lemon-project-template-glpk
comparison deps/glpk/src/colamd/colamd.c @ 9:33de93886c88
Import GLPK 4.47
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 20:59:10 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:2bdb0990ba18 |
---|---|
1 /* ========================================================================== */ | |
2 /* === colamd/symamd - a sparse matrix column ordering algorithm ============ */ | |
3 /* ========================================================================== */ | |
4 | |
5 /* COLAMD / SYMAMD | |
6 | |
7 colamd: an approximate minimum degree column ordering algorithm, | |
8 for LU factorization of symmetric or unsymmetric matrices, | |
9 QR factorization, least squares, interior point methods for | |
10 linear programming problems, and other related problems. | |
11 | |
12 symamd: an approximate minimum degree ordering algorithm for Cholesky | |
13 factorization of symmetric matrices. | |
14 | |
15 Purpose: | |
16 | |
17 Colamd computes a permutation Q such that the Cholesky factorization of | |
18 (AQ)'(AQ) has less fill-in and requires fewer floating point operations | |
19 than A'A. This also provides a good ordering for sparse partial | |
20 pivoting methods, P(AQ) = LU, where Q is computed prior to numerical | |
21 factorization, and P is computed during numerical factorization via | |
22 conventional partial pivoting with row interchanges. Colamd is the | |
23 column ordering method used in SuperLU, part of the ScaLAPACK library. | |
24 It is also available as built-in function in MATLAB Version 6, | |
25 available from MathWorks, Inc. (http://www.mathworks.com). This | |
26 routine can be used in place of colmmd in MATLAB. | |
27 | |
28 Symamd computes a permutation P of a symmetric matrix A such that the | |
29 Cholesky factorization of PAP' has less fill-in and requires fewer | |
30 floating point operations than A. Symamd constructs a matrix M such | |
31 that M'M has the same nonzero pattern of A, and then orders the columns | |
32 of M using colmmd. The column ordering of M is then returned as the | |
33 row and column ordering P of A. | |
34 | |
35 Authors: | |
36 | |
37 The authors of the code itself are Stefan I. Larimore and Timothy A. | |
38 Davis (davis at cise.ufl.edu), University of Florida. The algorithm was | |
39 developed in collaboration with John Gilbert, Xerox PARC, and Esmond | |
40 Ng, Oak Ridge National Laboratory. | |
41 | |
42 Acknowledgements: | |
43 | |
44 This work was supported by the National Science Foundation, under | |
45 grants DMS-9504974 and DMS-9803599. | |
46 | |
47 Copyright and License: | |
48 | |
49 Copyright (c) 1998-2007, Timothy A. Davis, All Rights Reserved. | |
50 COLAMD is also available under alternate licenses, contact T. Davis | |
51 for details. | |
52 | |
53 This library is free software; you can redistribute it and/or | |
54 modify it under the terms of the GNU Lesser General Public | |
55 License as published by the Free Software Foundation; either | |
56 version 2.1 of the License, or (at your option) any later version. | |
57 | |
58 This library is distributed in the hope that it will be useful, | |
59 but WITHOUT ANY WARRANTY; without even the implied warranty of | |
60 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
61 Lesser General Public License for more details. | |
62 | |
63 You should have received a copy of the GNU Lesser General Public | |
64 License along with this library; if not, write to the Free Software | |
65 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 | |
66 USA | |
67 | |
68 Permission is hereby granted to use or copy this program under the | |
69 terms of the GNU LGPL, provided that the Copyright, this License, | |
70 and the Availability of the original version is retained on all copies. | |
71 User documentation of any code that uses this code or any modified | |
72 version of this code must cite the Copyright, this License, the | |
73 Availability note, and "Used by permission." Permission to modify | |
74 the code and to distribute modified code is granted, provided the | |
75 Copyright, this License, and the Availability note are retained, | |
76 and a notice that the code was modified is included. | |
77 | |
78 Availability: | |
79 | |
80 The colamd/symamd library is available at | |
81 | |
82 http://www.cise.ufl.edu/research/sparse/colamd/ | |
83 | |
84 This is the http://www.cise.ufl.edu/research/sparse/colamd/colamd.c | |
85 file. It requires the colamd.h file. It is required by the colamdmex.c | |
86 and symamdmex.c files, for the MATLAB interface to colamd and symamd. | |
87 Appears as ACM Algorithm 836. | |
88 | |
89 See the ChangeLog file for changes since Version 1.0. | |
90 | |
91 References: | |
92 | |
93 T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, An approximate column | |
94 minimum degree ordering algorithm, ACM Transactions on Mathematical | |
95 Software, vol. 30, no. 3., pp. 353-376, 2004. | |
96 | |
97 T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, Algorithm 836: COLAMD, | |
98 an approximate column minimum degree ordering algorithm, ACM | |
99 Transactions on Mathematical Software, vol. 30, no. 3., pp. 377-380, | |
100 2004. | |
101 | |
102 */ | |
103 | |
104 /* ========================================================================== */ | |
105 /* === Description of user-callable routines ================================ */ | |
106 /* ========================================================================== */ | |
107 | |
108 /* COLAMD includes both int and UF_long versions of all its routines. The | |
109 * description below is for the int version. For UF_long, all int arguments | |
110 * become UF_long. UF_long is normally defined as long, except for WIN64. | |
111 | |
112 ---------------------------------------------------------------------------- | |
113 colamd_recommended: | |
114 ---------------------------------------------------------------------------- | |
115 | |
116 C syntax: | |
117 | |
118 #include "colamd.h" | |
119 size_t colamd_recommended (int nnz, int n_row, int n_col) ; | |
120 size_t colamd_l_recommended (UF_long nnz, UF_long n_row, | |
121 UF_long n_col) ; | |
122 | |
123 Purpose: | |
124 | |
125 Returns recommended value of Alen for use by colamd. Returns 0 | |
126 if any input argument is negative. The use of this routine | |
127 is optional. Not needed for symamd, which dynamically allocates | |
128 its own memory. | |
129 | |
130 Note that in v2.4 and earlier, these routines returned int or long. | |
131 They now return a value of type size_t. | |
132 | |
133 Arguments (all input arguments): | |
134 | |
135 int nnz ; Number of nonzeros in the matrix A. This must | |
136 be the same value as p [n_col] in the call to | |
137 colamd - otherwise you will get a wrong value | |
138 of the recommended memory to use. | |
139 | |
140 int n_row ; Number of rows in the matrix A. | |
141 | |
142 int n_col ; Number of columns in the matrix A. | |
143 | |
144 ---------------------------------------------------------------------------- | |
145 colamd_set_defaults: | |
146 ---------------------------------------------------------------------------- | |
147 | |
148 C syntax: | |
149 | |
150 #include "colamd.h" | |
151 colamd_set_defaults (double knobs [COLAMD_KNOBS]) ; | |
152 colamd_l_set_defaults (double knobs [COLAMD_KNOBS]) ; | |
153 | |
154 Purpose: | |
155 | |
156 Sets the default parameters. The use of this routine is optional. | |
157 | |
158 Arguments: | |
159 | |
160 double knobs [COLAMD_KNOBS] ; Output only. | |
161 | |
162 NOTE: the meaning of the dense row/col knobs has changed in v2.4 | |
163 | |
164 knobs [0] and knobs [1] control dense row and col detection: | |
165 | |
166 Colamd: rows with more than | |
167 max (16, knobs [COLAMD_DENSE_ROW] * sqrt (n_col)) | |
168 entries are removed prior to ordering. Columns with more than | |
169 max (16, knobs [COLAMD_DENSE_COL] * sqrt (MIN (n_row,n_col))) | |
170 entries are removed prior to | |
171 ordering, and placed last in the output column ordering. | |
172 | |
173 Symamd: uses only knobs [COLAMD_DENSE_ROW], which is knobs [0]. | |
174 Rows and columns with more than | |
175 max (16, knobs [COLAMD_DENSE_ROW] * sqrt (n)) | |
176 entries are removed prior to ordering, and placed last in the | |
177 output ordering. | |
178 | |
179 COLAMD_DENSE_ROW and COLAMD_DENSE_COL are defined as 0 and 1, | |
180 respectively, in colamd.h. Default values of these two knobs | |
181 are both 10. Currently, only knobs [0] and knobs [1] are | |
182 used, but future versions may use more knobs. If so, they will | |
183 be properly set to their defaults by the future version of | |
184 colamd_set_defaults, so that the code that calls colamd will | |
185 not need to change, assuming that you either use | |
186 colamd_set_defaults, or pass a (double *) NULL pointer as the | |
187 knobs array to colamd or symamd. | |
188 | |
189 knobs [2]: aggressive absorption | |
190 | |
191 knobs [COLAMD_AGGRESSIVE] controls whether or not to do | |
192 aggressive absorption during the ordering. Default is TRUE. | |
193 | |
194 | |
195 ---------------------------------------------------------------------------- | |
196 colamd: | |
197 ---------------------------------------------------------------------------- | |
198 | |
199 C syntax: | |
200 | |
201 #include "colamd.h" | |
202 int colamd (int n_row, int n_col, int Alen, int *A, int *p, | |
203 double knobs [COLAMD_KNOBS], int stats [COLAMD_STATS]) ; | |
204 UF_long colamd_l (UF_long n_row, UF_long n_col, UF_long Alen, | |
205 UF_long *A, UF_long *p, double knobs [COLAMD_KNOBS], | |
206 UF_long stats [COLAMD_STATS]) ; | |
207 | |
208 Purpose: | |
209 | |
210 Computes a column ordering (Q) of A such that P(AQ)=LU or | |
211 (AQ)'AQ=LL' have less fill-in and require fewer floating point | |
212 operations than factorizing the unpermuted matrix A or A'A, | |
213 respectively. | |
214 | |
215 Returns: | |
216 | |
217 TRUE (1) if successful, FALSE (0) otherwise. | |
218 | |
219 Arguments: | |
220 | |
221 int n_row ; Input argument. | |
222 | |
223 Number of rows in the matrix A. | |
224 Restriction: n_row >= 0. | |
225 Colamd returns FALSE if n_row is negative. | |
226 | |
227 int n_col ; Input argument. | |
228 | |
229 Number of columns in the matrix A. | |
230 Restriction: n_col >= 0. | |
231 Colamd returns FALSE if n_col is negative. | |
232 | |
233 int Alen ; Input argument. | |
234 | |
235 Restriction (see note): | |
236 Alen >= 2*nnz + 6*(n_col+1) + 4*(n_row+1) + n_col | |
237 Colamd returns FALSE if these conditions are not met. | |
238 | |
239 Note: this restriction makes an modest assumption regarding | |
240 the size of the two typedef's structures in colamd.h. | |
241 We do, however, guarantee that | |
242 | |
243 Alen >= colamd_recommended (nnz, n_row, n_col) | |
244 | |
