h | |
614 * | |
615 * This routine performs one iteration to refine the solution of the | |
616 * system B'* x = h, where B' is a matrix transposed to the current | |
617 * basis matrix, h is the vector of right-hand sides, x is the solution | |
618 * vector. */ | |
619 | |
620 static void refine_btran(struct csa *csa, double h[], double x[]) | |
621 { int m = csa->m; | |
622 double *r = csa->work1; | |
623 double *d = csa->work1; | |
624 int i; | |
625 /* compute the residual vector r = h - B'* x */ | |
626 error_btran(csa, h, x, r); | |
627 /* compute the correction vector d = inv(B') * r */ | |
628 xassert(csa->valid); | |
629 bfd_btran(csa->bfd, d); | |
630 /* refine the solution vector (new x) = (old x) + d */ | |
631 for (i = 1; i <= m; i++) x[i] += d[i]; | |
632 return; | |
633 } | |
634 | |
635 /*********************************************************************** | |
636 * alloc_N - allocate matrix N | |
637 * | |
638 * This routine determines maximal row lengths of matrix N, sets its | |
639 * row pointers, and then allocates arrays N_ind and N_val. | |
640 * | |
641 * Note that some fixed structural variables may temporarily become | |
642 * double-bounded, so corresponding columns of matrix A should not be | |
643 * ignored on calculating maximal row lengths of matrix N. */ | |
644 | |
645 static void alloc_N(struct csa *csa) | |
646 { int m = csa->m; | |
647 int n = csa->n; | |
648 int *A_ptr = csa->A_ptr; | |
649 int *A_ind = csa->A_ind; | |
650 int *N_ptr = csa->N_ptr; | |
651 int *N_len = csa->N_len; | |
652 int i, j, beg, end, ptr; | |
653 /* determine number of non-zeros in each row of the augmented | |
654 constraint matrix (I|-A) */ | |
655 for (i = 1; i <= m; i++) | |
656 N_len[i] = 1; | |
657 for (j = 1; j <= n; j++) | |
658 { beg = A_ptr[j]; | |
659 end = A_ptr[j+1]; | |
660 for (ptr = beg; ptr < end; ptr++) | |
661 N_len[A_ind[ptr]]++; | |
662 } | |
663 /* determine maximal row lengths of matrix N and set its row | |
664 pointers */ | |
665 N_ptr[1] = 1; | |
666 for (i = 1; i <= m; i++) | |
667 { /* row of matrix N cannot have more than n non-zeros */ | |
668 if (N_len[i] > n) N_len[i] = n; | |
669 N_ptr[i+1] = N_ptr[i] + N_len[i]; | |
670 } | |
671 /* now maximal number of non-zeros in matrix N is known */ | |
672 csa->N_ind = xcalloc(N_ptr[m+1], sizeof(int)); | |
673 csa->N_val = xcalloc(N_ptr[m+1], sizeof(double)); | |
674 return; | |
675 } | |
676 | |
677 /*********************************************************************** | |
678 * add_N_col - add column of matrix (I|-A) to matrix N | |
679 * | |
680 * This routine adds j-th column to matrix N which is k-th column of | |
681 * the augmented constraint matrix (I|-A). (It is assumed that old j-th | |
682 * column was previously removed from matrix N.) */ | |
683 | |
684 static void add_N_col(struct csa *csa, int j, int k) | |
685 { int m = csa->m; | |
686 #ifdef GLP_DEBUG | |
687 int n = csa->n; | |
688 #endif | |
689 int *N_ptr = csa->N_ptr; | |
690 int *N_len = csa->N_len; | |
691 int *N_ind = csa->N_ind; | |
692 double *N_val = csa->N_val; | |
693 int pos; | |
694 #ifdef GLP_DEBUG | |
695 xassert(1 <= j && j <= n); | |
696 xassert(1 <= k && k <= m+n); | |
697 #endif | |
698 if (k <= m) | |
699 { /* N[j] is k-th column of submatrix I */ | |
700 pos = N_ptr[k] + (N_len[k]++); | |
701 #ifdef GLP_DEBUG | |
702 xassert(pos < N_ptr[k+1]); | |
703 #endif | |
704 N_ind[pos] = j; | |
705 N_val[pos] = 1.0; | |
706 } | |
707 else | |
708 { /* N[j] is (k-m)-th column of submatrix (-A) */ | |
709 int *A_ptr = csa->A_ptr; | |
710 int *A_ind = csa->A_ind; | |
711 double *A_val = csa->A_val; | |
712 int i, beg, end, ptr; | |
713 beg = A_ptr[k-m]; | |
714 end = A_ptr[k-m+1]; | |
715 for (ptr = beg; ptr < end; ptr++) | |
716 { i = A_ind[ptr]; /* row number */ | |
717 pos = N_ptr[i] + (N_len[i]++); | |
718 #ifdef GLP_DEBUG | |
719 xassert(pos < N_ptr[i+1]); | |
720 #endif | |
721 N_ind[pos] = j; | |
722 N_val[pos] = - A_val[ptr]; | |
723 } | |
724 } | |
725 return; | |
726 } | |
727 | |
728 /*********************************************************************** | |
729 * del_N_col - remove column of matrix (I|-A) from matrix N | |
730 * | |
731 * This routine removes j-th column from matrix N which is k-th column | |
732 * of the augmented constraint matrix (I|-A). */ | |
733 | |
734 static void del_N_col(struct csa *csa, int j, int k) | |
735 { int m = csa->m; | |
736 #ifdef GLP_DEBUG | |
737 int n = csa->n; | |
738 #endif | |
739 int *N_ptr = csa->N_ptr; | |
740 int *N_len = csa->N_len; | |
741 int *N_ind = csa->N_ind; | |
742 double *N_val = csa->N_val; | |
743 int pos, head, tail; | |
744 #ifdef GLP_DEBUG | |
745 xassert(1 <= j && j <= n); | |
746 xassert(1 <= k && k <= m+n); | |
747 #endif | |
748 if (k <= m) | |
749 { /* N[j] is k-th column of submatrix I */ | |
750 /* find element in k-th row of N */ | |
751 head = N_ptr[k]; | |
752 for (pos = head; N_ind[pos] != j; pos++) /* nop */; | |
753 /* and remove it from the row list */ | |
754 tail = head + (--N_len[k]); | |
755 #ifdef GLP_DEBUG | |
756 xassert(pos <= tail); | |
757 #endif | |
758 N_ind[pos] = N_ind[tail]; | |
759 N_val[pos] = N_val[tail]; | |
760 } | |
761 else | |
762 { /* N[j] is (k-m)-th column of submatrix (-A) */ | |
763 int *A_ptr = csa->A_ptr; | |
764 int *A_ind = csa->A_ind; | |
765 int i, beg, end, ptr; | |
766 beg = A_ptr[k-m]; | |
767 end = A_ptr[k-m+1]; | |
768 for (ptr = beg; ptr < end; ptr++) | |
769 { i = A_ind[ptr]; /* row number */ | |
770 /* find element in i-th row of N */ | |
771 head = N_ptr[i]; | |
772 for (pos = head; N_ind[pos] != j; pos++) /* nop */; | |
773 /* and remove it from the row list */ | |
774 tail = head + (--N_len[i]); | |
775 #ifdef GLP_DEBUG | |
776 xassert(pos <= tail); | |
777 #endif | |
778 N_ind[pos] = N_ind[tail]; | |
779 N_val[pos] = N_val[tail]; | |
780 } | |
781 } | |
782 return; | |
783 } | |
784 | |
785 /*********************************************************************** | |
786 * build_N - build matrix N for current basis | |
787 * | |
788 * This routine builds matrix N for the current basis from columns | |
789 * of the augmented constraint matrix (I|-A) corresponding to non-basic | |
790 * non-fixed variables. */ | |
791 | |
792 static void build_N(struct csa *csa) | |
793 { int m = csa->m; | |
794 int n = csa->n; | |
795 int *head = csa->head; | |
796 char *stat = csa->stat; | |
797 int *N_len = csa->N_len; | |
798 int j, k; | |
799 /* N := empty matrix */ | |
800 memset(&N_len[1], 0, m * sizeof(int)); | |
801 /* go through non-basic columns of matrix (I|-A) */ | |
802 for (j = 1; j <= n; j++) | |
803 { if (stat[j] != GLP_NS) | |
804 { /* xN[j] is non-fixed; add j-th column to matrix N which is | |
805 k-th column of matrix (I|-A) */ | |
806 k = head[m+j]; /* x[k] = xN[j] */ | |
807 #ifdef GLP_DEBUG | |
808 xassert(1 <= k && k <= m+n); | |
809 #endif | |
810 add_N_col(csa, j, k); | |
811 } | |
812 } | |
813 return; | |
814 } | |
815 | |
816 /*********************************************************************** | |
817 * get_xN - determine current value of non-basic variable xN[j] | |
818 * | |
819 * This routine returns the current value of non-basic variable xN[j], | |
820 * which is a value of its active bound. */ | |
821 | |
822 static double get_xN(struct csa *csa, int j) | |
823 { int m = csa->m; | |
824 #ifdef GLP_DEBUG | |
825 int n = csa->n; | |
826 #endif | |
827 double *lb = csa->lb; | |
828 double *ub = csa->ub; | |
829 int *head = csa->head; | |
830 char *stat = csa->stat; | |
831 int k; | |
832 double xN; | |
833 #ifdef GLP_DEBUG | |
834 xassert(1 <= j && j <= n); | |
835 #endif | |
836 k = head[m+j]; /* x[k] = xN[j] */ | |
837 #ifdef GLP_DEBUG | |
838 xassert(1 <= k && k <= m+n); | |
839 #endif | |
840 switch (stat[j]) | |
841 { case GLP_NL: | |
842 /* x[k] is on its lower bound */ | |
843 xN = lb[k]; break; | |
844 case GLP_NU: | |
845 /* x[k] is on its upper bound */ | |
846 xN = ub[k]; break; | |
847 case GLP_NF: | |
848 /* x[k] is free non-basic variable */ | |
849 xN = 0.0; break; | |
850 case GLP_NS: | |
851 /* x[k] is fixed non-basic variable */ | |
852 xN = lb[k]; break; | |
853 default: | |
854 xassert(stat != stat); | |
855 } | |
856 return xN; | |
857 } | |
858 | |
859 /*********************************************************************** | |
860 * eval_beta - compute primal values of basic variables | |
861 * | |
862 * This routine computes current primal values of all basic variables: | |
863 * | |
864 * beta = - inv(B) * N * xN, | |
865 * | |
866 * where B is the current basis matrix, N is a matrix built of columns | |
867 * of matrix (I|-A) corresponding to non-basic variables, and xN is the | |
868 * vector of current values of non-basic variables. */ | |
869 | |
870 static void eval_beta(struct csa *csa, double beta[]) | |
871 { int m = csa->m; | |
872 int n = csa->n; | |
873 int *A_ptr = csa->A_ptr; | |
874 int *A_ind = csa->A_ind; | |
875 double *A_val = csa->A_val; | |
876 int *head = csa->head; | |
877 double *h = csa->work2; | |
878 int i, j, k, beg, end, ptr; | |
879 double xN; | |
880 /* compute the right-hand side vector: | |
881 h := - N * xN = - N[1] * xN[1] - ... - N[n] * xN[n], | |
882 where N[1], ..., N[n] are columns of matrix N */ | |
883 for (i = 1; i <= m; i++) | |
884 h[i] = 0.0; | |
885 for (j = 1; j <= n; j++) | |
886 { k = head[m+j]; /* x[k] = xN[j] */ | |
887 #ifdef GLP_DEBUG | |
888 xassert(1 <= k && k <= m+n); | |
889 #endif | |
890 /* determine current value of xN[j] */ | |
891 xN = get_xN(csa, j); | |
892 if (xN == 0.0) continue; | |
893 if (k <= m) | |
894 { /* N[j] is k-th column of submatrix I */ | |
895 h[k] -= xN; | |
896 } | |
897 else | |
898 { /* N[j] is (k-m)-th column of submatrix (-A) */ | |
899 beg = A_ptr[k-m]; | |
900 end = A_ptr[k-m+1]; | |
901 for (ptr = beg; ptr < end; ptr++) | |
902 h[A_ind[ptr]] += xN * A_val[ptr]; | |
903 } | |
904 } | |
905 /* solve system B * beta = h */ | |
906 memcpy(&beta[1], &h[1], m * sizeof(double)); | |
907 xassert(csa->valid); | |
908 bfd_ftran(csa->bfd, beta); | |
909 /* and refine the solution */ | |