245 will be sufficient. Note: the macro version does not check | |
246 for integer overflow, and thus is not recommended. Use | |
247 the colamd_recommended routine instead. | |
248 | |
249 int A [Alen] ; Input argument, undefined on output. | |
250 | |
251 A is an integer array of size Alen. Alen must be at least as | |
252 large as the bare minimum value given above, but this is very | |
253 low, and can result in excessive run time. For best | |
254 performance, we recommend that Alen be greater than or equal to | |
255 colamd_recommended (nnz, n_row, n_col), which adds | |
256 nnz/5 to the bare minimum value given above. | |
257 | |
258 On input, the row indices of the entries in column c of the | |
259 matrix are held in A [(p [c]) ... (p [c+1]-1)]. The row indices | |
260 in a given column c need not be in ascending order, and | |
261 duplicate row indices may be be present. However, colamd will | |
262 work a little faster if both of these conditions are met | |
263 (Colamd puts the matrix into this format, if it finds that the | |
264 the conditions are not met). | |
265 | |
266 The matrix is 0-based. That is, rows are in the range 0 to | |
267 n_row-1, and columns are in the range 0 to n_col-1. Colamd | |
268 returns FALSE if any row index is out of range. | |
269 | |
270 The contents of A are modified during ordering, and are | |
271 undefined on output. | |
272 | |
273 int p [n_col+1] ; Both input and output argument. | |
274 | |
275 p is an integer array of size n_col+1. On input, it holds the | |
276 "pointers" for the column form of the matrix A. Column c of | |
277 the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first | |
278 entry, p [0], must be zero, and p [c] <= p [c+1] must hold | |
279 for all c in the range 0 to n_col-1. The value p [n_col] is | |
280 thus the total number of entries in the pattern of the matrix A. | |
281 Colamd returns FALSE if these conditions are not met. | |
282 | |
283 On output, if colamd returns TRUE, the array p holds the column | |
284 permutation (Q, for P(AQ)=LU or (AQ)'(AQ)=LL'), where p [0] is | |
285 the first column index in the new ordering, and p [n_col-1] is | |
286 the last. That is, p [k] = j means that column j of A is the | |
287 kth pivot column, in AQ, where k is in the range 0 to n_col-1 | |
288 (p [0] = j means that column j of A is the first column in AQ). | |
289 | |
290 If colamd returns FALSE, then no permutation is returned, and | |
291 p is undefined on output. | |
292 | |
293 double knobs [COLAMD_KNOBS] ; Input argument. | |
294 | |
295 See colamd_set_defaults for a description. | |
296 | |
297 int stats [COLAMD_STATS] ; Output argument. | |
298 | |
299 Statistics on the ordering, and error status. | |
300 See colamd.h for related definitions. | |
301 Colamd returns FALSE if stats is not present. | |
302 | |
303 stats [0]: number of dense or empty rows ignored. | |
304 | |
305 stats [1]: number of dense or empty columns ignored (and | |
306 ordered last in the output permutation p) | |
307 Note that a row can become "empty" if it | |
308 contains only "dense" and/or "empty" columns, | |
309 and similarly a column can become "empty" if it | |
310 only contains "dense" and/or "empty" rows. | |
311 | |
312 stats [2]: number of garbage collections performed. | |
313 This can be excessively high if Alen is close | |
314 to the minimum required value. | |
315 | |
316 stats [3]: status code. < 0 is an error code. | |
317 > 1 is a warning or notice. | |
318 | |
319 0 OK. Each column of the input matrix contained | |
320 row indices in increasing order, with no | |
321 duplicates. | |
322 | |
323 1 OK, but columns of input matrix were jumbled | |
324 (unsorted columns or duplicate entries). Colamd | |
325 had to do some extra work to sort the matrix | |
326 first and remove duplicate entries, but it | |
327 still was able to return a valid permutation | |
328 (return value of colamd was TRUE). | |
329 | |
330 stats [4]: highest numbered column that | |
331 is unsorted or has duplicate | |
332 entries. | |
333 stats [5]: last seen duplicate or | |
334 unsorted row index. | |
335 stats [6]: number of duplicate or | |
336 unsorted row indices. | |
337 | |
338 -1 A is a null pointer | |
339 | |
340 -2 p is a null pointer | |
341 | |
342 -3 n_row is negative | |
343 | |
344 stats [4]: n_row | |
345 | |
346 -4 n_col is negative | |
347 | |
348 stats [4]: n_col | |
349 | |
350 -5 number of nonzeros in matrix is negative | |
351 | |
352 stats [4]: number of nonzeros, p [n_col] | |
353 | |
354 -6 p [0] is nonzero | |
355 | |
356 stats [4]: p [0] | |
357 | |
358 -7 A is too small | |
359 | |
360 stats [4]: required size | |
361 stats [5]: actual size (Alen) | |
362 | |
363 -8 a column has a negative number of entries | |
364 | |
365 stats [4]: column with < 0 entries | |
366 stats [5]: number of entries in col | |
367 | |
368 -9 a row index is out of bounds | |
369 | |
370 stats [4]: column with bad row index | |
371 stats [5]: bad row index | |
372 stats [6]: n_row, # of rows of matrx | |
373 | |
374 -10 (unused; see symamd.c) | |
375 | |
376 -999 (unused; see symamd.c) | |
377 | |
378 Future versions may return more statistics in the stats array. | |
379 | |
380 Example: | |
381 | |
382 See http://www.cise.ufl.edu/research/sparse/colamd/example.c | |
383 for a complete example. | |
384 | |
385 To order the columns of a 5-by-4 matrix with 11 nonzero entries in | |
386 the following nonzero pattern | |
387 | |
388 x 0 x 0 | |
389 x 0 x x | |
390 0 x x 0 | |
391 0 0 x x | |
392 x x 0 0 | |
393 | |
394 with default knobs and no output statistics, do the following: | |
395 | |
396 #include "colamd.h" | |
397 #define ALEN 100 | |
398 int A [ALEN] = {0, 1, 4, 2, 4, 0, 1, 2, 3, 1, 3} ; | |
399 int p [ ] = {0, 3, 5, 9, 11} ; | |
400 int stats [COLAMD_STATS] ; | |
401 colamd (5, 4, ALEN, A, p, (double *) NULL, stats) ; | |
402 | |
403 The permutation is returned in the array p, and A is destroyed. | |
404 | |
405 ---------------------------------------------------------------------------- | |
406 symamd: | |
407 ---------------------------------------------------------------------------- | |
408 | |
409 C syntax: | |
410 | |
411 #include "colamd.h" | |
412 int symamd (int n, int *A, int *p, int *perm, | |
413 double knobs [COLAMD_KNOBS], int stats [COLAMD_STATS], | |
414 void (*allocate) (size_t, size_t), void (*release) (void *)) ; | |
415 UF_long symamd_l (UF_long n, UF_long *A, UF_long *p, UF_long *perm, | |
416 double knobs [COLAMD_KNOBS], UF_long stats [COLAMD_STATS], | |
417 void (*allocate) (size_t, size_t), void (*release) (void *)) ; | |
418 | |
419 Purpose: | |
420 | |
421 The symamd routine computes an ordering P of a symmetric sparse | |
422 matrix A such that the Cholesky factorization PAP' = LL' remains | |
423 sparse. It is based on a column ordering of a matrix M constructed | |
424 so that the nonzero pattern of M'M is the same as A. The matrix A | |
425 is assumed to be symmetric; only the strictly lower triangular part | |
426 is accessed. You must pass your selected memory allocator (usually | |
427 calloc/free or mxCalloc/mxFree) to symamd, for it to allocate | |
428 memory for the temporary matrix M. | |
429 | |
430 Returns: | |
431 | |
432 TRUE (1) if successful, FALSE (0) otherwise. | |
433 | |
434 Arguments: | |
435 | |
436 int n ; Input argument. | |
437 | |
438 Number of rows and columns in the symmetrix matrix A. | |
439 Restriction: n >= 0. | |
440 Symamd returns FALSE if n is negative. | |
441 | |
442 int A [nnz] ; Input argument. | |
443 | |
444 A is an integer array of size nnz, where nnz = p [n]. | |
445 | |
446 The row indices of the entries in column c of the matrix are | |
447 held in A [(p [c]) ... (p [c+1]-1)]. The row indices in a | |
448 given column c need not be in ascending order, and duplicate | |
449 row indices may be present. However, symamd will run faster | |
450 if the columns are in sorted order with no duplicate entries. | |
451 | |
452 The matrix is 0-based. That is, rows are in the range 0 to | |
453 n-1, and columns are in the range 0 to n-1. Symamd | |
454 returns FALSE if any row index is out of range. | |
455 | |
456 The contents of A are not modified. | |
457 | |
458 int p [n+1] ; Input argument. | |
459 | |
460 p is an integer array of size n+1. On input, it holds the | |
461 "pointers" for the column form of the matrix A. Column c of | |
462 the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first | |
463 entry, p [0], must be zero, and p [c] <= p [c+1] must hold | |
464 for all c in the range 0 to n-1. The value p [n] is | |
465 thus the total number of entries in the pattern of the matrix A. | |
466 Symamd returns FALSE if these conditions are not met. | |
467 | |
468 The contents of p are not modified. | |
469 | |
470 int perm [n+1] ; Output argument. | |
471 | |
472 On output, if symamd returns TRUE, the array perm holds the | |
473 permutation P, where perm [0] is the first index in the new | |
474 ordering, and perm [n-1] is the last. That is, perm [k] = j | |
475 means that row and column j of A is the kth column in PAP', | |
476 where k is in the range 0 to n-1 (perm [0] = j means | |
477 that row and column j of A are the first row and column in | |
478 PAP'). The array is used as a workspace during the ordering, | |
479 which is why it must be of length n+1, not just n. | |
480 | |
481 double knobs [COLAMD_KNOBS] ; Input argument. | |
482 | |
483 See colamd_set_defaults for a description. | |
484 | |
485 int stats [COLAMD_STATS] ; Output argument. | |
486 | |
487 Statistics on the ordering, and error status. | |
488 See colamd.h for related definitions. | |
489 Symamd returns FALSE if stats is not present. | |
490 | |
491 stats [0]: number of dense or empty row and columns ignored | |
492 (and ordered last in the output permutation | |
493 perm). Note that a row/column can become | |
494 "empty" if it contains only "dense" and/or | |
495 "empty" columns/rows. | |
496 | |
497 stats [1]: (same as stats [0]) | |
498 | |
499 stats [2]: number of garbage collections performed. | |
500 | |
501 stats [3]: status code. < 0 is an error code. | |
502 > 1 is a warning or notice. | |
503 | |
504 0 OK. Each column of the input matrix contained | |
505 row indices in increasing order, with no | |
506 duplicates. | |
507 | |
508 1 OK, but columns of input matrix were jumbled | |
509 (unsorted columns or duplicate entries). Symamd | |
510 had to do some extra work to sort the matrix | |
511 first and remove duplicate entries, but it | |
512 still was able to return a valid permutation | |
513 (return value of symamd was TRUE). | |
514 | |
515 stats [4]: highest numbered column that | |
516 is unsorted or has duplicate | |
517 entries. | |
518 stats [5]: last seen duplicate or | |
519 unsorted row index. | |
520 stats [6]: number of duplicate or | |
521 unsorted row indices. | |
522 | |