910 refine_ftran(csa, h, beta); | |
911 return; | |
912 } | |
913 | |
914 /*********************************************************************** | |
915 * eval_pi - compute vector of simplex multipliers | |
916 * | |
917 * This routine computes the vector of current simplex multipliers: | |
918 * | |
919 * pi = inv(B') * cB, | |
920 * | |
921 * where B' is a matrix transposed to the current basis matrix, cB is | |
922 * a subvector of objective coefficients at basic variables. */ | |
923 | |
924 static void eval_pi(struct csa *csa, double pi[]) | |
925 { int m = csa->m; | |
926 double *c = csa->coef; | |
927 int *head = csa->head; | |
928 double *cB = csa->work2; | |
929 int i; | |
930 /* construct the right-hand side vector cB */ | |
931 for (i = 1; i <= m; i++) | |
932 cB[i] = c[head[i]]; | |
933 /* solve system B'* pi = cB */ | |
934 memcpy(&pi[1], &cB[1], m * sizeof(double)); | |
935 xassert(csa->valid); | |
936 bfd_btran(csa->bfd, pi); | |
937 /* and refine the solution */ | |
938 refine_btran(csa, cB, pi); | |
939 return; | |
940 } | |
941 | |
942 /*********************************************************************** | |
943 * eval_cost - compute reduced cost of non-basic variable xN[j] | |
944 * | |
945 * This routine computes the current reduced cost of non-basic variable | |
946 * xN[j]: | |
947 * | |
948 * d[j] = cN[j] - N'[j] * pi, | |
949 * | |
950 * where cN[j] is the objective coefficient at variable xN[j], N[j] is | |
951 * a column of the augmented constraint matrix (I|-A) corresponding to | |
952 * xN[j], pi is the vector of simplex multipliers. */ | |
953 | |
954 static double eval_cost(struct csa *csa, double pi[], int j) | |
955 { int m = csa->m; | |
956 #ifdef GLP_DEBUG | |
957 int n = csa->n; | |
958 #endif | |
959 double *coef = csa->coef; | |
960 int *head = csa->head; | |
961 int k; | |
962 double dj; | |
963 #ifdef GLP_DEBUG | |
964 xassert(1 <= j && j <= n); | |
965 #endif | |
966 k = head[m+j]; /* x[k] = xN[j] */ | |
967 #ifdef GLP_DEBUG | |
968 xassert(1 <= k && k <= m+n); | |
969 #endif | |
970 dj = coef[k]; | |
971 if (k <= m) | |
972 { /* N[j] is k-th column of submatrix I */ | |
973 dj -= pi[k]; | |
974 } | |
975 else | |
976 { /* N[j] is (k-m)-th column of submatrix (-A) */ | |
977 int *A_ptr = csa->A_ptr; | |
978 int *A_ind = csa->A_ind; | |
979 double *A_val = csa->A_val; | |
980 int beg, end, ptr; | |
981 beg = A_ptr[k-m]; | |
982 end = A_ptr[k-m+1]; | |
983 for (ptr = beg; ptr < end; ptr++) | |
984 dj += A_val[ptr] * pi[A_ind[ptr]]; | |
985 } | |
986 return dj; | |
987 } | |
988 | |
989 /*********************************************************************** | |
990 * eval_bbar - compute and store primal values of basic variables | |
991 * | |
992 * This routine computes primal values of all basic variables and then | |
993 * stores them in the solution array. */ | |
994 | |
995 static void eval_bbar(struct csa *csa) | |
996 { eval_beta(csa, csa->bbar); | |
997 return; | |
998 } | |
999 | |
1000 /*********************************************************************** | |
1001 * eval_cbar - compute and store reduced costs of non-basic variables | |
1002 * | |
1003 * This routine computes reduced costs of all non-basic variables and | |
1004 * then stores them in the solution array. */ | |
1005 | |
1006 static void eval_cbar(struct csa *csa) | |
1007 { | |
1008 #ifdef GLP_DEBUG | |
1009 int m = csa->m; | |
1010 #endif | |
1011 int n = csa->n; | |
1012 #ifdef GLP_DEBUG | |
1013 int *head = csa->head; | |
1014 #endif | |
1015 double *cbar = csa->cbar; | |
1016 double *pi = csa->work3; | |
1017 int j; | |
1018 #ifdef GLP_DEBUG | |
1019 int k; | |
1020 #endif | |
1021 /* compute simplex multipliers */ | |
1022 eval_pi(csa, pi); | |
1023 /* compute and store reduced costs */ | |
1024 for (j = 1; j <= n; j++) | |
1025 { | |
1026 #ifdef GLP_DEBUG | |
1027 k = head[m+j]; /* x[k] = xN[j] */ | |
1028 xassert(1 <= k && k <= m+n); | |
1029 #endif | |
1030 cbar[j] = eval_cost(csa, pi, j); | |
1031 } | |
1032 return; | |
1033 } | |
1034 | |
1035 /*********************************************************************** | |
1036 * reset_refsp - reset the reference space | |
1037 * | |
1038 * This routine resets (redefines) the reference space used in the | |
1039 * projected steepest edge pricing algorithm. */ | |
1040 | |
1041 static void reset_refsp(struct csa *csa) | |
1042 { int m = csa->m; | |
1043 int n = csa->n; | |
1044 int *head = csa->head; | |
1045 char *refsp = csa->refsp; | |
1046 double *gamma = csa->gamma; | |
1047 int j, k; | |
1048 xassert(csa->refct == 0); | |
1049 csa->refct = 1000; | |
1050 memset(&refsp[1], 0, (m+n) * sizeof(char)); | |
1051 for (j = 1; j <= n; j++) | |
1052 { k = head[m+j]; /* x[k] = xN[j] */ | |
1053 refsp[k] = 1; | |
1054 gamma[j] = 1.0; | |
1055 } | |
1056 return; | |
1057 } | |
1058 | |
1059 /*********************************************************************** | |
1060 * eval_gamma - compute steepest edge coefficient | |
1061 * | |
1062 * This routine computes the steepest edge coefficient for non-basic | |
1063 * variable xN[j] using its direct definition: | |
1064 * | |
1065 * gamma[j] = delta[j] + sum alfa[i,j]^2, | |
1066 * i in R | |
1067 * | |
1068 * where delta[j] = 1, if xN[j] is in the current reference space, | |
1069 * and 0 otherwise; R is a set of basic variables xB[i], which are in | |
1070 * the current reference space; alfa[i,j] are elements of the current | |
1071 * simplex table. | |
1072 * | |
1073 * NOTE: The routine is intended only for debugginig purposes. */ | |
1074 | |
1075 static double eval_gamma(struct csa *csa, int j) | |
1076 { int m = csa->m; | |
1077 #ifdef GLP_DEBUG | |
1078 int n = csa->n; | |
1079 #endif | |
1080 int *head = csa->head; | |
1081 char *refsp = csa->refsp; | |
1082 double *alfa = csa->work3; | |
1083 double *h = csa->work3; | |
1084 int i, k; | |
1085 double gamma; | |
1086 #ifdef GLP_DEBUG | |
1087 xassert(1 <= j && j <= n); | |
1088 #endif | |
1089 k = head[m+j]; /* x[k] = xN[j] */ | |
1090 #ifdef GLP_DEBUG | |
1091 xassert(1 <= k && k <= m+n); | |
1092 #endif | |
1093 /* construct the right-hand side vector h = - N[j] */ | |
1094 for (i = 1; i <= m; i++) | |
1095 h[i] = 0.0; | |
1096 if (k <= m) | |
1097 { /* N[j] is k-th column of submatrix I */ | |
1098 h[k] = -1.0; | |
1099 } | |
1100 else | |
1101 { /* N[j] is (k-m)-th column of submatrix (-A) */ | |
1102 int *A_ptr = csa->A_ptr; | |
1103 int *A_ind = csa->A_ind; | |
1104 double *A_val = csa->A_val; | |
1105 int beg, end, ptr; | |
1106 beg = A_ptr[k-m]; | |
1107 end = A_ptr[k-m+1]; | |
1108 for (ptr = beg; ptr < end; ptr++) | |
1109 h[A_ind[ptr]] = A_val[ptr]; | |
1110 } | |
1111 /* solve system B * alfa = h */ | |
1112 xassert(csa->valid); | |
1113 bfd_ftran(csa->bfd, alfa); | |
1114 /* compute gamma */ | |
1115 gamma = (refsp[k] ? 1.0 : 0.0); | |
1116 for (i = 1; i <= m; i++) | |
1117 { k = head[i]; | |
1118 #ifdef GLP_DEBUG | |
1119 xassert(1 <= k && k <= m+n); | |
1120 #endif | |
1121 if (refsp[k]) gamma += alfa[i] * alfa[i]; | |
1122 } | |
1123 return gamma; | |
1124 } | |
1125 | |
1126 /*********************************************************************** | |
1127 * chuzc - choose non-basic variable (column of the simplex table) | |
1128 * | |
1129 * This routine chooses non-basic variable xN[q], which has largest | |
1130 * weighted reduced cost: | |
1131 * | |
1132 * |d[q]| / sqrt(gamma[q]) = max |d[j]| / sqrt(gamma[j]), | |
1133 * j in J | |
1134 * | |
1135 * where J is a subset of eligible non-basic variables xN[j], d[j] is | |
1136 * reduced cost of xN[j], gamma[j] is the steepest edge coefficient. | |
1137 * | |
1138 * The working objective function is always minimized, so the sign of | |
1139 * d[q] determines direction, in which xN[q] has to change: | |
1140 * | |
1141 * if d[q] < 0, xN[q] has to increase; | |
1142 * | |
1143 * if d[q] > 0, xN[q] has to decrease. | |
1144 * | |
1145 * If |d[j]| <= tol_dj, where tol_dj is a specified tolerance, xN[j] | |
1146 * is not included in J and therefore ignored. (It is assumed that the | |
1147 * working objective row is appropriately scaled, i.e. max|c[k]| = 1.) | |
1148 * | |
1149 * If J is empty and no variable has been chosen, q is set to 0. */ | |
1150 | |
1151 static void chuzc(struct csa *csa, double tol_dj) | |
1152 { int n = csa->n; | |
1153 char *stat = csa->stat; | |
1154 double *cbar = csa->cbar; | |
1155 double *gamma = csa->gamma; | |
1156 int j, q; | |
1157 double dj, best, temp; | |
1158 /* nothing is chosen so far */ | |
1159 q = 0, best = 0.0; | |
1160 /* look through the list of non-basic variables */ | |
1161 for (j = 1; j <= n; j++) | |
1162 { dj = cbar[j]; | |
1163 switch (stat[j]) | |
1164 { case GLP_NL: | |
1165 /* xN[j] can increase */ | |
1166 if (dj >= - tol_dj) continue; | |
1167 break; | |
1168 case GLP_NU: | |
1169 /* xN[j] can decrease */ | |
1170 if (dj <= + tol_dj) continue; | |
1171 break; | |
1172 case GLP_NF: | |
1173 /* xN[j] can change in any direction */ | |
1174 if (- tol_dj <= dj && dj <= + tol_dj) continue; | |
1175 break; | |
1176 case GLP_NS: | |
1177 /* xN[j] cannot change at all */ | |
1178 continue; | |
1179 default: | |
1180 xassert(stat != stat); | |
1181 } | |
1182 /* xN[j] is eligible non-basic variable; choose one which has | |
1183 largest weighted reduced cost */ | |
1184 #ifdef GLP_DEBUG | |
1185 xassert(gamma[j] > 0.0); | |
1186 #endif | |
1187 temp = (dj * dj) / gamma[j]; | |
1188 if (best < temp) | |
1189 q = j, best = temp; | |
1190 } | |
1191 /* store the index of non-basic variable xN[q] chosen */ | |
1192 csa->q = q; | |
1193 return; | |
1194 } | |
1195 | |
1196 /*********************************************************************** | |
1197 * eval_tcol - compute pivot column of the simplex table | |
1198 * | |
1199 * This routine computes the pivot column of the simplex table, which | |
1200 * corresponds to non-basic variable xN[q] chosen. | |
1201 * | |
1202 * The pivot column is the following vector: | |
1203 * | |
1204 * tcol = T * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q], | |
1205 * | |
1206 * where B is the current basis matrix, N[q] is a column of the matrix | |
1207 * (I|-A) corresponding to variable xN[q]. */ | |
1208 | |
1209 static void eval_tcol(struct csa *csa) | |
1210 { int m = csa->m; | |
1211 #ifdef GLP_DEBUG | |
1212 int n = csa->n; | |
1213 #endif | |
1214 int *head = csa->head; | |
1215 int q = csa->q; | |
1216 int *tcol_ind = csa->tcol_ind; | |
1217 double *tcol_vec = csa->tcol_vec; | |
1218 double *h = csa->tcol_vec; | |
1219 int i, k, nnz; | |
1220 #ifdef GLP_DEBUG | |
1221 xassert(1 <= q && q <= n); | |
1222 #endif | |
1223 k = head[m+q]; /* x[k] = xN[q] */ | |
1224 #ifdef GLP_DEBUG | |
1225 xassert(1 <= k && k <= m+n); | |
1226 #endif | |
1227 /* construct the right-hand side vector h = - N[q] */ | |
1228 for (i = 1; i <= m; i++) | |
1229 h[i] = 0.0; | |
1230 if (k <= m) | |
1231 { /* N[q] is k-th column of submatrix I */ | |
1232 h[k] = -1.0; | |
1233 } | |
1234 else | |
1235 { /* N[q] is (k-m)-th column of submatrix (-A) */ | |
1236 int *A_ptr = csa->A_ptr; | |
1237 int *A_ind = csa->A_ind; | |
1238 double *A_val = csa->A_val; | |
1239 int beg, end, ptr; | |
1240 beg = A_ptr[k-m]; | |
1241 end = A_ptr[k-m+1]; | |
1242 for (ptr = beg; ptr < end; ptr++) | |
1243 h[A_ind[ptr]] = A_val[ptr]; | |
1244 } | |
1245 /* solve system B * tcol = h */ | |
1246 xassert(csa->valid); | |
1247 bfd_ftran(csa->bfd, tcol_vec); | |
1248 /* construct sparse pattern of the pivot column */ | |
1249 nnz = 0; | |
1250 for (i = 1; i <= m; i++) | |
1251 { if (tcol_vec[i] != 0.0) | |
1252 tcol_ind[++nnz] = i; | |
1253 } | |
1254 csa->tcol_nnz = nnz; | |
1255 return; | |
1256 } | |
1257 | |
1258 /*********************************************************************** | |
1259 * refine_tcol - refine pivot column of the simplex table | |
1260 * | |
1261 * This routine refines the pivot column of the simplex table assuming | |
1262 * that it was previously computed by the routine eval_tcol. */ | |
1263 | |
1264 static void refine_tcol(struct csa *csa) | |
1265 { int m = csa->m; | |
1266 #ifdef GLP_DEBUG | |
1267 int n = csa->n; | |
1268 #endif | |
1269 int *head = csa->head; | |
1270 int q = csa->q; | |
1271 int *tcol_ind = csa->tcol_ind; | |
1272 double *tcol_vec = csa->tcol_vec; | |
1273 double *h = csa->work3; | |
1274 int i, k, nnz; | |
1275 #ifdef GLP_DEBUG | |
1276 xassert(1 <= q && q <= n); | |
1277 #endif | |
1278 k = head[m+q]; /* x[k] = xN[q] */ | |
1279 #ifdef GLP_DEBUG | |
1280 xassert(1 <= k && k <= m+n); | |
1281 #endif | |
1282 /* construct the right-hand side vector h = - N[q] */ | |
1283 for (i = 1; i <= m; i++) | |
1284 h[i] = 0.0; | |
1285 if (k <= m) | |
1286 { /* N[q] is k-th column of submatrix I */ | |
1287 h[k] = -1.0; | |
1288 } | |
1289 else | |
1290 { /* N[q] is (k-m)-th column of submatrix (-A) */ | |
1291 int *A_ptr = csa->A_ptr; | |
1292 int *A_ind = csa->A_ind; | |
1293 double *A_val = csa->A_val; | |
1294 int beg, end, ptr; | |
1295 beg = A_ptr[k-m]; | |
1296 end = A_ptr[k-m+1]; | |
1297 for (ptr = beg; ptr < end; ptr++) | |
1298 h[A_ind[ptr]] = A_val[ptr]; | |
1299 } | |
1300 /* refine solution of B * tcol = h */ | |
1301 refine_ftran(csa, h, tcol_vec); | |
1302 /* construct sparse pattern of the pivot column */ | |
1303 nnz = 0; | |
1304 for (i = 1; i <= m; i++) | |
1305 { if (tcol_vec[i] != 0.0) | |
1306 tcol_ind[++nnz] = i; | |
1307 } | |
1308 csa->tcol_nnz = nnz; | |
1309 return; | |
1310 } | |
1311 | |
1312 /*********************************************************************** | |
1313 * sort_tcol - sort pivot column of the simplex table | |
1314 * | |
1315 * This routine reorders the list of non-zero elements of the pivot | |
1316 * column to put significant elements, whose magnitude is not less than | |
1317 * a specified tolerance, in front of the list, and stores the number | |
1318 * of significant elements in tcol_num. */ | |
1319 | |
1320 static void sort_tcol(struct csa *csa, double tol_piv) | |
1321 { | |
1322 #ifdef GLP_DEBUG | |
1323 int m = csa->m; | |
1324 #endif | |
1325 int nnz = csa->tcol_nnz; | |
1326 int *tcol_ind = csa->tcol_ind; | |
1327 double *tcol_vec = csa->tcol_vec; | |
1328 int i, num, pos; | |
1329 double big, eps, temp; | |
1330 /* compute infinity (maximum) norm of the column */ | |
1331 big = 0.0; | |
1332 for (pos = 1; pos <= nnz; pos++) | |
1333 { | |
1334 #ifdef GLP_DEBUG | |
1335 i = tcol_ind[pos]; | |
1336 xassert(1 <= i && i <= m); | |
1337 #endif | |
1338 temp = fabs(tcol_vec[tcol_ind[pos]]); | |
1339 if (big < temp) big = temp; | |
1340 } | |
1341 csa->tcol_max = big; | |
1342 /* determine absolute pivot tolerance */ | |
1343 eps = tol_piv * (1.0 + 0.01 * big); | |
1344 /* move significant column components to front of the list */ | |
1345 for (num = 0; num < nnz; ) | |
1346 { i = tcol_ind[nnz]; | |
1347 if (fabs(tcol_vec[i]) < eps) | |
1348 nnz--; | |
1349 else | |
1350 { num++; | |
1351 tcol_ind[nnz] = tcol_ind[num]; | |
1352 tcol_ind[num] = i; | |
1353 } | |
1354 } | |
1355 csa->tcol_num = num; | |
1356 return; | |
1357 } | |
1358 | |
1359 /*********************************************************************** | |
1360 * chuzr - choose basic variable (row of the simplex table) | |
1361 * | |
1362 * This routine chooses basic variable xB[p], which reaches its bound | |
1363 * first on changing non-basic variable xN[q] in valid direction. | |
1364 * | |
1365 * The parameter rtol is a relative tolerance used to relax bounds of | |
1366 * basic variables. If rtol = 0, the routine implements the standard | |
1367 * ratio test. Otherwise, if rtol > 0, the routine implements Harris' | |
1368 * two-pass ratio test. In the latter case rtol should be about three | |
1369 * times less than a tolerance used to check primal feasibility. */ | |
1370 | |
1371 static void chuzr(struct csa *csa, double rtol) | |
1372 { int m = csa->m; | |
1373 #ifdef GLP_DEBUG | |
1374 int n = csa->n; | |
1375 #endif | |
1376 char *type = csa->type; | |
1377 double *lb = csa->lb; | |
1378 double *ub = csa->ub; | |
1379 double *coef = csa->coef; | |
1380 int *head = csa->head; | |
1381 int phase = csa->phase; | |
1382 double *bbar = csa->bbar; | |
1383 double *cbar = csa->cbar; | |
1384 int q = csa->q; | |
1385 int *tcol_ind = csa->tcol_ind; | |
1386 double *tcol_vec = csa->tcol_vec; | |
1387 int tcol_num = csa->tcol_num; | |
1388 int i, i_stat, k, p, p_stat, pos; | |
1389 double alfa, big, delta, s, t, teta, tmax; | |
1390 #ifdef GLP_DEBUG | |
1391 xassert(1 <= q && q <= n); | |
1392 #endif | |
1393 /* s := - sign(d[q]), where d[q] is reduced cost of xN[q] */ | |
1394 #ifdef GLP_DEBUG | |
1395 xassert(cbar[q] != 0.0); | |
1396 #endif | |
1397 s = (cbar[q] > 0.0 ? -1.0 : +1.0); | |
1398 /*** FIRST PASS ***/ | |
1399 k = head[m+q]; /* x[k] = xN[q] */ | |
1400 #ifdef GLP_DEBUG | |
1401 xassert(1 <= k && k <= m+n); | |
1402 #endif | |
1403 if (type[k] == GLP_DB) | |
1404 { /* xN[q] has both lower and upper bounds */ | |
1405 p = -1, p_stat = 0, teta = ub[k] - lb[k], big = 1.0; | |
1406 } | |
1407 else | |
1408 { /* xN[q] has no opposite bound */ | |
1409 p = 0, p_stat = 0, teta = DBL_MAX, big = 0.0; | |
1410 } | |
1411 /* walk through significant elements of the pivot column */ | |
1412 for (pos = 1; pos <= tcol_num; pos++) | |
1413 { i = tcol_ind[pos]; | |
1414 #ifdef GLP_DEBUG | |
1415 xassert(1 <= i && i <= m); | |
1416 #endif | |
1417 k = head[i]; /* x[k] = xB[i] */ | |
1418 #ifdef GLP_DEBUG | |
1419 xassert(1 <= k && k <= m+n); | |
1420 #endif | |
1421 alfa = s * tcol_vec[i]; | |
1422 #ifdef GLP_DEBUG | |
1423 xassert(alfa != 0.0); | |
1424 #endif | |
1425 /* xB[i] = ... + alfa * xN[q] + ..., and due to s we need to | |
1426 consider the only case when xN[q] is increasing */ | |
1427 if (alfa > 0.0) | |
1428 { /* xB[i] is increasing */ | |
1429 if (phase == 1 && coef[k] < 0.0) | |
1430 { /* xB[i] violates its lower bound, which plays the role | |
1431 of an upper bound on phase I */ | |
1432 delta = rtol * (1.0 + kappa * fabs(lb[k])); | |
1433 t = ((lb[k] + delta) - bbar[i]) / alfa; | |
1434 i_stat = GLP_NL; | |
1435 } | |
1436 else if (phase == 1 && coef[k] > 0.0) | |
1437 { /* xB[i] violates its upper bound, which plays the role | |
1438 of an lower bound on phase I */ | |
1439 continue; | |
1440 } | |
1441 else if (type[k] == GLP_UP || type[k] == GLP_DB || | |
1442 type[k] == GLP_FX) | |
1443 { /* xB[i] is within its bounds and has an upper bound */ | |
1444 delta = rtol * (1.0 + kappa * fabs(ub[k])); | |
1445 t = ((ub[k] + delta) - bbar[i]) / alfa; | |
1446 i_stat = GLP_NU; | |
1447 } | |
1448 else | |
1449 { /* xB[i] is within its bounds and has no upper bound */ | |
1450 continue; | |
1451 } | |
1452 } | |
1453 else | |
1454 { /* xB[i] is decreasing */ | |
1455 if (phase == 1 && coef[k] > 0.0) | |
1456 { /* xB[i] violates its upper bound, which plays the role | |
1457 of an lower bound on phase I */ | |
1458 delta = rtol * (1.0 + kappa * fabs(ub[k])); | |
1459 t = ((ub[k] - delta) - bbar[i]) / alfa; | |
1460 i_stat = GLP_NU; | |
1461 } | |
1462 else if (phase == 1 && coef[k] < 0.0) | |
1463 { /* xB[i] violates its lower bound, which plays the role | |
1464 of an upper bound on phase I */ | |
1465 continue; | |
1466 } | |
1467 else if (type[k] == GLP_LO || type[k] == GLP_DB || | |
1468 type[k] == GLP_FX) | |
1469 { /* xB[i] is within its bounds and has an lower bound */ | |
1470 delta = rtol * (1.0 + kappa * fabs(lb[k])); | |
1471 t = ((lb[k] - delta) - bbar[i]) / alfa; | |
1472 i_stat = GLP_NL; | |
1473 } | |
1474 else | |
1475 { /* xB[i] is within its bounds and has no lower bound */ | |
1476 continue; | |
1477 } | |
1478 } | |
1479 /* t is a change of xN[q], on which xB[i] reaches its bound | |
1480 (possibly relaxed); since the basic solution is assumed to | |
1481 be primal feasible (or pseudo feasible on phase I), t has | |
1482 to be non-negative by definition; however, it may happen | |
1483 that xB[i] slightly (i.e. within a tolerance) violates its | |
1484 bound, that leads to negative t; in the latter case, if | |
1485 xB[i] is chosen, negative t means that xN[q] changes in | |
1486 wrong direction; if pivot alfa[i,q] is close to zero, even | |
1487 small bound violation of xB[i] may lead to a large change | |