523 -1 A is a null pointer | |
524 | |
525 -2 p is a null pointer | |
526 | |
527 -3 (unused, see colamd.c) | |
528 | |
529 -4 n is negative | |
530 | |
531 stats [4]: n | |
532 | |
533 -5 number of nonzeros in matrix is negative | |
534 | |
535 stats [4]: # of nonzeros (p [n]). | |
536 | |
537 -6 p [0] is nonzero | |
538 | |
539 stats [4]: p [0] | |
540 | |
541 -7 (unused) | |
542 | |
543 -8 a column has a negative number of entries | |
544 | |
545 stats [4]: column with < 0 entries | |
546 stats [5]: number of entries in col | |
547 | |
548 -9 a row index is out of bounds | |
549 | |
550 stats [4]: column with bad row index | |
551 stats [5]: bad row index | |
552 stats [6]: n_row, # of rows of matrx | |
553 | |
554 -10 out of memory (unable to allocate temporary | |
555 workspace for M or count arrays using the | |
556 "allocate" routine passed into symamd). | |
557 | |
558 Future versions may return more statistics in the stats array. | |
559 | |
560 void * (*allocate) (size_t, size_t) | |
561 | |
562 A pointer to a function providing memory allocation. The | |
563 allocated memory must be returned initialized to zero. For a | |
564 C application, this argument should normally be a pointer to | |
565 calloc. For a MATLAB mexFunction, the routine mxCalloc is | |
566 passed instead. | |
567 | |
568 void (*release) (size_t, size_t) | |
569 | |
570 A pointer to a function that frees memory allocated by the | |
571 memory allocation routine above. For a C application, this | |
572 argument should normally be a pointer to free. For a MATLAB | |
573 mexFunction, the routine mxFree is passed instead. | |
574 | |
575 | |
576 ---------------------------------------------------------------------------- | |
577 colamd_report: | |
578 ---------------------------------------------------------------------------- | |
579 | |
580 C syntax: | |
581 | |
582 #include "colamd.h" | |
583 colamd_report (int stats [COLAMD_STATS]) ; | |
584 colamd_l_report (UF_long stats [COLAMD_STATS]) ; | |
585 | |
586 Purpose: | |
587 | |
588 Prints the error status and statistics recorded in the stats | |
589 array on the standard error output (for a standard C routine) | |
590 or on the MATLAB output (for a mexFunction). | |
591 | |
592 Arguments: | |
593 | |
594 int stats [COLAMD_STATS] ; Input only. Statistics from colamd. | |
595 | |
596 | |
597 ---------------------------------------------------------------------------- | |
598 symamd_report: | |
599 ---------------------------------------------------------------------------- | |
600 | |
601 C syntax: | |
602 | |
603 #include "colamd.h" | |
604 symamd_report (int stats [COLAMD_STATS]) ; | |
605 symamd_l_report (UF_long stats [COLAMD_STATS]) ; | |
606 | |
607 Purpose: | |
608 | |
609 Prints the error status and statistics recorded in the stats | |
610 array on the standard error output (for a standard C routine) | |
611 or on the MATLAB output (for a mexFunction). | |
612 | |
613 Arguments: | |
614 | |
615 int stats [COLAMD_STATS] ; Input only. Statistics from symamd. | |
616 | |
617 | |
618 */ | |
619 | |
620 /* ========================================================================== */ | |
621 /* === Scaffolding code definitions ======================================== */ | |
622 /* ========================================================================== */ | |
623 | |
624 /* Ensure that debugging is turned off: */ | |
625 #ifndef NDEBUG | |
626 #define NDEBUG | |
627 #endif | |
628 | |
629 /* turn on debugging by uncommenting the following line | |
630 #undef NDEBUG | |
631 */ | |
632 | |
633 /* | |
634 Our "scaffolding code" philosophy: In our opinion, well-written library | |
635 code should keep its "debugging" code, and just normally have it turned off | |
636 by the compiler so as not to interfere with performance. This serves | |
637 several purposes: | |
638 | |
639 (1) assertions act as comments to the reader, telling you what the code | |
640 expects at that point. All assertions will always be true (unless | |
641 there really is a bug, of course). | |
642 | |
643 (2) leaving in the scaffolding code assists anyone who would like to modify | |
644 the code, or understand the algorithm (by reading the debugging output, | |
645 one can get a glimpse into what the code is doing). | |
646 | |
647 (3) (gasp!) for actually finding bugs. This code has been heavily tested | |
648 and "should" be fully functional and bug-free ... but you never know... | |
649 | |
650 The code will become outrageously slow when debugging is | |
651 enabled. To control the level of debugging output, set an environment | |
652 variable D to 0 (little), 1 (some), 2, 3, or 4 (lots). When debugging, | |
653 you should see the following message on the standard output: | |
654 | |
655 colamd: debug version, D = 1 (THIS WILL BE SLOW!) | |
656 | |
657 or a similar message for symamd. If you don't, then debugging has not | |
658 been enabled. | |
659 | |
660 */ | |
661 | |
662 /* ========================================================================== */ | |
663 /* === Include files ======================================================== */ | |
664 /* ========================================================================== */ | |
665 | |
666 #include "colamd.h" | |
667 | |
668 #if 0 /* by mao */ | |
669 #include <limits.h> | |
670 #include <math.h> | |
671 | |
672 #ifdef MATLAB_MEX_FILE | |
673 #include "mex.h" | |
674 #include "matrix.h" | |
675 #endif /* MATLAB_MEX_FILE */ | |
676 | |
677 #if !defined (NPRINT) || !defined (NDEBUG) | |
678 #include <stdio.h> | |
679 #endif | |
680 | |
681 #ifndef NULL | |
682 #define NULL ((void *) 0) | |
683 #endif | |
684 #endif | |
685 | |
686 /* ========================================================================== */ | |
687 /* === int or UF_long ======================================================= */ | |
688 /* ========================================================================== */ | |
689 | |
690 #if 0 /* by mao */ | |
691 /* define UF_long */ | |
692 #include "UFconfig.h" | |
693 #endif | |
694 | |
695 #ifdef DLONG | |
696 | |
697 #define Int UF_long | |
698 #define ID UF_long_id | |
699 #define Int_MAX UF_long_max | |
700 | |
701 #define COLAMD_recommended colamd_l_recommended | |
702 #define COLAMD_set_defaults colamd_l_set_defaults | |
703 #define COLAMD_MAIN colamd_l | |
704 #define SYMAMD_MAIN symamd_l | |
705 #define COLAMD_report colamd_l_report | |
706 #define SYMAMD_report symamd_l_report | |
707 | |
708 #else | |
709 | |
710 #define Int int | |
711 #define ID "%d" | |
712 #define Int_MAX INT_MAX | |
713 | |
714 #define COLAMD_recommended colamd_recommended | |
715 #define COLAMD_set_defaults colamd_set_defaults | |
716 #define COLAMD_MAIN colamd | |
717 #define SYMAMD_MAIN symamd | |
718 #define COLAMD_report colamd_report | |
719 #define SYMAMD_report symamd_report | |
720 | |
721 #endif | |
722 | |
723 /* ========================================================================== */ | |
724 /* === Row and Column structures ============================================ */ | |
725 /* ========================================================================== */ | |
726 | |
727 /* User code that makes use of the colamd/symamd routines need not directly */ | |
728 /* reference these structures. They are used only for colamd_recommended. */ | |
729 | |
730 typedef struct Colamd_Col_struct | |
731 { | |
732 Int start ; /* index for A of first row in this column, or DEAD */ | |
733 /* if column is dead */ | |
734 Int length ; /* number of rows in this column */ | |
735 union | |
736 { | |
737 Int thickness ; /* number of original columns represented by this */ | |
738 /* col, if the column is alive */ | |
739 Int parent ; /* parent in parent tree super-column structure, if */ | |
740 /* the column is dead */ | |
741 } shared1 ; | |
742 union | |
743 { | |
744 Int score ; /* the score used to maintain heap, if col is alive */ | |
745 Int order ; /* pivot ordering of this column, if col is dead */ | |
746 } shared2 ; | |
747 union | |
748 { | |
749 Int headhash ; /* head of a hash bucket, if col is at the head of */ | |
750 /* a degree list */ | |
751 Int hash ; /* hash value, if col is not in a degree list */ | |
752 Int prev ; /* previous column in degree list, if col is in a */ | |
753 /* degree list (but not at the head of a degree list) */ | |
754 } shared3 ; | |
755 union | |
756 { | |
757 Int degree_next ; /* next column, if col is in a degree list */ | |
758 Int hash_next ; /* next column, if col is in a hash list */ | |
759 } shared4 ; | |
760 | |
761 } Colamd_Col ; | |
762 | |
763 typedef struct Colamd_Row_struct | |
764 { | |
765 Int start ; /* index for A of first col in this row */ | |
766 Int length ; /* number of principal columns in this row */ | |
767 union | |
768 { | |
769 Int degree ; /* number of principal & non-principal columns in row */ | |
770 Int p ; /* used as a row pointer in init_rows_cols () */ | |
771 } shared1 ; | |
772 union | |
773 { | |
774 Int mark ; /* for computing set differences and marking dead rows*/ | |
775 Int first_column ;/* first column in row (used in garbage collection) */ | |
776 } shared2 ; | |
777 | |
778 } Colamd_Row ; | |
779 | |
780 /* ========================================================================== */ | |
781 /* === Definitions ========================================================== */ | |
782 /* ========================================================================== */ | |
783 | |
784 /* Routines are either PUBLIC (user-callable) or PRIVATE (not user-callable) */ | |
785 #define PUBLIC | |
786 #define PRIVATE static | |
787 | |
788 #define DENSE_DEGREE(alpha,n) \ | |
789 ((Int) MAX (16.0, (alpha) * sqrt ((double) (n)))) | |
790 | |
791 #define MAX(a,b) (((a) > (b)) ? (a) : (b)) | |
792 #define MIN(a,b) (((a) < (b)) ? (a) : (b)) | |
793 | |
794 #define ONES_COMPLEMENT(r) (-(r)-1) | |
795 | |
796 /* -------------------------------------------------------------------------- */ | |
797 /* Change for version 2.1: define TRUE and FALSE only if not yet defined */ | |
798 /* -------------------------------------------------------------------------- */ | |
799 | |
800 #ifndef TRUE | |
801 #define TRUE (1) | |
802 #endif | |
803 | |
804 #ifndef FALSE | |
805 #define FALSE (0) | |
806 #endif | |
807 | |
808 /* -------------------------------------------------------------------------- */ | |
809 | |
810 #define EMPTY (-1) | |
811 | |
812 /* Row and column status */ | |
813 #define ALIVE (0) | |
814 #define DEAD (-1) | |
815 | |
816 /* Column status */ | |
817 #define DEAD_PRINCIPAL (-1) | |
818 #define DEAD_NON_PRINCIPAL (-2) | |
819 | |
820 /* Macros for row and column status update and checking. */ | |
821 #define ROW_IS_DEAD(r) ROW_IS_MARKED_DEAD (Row[r].shared2.mark) | |
822 #define ROW_IS_MARKED_DEAD(row_mark) (row_mark < ALIVE) | |