1488 of xN[q] in wrong direction; let, for example, xB[i] >= 0 | |
1489 and in the current basis its value be -5e-9; let also xN[q] | |
1490 be on its zero bound and should increase; from the ratio | |
1491 test rule it follows that the pivot alfa[i,q] < 0; however, | |
1492 if alfa[i,q] is, say, -1e-9, the change of xN[q] in wrong | |
1493 direction is 5e-9 / (-1e-9) = -5, and using it for updating | |
1494 values of other basic variables will give absolutely wrong | |
1495 results; therefore, if t is negative, we should replace it | |
1496 by exact zero assuming that xB[i] is exactly on its bound, | |
1497 and the violation appears due to round-off errors */ | |
1498 if (t < 0.0) t = 0.0; | |
1499 /* apply minimal ratio test */ | |
1500 if (teta > t || teta == t && big < fabs(alfa)) | |
1501 p = i, p_stat = i_stat, teta = t, big = fabs(alfa); | |
1502 } | |
1503 /* the second pass is skipped in the following cases: */ | |
1504 /* if the standard ratio test is used */ | |
1505 if (rtol == 0.0) goto done; | |
1506 /* if xN[q] reaches its opposite bound or if no basic variable | |
1507 has been chosen on the first pass */ | |
1508 if (p <= 0) goto done; | |
1509 /* if xB[p] is a blocking variable, i.e. if it prevents xN[q] | |
1510 from any change */ | |
1511 if (teta == 0.0) goto done; | |
1512 /*** SECOND PASS ***/ | |
1513 /* here tmax is a maximal change of xN[q], on which the solution | |
1514 remains primal feasible (or pseudo feasible on phase I) within | |
1515 a tolerance */ | |
1516 #if 0 | |
1517 tmax = (1.0 + 10.0 * DBL_EPSILON) * teta; | |
1518 #else | |
1519 tmax = teta; | |
1520 #endif | |
1521 /* nothing is chosen so far */ | |
1522 p = 0, p_stat = 0, teta = DBL_MAX, big = 0.0; | |
1523 /* walk through significant elements of the pivot column */ | |
1524 for (pos = 1; pos <= tcol_num; pos++) | |
1525 { i = tcol_ind[pos]; | |
1526 #ifdef GLP_DEBUG | |
1527 xassert(1 <= i && i <= m); | |
1528 #endif | |
1529 k = head[i]; /* x[k] = xB[i] */ | |
1530 #ifdef GLP_DEBUG | |
1531 xassert(1 <= k && k <= m+n); | |
1532 #endif | |
1533 alfa = s * tcol_vec[i]; | |
1534 #ifdef GLP_DEBUG | |
1535 xassert(alfa != 0.0); | |
1536 #endif | |
1537 /* xB[i] = ... + alfa * xN[q] + ..., and due to s we need to | |
1538 consider the only case when xN[q] is increasing */ | |
1539 if (alfa > 0.0) | |
1540 { /* xB[i] is increasing */ | |
1541 if (phase == 1 && coef[k] < 0.0) | |
1542 { /* xB[i] violates its lower bound, which plays the role | |
1543 of an upper bound on phase I */ | |
1544 t = (lb[k] - bbar[i]) / alfa; | |
1545 i_stat = GLP_NL; | |
1546 } | |
1547 else if (phase == 1 && coef[k] > 0.0) | |
1548 { /* xB[i] violates its upper bound, which plays the role | |
1549 of an lower bound on phase I */ | |
1550 continue; | |
1551 } | |
1552 else if (type[k] == GLP_UP || type[k] == GLP_DB || | |
1553 type[k] == GLP_FX) | |
1554 { /* xB[i] is within its bounds and has an upper bound */ | |
1555 t = (ub[k] - bbar[i]) / alfa; | |
1556 i_stat = GLP_NU; | |
1557 } | |
1558 else | |
1559 { /* xB[i] is within its bounds and has no upper bound */ | |
1560 continue; | |
1561 } | |
1562 } | |
1563 else | |
1564 { /* xB[i] is decreasing */ | |
1565 if (phase == 1 && coef[k] > 0.0) | |
1566 { /* xB[i] violates its upper bound, which plays the role | |
1567 of an lower bound on phase I */ | |
1568 t = (ub[k] - bbar[i]) / alfa; | |
1569 i_stat = GLP_NU; | |
1570 } | |
1571 else if (phase == 1 && coef[k] < 0.0) | |
1572 { /* xB[i] violates its lower bound, which plays the role | |
1573 of an upper bound on phase I */ | |
1574 continue; | |
1575 } | |
1576 else if (type[k] == GLP_LO || type[k] == GLP_DB || | |
1577 type[k] == GLP_FX) | |
1578 { /* xB[i] is within its bounds and has an lower bound */ | |
1579 t = (lb[k] - bbar[i]) / alfa; | |
1580 i_stat = GLP_NL; | |
1581 } | |
1582 else | |
1583 { /* xB[i] is within its bounds and has no lower bound */ | |
1584 continue; | |
1585 } | |
1586 } | |
1587 /* (see comments for the first pass) */ | |
1588 if (t < 0.0) t = 0.0; | |
1589 /* t is a change of xN[q], on which xB[i] reaches its bound; | |
1590 if t <= tmax, all basic variables can violate their bounds | |
1591 only within relaxation tolerance delta; we can use this | |
1592 freedom and choose basic variable having largest influence | |
1593 coefficient to avoid possible numeric instability */ | |
1594 if (t <= tmax && big < fabs(alfa)) | |
1595 p = i, p_stat = i_stat, teta = t, big = fabs(alfa); | |
1596 } | |
1597 /* something must be chosen on the second pass */ | |
1598 xassert(p != 0); | |
1599 done: /* store the index and status of basic variable xB[p] chosen */ | |
1600 csa->p = p; | |
1601 if (p > 0 && type[head[p]] == GLP_FX) | |
1602 csa->p_stat = GLP_NS; | |
1603 else | |
1604 csa->p_stat = p_stat; | |
1605 /* store corresponding change of non-basic variable xN[q] */ | |
1606 #ifdef GLP_DEBUG | |
1607 xassert(teta >= 0.0); | |
1608 #endif | |
1609 csa->teta = s * teta; | |
1610 return; | |
1611 } | |
1612 | |
1613 /*********************************************************************** | |
1614 * eval_rho - compute pivot row of the inverse | |
1615 * | |
1616 * This routine computes the pivot (p-th) row of the inverse inv(B), | |
1617 * which corresponds to basic variable xB[p] chosen: | |
1618 * | |
1619 * rho = inv(B') * e[p], | |
1620 * | |
1621 * where B' is a matrix transposed to the current basis matrix, e[p] | |
1622 * is unity vector. */ | |
1623 | |
1624 static void eval_rho(struct csa *csa, double rho[]) | |
1625 { int m = csa->m; | |
1626 int p = csa->p; | |
1627 double *e = rho; | |
1628 int i; | |
1629 #ifdef GLP_DEBUG | |
1630 xassert(1 <= p && p <= m); | |
1631 #endif | |
1632 /* construct the right-hand side vector e[p] */ | |
1633 for (i = 1; i <= m; i++) | |
1634 e[i] = 0.0; | |
1635 e[p] = 1.0; | |
1636 /* solve system B'* rho = e[p] */ | |
1637 xassert(csa->valid); | |
1638 bfd_btran(csa->bfd, rho); | |
1639 return; | |
1640 } | |
1641 | |
1642 /*********************************************************************** | |
1643 * refine_rho - refine pivot row of the inverse | |
1644 * | |
1645 * This routine refines the pivot row of the inverse inv(B) assuming | |
1646 * that it was previously computed by the routine eval_rho. */ | |
1647 | |
1648 static void refine_rho(struct csa *csa, double rho[]) | |
1649 { int m = csa->m; | |
1650 int p = csa->p; | |
1651 double *e = csa->work3; | |
1652 int i; | |
1653 #ifdef GLP_DEBUG | |
1654 xassert(1 <= p && p <= m); | |
1655 #endif | |
1656 /* construct the right-hand side vector e[p] */ | |
1657 for (i = 1; i <= m; i++) | |
1658 e[i] = 0.0; | |
1659 e[p] = 1.0; | |
1660 /* refine solution of B'* rho = e[p] */ | |
1661 refine_btran(csa, e, rho); | |
1662 return; | |
1663 } | |
1664 | |
1665 /*********************************************************************** | |
1666 * eval_trow - compute pivot row of the simplex table | |
1667 * | |
1668 * This routine computes the pivot row of the simplex table, which | |
1669 * corresponds to basic variable xB[p] chosen. | |
1670 * | |
1671 * The pivot row is the following vector: | |
1672 * | |
1673 * trow = T'* e[p] = - N'* inv(B') * e[p] = - N' * rho, | |
1674 * | |
1675 * where rho is the pivot row of the inverse inv(B) previously computed | |
1676 * by the routine eval_rho. | |
1677 * | |
1678 * Note that elements of the pivot row corresponding to fixed non-basic | |
1679 * variables are not computed. */ | |
1680 | |
1681 static void eval_trow(struct csa *csa, double rho[]) | |
1682 { int m = csa->m; | |
1683 int n = csa->n; | |
1684 #ifdef GLP_DEBUG | |
1685 char *stat = csa->stat; | |
1686 #endif | |
1687 int *N_ptr = csa->N_ptr; | |
1688 int *N_len = csa->N_len; | |
1689 int *N_ind = csa->N_ind; | |
1690 double *N_val = csa->N_val; | |
1691 int *trow_ind = csa->trow_ind; | |
1692 double *trow_vec = csa->trow_vec; | |
1693 int i, j, beg, end, ptr, nnz; | |
1694 double temp; | |
1695 /* clear the pivot row */ | |
1696 for (j = 1; j <= n; j++) | |
1697 trow_vec[j] = 0.0; | |
1698 /* compute the pivot row as a linear combination of rows of the | |
1699 matrix N: trow = - rho[1] * N'[1] - ... - rho[m] * N'[m] */ | |
1700 for (i = 1; i <= m; i++) | |
1701 { temp = rho[i]; | |
1702 if (temp == 0.0) continue; | |
1703 /* trow := trow - rho[i] * N'[i] */ | |
1704 beg = N_ptr[i]; | |
1705 end = beg + N_len[i]; | |
1706 for (ptr = beg; ptr < end; ptr++) | |
1707 { | |
1708 #ifdef GLP_DEBUG | |
1709 j = N_ind[ptr]; | |
1710 xassert(1 <= j && j <= n); | |
1711 xassert(stat[j] != GLP_NS); | |
1712 #endif | |
1713 trow_vec[N_ind[ptr]] -= temp * N_val[ptr]; | |
1714 } | |
1715 } | |
1716 /* construct sparse pattern of the pivot row */ | |
1717 nnz = 0; | |
1718 for (j = 1; j <= n; j++) | |
1719 { if (trow_vec[j] != 0.0) | |
1720 trow_ind[++nnz] = j; | |
1721 } | |
1722 csa->trow_nnz = nnz; | |
1723 return; | |
1724 } | |
1725 | |
1726 /*********************************************************************** | |
1727 * update_bbar - update values of basic variables | |
1728 * | |
1729 * This routine updates values of all basic variables for the adjacent | |
1730 * basis. */ | |
1731 | |
1732 static void update_bbar(struct csa *csa) | |
1733 { | |
1734 #ifdef GLP_DEBUG | |
1735 int m = csa->m; | |
1736 int n = csa->n; | |
1737 #endif | |
1738 double *bbar = csa->bbar; | |
1739 int q = csa->q; | |
1740 int tcol_nnz = csa->tcol_nnz; | |
1741 int *tcol_ind = csa->tcol_ind; | |
1742 double *tcol_vec = csa->tcol_vec; | |
1743 int p = csa->p; | |
1744 double teta = csa->teta; | |
1745 int i, pos; | |
1746 #ifdef GLP_DEBUG | |
1747 xassert(1 <= q && q <= n); | |
1748 xassert(p < 0 || 1 <= p && p <= m); | |
1749 #endif | |
1750 /* if xN[q] leaves the basis, compute its value in the adjacent | |
1751 basis, where it will replace xB[p] */ | |
1752 if (p > 0) | |
1753 bbar[p] = get_xN(csa, q) + teta; | |
1754 /* update values of other basic variables (except xB[p], because | |
1755 it will be replaced by xN[q]) */ | |
1756 if (teta == 0.0) goto done; | |
1757 for (pos = 1; pos <= tcol_nnz; pos++) | |