823 #define ROW_IS_ALIVE(r) (Row [r].shared2.mark >= ALIVE) | |
824 #define COL_IS_DEAD(c) (Col [c].start < ALIVE) | |
825 #define COL_IS_ALIVE(c) (Col [c].start >= ALIVE) | |
826 #define COL_IS_DEAD_PRINCIPAL(c) (Col [c].start == DEAD_PRINCIPAL) | |
827 #define KILL_ROW(r) { Row [r].shared2.mark = DEAD ; } | |
828 #define KILL_PRINCIPAL_COL(c) { Col [c].start = DEAD_PRINCIPAL ; } | |
829 #define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; } | |
830 | |
831 /* ========================================================================== */ | |
832 /* === Colamd reporting mechanism =========================================== */ | |
833 /* ========================================================================== */ | |
834 | |
835 #if defined (MATLAB_MEX_FILE) || defined (MATHWORKS) | |
836 /* In MATLAB, matrices are 1-based to the user, but 0-based internally */ | |
837 #define INDEX(i) ((i)+1) | |
838 #else | |
839 /* In C, matrices are 0-based and indices are reported as such in *_report */ | |
840 #define INDEX(i) (i) | |
841 #endif | |
842 | |
843 /* All output goes through the PRINTF macro. */ | |
844 #define PRINTF(params) { if (colamd_printf != NULL) (void) colamd_printf params ; } | |
845 | |
846 /* ========================================================================== */ | |
847 /* === Prototypes of PRIVATE routines ======================================= */ | |
848 /* ========================================================================== */ | |
849 | |
850 PRIVATE Int init_rows_cols | |
851 ( | |
852 Int n_row, | |
853 Int n_col, | |
854 Colamd_Row Row [], | |
855 Colamd_Col Col [], | |
856 Int A [], | |
857 Int p [], | |
858 Int stats [COLAMD_STATS] | |
859 ) ; | |
860 | |
861 PRIVATE void init_scoring | |
862 ( | |
863 Int n_row, | |
864 Int n_col, | |
865 Colamd_Row Row [], | |
866 Colamd_Col Col [], | |
867 Int A [], | |
868 Int head [], | |
869 double knobs [COLAMD_KNOBS], | |
870 Int *p_n_row2, | |
871 Int *p_n_col2, | |
872 Int *p_max_deg | |
873 ) ; | |
874 | |
875 PRIVATE Int find_ordering | |
876 ( | |
877 Int n_row, | |
878 Int n_col, | |
879 Int Alen, | |
880 Colamd_Row Row [], | |
881 Colamd_Col Col [], | |
882 Int A [], | |
883 Int head [], | |
884 Int n_col2, | |
885 Int max_deg, | |
886 Int pfree, | |
887 Int aggressive | |
888 ) ; | |
889 | |
890 PRIVATE void order_children | |
891 ( | |
892 Int n_col, | |
893 Colamd_Col Col [], | |
894 Int p [] | |
895 ) ; | |
896 | |
897 PRIVATE void detect_super_cols | |
898 ( | |
899 | |
900 #ifndef NDEBUG | |
901 Int n_col, | |
902 Colamd_Row Row [], | |
903 #endif /* NDEBUG */ | |
904 | |
905 Colamd_Col Col [], | |
906 Int A [], | |
907 Int head [], | |
908 Int row_start, | |
909 Int row_length | |
910 ) ; | |
911 | |
912 PRIVATE Int garbage_collection | |
913 ( | |
914 Int n_row, | |
915 Int n_col, | |
916 Colamd_Row Row [], | |
917 Colamd_Col Col [], | |
918 Int A [], | |
919 Int *pfree | |
920 ) ; | |
921 | |
922 PRIVATE Int clear_mark | |
923 ( | |
924 Int tag_mark, | |
925 Int max_mark, | |
926 Int n_row, | |
927 Colamd_Row Row [] | |
928 ) ; | |
929 | |
930 PRIVATE void print_report | |
931 ( | |
932 char *method, | |
933 Int stats [COLAMD_STATS] | |
934 ) ; | |
935 | |
936 /* ========================================================================== */ | |
937 /* === Debugging prototypes and definitions ================================= */ | |
938 /* ========================================================================== */ | |
939 | |
940 #ifndef NDEBUG | |
941 | |
942 #if 0 /* by mao */ | |
943 #include <assert.h> | |
944 #endif | |
945 | |
946 /* colamd_debug is the *ONLY* global variable, and is only */ | |
947 /* present when debugging */ | |
948 | |
949 PRIVATE Int colamd_debug = 0 ; /* debug print level */ | |
950 | |
951 #define DEBUG0(params) { PRINTF (params) ; } | |
952 #define DEBUG1(params) { if (colamd_debug >= 1) PRINTF (params) ; } | |
953 #define DEBUG2(params) { if (colamd_debug >= 2) PRINTF (params) ; } | |
954 #define DEBUG3(params) { if (colamd_debug >= 3) PRINTF (params) ; } | |
955 #define DEBUG4(params) { if (colamd_debug >= 4) PRINTF (params) ; } | |
956 | |
957 #if 0 /* by mao */ | |
958 #ifdef MATLAB_MEX_FILE | |
959 #define ASSERT(expression) (mxAssert ((expression), "")) | |
960 #else | |
961 #define ASSERT(expression) (assert (expression)) | |
962 #endif /* MATLAB_MEX_FILE */ | |
963 #else | |
964 #define ASSERT xassert | |
965 #endif | |
966 | |
967 PRIVATE void colamd_get_debug /* gets the debug print level from getenv */ | |
968 ( | |
969 char *method | |
970 ) ; | |
971 | |
972 PRIVATE void debug_deg_lists | |
973 ( | |
974 Int n_row, | |
975 Int n_col, | |
976 Colamd_Row Row [], | |
977 Colamd_Col Col [], | |
978 Int head [], | |
979 Int min_score, | |
980 Int should, | |
981 Int max_deg | |
982 ) ; | |
983 | |
984 PRIVATE void debug_mark | |
985 ( | |
986 Int n_row, | |
987 Colamd_Row Row [], | |
988 Int tag_mark, | |
989 Int max_mark | |
990 ) ; | |
991 | |
992 PRIVATE void debug_matrix | |
993 ( | |
994 Int n_row, | |
995 Int n_col, | |
996 Colamd_Row Row [], | |
997 Colamd_Col Col [], | |
998 Int A [] | |
999 ) ; | |
1000 | |
1001 PRIVATE void debug_structures | |
1002 ( | |
1003 Int n_row, | |
1004 Int n_col, | |
1005 Colamd_Row Row [], | |
1006 Colamd_Col Col [], | |
1007 Int A [], | |
1008 Int n_col2 | |
1009 ) ; | |
1010 | |
1011 #else /* NDEBUG */ | |
1012 | |
1013 /* === No debugging ========================================================= */ | |
1014 | |
1015 #define DEBUG0(params) ; | |
1016 #define DEBUG1(params) ; | |
1017 #define DEBUG2(params) ; | |
1018 #define DEBUG3(params) ; | |
1019 #define DEBUG4(params) ; | |
1020 | |
1021 #define ASSERT(expression) | |
1022 | |
1023 #endif /* NDEBUG */ | |
1024 | |
1025 /* ========================================================================== */ | |
1026 /* === USER-CALLABLE ROUTINES: ============================================== */ | |
1027 /* ========================================================================== */ | |
1028 | |
1029 /* ========================================================================== */ | |
1030 /* === colamd_recommended =================================================== */ | |
1031 /* ========================================================================== */ | |
1032 | |
1033 /* | |
1034 The colamd_recommended routine returns the suggested size for Alen. This | |
1035 value has been determined to provide good balance between the number of | |
1036 garbage collections and the memory requirements for colamd. If any | |
1037 argument is negative, or if integer overflow occurs, a 0 is returned as an | |
1038 error condition. 2*nnz space is required for the row and column | |
1039 indices of the matrix. COLAMD_C (n_col) + COLAMD_R (n_row) space is | |
1040 required for the Col and Row arrays, respectively, which are internal to | |
1041 colamd (roughly 6*n_col + 4*n_row). An additional n_col space is the | |
1042 minimal amount of "elbow room", and nnz/5 more space is recommended for | |
1043 run time efficiency. | |
1044 | |
1045 Alen is approximately 2.2*nnz + 7*n_col + 4*n_row + 10. | |
1046 | |
1047 This function is not needed when using symamd. | |
1048 */ | |
1049 | |
1050 /* add two values of type size_t, and check for integer overflow */ | |
1051 static size_t t_add (size_t a, size_t b, int *ok) | |
1052 { | |
1053 (*ok) = (*ok) && ((a + b) >= MAX (a,b)) ; | |
1054 return ((*ok) ? (a + b) : 0) ; | |
1055 } | |
1056 | |
1057 /* compute a*k where k is a small integer, and check for integer overflow */ | |
1058 static size_t t_mult (size_t a, size_t k, int *ok) | |
1059 { | |
1060 size_t i, s = 0 ; | |
1061 for (i = 0 ; i < k ; i++) | |
1062 { | |
1063 s = t_add (s, a, ok) ; | |
1064 } | |
1065 return (s) ; | |
1066 } | |
1067 | |
1068 /* size of the Col and Row structures */ | |
1069 #define COLAMD_C(n_col,ok) \ | |
1070 ((t_mult (t_add (n_col, 1, ok), sizeof (Colamd_Col), ok) / sizeof (Int))) | |
1071 | |
1072 #define COLAMD_R(n_row,ok) \ | |
1073 ((t_mult (t_add (n_row, 1, ok), sizeof (Colamd_Row), ok) / sizeof (Int))) | |
1074 | |
1075 | |
1076 PUBLIC size_t COLAMD_recommended /* returns recommended value of Alen. */ | |
1077 ( | |
1078 /* === Parameters ======================================================= */ | |
1079 | |
1080 Int nnz, /* number of nonzeros in A */ | |
1081 Int n_row, /* number of rows in A */ | |
1082 Int n_col /* number of columns in A */ | |
1083 ) | |
1084 { | |
1085 size_t s, c, r ; | |
1086 int ok = TRUE ; | |
1087 if (nnz < 0 || n_row < 0 || n_col < 0) | |
1088 { | |
1089 return (0) ; | |
1090 } | |
1091 s = t_mult (nnz, 2, &ok) ; /* 2*nnz */ | |
1092 c = COLAMD_C (n_col, &ok) ; /* size of column structures */ | |
1093 r = COLAMD_R (n_row, &ok) ; /* size of row structures */ | |
1094 s = t_add (s, c, &ok) ; | |
1095 s = t_add (s, r, &ok) ; | |
1096 s = t_add (s, n_col, &ok) ; /* elbow room */ | |
1097 s = t_add (s, nnz/5, &ok) ; /* elbow room */ | |
1098 ok = ok && (s < Int_MAX) ; | |
1099 return (ok ? s : 0) ; | |
1100 } | |
1101 | |
1102 | |
1103 /* ========================================================================== */ | |
1104 /* === colamd_set_defaults ================================================== */ | |
1105 /* ========================================================================== */ | |
1106 | |
1107 /* | |
1108 The colamd_set_defaults routine sets the default values of the user- | |
1109 controllable parameters for colamd and symamd: | |
1110 | |
1111 Colamd: rows with more than max (16, knobs [0] * sqrt (n_col)) | |
1112 entries are removed prior to ordering. Columns with more than | |
1113 max (16, knobs [1] * sqrt (MIN (n_row,n_col))) entries are removed | |
1114 prior to ordering, and placed last in the output column ordering. | |
1115 | |
1116 Symamd: Rows and columns with more than max (16, knobs [0] * sqrt (n)) | |
1117 entries are removed prior to ordering, and placed last in the | |
1118 output ordering. | |
1119 | |
1120 knobs [0] dense row control | |
1121 | |
1122 knobs [1] dense column control | |
1123 | |
1124 knobs [2] if nonzero, do aggresive absorption | |
1125 | |
1126 knobs [3..19] unused, but future versions might use this | |
1127 | |
1128 */ | |
1129 | |
1130 PUBLIC void COLAMD_set_defaults | |
1131 ( | |
1132 /* === Parameters ======================================================= */ | |
1133 | |
1134 double knobs [COLAMD_KNOBS] /* knob array */ | |
1135 ) | |
1136 { | |
1137 /* === Local variables ================================================== */ | |
1138 | |
1139 Int i ; | |
1140 | |
1141 if (!knobs) | |
1142 { | |
1143 return ; /* no knobs to initialize */ | |
1144 } | |
1145 for (i = 0 ; i < COLAMD_KNOBS ; i++) | |
1146 { | |
1147 knobs [i] = 0 ; | |
1148 } | |
1149 knobs [COLAMD_DENSE_ROW] = 10 ; | |
1150 knobs [COLAMD_DENSE_COL] = 10 ; | |
1151 knobs [COLAMD_AGGRESSIVE] = TRUE ; /* default: do aggressive absorption*/ | |
1152 } | |
1153 | |
1154 | |
1155 /* ========================================================================== */ | |
1156 /* === symamd =============================================================== */ | |
1157 /* ========================================================================== */ | |
1158 | |
1159 PUBLIC Int SYMAMD_MAIN /* return TRUE if OK, FALSE otherwise */ | |
1160 ( | |
1161 /* === Parameters ======================================================= */ | |
1162 | |
1163 Int n, /* number of rows and columns of A */ | |
1164 Int A [], /* row indices of A */ | |
1165 Int p [], /* column pointers of A */ | |
1166 Int perm [], /* output permutation, size n+1 */ | |
1167 double knobs [COLAMD_KNOBS], /* parameters (uses defaults if NULL) */ | |
1168 Int stats [COLAMD_STATS], /* output statistics and error codes */ | |
1169 void * (*allocate) (size_t, size_t), | |
1170 /* pointer to calloc (ANSI C) or */ | |
1171 /* mxCalloc (for MATLAB mexFunction) */ | |
1172 void (*release) (void *) | |
1173 /* pointer to free (ANSI C) or */ | |
1174 /* mxFree (for MATLAB mexFunction) */ | |
1175 ) | |
1176 { | |
1177 /* === Local variables ================================================== */ | |
1178 | |
1179 Int *count ; /* length of each column of M, and col pointer*/ | |
1180 Int *mark ; /* mark array for finding duplicate entries */ | |
1181 Int *M ; /* row indices of matrix M */ | |
1182 size_t Mlen ; /* length of M */ | |
1183 Int n_row ; /* number of rows in M */ | |
1184 Int nnz ; /* number of entries in A */ | |
1185 Int i ; /* row index of A */ | |
1186 Int j ; /* column index of A */ | |
1187 Int k ; /* row index of M */ | |
1188 Int mnz ; /* number of nonzeros in M */ | |
1189 Int pp ; /* index into a column of A */ | |
1190 Int last_row ; /* last row seen in the current column */ | |
1191 Int length ; /* number of nonzeros in a column */ | |
1192 | |
1193 double cknobs [COLAMD_KNOBS] ; /* knobs for colamd */ | |
1194 double default_knobs [COLAMD_KNOBS] ; /* default knobs for colamd */ | |
1195 | |
1196 #ifndef NDEBUG | |
1197 colamd_get_debug ("symamd") ; | |
1198 #endif /* NDEBUG */ | |
1199 | |
1200 /* === Check the input arguments ======================================== */ | |
1201 | |
1202 if (!stats) | |
1203 { | |
1204 DEBUG0 (("symamd: stats not present\n")) ; | |
1205 return (FALSE) ; | |
1206 } | |
1207 for (i = 0 ; i < COLAMD_STATS ; i++) | |
1208 { | |
1209 stats [i] = 0 ; | |
1210 } | |
1211 stats [COLAMD_STATUS] = COLAMD_OK ; | |
1212 stats [COLAMD_INFO1] = -1 ; | |
1213 stats [COLAMD_INFO2] = -1 ; | |
1214 | |
1215 if (!A) | |
1216 { | |
1217 stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ; | |
1218 DEBUG0 (("symamd: A not present\n")) ; | |
1219 return (FALSE) ; | |
1220 } | |
1221 | |
1222 if (!p) /* p is not present */ | |
1223 { | |
1224 stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ; | |
1225 DEBUG0 (("symamd: p not present\n")) ; | |
1226 return (FALSE) ; | |
1227 } | |
1228 | |
1229 if (n < 0) /* n must be >= 0 */ | |
1230 { | |
1231 stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ; | |
1232 stats [COLAMD_INFO1] = n ; | |
1233 DEBUG0 (("symamd: n negative %d\n", n)) ; | |
1234 return (FALSE) ; | |
1235 } | |
1236 | |
1237 nnz = p [n] ; | |
1238 if (nnz < 0) /* nnz must be >= 0 */ | |
1239 { | |
1240 stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ; | |
1241 stats [COLAMD_INFO1] = nnz ; | |
1242 DEBUG0 (("symamd: number of entries negative %d\n", nnz)) ; | |
1243 return (FALSE) ; | |
1244 } | |
1245 | |
1246 if (p [0] != 0) | |
1247 { | |
1248 stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ; | |
1249 stats [COLAMD_INFO1] = p [0] ; | |
1250 DEBUG0 (("symamd: p[0] not zero %d\n", p [0])) ; | |
1251 return (FALSE) ; | |
1252 } | |
1253 | |
1254 /* === If no knobs, set default knobs =================================== */ | |
1255 | |
1256 if (!knobs) | |
1257 { | |
1258 COLAMD_set_defaults (default_knobs) ; | |
1259 knobs = default_knobs ; | |
1260 } | |
1261 | |
1262 /* === Allocate count and mark ========================================== */ | |
1263 | |
1264 count = (Int *) ((*allocate) (n+1, sizeof (Int))) ; | |
1265 if (!count) | |
1266 { | |
1267 stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ; | |
1268 DEBUG0 (("symamd: allocate count (size %d) failed\n", n+1)) ; | |
1269 return (FALSE) ; | |
1270 } | |
1271 | |
1272 mark = (Int *) ((*allocate) (n+1, sizeof (Int))) ; | |
1273 if (!mark) | |
1274 { | |
1275 stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ; | |
1276 (*release) ((void *) count) ; | |
1277 DEBUG0 (("symamd: allocate mark (size %d) failed\n", n+1)) ; | |
1278 return (FALSE) ; | |
1279 } | |
1280 | |
1281 /* === Compute column counts of M, check if A is valid ================== */ | |
1282 | |
1283 stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/ | |
1284 | |
1285 for (i = 0 ; i < n ; i++) | |
1286 { | |
1287 mark [i] = -1 ; | |
1288 } | |
1289 | |
1290 for (j = 0 ; j < n ; j++) | |
1291 { | |
1292 last_row = -1 ; | |
1293 | |
1294 length = p [j+1] - p [j] ; | |
1295 if (length < 0) | |
1296 { | |
1297 /* column pointers must be non-decreasing */ | |
1298 stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ; | |
1299 stats [COLAMD_INFO1] = j ; | |
1300 stats [COLAMD_INFO2] = length ; | |
1301 (*release) ((void *) count) ; | |
1302 (*release) ((void *) mark) ; | |
1303 DEBUG0 (("symamd: col %d negative length %d\n", j, length)) ; | |
1304 return (FALSE) ; | |
1305 } | |
1306 | |
1307 for (pp = p [j] ; pp < p [j+1] ; pp++) | |
1308 { | |
1309 i = A [pp] ; | |
1310 if (i < 0 || i >= n) | |
1311 { | |
1312 /* row index i, in column j, is out of bounds */ | |
1313 stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ; | |
1314 stats [COLAMD_INFO1] = j ; | |
1315 stats [COLAMD_INFO2] = i ; | |
1316 stats [COLAMD_INFO3] = n ; | |
1317 (*release) ((void *) count) ; | |
1318 (*release) ((void *) mark) ; | |
1319 DEBUG0 (("symamd: row %d col %d out of bounds\n", i, j)) ; | |
1320 return (FALSE) ; | |
1321 } | |
1322 | |
1323 if (i <= last_row || mark [i] == j) | |
1324 { | |
1325 /* row index is unsorted or repeated (or both), thus col */ | |
1326 /* is jumbled. This is a notice, not an error condition. */ | |
1327 stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ; | |
1328 stats [COLAMD_INFO1] = j ; | |
1329 stats [COLAMD_INFO2] = i ; | |
1330 (stats [COLAMD_INFO3]) ++ ; | |
1331 DEBUG1 (("symamd: row %d col %d unsorted/duplicate\n", i, j)) ; | |
1332 } | |
1333 | |
1334 if (i > j && mark [i] != j) | |
1335 { | |
1336 /* row k of M will contain column indices i and j */ | |
1337 count [i]++ ; | |
1338 count [j]++ ; | |
1339 } | |
1340 | |
1341 /* mark the row as having been seen in this column */ | |
1342 mark [i] = j ; | |
1343 | |
1344 last_row = i ; | |
1345 } | |
1346 } | |
1347 | |
1348 /* v2.4: removed free(mark) */ | |
1349 | |
1350 /* === Compute column pointers of M ===================================== */ | |
1351 | |
1352 /* use output permutation, perm, for column pointers of M */ | |
1353 perm [0] = 0 ; | |
1354 for (j = 1 ; j <= n ; j++) | |
1355 { | |
1356 perm [j] = perm [j-1] + count [j-1] ; | |
1357 } | |
1358 for (j = 0 ; j < n ; j++) | |
1359 { | |
1360 count [j] = perm [j] ; | |
1361 } | |
1362 | |
1363 /* === Construct M ====================================================== */ | |
1364 | |
1365 mnz = perm [n] ; | |
1366 n_row = mnz / 2 ; | |
1367 Mlen = COLAMD_recommended (mnz, n_row, n) ; | |
1368 M = (Int *) ((*allocate) (Mlen, sizeof (Int))) ; | |
1369 DEBUG0 (("symamd: M is %d-by-%d with %d entries, Mlen = %g\n", | |
1370 n_row, n, mnz, (double) Mlen)) ; | |
1371 | |
1372 if (!M) | |
1373 { | |
1374 stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ; | |
1375 (*release) ((void *) count) ; | |
1376 (*release) ((void *) mark) ; | |
1377 DEBUG0 (("symamd: allocate M (size %g) failed\n", (double) Mlen)) ; | |
1378 return (FALSE) ; | |
1379 } | |
1380 | |
1381 k = 0 ; | |
1382 | |
1383 if (stats [COLAMD_STATUS] == COLAMD_OK) | |
1384 { | |
1385 /* Matrix is OK */ | |
1386 for (j = 0 ; j < n ; j++) | |
1387 { | |
1388 ASSERT (p [j+1] - p [j] >= 0) ; | |
1389 for (pp = p [j] ; pp < p [j+1] ; pp++) | |
1390 { | |
1391 i = A [pp] ; | |
1392 ASSERT (i >= 0 && i < n) ; | |
1393 if (i > j) | |
1394 { | |
1395 /* row k of M contains column indices i and j */ | |
1396 M [count [i]++] = k ; | |
1397 M [count [j]++] = k ; | |
1398 k++ ; | |
1399 } | |
1400 } | |
1401 } | |
1402 } | |
1403 else | |
1404 { | |
1405 /* Matrix is jumbled. Do not add duplicates to M. Unsorted cols OK. */ | |
1406 DEBUG0 (("symamd: Duplicates in A.\n")) ; | |
1407 for (i = 0 ; i < n ; i++) | |
1408 { | |
1409 mark [i] = -1 ; | |
1410 } | |
1411 for (j = 0 ; j < n ; j++) | |
1412 { | |
1413 ASSERT (p [j+1] - p [j] >= 0) ; | |
1414 for (pp = p [j] ; pp < p [j+1] ; pp++) | |
1415 { | |
1416 i = A [pp] ; | |
1417 ASSERT (i >= 0 && i < n) ; | |
1418 if (i > j && mark [i] != j) | |
1419 { | |
1420 /* row k of M contains column indices i and j */ | |
1421 M [count [i]++] = k ; | |
1422 M [count [j]++] = k ; | |
1423 k++ ; | |
1424 mark [i] = j ; | |
1425 } | |
1426 } | |
1427 } | |
1428 /* v2.4: free(mark) moved below */ | |
1429 } | |
1430 | |
1431 /* count and mark no longer needed */ | |
1432 (*release) ((void *) count) ; | |
1433 (*release) ((void *) mark) ; /* v2.4: free (mark) moved here */ | |
1434 ASSERT (k == n_row) ; | |
1435 | |
1436 /* === Adjust the knobs for M =========================================== */ | |
1437 | |
1438 for (i = 0 ; i < COLAMD_KNOBS ; i++) | |
1439 { | |
1440 cknobs [i] = knobs [i] ; | |
1441 } | |
1442 | |
1443 /* there are no dense rows in M */ | |
1444 cknobs [COLAMD_DENSE_ROW] = -1 ; | |
1445 cknobs [COLAMD_DENSE_COL] = knobs [COLAMD_DENSE_ROW] ; | |
1446 | |
1447 /* === Order the columns of M =========================================== */ | |
1448 | |
1449 /* v2.4: colamd cannot fail here, so the error check is removed */ | |
1450 (void) COLAMD_MAIN (n_row, n, (Int) Mlen, M, perm, cknobs, stats) ; | |
1451 | |
1452 /* Note that the output permutation is now in perm */ | |
1453 | |
1454 /* === get the statistics for symamd from colamd ======================== */ | |
1455 | |
1456 /* a dense column in colamd means a dense row and col in symamd */ | |
1457 stats [COLAMD_DENSE_ROW] = stats [COLAMD_DENSE_COL] ; | |
1458 | |
1459 /* === Free M =========================================================== */ | |
1460 | |
1461 (*release) ((void *) M) ; | |
1462 DEBUG0 (("symamd: done.\n")) ; | |
1463 return (TRUE) ; | |
1464 | |
1465 } | |
1466 | |
1467 /* ========================================================================== */ | |
1468 /* === colamd =============================================================== */ | |
1469 /* ========================================================================== */ | |