1758 { i = tcol_ind[pos]; | |
1759 /* skip xB[p] */ | |
1760 if (i == p) continue; | |
1761 /* (change of xB[i]) = alfa[i,q] * (change of xN[q]) */ | |
1762 bbar[i] += tcol_vec[i] * teta; | |
1763 } | |
1764 done: return; | |
1765 } | |
1766 | |
1767 /*********************************************************************** | |
1768 * reeval_cost - recompute reduced cost of non-basic variable xN[q] | |
1769 * | |
1770 * This routine recomputes reduced cost of non-basic variable xN[q] for | |
1771 * the current basis more accurately using its direct definition: | |
1772 * | |
1773 * d[q] = cN[q] - N'[q] * pi = | |
1774 * | |
1775 * = cN[q] - N'[q] * (inv(B') * cB) = | |
1776 * | |
1777 * = cN[q] - (cB' * inv(B) * N[q]) = | |
1778 * | |
1779 * = cN[q] + cB' * (pivot column). | |
1780 * | |
1781 * It is assumed that the pivot column of the simplex table is already | |
1782 * computed. */ | |
1783 | |
1784 static double reeval_cost(struct csa *csa) | |
1785 { int m = csa->m; | |
1786 #ifdef GLP_DEBUG | |
1787 int n = csa->n; | |
1788 #endif | |
1789 double *coef = csa->coef; | |
1790 int *head = csa->head; | |
1791 int q = csa->q; | |
1792 int tcol_nnz = csa->tcol_nnz; | |
1793 int *tcol_ind = csa->tcol_ind; | |
1794 double *tcol_vec = csa->tcol_vec; | |
1795 int i, pos; | |
1796 double dq; | |
1797 #ifdef GLP_DEBUG | |
1798 xassert(1 <= q && q <= n); | |
1799 #endif | |
1800 dq = coef[head[m+q]]; | |
1801 for (pos = 1; pos <= tcol_nnz; pos++) | |
1802 { i = tcol_ind[pos]; | |
1803 #ifdef GLP_DEBUG | |
1804 xassert(1 <= i && i <= m); | |
1805 #endif | |
1806 dq += coef[head[i]] * tcol_vec[i]; | |
1807 } | |
1808 return dq; | |
1809 } | |
1810 | |
1811 /*********************************************************************** | |
1812 * update_cbar - update reduced costs of non-basic variables | |
1813 * | |
1814 * This routine updates reduced costs of all (except fixed) non-basic | |
1815 * variables for the adjacent basis. */ | |
1816 | |
1817 static void update_cbar(struct csa *csa) | |
1818 { | |
1819 #ifdef GLP_DEBUG | |
1820 int n = csa->n; | |
1821 #endif | |
1822 double *cbar = csa->cbar; | |
1823 int q = csa->q; | |
1824 int trow_nnz = csa->trow_nnz; | |
1825 int *trow_ind = csa->trow_ind; | |
1826 double *trow_vec = csa->trow_vec; | |
1827 int j, pos; | |
1828 double new_dq; | |
1829 #ifdef GLP_DEBUG | |
1830 xassert(1 <= q && q <= n); | |
1831 #endif | |
1832 /* compute reduced cost of xB[p] in the adjacent basis, where it | |
1833 will replace xN[q] */ | |
1834 #ifdef GLP_DEBUG | |
1835 xassert(trow_vec[q] != 0.0); | |
1836 #endif | |
1837 new_dq = (cbar[q] /= trow_vec[q]); | |
1838 /* update reduced costs of other non-basic variables (except | |
1839 xN[q], because it will be replaced by xB[p]) */ | |
1840 for (pos = 1; pos <= trow_nnz; pos++) | |
1841 { j = trow_ind[pos]; | |
1842 /* skip xN[q] */ | |
1843 if (j == q) continue; | |
1844 cbar[j] -= trow_vec[j] * new_dq; | |
1845 } | |
1846 return; | |
1847 } | |
1848 | |
1849 /*********************************************************************** | |
1850 * update_gamma - update steepest edge coefficients | |
1851 * | |
1852 * This routine updates steepest-edge coefficients for the adjacent | |
1853 * basis. */ | |
1854 | |
1855 static void update_gamma(struct csa *csa) | |
1856 { int m = csa->m; | |
1857 #ifdef GLP_DEBUG | |
1858 int n = csa->n; | |
1859 #endif | |
1860 char *type = csa->type; | |
1861 int *A_ptr = csa->A_ptr; | |
1862 int *A_ind = csa->A_ind; | |
1863 double *A_val = csa->A_val; | |
1864 int *head = csa->head; | |
1865 char *refsp = csa->refsp; | |
1866 double *gamma = csa->gamma; | |
1867 int q = csa->q; | |
1868 int tcol_nnz = csa->tcol_nnz; | |
1869 int *tcol_ind = csa->tcol_ind; | |
1870 double *tcol_vec = csa->tcol_vec; | |
1871 int p = csa->p; | |
1872 int trow_nnz = csa->trow_nnz; | |
1873 int *trow_ind = csa->trow_ind; | |
1874 double *trow_vec = csa->trow_vec; | |
1875 double *u = csa->work3; | |
1876 int i, j, k, pos, beg, end, ptr; | |
1877 double gamma_q, delta_q, pivot, s, t, t1, t2; | |
1878 #ifdef GLP_DEBUG | |
1879 xassert(1 <= p && p <= m); | |
1880 xassert(1 <= q && q <= n); | |
1881 #endif | |
1882 /* the basis changes, so decrease the count */ | |
1883 xassert(csa->refct > 0); | |
1884 csa->refct--; | |
1885 /* recompute gamma[q] for the current basis more accurately and | |
1886 compute auxiliary vector u */ | |
1887 gamma_q = delta_q = (refsp[head[m+q]] ? 1.0 : 0.0); | |
1888 for (i = 1; i <= m; i++) u[i] = 0.0; | |
1889 for (pos = 1; pos <= tcol_nnz; pos++) | |
1890 { i = tcol_ind[pos]; | |
1891 if (refsp[head[i]]) | |
1892 { u[i] = t = tcol_vec[i]; | |
1893 gamma_q += t * t; | |
1894 } | |
1895 else | |
1896 u[i] = 0.0; | |
1897 } | |
1898 xassert(csa->valid); | |
1899 bfd_btran(csa->bfd, u); | |
1900 /* update gamma[k] for other non-basic variables (except fixed | |
1901 variables and xN[q], because it will be replaced by xB[p]) */ | |
1902 pivot = trow_vec[q]; | |
1903 #ifdef GLP_DEBUG | |
1904 xassert(pivot != 0.0); | |
1905 #endif | |
1906 for (pos = 1; pos <= trow_nnz; pos++) | |
1907 { j = trow_ind[pos]; | |
1908 /* skip xN[q] */ | |
1909 if (j == q) continue; | |
1910 /* compute t */ | |
1911 t = trow_vec[j] / pivot; | |
1912 /* compute inner product s = N'[j] * u */ | |
1913 k = head[m+j]; /* x[k] = xN[j] */ | |
1914 if (k <= m) | |
1915 s = u[k]; | |
1916 else | |
1917 { s = 0.0; | |
1918 beg = A_ptr[k-m]; | |
1919 end = A_ptr[k-m+1]; | |
1920 for (ptr = beg; ptr < end; ptr++) | |
1921 s -= A_val[ptr] * u[A_ind[ptr]]; | |
1922 } | |
1923 /* compute gamma[k] for the adjacent basis */ | |
1924 t1 = gamma[j] + t * t * gamma_q + 2.0 * t * s; | |
1925 t2 = (refsp[k] ? 1.0 : 0.0) + delta_q * t * t; | |
1926 gamma[j] = (t1 >= t2 ? t1 : t2); | |
1927 if (gamma[j] < DBL_EPSILON) gamma[j] = DBL_EPSILON; | |
1928 } | |
1929 /* compute gamma[q] for the adjacent basis */ | |
1930 if (type[head[p]] == GLP_FX) | |
1931 gamma[q] = 1.0; | |
1932 else | |
1933 { gamma[q] = gamma_q / (pivot * pivot); | |
1934 if (gamma[q] < DBL_EPSILON) gamma[q] = DBL_EPSILON; | |
1935 } | |
1936 return; | |
1937 } | |
1938 | |
1939 /*********************************************************************** | |
1940 * err_in_bbar - compute maximal relative error in primal solution | |
1941 * | |
1942 * This routine returns maximal relative error: | |
1943 * | |
1944 * max |beta[i] - bbar[i]| / (1 + |beta[i]|), | |
1945 * | |
1946 * where beta and bbar are, respectively, directly computed and the | |
1947 * current (updated) values of basic variables. | |
1948 * | |
1949 * NOTE: The routine is intended only for debugginig purposes. */ | |
1950 | |
1951 static double err_in_bbar(struct csa *csa) | |
1952 { int m = csa->m; | |
1953 double *bbar = csa->bbar; | |
1954 int i; | |
1955 double e, emax, *beta; | |
1956 beta = xcalloc(1+m, sizeof(double)); | |
1957 eval_beta(csa, beta); | |
1958 emax = 0.0; | |
1959 for (i = 1; i <= m; i++) | |
1960 { e = fabs(beta[i] - bbar[i]) / (1.0 + fabs(beta[i])); | |
1961 if (emax < e) emax = e; | |
1962 } | |
1963 xfree(beta); | |
1964 return emax; | |
1965 } | |
1966 | |
1967 /*********************************************************************** | |
1968 * err_in_cbar - compute maximal relative error in dual solution | |
1969 * | |
1970 * This routine returns maximal relative error: | |
1971 * | |
1972 * max |cost[j] - cbar[j]| / (1 + |cost[j]|), | |
1973 * | |
1974 * where cost and cbar are, respectively, directly computed and the | |
1975 * current (updated) reduced costs of non-basic non-fixed variables. | |
1976 * | |
1977 * NOTE: The routine is intended only for debugginig purposes. */ | |
1978 | |
1979 static double err_in_cbar(struct csa *csa) | |
1980 { int m = csa->m; | |
1981 int n = csa->n; | |
1982 char *stat = csa->stat; | |
1983 double *cbar = csa->cbar; | |
1984 int j; | |
1985 double e, emax, cost, *pi; | |
1986 pi = xcalloc(1+m, sizeof(double)); | |
1987 eval_pi(csa, pi); | |
1988 emax = 0.0; | |
1989 for (j = 1; j <= n; j++) | |
1990 { if (stat[j] == GLP_NS) continue; | |
1991 cost = eval_cost(csa, pi, j); | |
1992 e = fabs(cost - cbar[j]) / (1.0 + fabs(cost)); | |
1993 if (emax < e) emax = e; | |
1994 } | |
1995 xfree(pi); | |
1996 return emax; | |
1997 } | |
1998 | |
1999 /*********************************************************************** | |
2000 * err_in_gamma - compute maximal relative error in steepest edge cff. | |
2001 * | |
2002 * This routine returns maximal relative error: | |
2003 * | |
2004 * max |gamma'[j] - gamma[j]| / (1 + |gamma'[j]), | |
2005 * | |
2006 * where gamma'[j] and gamma[j] are, respectively, directly computed | |
2007 * and the current (updated) steepest edge coefficients for non-basic | |
2008 * non-fixed variable x[j]. | |
2009 * | |
2010 * NOTE: The routine is intended only for debugginig purposes. */ | |
2011 | |
2012 static double err_in_gamma(struct csa *csa) | |
2013 { int n = csa->n; | |
2014 char *stat = csa->stat; | |
2015 double *gamma = csa->gamma; | |
2016 int j; | |
2017 double e, emax, temp; | |
2018 emax = 0.0; | |
2019 for (j = 1; j <= n; j++) | |
2020 { if (stat[j] == GLP_NS) | |
2021 { xassert(gamma[j] == 1.0); | |
2022 continue; | |
2023 } | |
2024 temp = eval_gamma(csa, j); | |
2025 e = fabs(temp - gamma[j]) / (1.0 + fabs(temp)); | |
2026 if (emax < e) emax = e; | |
2027 } | |
2028 return emax; | |
2029 } | |
2030 | |
2031 /*********************************************************************** | |
2032 * change_basis - change basis header | |
2033 * | |
2034 * This routine changes the basis header to make it corresponding to | |
2035 * the adjacent basis. */ | |
2036 | |
2037 static void change_basis(struct csa *csa) | |
2038 { int m = csa->m; | |
2039 #ifdef GLP_DEBUG | |
2040 int n = csa->n; | |
2041 char *type = csa->type; | |
2042 #endif | |
2043 int *head = csa->head; | |
2044 char *stat = csa->stat; | |
2045 int q = csa->q; | |
2046 int p = csa->p; | |
2047 int p_stat = csa->p_stat; | |
2048 int k; | |
2049 #ifdef GLP_DEBUG | |
2050 xassert(1 <= q && q <= n); | |
2051 #endif | |
2052 if (p < 0) | |
2053 { /* xN[q] goes to its opposite bound */ | |
2054 #ifdef GLP_DEBUG | |
2055 k = head[m+q]; /* x[k] = xN[q] */ | |
2056 xassert(1 <= k && k <= m+n); | |
2057 xassert(type[k] == GLP_DB); | |
2058 #endif | |
2059 switch (stat[q]) | |
2060 { case GLP_NL: | |
2061 /* xN[q] increases */ | |
2062 stat[q] = GLP_NU; | |
2063 break; | |
2064 case GLP_NU: | |
2065 /* xN[q] decreases */ | |
2066 stat[q] = GLP_NL; | |
2067 break; | |
2068 default: | |
2069 xassert(stat != stat); | |
2070 } | |
2071 } | |
2072 else | |
2073 { /* xB[p] leaves the basis, xN[q] enters the basis */ | |
2074 #ifdef GLP_DEBUG | |
2075 xassert(1 <= p && p <= m); | |
2076 k = head[p]; /* x[k] = xB[p] */ | |
2077 switch (p_stat) | |
2078 { case GLP_NL: | |
2079 /* xB[p] goes to its lower bound */ | |
2080 xassert(type[k] == GLP_LO || type[k] == GLP_DB); | |
2081 break; | |
2082 case GLP_NU: | |
2083 /* xB[p] goes to its upper bound */ | |
2084 xassert(type[k] == GLP_UP || type[k] == GLP_DB); | |
2085 break; | |
2086 case GLP_NS: | |
2087 /* xB[p] goes to its fixed value */ | |
2088 xassert(type[k] == GLP_NS); | |
2089 break; | |
2090 default: | |
2091 xassert(p_stat != p_stat); | |
2092 } | |
2093 #endif | |
2094 /* xB[p] <-> xN[q] */ | |
2095 k = head[p], head[p] = head[m+q], head[m+q] = k; | |
2096 stat[q] = (char)p_stat; | |
2097 } | |
2098 return; | |
2099 } | |
2100 | |
2101 /*********************************************************************** | |
2102 * set_aux_obj - construct auxiliary objective function | |
2103 * | |
2104 * The auxiliary objective function is a separable piecewise linear | |
2105 * convex function, which is the sum of primal infeasibilities: | |
2106 * | |
2107 * z = t[1] + ... + t[m+n] -> minimize, | |
2108 * | |
2109 * where: | |
2110 * | |
2111 * / lb[k] - x[k], if x[k] < lb[k] | |
2112 * | | |
2113 * t[k] = < 0, if lb[k] <= x[k] <= ub[k] | |
2114 * | | |
2115 * \ x[k] - ub[k], if x[k] > ub[k] | |
2116 * | |
2117 * This routine computes objective coefficients for the current basis | |
2118 * and returns the number of non-zero terms t[k]. */ | |
2119 | |
2120 static int set_aux_obj(struct csa *csa, double tol_bnd) | |
2121 { int m = csa->m; | |
2122 int n = csa->n; | |
2123 char *type = csa->type; | |
2124 double *lb = csa->lb; | |
2125 double *ub = csa->ub; | |
2126 double *coef = csa->coef; | |
2127 int *head = csa->head; | |
2128 double *bbar = csa->bbar; | |
2129 int i, k, cnt = 0; | |
2130 double eps; | |
2131 /* use a bit more restrictive tolerance */ | |
2132 tol_bnd *= 0.90; | |
2133 /* clear all objective coefficients */ | |
2134 for (k = 1; k <= m+n; k++) | |
2135 coef[k] = 0.0; | |
2136 /* walk through the list of basic variables */ | |
2137 for (i = 1; i <= m; i++) | |
2138 { k = head[i]; /* x[k] = xB[i] */ | |
2139 if (type[k] == GLP_LO || type[k] == GLP_DB || | |
2140 type[k] == GLP_FX) | |
2141 { /* x[k] has lower bound */ | |
2142 eps = tol_bnd * (1.0 + kappa * fabs(lb[k])); | |
2143 if (bbar[i] < lb[k] - eps) | |
2144 { /* and violates it */ | |
2145 coef[k] = -1.0; | |
2146 cnt++; | |
2147 } | |
2148 } | |
2149 if (type[k] == GLP_UP || type[k] == GLP_DB || | |
2150 type[k] == GLP_FX) | |
2151 { /* x[k] has upper bound */ | |
2152 eps = tol_bnd * (1.0 + kappa * fabs(ub[k])); | |
2153 if (bbar[i] > ub[k] + eps) | |
2154 { /* and violates it */ | |
2155 coef[k] = +1.0; | |
2156 cnt++; | |
2157 } | |
2158 } | |
2159 } | |
2160 return cnt; | |
2161 } | |
2162 | |
2163 /*********************************************************************** | |
2164 * set_orig_obj - restore original objective function | |
2165 * | |
2166 * This routine assigns scaled original objective coefficients to the | |
2167 * working objective function. */ | |
2168 | |
2169 static void set_orig_obj(struct csa *csa) | |
2170 { int m = csa->m; | |
2171 int n = csa->n; | |
2172 double *coef = csa->coef; | |
2173 double *obj = csa->obj; | |
2174 double zeta = csa->zeta; | |
2175 int i, j; | |
2176 for (i = 1; i <= m; i++) | |
2177 coef[i] = 0.0; | |
2178 for (j = 1; j <= n; j++) | |
2179 coef[m+j] = zeta * obj[j]; | |
2180 return; | |
2181 } | |
2182 | |
2183 /*********************************************************************** | |
2184 * check_stab - check numerical stability of basic solution | |
2185 * | |
2186 * If the current basic solution is primal feasible (or pseudo feasible | |
2187 * on phase I) within a tolerance, this routine returns zero, otherwise | |
2188 * it returns non-zero. */ | |
2189 | |
2190 static int check_stab(struct csa *csa, double tol_bnd) | |
2191 { int m = csa->m; | |
2192 #ifdef GLP_DEBUG | |
2193 int n = csa->n; | |
2194 #endif | |
2195 char *type = csa->type; | |
2196 double *lb = csa->lb; | |
2197 double *ub = csa->ub; | |
2198 double *coef = csa->coef; | |
2199 int *head = csa->head; | |
2200 int phase = csa->phase; | |
2201 double *bbar = csa->bbar; | |
2202 int i, k; | |
2203 double eps; | |
2204 /* walk through the list of basic variables */ | |
2205 for (i = 1; i <= m; i++) | |
2206 { k = head[i]; /* x[k] = xB[i] */ | |
2207 #ifdef GLP_DEBUG | |
2208 xassert(1 <= k && k <= m+n); | |
2209 #endif | |
2210 if (phase == 1 && coef[k] < 0.0) | |
2211 { /* x[k] must not be greater than its lower bound */ | |
2212 #ifdef GLP_DEBUG | |
2213 xassert(type[k] == GLP_LO || type[k] == GLP_DB || | |
2214 type[k] == GLP_FX); | |
2215 #endif | |
2216 eps = tol_bnd * (1.0 + kappa * fabs(lb[k])); | |
2217 if (bbar[i] > lb[k] + eps) return 1; | |
2218 } | |
2219 else if (phase == 1 && coef[k] > 0.0) | |
2220 { /* x[k] must not be less than its upper bound */ | |
2221 #ifdef GLP_DEBUG | |
2222 xassert(type[k] == GLP_UP || type[k] == GLP_DB || | |
2223 type[k] == GLP_FX); | |
2224 #endif | |
2225 eps = tol_bnd * (1.0 + kappa * fabs(ub[k])); | |
2226 if (bbar[i] < ub[k] - eps) return 1; | |
2227 } | |
2228 else | |
2229 { /* either phase = 1 and coef[k] = 0, or phase = 2 */ | |
2230 if (type[k] == GLP_LO || type[k] == GLP_DB || | |
2231 type[k] == GLP_FX) | |
2232 { /* x[k] must not be less than its lower bound */ | |
2233 eps = tol_bnd * (1.0 + kappa * fabs(lb[k])); | |
2234 if (bbar[i] < lb[k] - eps) return 1; | |
2235 } | |
2236 if (type[k] == GLP_UP || type[k] == GLP_DB || | |
2237 type[k] == GLP_FX) | |
2238 { /* x[k] must not be greater then its upper bound */ | |
2239 eps = tol_bnd * (1.0 + kappa * fabs(ub[k])); | |
2240 if (bbar[i] > ub[k] + eps) return 1; | |
2241 } | |
2242 } | |
2243 } | |
2244 /* basic solution is primal feasible within a tolerance */ | |
2245 return 0; | |
2246 } | |
2247 | |
2248 /*********************************************************************** | |
2249 * check_feas - check primal feasibility of basic solution | |
2250 * | |
2251 * If the current basic solution is primal feasible within a tolerance, | |
2252 * this routine returns zero, otherwise it returns non-zero. */ | |
2253 | |
2254 static int check_feas(struct csa *csa, double tol_bnd) | |
2255 { int m = csa->m; | |
2256 #ifdef GLP_DEBUG | |
2257 int n = csa->n; | |
2258 char *type = csa->type; | |
2259 #endif | |
2260 double *lb = csa->lb; | |
2261 double *ub = csa->ub; | |
2262 double *coef = csa->coef; | |
2263 int *head = csa->head; | |
2264 double *bbar = csa->bbar; | |
2265 int i, k; | |
2266 double eps; | |
2267 xassert(csa->phase == 1); | |
2268 /* walk through the list of basic variables */ | |
2269 for (i = 1; i <= m; i++) | |
2270 { k = head[i]; /* x[k] = xB[i] */ | |
2271 #ifdef GLP_DEBUG | |
2272 xassert(1 <= k && k <= m+n); | |
2273 #endif | |
2274 if (coef[k] < 0.0) | |
2275 { /* check if x[k] still violates its lower bound */ | |
2276 #ifdef GLP_DEBUG | |
2277 xassert(type[k] == GLP_LO || type[k] == GLP_DB || | |
2278 type[k] == GLP_FX); | |
2279 #endif | |
2280 eps = tol_bnd * (1.0 + kappa * fabs(lb[k])); | |
2281 if (bbar[i] < lb[k] - eps) return 1; | |
2282 } | |
2283 else if (coef[k] > 0.0) | |
2284 { /* check if x[k] still violates its upper bound */ | |
2285 #ifdef GLP_DEBUG | |
2286 xassert(type[k] == GLP_UP || type[k] == GLP_DB || | |
2287 type[k] == GLP_FX); | |
2288 #endif | |
2289 eps = tol_bnd * (1.0 + kappa * fabs(ub[k])); | |
2290 if (bbar[i] > ub[k] + eps) return 1; | |
2291 } | |
2292 } | |
2293 /* basic solution is primal feasible within a tolerance */ | |
2294 return 0; | |
2295 } | |
2296 | |
2297 /*********************************************************************** | |
2298 * eval_obj - compute original objective function | |
2299 * | |
2300 * This routine computes the current value of the original objective | |
2301 * function. */ | |
2302 | |
2303 static double eval_obj(struct csa *csa) | |
2304 { int m = csa->m; | |
2305 int n = csa->n; | |
2306 double *obj = csa->obj; | |
2307 int *head = csa->head; | |
2308 double *bbar = csa->bbar; | |
2309 int i, j, k; | |
2310 double sum; | |
2311 sum = obj[0]; | |
2312 /* walk through the list of basic variables */ | |
2313 for (i = 1; i <= m; i++) | |
2314 { k = head[i]; /* x[k] = xB[i] */ | |
2315 #ifdef GLP_DEBUG | |
2316 xassert(1 <= k && k <= m+n); | |
2317 #endif | |
2318 if (k > m) | |
2319 sum += obj[k-m] * bbar[i]; | |
2320 } | |
2321 /* walk through the list of non-basic variables */ | |
2322 for (j = 1; j <= n; j++) | |
2323 { k = head[m+j]; /* x[k] = xN[j] */ | |
2324 #ifdef GLP_DEBUG | |
2325 xassert(1 <= k && k <= m+n); | |
2326 #endif | |
2327 if (k > m) | |
2328 sum += obj[k-m] * get_xN(csa, j); | |
2329 } | |
2330 return sum; | |
2331 } | |
2332 | |
2333 /*********************************************************************** | |
2334 * display - display the search progress | |
2335 * | |
2336 * This routine displays some information about the search progress | |
2337 * that includes: | |
2338 * | |
2339 * the search phase; | |
2340 * | |
2341 * the number of simplex iterations performed by the solver; | |
2342 * | |
2343 * the original objective value; | |
2344 * | |
2345 * the sum of (scaled) primal infeasibilities; | |
2346 * | |
2347 * the number of basic fixed variables. */ | |
2348 | |
2349 static void display(struct csa *csa, const glp_smcp *parm, int spec) | |
2350 { int m = csa->m; | |
2351 #ifdef GLP_DEBUG | |
2352 int n = csa->n; | |
2353 #endif | |