1470 | |
1471 /* | |
1472 The colamd routine computes a column ordering Q of a sparse matrix | |
1473 A such that the LU factorization P(AQ) = LU remains sparse, where P is | |
1474 selected via partial pivoting. The routine can also be viewed as | |
1475 providing a permutation Q such that the Cholesky factorization | |
1476 (AQ)'(AQ) = LL' remains sparse. | |
1477 */ | |
1478 | |
1479 PUBLIC Int COLAMD_MAIN /* returns TRUE if successful, FALSE otherwise*/ | |
1480 ( | |
1481 /* === Parameters ======================================================= */ | |
1482 | |
1483 Int n_row, /* number of rows in A */ | |
1484 Int n_col, /* number of columns in A */ | |
1485 Int Alen, /* length of A */ | |
1486 Int A [], /* row indices of A */ | |
1487 Int p [], /* pointers to columns in A */ | |
1488 double knobs [COLAMD_KNOBS],/* parameters (uses defaults if NULL) */ | |
1489 Int stats [COLAMD_STATS] /* output statistics and error codes */ | |
1490 ) | |
1491 { | |
1492 /* === Local variables ================================================== */ | |
1493 | |
1494 Int i ; /* loop index */ | |
1495 Int nnz ; /* nonzeros in A */ | |
1496 size_t Row_size ; /* size of Row [], in integers */ | |
1497 size_t Col_size ; /* size of Col [], in integers */ | |
1498 size_t need ; /* minimum required length of A */ | |
1499 Colamd_Row *Row ; /* pointer into A of Row [0..n_row] array */ | |
1500 Colamd_Col *Col ; /* pointer into A of Col [0..n_col] array */ | |
1501 Int n_col2 ; /* number of non-dense, non-empty columns */ | |
1502 Int n_row2 ; /* number of non-dense, non-empty rows */ | |
1503 Int ngarbage ; /* number of garbage collections performed */ | |
1504 Int max_deg ; /* maximum row degree */ | |
1505 double default_knobs [COLAMD_KNOBS] ; /* default knobs array */ | |
1506 Int aggressive ; /* do aggressive absorption */ | |
1507 int ok ; | |
1508 | |
1509 #ifndef NDEBUG | |
1510 colamd_get_debug ("colamd") ; | |
1511 #endif /* NDEBUG */ | |
1512 | |
1513 /* === Check the input arguments ======================================== */ | |
1514 | |
1515 if (!stats) | |
1516 { | |
1517 DEBUG0 (("colamd: stats not present\n")) ; | |
1518 return (FALSE) ; | |
1519 } | |
1520 for (i = 0 ; i < COLAMD_STATS ; i++) | |
1521 { | |
1522 stats [i] = 0 ; | |
1523 } | |
1524 stats [COLAMD_STATUS] = COLAMD_OK ; | |
1525 stats [COLAMD_INFO1] = -1 ; | |
1526 stats [COLAMD_INFO2] = -1 ; | |
1527 | |
1528 if (!A) /* A is not present */ | |
1529 { | |
1530 stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ; | |
1531 DEBUG0 (("colamd: A not present\n")) ; | |
1532 return (FALSE) ; | |
1533 } | |
1534 | |
1535 if (!p) /* p is not present */ | |
1536 { | |
1537 stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ; | |
1538 DEBUG0 (("colamd: p not present\n")) ; | |
1539 return (FALSE) ; | |
1540 } | |
1541 | |
1542 if (n_row < 0) /* n_row must be >= 0 */ | |
1543 { | |
1544 stats [COLAMD_STATUS] = COLAMD_ERROR_nrow_negative ; | |
1545 stats [COLAMD_INFO1] = n_row ; | |
1546 DEBUG0 (("colamd: nrow negative %d\n", n_row)) ; | |
1547 return (FALSE) ; | |
1548 } | |
1549 | |
1550 if (n_col < 0) /* n_col must be >= 0 */ | |
1551 { | |
1552 stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ; | |
1553 stats [COLAMD_INFO1] = n_col ; | |
1554 DEBUG0 (("colamd: ncol negative %d\n", n_col)) ; | |
1555 return (FALSE) ; | |
1556 } | |
1557 | |
1558 nnz = p [n_col] ; | |
1559 if (nnz < 0) /* nnz must be >= 0 */ | |
1560 { | |
1561 stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ; | |
1562 stats [COLAMD_INFO1] = nnz ; | |
1563 DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ; | |
1564 return (FALSE) ; | |
1565 } | |
1566 | |
1567 if (p [0] != 0) | |
1568 { | |
1569 stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ; | |
1570 stats [COLAMD_INFO1] = p [0] ; | |
1571 DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ; | |
1572 return (FALSE) ; | |
1573 } | |
1574 | |
1575 /* === If no knobs, set default knobs =================================== */ | |
1576 | |
1577 if (!knobs) | |
1578 { | |
1579 COLAMD_set_defaults (default_knobs) ; | |
1580 knobs = default_knobs ; | |
1581 } | |
1582 | |
1583 aggressive = (knobs [COLAMD_AGGRESSIVE] != FALSE) ; | |
1584 | |
1585 /* === Allocate the Row and Col arrays from array A ===================== */ | |
1586 | |
1587 ok = TRUE ; | |
1588 Col_size = COLAMD_C (n_col, &ok) ; /* size of Col array of structs */ | |
1589 Row_size = COLAMD_R (n_row, &ok) ; /* size of Row array of structs */ | |
1590 | |
1591 /* need = 2*nnz + n_col + Col_size + Row_size ; */ | |
1592 need = t_mult (nnz, 2, &ok) ; | |
1593 need = t_add (need, n_col, &ok) ; | |
1594 need = t_add (need, Col_size, &ok) ; | |
1595 need = t_add (need, Row_size, &ok) ; | |
1596 | |
1597 if (!ok || need > (size_t) Alen || need > Int_MAX) | |
1598 { | |
1599 /* not enough space in array A to perform the ordering */ | |
1600 stats [COLAMD_STATUS] = COLAMD_ERROR_A_too_small ; | |
1601 stats [COLAMD_INFO1] = need ; | |
1602 stats [COLAMD_INFO2] = Alen ; | |
1603 DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen)); | |
1604 return (FALSE) ; | |
1605 } | |
1606 | |
1607 Alen -= Col_size + Row_size ; | |
1608 Col = (Colamd_Col *) &A [Alen] ; | |
1609 Row = (Colamd_Row *) &A [Alen + Col_size] ; | |
1610 | |
1611 /* === Construct the row and column data structures ===================== */ | |
1612 | |
1613 if (!init_rows_cols (n_row, n_col, Row, Col, A, p, stats)) | |
1614 { | |
1615 /* input matrix is invalid */ | |
1616 DEBUG0 (("colamd: Matrix invalid\n")) ; | |
1617 return (FALSE) ; | |
1618 } | |
1619 | |
1620 /* === Initialize scores, kill dense rows/columns ======================= */ | |
1621 | |
1622 init_scoring (n_row, n_col, Row, Col, A, p, knobs, | |
1623 &n_row2, &n_col2, &max_deg) ; | |
1624 | |
1625 /* === Order the supercolumns =========================================== */ | |
1626 | |
1627 ngarbage = find_ordering (n_row, n_col, Alen, Row, Col, A, p, | |
1628 n_col2, max_deg, 2*nnz, aggressive) ; | |
1629 | |
1630 /* === Order the non-principal columns ================================== */ | |
1631 | |
1632 order_children (n_col, Col, p) ; | |
1633 | |
1634 /* === Return statistics in stats ======================================= */ | |
1635 | |
1636 stats [COLAMD_DENSE_ROW] = n_row - n_row2 ; | |
1637 stats [COLAMD_DENSE_COL] = n_col - n_col2 ; | |
1638 stats [COLAMD_DEFRAG_COUNT] = ngarbage ; | |
1639 DEBUG0 (("colamd: done.\n")) ; | |
1640 return (TRUE) ; | |
1641 } | |
1642 | |
1643 | |
1644 /* ========================================================================== */ | |
1645 /* === colamd_report ======================================================== */ | |
1646 /* ========================================================================== */ | |
1647 | |
1648 PUBLIC void COLAMD_report | |
1649 ( | |
1650 Int stats [COLAMD_STATS] | |
1651 ) | |
1652 { | |
1653 print_report ("colamd", stats) ; | |
1654 } | |
1655 | |
1656 | |
1657 /* ========================================================================== */ | |
1658 /* === symamd_report ======================================================== */ | |
1659 /* ========================================================================== */ | |
1660 | |
1661 PUBLIC void SYMAMD_report | |
1662 ( | |
1663 Int stats [COLAMD_STATS] | |
1664 ) | |
1665 { | |
1666 print_report ("symamd", stats) ; | |
1667 } | |
1668 | |
1669 | |
1670 | |
1671 /* ========================================================================== */ | |
1672 /* === NON-USER-CALLABLE ROUTINES: ========================================== */ | |
1673 /* ========================================================================== */ | |
1674 | |
1675 /* There are no user-callable routines beyond this point in the file */ | |
1676 | |
1677 | |
1678 /* ========================================================================== */ | |
1679 /* === init_rows_cols ======================================================= */ | |
1680 /* ========================================================================== */ | |
1681 | |
1682 /* | |
1683 Takes the column form of the matrix in A and creates the row form of the | |
1684 matrix. Also, row and column attributes are stored in the Col and Row | |
1685 structs. If the columns are un-sorted or contain duplicate row indices, | |
1686 this routine will also sort and remove duplicate row indices from the | |
1687 column form of the matrix. Returns FALSE if the matrix is invalid, | |
1688 TRUE otherwise. Not user-callable. | |
1689 */ | |
1690 | |
1691 PRIVATE Int init_rows_cols /* returns TRUE if OK, or FALSE otherwise */ | |
1692 ( | |
1693 /* === Parameters ======================================================= */ | |
1694 | |
1695 Int n_row, /* number of rows of A */ | |
1696 Int n_col, /* number of columns of A */ | |
1697 Colamd_Row Row [], /* of size n_row+1 */ | |
1698 Colamd_Col Col [], /* of size n_col+1 */ | |
1699 Int A [], /* row indices of A, of size Alen */ | |
1700 Int p [], /* pointers to columns in A, of size n_col+1 */ | |
1701 Int stats [COLAMD_STATS] /* colamd statistics */ | |
1702 ) | |
1703 { | |
1704 /* === Local variables ================================================== */ | |
1705 | |
1706 Int col ; /* a column index */ | |
1707 Int row ; /* a row index */ | |
1708 Int *cp ; /* a column pointer */ | |
1709 Int *cp_end ; /* a pointer to the end of a column */ | |
1710 Int *rp ; /* a row pointer */ | |
1711 Int *rp_end ; /* a pointer to the end of a row */ | |
1712 Int last_row ; /* previous row */ | |
1713 | |
1714 /* === Initialize columns, and check column pointers ==================== */ | |
1715 | |
1716 for (col = 0 ; col < n_col ; col++) | |
1717 { | |
1718 Col [col].start = p [col] ; | |
1719 Col [col].length = p [col+1] - p [col] ; | |
1720 | |
1721 if (Col [col].length < 0) | |
1722 { | |
1723 /* column pointers must be non-decreasing */ | |
1724 stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ; | |
1725 stats [COLAMD_INFO1] = col ; | |
1726 stats [COLAMD_INFO2] = Col [col].length ; | |
1727 DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ; | |
1728 return (FALSE) ; | |
1729 } | |
1730 | |
1731 Col [col].shared1.thickness = 1 ; | |
1732 Col [col].shared2.score = 0 ; | |
1733 Col [col].shared3.prev = EMPTY ; | |
1734 Col [col].shared4.degree_next = EMPTY ; | |
1735 } | |
1736 | |
1737 /* p [0..n_col] no longer needed, used as "head" in subsequent routines */ | |
1738 | |
1739 /* === Scan columns, compute row degrees, and check row indices ========= */ | |
1740 | |
1741 stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/ | |
1742 | |
1743 for (row = 0 ; row < n_row ; row++) | |
1744 { | |
1745 Row [row].length = 0 ; | |
1746 Row [row].shared2.mark = -1 ; | |
1747 } | |
1748 | |
1749 for (col = 0 ; col < n_col ; col++) | |
1750 { | |
1751 last_row = -1 ; | |
1752 | |
1753 cp = &A [p [col]] ; | |
1754 cp_end = &A [p [col+1]] ; | |
1755 | |
1756 while (cp < cp_end) | |
1757 { | |
1758 row = *cp++ ; | |
1759 | |
1760 /* make sure row indices within range */ | |
1761 if (row < 0 || row >= n_row) | |
1762 { | |
1763 stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ; | |
1764 stats [COLAMD_INFO1] = col ; | |
1765 stats [COLAMD_INFO2] = row ; | |
1766 stats [COLAMD_INFO3] = n_row ; | |
1767 DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ; | |
1768 return (FALSE) ; | |
1769 } | |
1770 | |
1771 if (row <= last_row || Row [row].shared2.mark == col) | |
1772 { | |
1773 /* row index are unsorted or repeated (or both), thus col */ | |
1774 /* is jumbled. This is a notice, not an error condition. */ | |
1775 stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ; | |
1776 stats [COLAMD_INFO1] = col ; | |
1777 stats [COLAMD_INFO2] = row ; | |
1778 (stats [COLAMD_INFO3]) ++ ; | |
1779 DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col)); | |
1780 } | |
1781 | |
1782 if (Row [row].shared2.mark != col) | |
1783 { | |
1784 Row [row].length++ ; | |
1785 } | |
1786 else | |
1787 { | |
1788 /* this is a repeated entry in the column, */ | |
1789 /* it will be removed */ | |
1790 Col [col].length-- ; | |
1791 } | |
1792 | |
1793 /* mark the row as having been seen in this column */ | |
1794 Row [row].shared2.mark = col ; | |
1795 | |
1796 last_row = row ; | |
1797 } | |
1798 } | |
1799 | |
1800 /* === Compute row pointers ============================================= */ | |
1801 | |
1802 /* row form of the matrix starts directly after the column */ | |
1803 /* form of matrix in A */ | |
1804 Row [0].start = p [n_col] ; | |
1805 Row [0].shared1.p = Row [0].start ; | |
1806 Row [0].shared2.mark = -1 ; | |
1807 for (row = 1 ; row < n_row ; row++) | |
1808 { | |
1809 Row [row].start = Row [row-1].start + Row [row-1].length ; | |
1810 Row [row].shared1.p = Row [row].start ; | |
1811 Row [row].shared2.mark = -1 ; | |
1812 } | |
1813 | |
1814 /* === Create row form ================================================== */ | |
1815 | |
1816 if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED) | |
1817 { | |
1818 /* if cols jumbled, watch for repeated row indices */ | |
1819 for (col = 0 ; col < n_col ; col++) | |
1820 { | |
1821 cp = &A [p [col]] ; | |
1822 cp_end = &A [p [col+1]] ; | |
1823 while (cp < cp_end) | |
1824 { | |
1825 row = *cp++ ; | |
1826 if (Row [row].shared2.mark != col) | |
1827 { | |
1828 A [(Row [row].shared1.p)++] = col ; | |
1829 Row [row].shared2.mark = col ; | |
1830 } | |
1831 } | |
1832 } | |
1833 } | |
1834 else | |
1835 { | |
1836 /* if cols not jumbled, we don't need the mark (this is faster) */ | |
1837 for (col = 0 ; col < n_col ; col++) | |
1838 { | |
1839 cp = &A [p [col]] ; | |
1840 cp_end = &A [p [col+1]] ; | |
1841 while (cp < cp_end) | |
1842 { | |
1843 A [(Row [*cp++].shared1.p)++] = col ; | |
1844 } | |
1845 } | |
1846 } | |
1847 | |
1848 /* === Clear the row marks and set row degrees ========================== */ | |
1849 | |
1850 for (row = 0 ; row < n_row ; row++) | |
1851 { | |
1852 Row [row].shared2.mark = 0 ; | |
1853 Row [row].shared1.degree = Row [row].length ; | |
1854 } | |
1855 | |
1856 /* === See if we need to re-create columns ============================== */ | |
1857 | |
1858 if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED) | |
1859 { | |
1860 DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ; | |
1861 | |
1862 #ifndef NDEBUG | |
1863 /* make sure column lengths are correct */ | |
1864 for (col = 0 ; col < n_col ; col++) | |
1865 { | |
1866 p [col] = Col [col].length ; | |
1867 } | |
1868 for (row = 0 ; row < n_row ; row++) | |
1869 { | |
1870 rp = &A [Row [row].start] ; | |
1871 rp_end = rp + Row [row].length ; | |
1872 while (rp < rp_end) | |
1873 { | |
1874 p [*rp++]-- ; | |
1875 } | |
1876 } | |
1877 for (col = 0 ; col < n_col ; col++) | |
1878 { | |
1879 ASSERT (p [col] == 0) ; | |
1880 } | |
1881 /* now p is all zero (different than when debugging is turned off) */ | |
1882 #endif /* NDEBUG */ | |
1883 | |
1884 /* === Compute col pointers ========================================= */ | |
1885 | |
1886 /* col form of the matrix starts at A [0]. */ | |
1887 /* Note, we may have a gap between the col form and the row */ | |
1888 /* form if there were duplicate entries, if so, it will be */ | |
1889 /* removed upon the first garbage collection */ | |
1890 Col [0].start = 0 ; | |
1891 p [0] = Col [0].start ; | |
1892 for (col = 1 ; col < n_col ; col++) | |
1893 { | |
1894 /* note that the lengths here are for pruned columns, i.e. */ | |
1895 /* no duplicate row indices will exist for these columns */ | |
1896 Col [col].start = Col [col-1].start + Col [col-1].length ; | |
1897 p [col] = Col [col].start ; | |
1898 } | |
1899 | |
1900 /* === Re-create col form =========================================== */ | |
1901 | |
1902 for (row = 0 ; row < n_row ; row++) | |
1903 { | |
1904 rp = &A [Row [row].start] ; | |
1905 rp_end = rp + Row [row].length ; | |
1906 while (rp < rp_end) | |
1907 { | |
1908 A [(p [*rp++])++] = row ; | |
1909 } | |
1910 } | |
1911 } | |
1912 | |
1913 /* === Done. Matrix is not (or no longer) jumbled ====================== */ | |
1914 | |
1915 return (TRUE) ; | |
1916 } | |
1917 | |
1918 | |
1919 /* ========================================================================== */ | |
1920 /* === init_scoring ========================================================= */ | |
1921 /* ========================================================================== */ | |
1922 | |
1923 /* | |
1924 Kills dense or empty columns and rows, calculates an initial score for | |
1925 each column, and places all columns in the degree lists. Not user-callable. | |
1926 */ | |
1927 | |
1928 PRIVATE void init_scoring | |
1929 ( | |
1930 /* === Parameters ======================================================= */ | |
1931 | |
1932 Int n_row, /* number of rows of A */ | |
1933 Int n_col, /* number of columns of A */ | |
1934 Colamd_Row Row [], /* of size n_row+1 */ | |
1935 Colamd_Col Col [], /* of size n_col+1 */ | |
1936 Int A [], /* column form and row form of A */ | |
1937 Int head [], /* of size n_col+1 */ | |
1938 double knobs [COLAMD_KNOBS],/* parameters */ | |
1939 Int *p_n_row2, /* number of non-dense, non-empty rows */ | |
1940 Int *p_n_col2, /* number of non-dense, non-empty columns */ | |
1941 Int *p_max_deg /* maximum row degree */ | |
1942 ) | |
1943 { | |
1944 /* === Local variables ================================================== */ | |
1945 | |
1946 Int c ; /* a column index */ | |
1947 Int r, row ; /* a row index */ | |
1948 Int *cp ; /* a column pointer */ | |
1949 Int deg ; /* degree of a row or column */ | |
1950 Int *cp_end ; /* a pointer to the end of a column */ | |
1951 Int *new_cp ; /* new column pointer */ | |
1952 Int col_length ; /* length of pruned column */ | |
1953 Int score ; /* current column score */ | |
1954 Int n_col2 ; /* number of non-dense, non-empty columns */ | |
1955 Int n_row2 ; /* number of non-dense, non-empty rows */ | |
1956 Int dense_row_count ; /* remove rows with more entries than this */ | |
1957 Int dense_col_count ; /* remove cols with more entries than this */ | |
1958 Int min_score ; /* smallest column score */ | |
1959 Int max_deg ; /* maximum row degree */ | |
1960 Int next_col ; /* Used to add to degree list.*/ | |
1961 | |
1962 #ifndef NDEBUG | |
1963 Int debug_count ; /* debug only. */ | |
1964 #endif /* NDEBUG */ | |
1965 | |
1966 /* === Extract knobs ==================================================== */ | |
1967 | |
1968 /* Note: if knobs contains a NaN, this is undefined: */ | |
1969 if (knobs [COLAMD_DENSE_ROW] < 0) | |
1970 { | |
1971 /* only remove completely dense rows */ | |
1972 dense_row_count = n_col-1 ; | |
1973 } | |
1974 else | |
1975 { | |
1976 dense_row_count = DENSE_DEGREE (knobs [COLAMD_DENSE_ROW], n_col) ; | |
1977 } | |
1978 if (knobs [COLAMD_DENSE_COL] < 0) | |
1979 { | |
1980 /* only remove completely dense columns */ | |
1981 dense_col_count = n_row-1 ; | |
1982 } | |
1983 else | |
1984 { | |
1985 dense_col_count = | |
1986 DENSE_DEGREE (knobs [COLAMD_DENSE_COL], MIN (n_row, n_col)) ; | |
1987 } | |
1988 | |
1989 DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ; | |
1990 max_deg = 0 ; | |
1991 n_col2 = n_col ; | |
1992 n_row2 = n_row ; | |
1993 | |
1994 /* === Kill empty columns =============================================== */ | |
1995 | |
1996 /* Put the empty columns at the end in their natural order, so that LU */ | |
1997 /* factorization can proceed as far as possible. */ | |
1998 for (c = n_col-1 ; c >= 0 ; c--) | |
1999 { | |
2000 deg = Col [c].length ; | |
2001 if (deg == 0) | |
2002 { | |
2003 /* this is a empty column, kill and order it last */ | |
2004 Col [c].shared2.order = --n_col2 ; | |
2005 KILL_PRINCIPAL_COL (c) ; | |
2006 } | |
2007 } | |
2008 DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ; | |
2009 | |
2010 /* === Kill dense columns =============================================== */ | |
2011 | |
2012 /* Put the dense columns at the end, in their natural order */ | |
2013 for (c = n_col-1 ; c >= 0 ; c--) | |
2014 { | |
2015 /* skip any dead columns */ | |
2016 if (COL_IS_DEAD (c)) | |
2017 { | |
2018 continue ; | |
2019 } | |
2020 deg = Col [c].length ; | |
2021 if (deg > dense_col_count) | |
2022 { | |
2023 /* this is a dense column, kill and order it last */ | |
2024 Col [c].shared2.order = --n_col2 ; | |
2025 /* decrement the row degrees */ | |
2026 cp = &A [Col [c].start] ; | |
2027 cp_end = cp + Col [c].length ; | |
2028 while (cp < cp_end) | |
2029 { | |
2030 Row [*cp++].shared1.degree-- ; | |
2031 } | |
2032 KILL_PRINCIPAL_COL (c) ; | |
2033 } | |
2034 } | |
2035 DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ; | |
2036 | |
2037 /* === Kill dense and empty rows ======================================== */ | |
2038 | |
2039 for (r = 0 ; r < n_row ; r++) | |
2040 { | |
2041 deg = Row [r].shared1.degree ; | |
2042 ASSERT (deg >= 0 && deg <= n_col) ; | |
2043 if (deg > dense_row_count || deg == 0) | |
2044 { | |
2045 /* kill a dense or empty row */ | |
2046 KILL_ROW (r) ; | |
2047 --n_row2 ; | |
2048 } | |
2049 else | |
2050 { | |
2051 /* keep track of max degree of remaining rows */ | |
2052 max_deg = MAX (max_deg, deg) ; | |
2053 } | |
2054 } | |
2055 DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ; | |
2056 | |
2057 /* === Compute initial column scores ==================================== */ | |
2058 | |
2059 /* At this point the row degrees are accurate. They reflect the number */ | |
2060 /* of "live" (non-dense) columns in each row. No empty rows exist. */ | |
2061 /* Some "live" columns may contain only dead rows, however. These are */ | |
2062 /* pruned in the code below. */ | |
2063 | |
2064 /* now find the initial matlab score for each column */ | |