2354 char *type = csa->type; | |
2355 double *lb = csa->lb; | |
2356 double *ub = csa->ub; | |
2357 int phase = csa->phase; | |
2358 int *head = csa->head; | |
2359 double *bbar = csa->bbar; | |
2360 int i, k, cnt; | |
2361 double sum; | |
2362 if (parm->msg_lev < GLP_MSG_ON) goto skip; | |
2363 if (parm->out_dly > 0 && | |
2364 1000.0 * xdifftime(xtime(), csa->tm_beg) < parm->out_dly) | |
2365 goto skip; | |
2366 if (csa->it_cnt == csa->it_dpy) goto skip; | |
2367 if (!spec && csa->it_cnt % parm->out_frq != 0) goto skip; | |
2368 /* compute the sum of primal infeasibilities and determine the | |
2369 number of basic fixed variables */ | |
2370 sum = 0.0, cnt = 0; | |
2371 for (i = 1; i <= m; i++) | |
2372 { k = head[i]; /* x[k] = xB[i] */ | |
2373 #ifdef GLP_DEBUG | |
2374 xassert(1 <= k && k <= m+n); | |
2375 #endif | |
2376 if (type[k] == GLP_LO || type[k] == GLP_DB || | |
2377 type[k] == GLP_FX) | |
2378 { /* x[k] has lower bound */ | |
2379 if (bbar[i] < lb[k]) | |
2380 sum += (lb[k] - bbar[i]); | |
2381 } | |
2382 if (type[k] == GLP_UP || type[k] == GLP_DB || | |
2383 type[k] == GLP_FX) | |
2384 { /* x[k] has upper bound */ | |
2385 if (bbar[i] > ub[k]) | |
2386 sum += (bbar[i] - ub[k]); | |
2387 } | |
2388 if (type[k] == GLP_FX) cnt++; | |
2389 } | |
2390 xprintf("%c%6d: obj = %17.9e infeas = %10.3e (%d)\n", | |
2391 phase == 1 ? ' ' : '*', csa->it_cnt, eval_obj(csa), sum, cnt); | |
2392 csa->it_dpy = csa->it_cnt; | |
2393 skip: return; | |
2394 } | |
2395 | |
2396 /*********************************************************************** | |
2397 * store_sol - store basic solution back to the problem object | |
2398 * | |
2399 * This routine stores basic solution components back to the problem | |
2400 * object. */ | |
2401 | |
2402 static void store_sol(struct csa *csa, glp_prob *lp, int p_stat, | |
2403 int d_stat, int ray) | |
2404 { int m = csa->m; | |
2405 int n = csa->n; | |
2406 double zeta = csa->zeta; | |
2407 int *head = csa->head; | |
2408 char *stat = csa->stat; | |
2409 double *bbar = csa->bbar; | |
2410 double *cbar = csa->cbar; | |
2411 int i, j, k; | |
2412 #ifdef GLP_DEBUG | |
2413 xassert(lp->m == m); | |
2414 xassert(lp->n == n); | |
2415 #endif | |
2416 /* basis factorization */ | |
2417 #ifdef GLP_DEBUG | |
2418 xassert(!lp->valid && lp->bfd == NULL); | |
2419 xassert(csa->valid && csa->bfd != NULL); | |
2420 #endif | |
2421 lp->valid = 1, csa->valid = 0; | |
2422 lp->bfd = csa->bfd, csa->bfd = NULL; | |
2423 memcpy(&lp->head[1], &head[1], m * sizeof(int)); | |
2424 /* basic solution status */ | |
2425 lp->pbs_stat = p_stat; | |
2426 lp->dbs_stat = d_stat; | |
2427 /* objective function value */ | |
2428 lp->obj_val = eval_obj(csa); | |
2429 /* simplex iteration count */ | |
2430 lp->it_cnt = csa->it_cnt; | |
2431 /* unbounded ray */ | |
2432 lp->some = ray; | |
2433 /* basic variables */ | |
2434 for (i = 1; i <= m; i++) | |
2435 { k = head[i]; /* x[k] = xB[i] */ | |
2436 #ifdef GLP_DEBUG | |
2437 xassert(1 <= k && k <= m+n); | |
2438 #endif | |
2439 if (k <= m) | |
2440 { GLPROW *row = lp->row[k]; | |
2441 row->stat = GLP_BS; | |
2442 row->bind = i; | |
2443 row->prim = bbar[i] / row->rii; | |
2444 row->dual = 0.0; | |
2445 } | |
2446 else | |
2447 { GLPCOL *col = lp->col[k-m]; | |
2448 col->stat = GLP_BS; | |
2449 col->bind = i; | |
2450 col->prim = bbar[i] * col->sjj; | |
2451 col->dual = 0.0; | |
2452 } | |
2453 } | |
2454 /* non-basic variables */ | |
2455 for (j = 1; j <= n; j++) | |
2456 { k = head[m+j]; /* x[k] = xN[j] */ | |
2457 #ifdef GLP_DEBUG | |
2458 xassert(1 <= k && k <= m+n); | |
2459 #endif | |
2460 if (k <= m) | |
2461 { GLPROW *row = lp->row[k]; | |
2462 row->stat = stat[j]; | |
2463 row->bind = 0; | |
2464 #if 0 | |
2465 row->prim = get_xN(csa, j) / row->rii; | |
2466 #else | |
2467 switch (stat[j]) | |
2468 { case GLP_NL: | |
2469 row->prim = row->lb; break; | |
2470 case GLP_NU: | |
2471 row->prim = row->ub; break; | |
2472 case GLP_NF: | |
2473 row->prim = 0.0; break; | |
2474 case GLP_NS: | |
2475 row->prim = row->lb; break; | |
2476 default: | |
2477 xassert(stat != stat); | |
2478 } | |
2479 #endif | |
2480 row->dual = (cbar[j] * row->rii) / zeta; | |
2481 } | |
2482 else | |
2483 { GLPCOL *col = lp->col[k-m]; | |
2484 col->stat = stat[j]; | |
2485 col->bind = 0; | |
2486 #if 0 | |
2487 col->prim = get_xN(csa, j) * col->sjj; | |
2488 #else | |
2489 switch (stat[j]) | |
2490 { case GLP_NL: | |
2491 col->prim = col->lb; break; | |
2492 case GLP_NU: | |
2493 col->prim = col->ub; break; | |
2494 case GLP_NF: | |
2495 col->prim = 0.0; break; | |
2496 case GLP_NS: | |
2497 col->prim = col->lb; break; | |
2498 default: | |
2499 xassert(stat != stat); | |
2500 } | |
2501 #endif | |
2502 col->dual = (cbar[j] / col->sjj) / zeta; | |
2503 } | |
2504 } | |
2505 return; | |
2506 } | |
2507 | |
2508 /*********************************************************************** | |
2509 * free_csa - deallocate common storage area | |
2510 * | |
2511 * This routine frees all the memory allocated to arrays in the common | |
2512 * storage area (CSA). */ | |
2513 | |
2514 static void free_csa(struct csa *csa) | |
2515 { xfree(csa->type); | |
2516 xfree(csa->lb); | |
2517 xfree(csa->ub); | |
2518 xfree(csa->coef); | |
2519 xfree(csa->obj); | |
2520 xfree(csa->A_ptr); | |
2521 xfree(csa->A_ind); | |
2522 xfree(csa->A_val); | |
2523 xfree(csa->head); | |
2524 xfree(csa->stat); | |
2525 xfree(csa->N_ptr); | |
2526 xfree(csa->N_len); | |
2527 xfree(csa->N_ind); | |
2528 xfree(csa->N_val); | |
2529 xfree(csa->bbar); | |
2530 xfree(csa->cbar); | |
2531 xfree(csa->refsp); | |
2532 xfree(csa->gamma); | |
2533 xfree(csa->tcol_ind); | |
2534 xfree(csa->tcol_vec); | |
2535 xfree(csa->trow_ind); | |
2536 xfree(csa->trow_vec); | |
2537 xfree(csa->work1); | |
2538 xfree(csa->work2); | |
2539 xfree(csa->work3); | |
2540 xfree(csa->work4); | |
2541 xfree(csa); | |
2542 return; | |
2543 } | |
2544 | |
2545 /*********************************************************************** | |
2546 * spx_primal - core LP solver based on the primal simplex method | |
2547 * | |
2548 * SYNOPSIS | |
2549 * | |
2550 * #include "glpspx.h" | |
2551 * int spx_primal(glp_prob *lp, const glp_smcp *parm); | |
2552 * | |
2553 * DESCRIPTION | |
2554 * | |
2555 * The routine spx_primal is a core LP solver based on the two-phase | |
2556 * primal simplex method. | |
2557 * | |
2558 * RETURNS | |
2559 * | |
2560 * 0 LP instance has been successfully solved. | |
2561 * | |
2562 * GLP_EITLIM | |
2563 * Iteration limit has been exhausted. | |
2564 * | |
2565 * GLP_ETMLIM | |
2566 * Time limit has been exhausted. | |
2567 * | |
2568 * GLP_EFAIL | |
2569 * The solver failed to solve LP instance. */ | |
2570 | |
2571 int spx_primal(glp_prob *lp, const glp_smcp *parm) | |
2572 { struct csa *csa; | |
2573 int binv_st = 2; | |
2574 /* status of basis matrix factorization: | |
2575 0 - invalid; 1 - just computed; 2 - updated */ | |
2576 int bbar_st = 0; | |
2577 /* status of primal values of basic variables: | |
2578 0 - invalid; 1 - just computed; 2 - updated */ | |
2579 int cbar_st = 0; | |
2580 /* status of reduced costs of non-basic variables: | |
2581 0 - invalid; 1 - just computed; 2 - updated */ | |
2582 int rigorous = 0; | |
2583 /* rigorous mode flag; this flag is used to enable iterative | |
2584 refinement on computing pivot rows and columns of the simplex | |
2585 table */ | |
2586 int check = 0; | |
2587 int p_stat, d_stat, ret; | |
2588 /* allocate and initialize the common storage area */ | |
2589 csa = alloc_csa(lp); | |
2590 init_csa(csa, lp); | |
2591 if (parm->msg_lev >= GLP_MSG_DBG) | |
2592 xprintf("Objective scale factor = %g\n", csa->zeta); | |
2593 loop: /* main loop starts here */ | |
2594 /* compute factorization of the basis matrix */ | |
2595 if (binv_st == 0) | |
2596 { ret = invert_B(csa); | |
2597 if (ret != 0) | |
2598 { if (parm->msg_lev >= GLP_MSG_ERR) | |
2599 { xprintf("Error: unable to factorize the basis matrix (%d" | |
2600 ")\n", ret); | |
2601 xprintf("Sorry, basis recovery procedure not implemented" | |
2602 " yet\n"); | |
2603 } | |
2604 xassert(!lp->valid && lp->bfd == NULL); | |
2605 lp->bfd = csa->bfd, csa->bfd = NULL; | |
2606 lp->pbs_stat = lp->dbs_stat = GLP_UNDEF; | |
2607 lp->obj_val = 0.0; | |
2608 lp->it_cnt = csa->it_cnt; | |
2609 lp->some = 0; | |
2610 ret = GLP_EFAIL; | |
2611 goto done; | |
2612 } | |
2613 csa->valid = 1; | |
2614 binv_st = 1; /* just computed */ | |
2615 /* invalidate basic solution components */ | |
2616 bbar_st = cbar_st = 0; | |
2617 } | |
2618 /* compute primal values of basic variables */ | |
2619 if (bbar_st == 0) | |
2620 { eval_bbar(csa); | |
2621 bbar_st = 1; /* just computed */ | |
2622 /* determine the search phase, if not determined yet */ | |
2623 if (csa->phase == 0) | |
2624 { if (set_aux_obj(csa, parm->tol_bnd) > 0) | |
2625 { /* current basic solution is primal infeasible */ | |
2626 /* start to minimize the sum of infeasibilities */ | |
2627 csa->phase = 1; | |
2628 } | |
2629 else | |
2630 { /* current basic solution is primal feasible */ | |
2631 /* start to minimize the original objective function */ | |
2632 set_orig_obj(csa); | |
2633 csa->phase = 2; | |
2634 } | |
2635 xassert(check_stab(csa, parm->tol_bnd) == 0); | |
2636 /* working objective coefficients have been changed, so | |
2637 invalidate reduced costs */ | |
2638 cbar_st = 0; | |
2639 display(csa, parm, 1); | |
2640 } | |
2641 /* make sure that the current basic solution remains primal | |
2642 feasible (or pseudo feasible on phase I) */ | |
2643 if (check_stab(csa, parm->tol_bnd)) | |
2644 { /* there are excessive bound violations due to round-off | |
2645 errors */ | |
2646 if (parm->msg_lev >= GLP_MSG_ERR) | |
2647 xprintf("Warning: numerical instability (primal simplex," | |
2648 " phase %s)\n", csa->phase == 1 ? "I" : "II"); | |
2649 /* restart the search */ | |
2650 csa->phase = 0; | |
2651 binv_st = 0; | |
2652 rigorous = 5; | |
2653 goto loop; | |
2654 } | |
2655 } | |
2656 xassert(csa->phase == 1 || csa->phase == 2); | |
2657 /* on phase I we do not need to wait until the current basic | |
2658 solution becomes dual feasible; it is sufficient to make sure | |
2659 that no basic variable violates its bounds */ | |
2660 if (csa->phase == 1 && !check_feas(csa, parm->tol_bnd)) | |
2661 { /* the current basis is primal feasible; switch to phase II */ | |
2662 csa->phase = 2; | |
2663 set_orig_obj(csa); | |
2664 cbar_st = 0; | |
2665 display(csa, parm, 1); | |
2666 } | |
2667 /* compute reduced costs of non-basic variables */ | |
2668 if (cbar_st == 0) | |
2669 { eval_cbar(csa); | |
2670 cbar_st = 1; /* just computed */ | |
2671 } | |
2672 /* redefine the reference space, if required */ | |
2673 switch (parm->pricing) | |
2674 { case GLP_PT_STD: | |
2675 break; | |
2676 case GLP_PT_PSE: | |
2677 if (csa->refct == 0) reset_refsp(csa); | |
2678 break; | |
2679 default: | |
2680 xassert(parm != parm); | |
2681 } | |
2682 /* at this point the basis factorization and all basic solution | |
2683 components are valid */ | |
2684 xassert(binv_st && bbar_st && cbar_st); | |
2685 /* check accuracy of current basic solution components (only for | |
2686 debugging) */ | |
2687 if (check) | |
2688 { double e_bbar = err_in_bbar(csa); | |
2689 double e_cbar = err_in_cbar(csa); | |
2690 double e_gamma = | |
2691 (parm->pricing == GLP_PT_PSE ? err_in_gamma(csa) : 0.0); | |
2692 xprintf("e_bbar = %10.3e; e_cbar = %10.3e; e_gamma = %10.3e\n", | |
2693 e_bbar, e_cbar, e_gamma); | |
2694 xassert(e_bbar <= 1e-5 && e_cbar <= 1e-5 && e_gamma <= 1e-3); | |
2695 } | |
2696 /* check if the iteration limit has been exhausted */ | |
2697 if (parm->it_lim < INT_MAX && | |
2698 csa->it_cnt - csa->it_beg >= parm->it_lim) | |
2699 { if (bbar_st != 1 || csa->phase == 2 && cbar_st != 1) | |
2700 { if (bbar_st != 1) bbar_st = 0; | |
2701 if (csa->phase == 2 && cbar_st != 1) cbar_st = 0; | |
2702 goto loop; | |
2703 } | |
2704 display(csa, parm, 1); | |
2705 if (parm->msg_lev >= GLP_MSG_ALL) | |
2706 xprintf("ITERATION LIMIT EXCEEDED; SEARCH TERMINATED\n"); | |
2707 switch (csa->phase) | |
2708 { case 1: | |
2709 p_stat = GLP_INFEAS; | |
2710 set_orig_obj(csa); | |
2711 eval_cbar(csa); | |
2712 break; | |
2713 case 2: | |
2714 p_stat = GLP_FEAS; | |
2715 break; | |
2716 default: | |
2717 xassert(csa != csa); | |
2718 } | |
2719 chuzc(csa, parm->tol_dj); | |
2720 d_stat = (csa->q == 0 ? GLP_FEAS : GLP_INFEAS); | |
2721 store_sol(csa, lp, p_stat, d_stat, 0); | |
2722 ret = GLP_EITLIM; | |
2723 goto done; | |
2724 } | |
2725 /* check if the time limit has been exhausted */ | |
2726 if (parm->tm_lim < INT_MAX && | |
2727 1000.0 * xdifftime(xtime(), csa->tm_beg) >= parm->tm_lim) | |
2728 { if (bbar_st != 1 || csa->phase == 2 && cbar_st != 1) | |
2729 { if (bbar_st != 1) bbar_st = 0; | |
2730 if (csa->phase == 2 && cbar_st != 1) cbar_st = 0; | |
2731 goto loop; | |
2732 } | |
2733 display(csa, parm, 1); | |
2734 if (parm->msg_lev >= GLP_MSG_ALL) | |
2735 xprintf("TIME LIMIT EXCEEDED; SEARCH TERMINATED\n"); | |
2736 switch (csa->phase) | |
2737 { case 1: | |
2738 p_stat = GLP_INFEAS; | |
2739 set_orig_obj(csa); | |
2740 eval_cbar(csa); | |
2741 break; | |
2742 case 2: | |
2743 p_stat = GLP_FEAS; | |
2744 break; | |
2745 default: | |
2746 xassert(csa != csa); | |
2747 } | |
2748 chuzc(csa, parm->tol_dj); | |
2749 d_stat = (csa->q == 0 ? GLP_FEAS : GLP_INFEAS); | |
2750 store_sol(csa, lp, p_stat, d_stat, 0); | |
2751 ret = GLP_ETMLIM; | |
2752 goto done; | |
2753 } | |
2754 /* display the search progress */ | |
2755 display(csa, parm, 0); | |
2756 /* choose non-basic variable xN[q] */ | |
2757 chuzc(csa, parm->tol_dj); | |
2758 if (csa->q == 0) | |
2759 { if (bbar_st != 1 || cbar_st != 1) | |
2760 { if (bbar_st != 1) bbar_st = 0; | |
2761 if (cbar_st != 1) cbar_st = 0; | |
2762 goto loop; | |
2763 } | |
2764 display(csa, parm, 1); | |
2765 switch (csa->phase) | |
2766 { case 1: | |
2767 if (parm->msg_lev >= GLP_MSG_ALL) | |
2768 xprintf("PROBLEM HAS NO FEASIBLE SOLUTION\n"); | |
2769 p_stat = GLP_NOFEAS; | |
2770 set_orig_obj(csa); | |
2771 eval_cbar(csa); | |
2772 chuzc(csa, parm->tol_dj); | |
2773 d_stat = (csa->q == 0 ? GLP_FEAS : GLP_INFEAS); | |
2774 break; | |
2775 case 2: | |
2776 if (parm->msg_lev >= GLP_MSG_ALL) | |
2777 xprintf("OPTIMAL SOLUTION FOUND\n"); | |
2778 p_stat = d_stat = GLP_FEAS; | |
2779 break; | |
2780 default: | |
2781 xassert(csa != csa); | |
2782 } | |
2783 store_sol(csa, lp, p_stat, d_stat, 0); | |
2784 ret = 0; | |
2785 goto done; | |
2786 } | |
2787 /* compute pivot column of the simplex table */ | |
2788 eval_tcol(csa); | |
2789 if (rigorous) refine_tcol(csa); | |
2790 sort_tcol(csa, parm->tol_piv); | |
2791 /* check accuracy of the reduced cost of xN[q] */ | |
2792 { double d1 = csa->cbar[csa->q]; /* less accurate */ | |
2793 double d2 = reeval_cost(csa); /* more accurate */ | |
2794 xassert(d1 != 0.0); | |
2795 if (fabs(d1 - d2) > 1e-5 * (1.0 + fabs(d2)) || | |
2796 !(d1 < 0.0 && d2 < 0.0 || d1 > 0.0 && d2 > 0.0)) | |
2797 { if (parm->msg_lev >= GLP_MSG_DBG) | |
2798 xprintf("d1 = %.12g; d2 = %.12g\n", d1, d2); | |
2799 if (cbar_st != 1 || !rigorous) | |
2800 { if (cbar_st != 1) cbar_st = 0; | |
2801 rigorous = 5; | |
2802 goto loop; | |
2803 } | |
2804 } | |
2805 /* replace cbar[q] by more accurate value keeping its sign */ | |
2806 if (d1 > 0.0) | |
2807 csa->cbar[csa->q] = (d2 > 0.0 ? d2 : +DBL_EPSILON); | |
2808 else | |
2809 csa->cbar[csa->q] = (d2 < 0.0 ? d2 : -DBL_EPSILON); | |
2810 } | |
2811 /* choose basic variable xB[p] */ | |
2812 switch (parm->r_test) | |
2813 { case GLP_RT_STD: | |
2814 chuzr(csa, 0.0); | |
2815 break; | |
2816 case GLP_RT_HAR: | |
2817 chuzr(csa, 0.30 * parm->tol_bnd); | |
2818 break; | |
2819 default: | |
2820 xassert(parm != parm); | |
2821 } | |
2822 if (csa->p == 0) | |
2823 { if (bbar_st != 1 || cbar_st != 1 || !rigorous) | |
2824 { if (bbar_st != 1) bbar_st = 0; | |
2825 if (cbar_st != 1) cbar_st = 0; | |
2826 rigorous = 1; | |
2827 goto loop; | |
2828 } | |
2829 display(csa, parm, 1); | |
2830 switch (csa->phase) | |
2831 { case 1: | |
2832 if (parm->msg_lev >= GLP_MSG_ERR) | |
2833 xprintf("Error: unable to choose basic variable on ph" | |
2834 "ase I\n"); | |
2835 xassert(!lp->valid && lp->bfd == NULL); | |
2836 lp->bfd = csa->bfd, csa->bfd = NULL; | |
2837 lp->pbs_stat = lp->dbs_stat = GLP_UNDEF; | |
2838 lp->obj_val = 0.0; | |
2839 lp->it_cnt = csa->it_cnt; | |
2840 lp->some = 0; | |
2841 ret = GLP_EFAIL; | |
2842 break; | |
2843 case 2: | |
2844 if (parm->msg_lev >= GLP_MSG_ALL) | |
2845 xprintf("PROBLEM HAS UNBOUNDED SOLUTION\n"); | |
2846 store_sol(csa, lp, GLP_FEAS, GLP_NOFEAS, | |
2847 csa->head[csa->m+csa->q]); | |
2848 ret = 0; | |
2849 break; | |
2850 default: | |
2851 xassert(csa != csa); | |
2852 } | |
2853 goto done; | |
2854 } | |
2855 /* check if the pivot element is acceptable */ | |
2856 if (csa->p > 0) | |
2857 { double piv = csa->tcol_vec[csa->p]; | |
2858 double eps = 1e-5 * (1.0 + 0.01 * csa->tcol_max); | |
2859 if (fabs(piv) < eps) | |
2860 { if (parm->msg_lev >= GLP_MSG_DBG) | |
2861 xprintf("piv = %.12g; eps = %g\n", piv, eps); | |
2862 if (!rigorous) | |
2863 { rigorous = 5; | |
2864 goto loop; | |
2865 } | |
2866 } | |
2867 } | |
2868 /* now xN[q] and xB[p] have been chosen anyhow */ | |
2869 /* compute pivot row of the simplex table */ | |
2870 if (csa->p > 0) | |
2871 { double *rho = csa->work4; | |
2872 eval_rho(csa, rho); | |
2873 if (rigorous) refine_rho(csa, rho); | |
2874 eval_trow(csa, rho); | |
2875 } | |
2876 /* accuracy check based on the pivot element */ | |
2877 if (csa->p > 0) | |
2878 { double piv1 = csa->tcol_vec[csa->p]; /* more accurate */ | |
2879 double piv2 = csa->trow_vec[csa->q]; /* less accurate */ | |
2880 xassert(piv1 != 0.0); | |
2881 if (fabs(piv1 - piv2) > 1e-8 * (1.0 + fabs(piv1)) || | |
2882 !(piv1 > 0.0 && piv2 > 0.0 || piv1 < 0.0 && piv2 < 0.0)) | |
2883 { if (parm->msg_lev >= GLP_MSG_DBG) | |
2884 xprintf("piv1 = %.12g; piv2 = %.12g\n", piv1, piv2); | |
2885 if (binv_st != 1 || !rigorous) | |
2886 { if (binv_st != 1) binv_st = 0; | |
2887 rigorous = 5; | |
2888 goto loop; | |
2889 } | |
2890 /* use more accurate version in the pivot row */ | |
2891 if (csa->trow_vec[csa->q] == 0.0) | |
2892 { csa->trow_nnz++; | |
2893 xassert(csa->trow_nnz <= csa->n); | |
2894 csa->trow_ind[csa->trow_nnz] = csa->q; | |
2895 } | |
2896 csa->trow_vec[csa->q] = piv1; | |
2897 } | |
2898 } | |
2899 /* update primal values of basic variables */ | |
2900 update_bbar(csa); | |
2901 bbar_st = 2; /* updated */ | |
2902 /* update reduced costs of non-basic variables */ | |
2903 if (csa->p > 0) | |
2904 { update_cbar(csa); | |
2905 cbar_st = 2; /* updated */ | |
2906 /* on phase I objective coefficient of xB[p] in the adjacent | |
2907 basis becomes zero */ | |
2908 if (csa->phase == 1) | |
2909 { int k = csa->head[csa->p]; /* x[k] = xB[p] -> xN[q] */ | |
2910 csa->cbar[csa->q] -= csa->coef[k]; | |
2911 csa->coef[k] = 0.0; | |
2912 } | |
2913 } | |
2914 /* update steepest edge coefficients */ | |
2915 if (csa->p > 0) | |
2916 { switch (parm->pricing) | |
2917 { case GLP_PT_STD: | |
2918 break; | |
2919 case GLP_PT_PSE: | |
2920 if (csa->refct > 0) update_gamma(csa); | |
2921 break; | |
2922 default: | |
2923 xassert(parm != parm); | |
2924 } | |
2925 } | |
2926 /* update factorization of the basis matrix */ | |
2927 if (csa->p > 0) | |
2928 { ret = update_B(csa, csa->p, csa->head[csa->m+csa->q]); | |
2929 if (ret == 0) | |
2930 binv_st = 2; /* updated */ | |
2931 else | |
2932 { csa->valid = 0; | |
2933 binv_st = 0; /* invalid */ | |
2934 } | |
2935 } | |
2936 /* update matrix N */ | |
2937 if (csa->p > 0) | |
2938 { del_N_col(csa, csa->q, csa->head[csa->m+csa->q]); | |
2939 if (csa->type[csa->head[csa->p]] != GLP_FX) | |
2940 add_N_col(csa, csa->q, csa->head[csa->p]); | |
2941 } | |
2942 /* change the basis header */ | |
2943 change_basis(csa); | |
2944 /* iteration complete */ | |
2945 csa->it_cnt++; | |
2946 if (rigorous > 0) rigorous--; | |
2947 goto loop; | |
2948 done: /* deallocate the common storage area */ | |
2949 free_csa(csa); | |
2950 /* return to the calling program */ | |
2951 return ret; | |
2952 } | |
2953 | |
2954 /* eof */ |