2065 for (c = n_col-1 ; c >= 0 ; c--) | |
2066 { | |
2067 /* skip dead column */ | |
2068 if (COL_IS_DEAD (c)) | |
2069 { | |
2070 continue ; | |
2071 } | |
2072 score = 0 ; | |
2073 cp = &A [Col [c].start] ; | |
2074 new_cp = cp ; | |
2075 cp_end = cp + Col [c].length ; | |
2076 while (cp < cp_end) | |
2077 { | |
2078 /* get a row */ | |
2079 row = *cp++ ; | |
2080 /* skip if dead */ | |
2081 if (ROW_IS_DEAD (row)) | |
2082 { | |
2083 continue ; | |
2084 } | |
2085 /* compact the column */ | |
2086 *new_cp++ = row ; | |
2087 /* add row's external degree */ | |
2088 score += Row [row].shared1.degree - 1 ; | |
2089 /* guard against integer overflow */ | |
2090 score = MIN (score, n_col) ; | |
2091 } | |
2092 /* determine pruned column length */ | |
2093 col_length = (Int) (new_cp - &A [Col [c].start]) ; | |
2094 if (col_length == 0) | |
2095 { | |
2096 /* a newly-made null column (all rows in this col are "dense" */ | |
2097 /* and have already been killed) */ | |
2098 DEBUG2 (("Newly null killed: %d\n", c)) ; | |
2099 Col [c].shared2.order = --n_col2 ; | |
2100 KILL_PRINCIPAL_COL (c) ; | |
2101 } | |
2102 else | |
2103 { | |
2104 /* set column length and set score */ | |
2105 ASSERT (score >= 0) ; | |
2106 ASSERT (score <= n_col) ; | |
2107 Col [c].length = col_length ; | |
2108 Col [c].shared2.score = score ; | |
2109 } | |
2110 } | |
2111 DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n", | |
2112 n_col-n_col2)) ; | |
2113 | |
2114 /* At this point, all empty rows and columns are dead. All live columns */ | |
2115 /* are "clean" (containing no dead rows) and simplicial (no supercolumns */ | |
2116 /* yet). Rows may contain dead columns, but all live rows contain at */ | |
2117 /* least one live column. */ | |
2118 | |
2119 #ifndef NDEBUG | |
2120 debug_structures (n_row, n_col, Row, Col, A, n_col2) ; | |
2121 #endif /* NDEBUG */ | |
2122 | |
2123 /* === Initialize degree lists ========================================== */ | |
2124 | |
2125 #ifndef NDEBUG | |
2126 debug_count = 0 ; | |
2127 #endif /* NDEBUG */ | |
2128 | |
2129 /* clear the hash buckets */ | |
2130 for (c = 0 ; c <= n_col ; c++) | |
2131 { | |
2132 head [c] = EMPTY ; | |
2133 } | |
2134 min_score = n_col ; | |
2135 /* place in reverse order, so low column indices are at the front */ | |
2136 /* of the lists. This is to encourage natural tie-breaking */ | |
2137 for (c = n_col-1 ; c >= 0 ; c--) | |
2138 { | |
2139 /* only add principal columns to degree lists */ | |
2140 if (COL_IS_ALIVE (c)) | |
2141 { | |
2142 DEBUG4 (("place %d score %d minscore %d ncol %d\n", | |
2143 c, Col [c].shared2.score, min_score, n_col)) ; | |
2144 | |
2145 /* === Add columns score to DList =============================== */ | |
2146 | |
2147 score = Col [c].shared2.score ; | |
2148 | |
2149 ASSERT (min_score >= 0) ; | |
2150 ASSERT (min_score <= n_col) ; | |
2151 ASSERT (score >= 0) ; | |
2152 ASSERT (score <= n_col) ; | |
2153 ASSERT (head [score] >= EMPTY) ; | |
2154 | |
2155 /* now add this column to dList at proper score location */ | |
2156 next_col = head [score] ; | |
2157 Col [c].shared3.prev = EMPTY ; | |
2158 Col [c].shared4.degree_next = next_col ; | |
2159 | |
2160 /* if there already was a column with the same score, set its */ | |
2161 /* previous pointer to this new column */ | |
2162 if (next_col != EMPTY) | |
2163 { | |
2164 Col [next_col].shared3.prev = c ; | |
2165 } | |
2166 head [score] = c ; | |
2167 | |
2168 /* see if this score is less than current min */ | |
2169 min_score = MIN (min_score, score) ; | |
2170 | |
2171 #ifndef NDEBUG | |
2172 debug_count++ ; | |
2173 #endif /* NDEBUG */ | |
2174 | |
2175 } | |
2176 } | |
2177 | |
2178 #ifndef NDEBUG | |
2179 DEBUG1 (("colamd: Live cols %d out of %d, non-princ: %d\n", | |
2180 debug_count, n_col, n_col-debug_count)) ; | |
2181 ASSERT (debug_count == n_col2) ; | |
2182 debug_deg_lists (n_row, n_col, Row, Col, head, min_score, n_col2, max_deg) ; | |
2183 #endif /* NDEBUG */ | |
2184 | |
2185 /* === Return number of remaining columns, and max row degree =========== */ | |
2186 | |
2187 *p_n_col2 = n_col2 ; | |
2188 *p_n_row2 = n_row2 ; | |
2189 *p_max_deg = max_deg ; | |
2190 } | |
2191 | |
2192 | |
2193 /* ========================================================================== */ | |
2194 /* === find_ordering ======================================================== */ | |
2195 /* ========================================================================== */ | |
2196 | |
2197 /* | |
2198 Order the principal columns of the supercolumn form of the matrix | |
2199 (no supercolumns on input). Uses a minimum approximate column minimum | |
2200 degree ordering method. Not user-callable. | |
2201 */ | |
2202 | |
2203 PRIVATE Int find_ordering /* return the number of garbage collections */ | |
2204 ( | |
2205 /* === Parameters ======================================================= */ | |
2206 | |
2207 Int n_row, /* number of rows of A */ | |
2208 Int n_col, /* number of columns of A */ | |
2209 Int Alen, /* size of A, 2*nnz + n_col or larger */ | |
2210 Colamd_Row Row [], /* of size n_row+1 */ | |
2211 Colamd_Col Col [], /* of size n_col+1 */ | |
2212 Int A [], /* column form and row form of A */ | |
2213 Int head [], /* of size n_col+1 */ | |
2214 Int n_col2, /* Remaining columns to order */ | |
2215 Int max_deg, /* Maximum row degree */ | |
2216 Int pfree, /* index of first free slot (2*nnz on entry) */ | |
2217 Int aggressive | |
2218 ) | |
2219 { | |
2220 /* === Local variables ================================================== */ | |
2221 | |
2222 Int k ; /* current pivot ordering step */ | |
2223 Int pivot_col ; /* current pivot column */ | |
2224 Int *cp ; /* a column pointer */ | |
2225 Int *rp ; /* a row pointer */ | |
2226 Int pivot_row ; /* current pivot row */ | |
2227 Int *new_cp ; /* modified column pointer */ | |
2228 Int *new_rp ; /* modified row pointer */ | |
2229 Int pivot_row_start ; /* pointer to start of pivot row */ | |
2230 Int pivot_row_degree ; /* number of columns in pivot row */ | |
2231 Int pivot_row_length ; /* number of supercolumns in pivot row */ | |
2232 Int pivot_col_score ; /* score of pivot column */ | |
2233 Int needed_memory ; /* free space needed for pivot row */ | |
2234 Int *cp_end ; /* pointer to the end of a column */ | |
2235 Int *rp_end ; /* pointer to the end of a row */ | |
2236 Int row ; /* a row index */ | |
2237 Int col ; /* a column index */ | |
2238 Int max_score ; /* maximum possible score */ | |
2239 Int cur_score ; /* score of current column */ | |
2240 unsigned Int hash ; /* hash value for supernode detection */ | |
2241 Int head_column ; /* head of hash bucket */ | |
2242 Int first_col ; /* first column in hash bucket */ | |
2243 Int tag_mark ; /* marker value for mark array */ | |
2244 Int row_mark ; /* Row [row].shared2.mark */ | |
2245 Int set_difference ; /* set difference size of row with pivot row */ | |
2246 Int min_score ; /* smallest column score */ | |
2247 Int col_thickness ; /* "thickness" (no. of columns in a supercol) */ | |
2248 Int max_mark ; /* maximum value of tag_mark */ | |
2249 Int pivot_col_thickness ; /* number of columns represented by pivot col */ | |
2250 Int prev_col ; /* Used by Dlist operations. */ | |
2251 Int next_col ; /* Used by Dlist operations. */ | |
2252 Int ngarbage ; /* number of garbage collections performed */ | |
2253 | |
2254 #ifndef NDEBUG | |
2255 Int debug_d ; /* debug loop counter */ | |
2256 Int debug_step = 0 ; /* debug loop counter */ | |
2257 #endif /* NDEBUG */ | |
2258 | |
2259 /* === Initialization and clear mark ==================================== */ | |
2260 | |
2261 max_mark = INT_MAX - n_col ; /* INT_MAX defined in <limits.h> */ | |
2262 tag_mark = clear_mark (0, max_mark, n_row, Row) ; | |
2263 min_score = 0 ; | |
2264 ngarbage = 0 ; | |
2265 DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ; | |
2266 | |
2267 /* === Order the columns ================================================ */ | |
2268 | |
2269 for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */) | |
2270 { | |
2271 | |
2272 #ifndef NDEBUG | |
2273 if (debug_step % 100 == 0) | |
2274 { | |
2275 DEBUG2 (("\n... Step k: %d out of n_col2: %d\n", k, n_col2)) ; | |
2276 } | |
2277 else | |
2278 { | |
2279 DEBUG3 (("\n----------Step k: %d out of n_col2: %d\n", k, n_col2)) ; | |
2280 } | |
2281 debug_step++ ; | |
2282 debug_deg_lists (n_row, n_col, Row, Col, head, | |
2283 min_score, n_col2-k, max_deg) ; | |
2284 debug_matrix (n_row, n_col, Row, Col, A) ; | |
2285 #endif /* NDEBUG */ | |
2286 | |
2287 /* === Select pivot column, and order it ============================ */ | |
2288 | |
2289 /* make sure degree list isn't empty */ | |
2290 ASSERT (min_score >= 0) ; | |
2291 ASSERT (min_score <= n_col) ; | |
2292 ASSERT (head [min_score] >= EMPTY) ; | |
2293 | |
2294 #ifndef NDEBUG | |
2295 for (debug_d = 0 ; debug_d < min_score ; debug_d++) | |
2296 { | |
2297 ASSERT (head [debug_d] == EMPTY) ; | |
2298 } | |
2299 #endif /* NDEBUG */ | |
2300 | |
2301 /* get pivot column from head of minimum degree list */ | |
2302 while (head [min_score] == EMPTY && min_score < n_col) | |
2303 { | |
2304 min_score++ ; | |
2305 } | |
2306 pivot_col = head [min_score] ; | |
2307 ASSERT (pivot_col >= 0 && pivot_col <= n_col) ; | |
2308 next_col = Col [pivot_col].shared4.degree_next ; | |
2309 head [min_score] = next_col ; | |
2310 if (next_col != EMPTY) | |
2311 { | |
2312 Col [next_col].shared3.prev = EMPTY ; | |
2313 } | |
2314 | |
2315 ASSERT (COL_IS_ALIVE (pivot_col)) ; | |
2316 | |
2317 /* remember score for defrag check */ | |
2318 pivot_col_score = Col [pivot_col].shared2.score ; | |
2319 | |
2320 /* the pivot column is the kth column in the pivot order */ | |
2321 Col [pivot_col].shared2.order = k ; | |
2322 | |
2323 /* increment order count by column thickness */ | |
2324 pivot_col_thickness = Col [pivot_col].shared1.thickness ; | |
2325 k += pivot_col_thickness ; | |
2326 ASSERT (pivot_col_thickness > 0) ; | |
2327 DEBUG3 (("Pivot col: %d thick %d\n", pivot_col, pivot_col_thickness)) ; | |
2328 | |
2329 /* === Garbage_collection, if necessary ============================= */ | |
2330 | |
2331 needed_memory = MIN (pivot_col_score, n_col - k) ; | |
2332 if (pfree + needed_memory >= Alen) | |
2333 { | |
2334 pfree = garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ; | |
2335 ngarbage++ ; | |
2336 /* after garbage collection we will have enough */ | |
2337 ASSERT (pfree + needed_memory < Alen) ; | |
2338 /* garbage collection has wiped out the Row[].shared2.mark array */ | |
2339 tag_mark = clear_mark (0, max_mark, n_row, Row) ; | |
2340 | |
2341 #ifndef NDEBUG | |
2342 debug_matrix (n_row, n_col, Row, Col, A) ; | |
2343 #endif /* NDEBUG */ | |
2344 } | |
2345 | |
2346 /* === Compute pivot row pattern ==================================== */ | |
2347 | |
2348 /* get starting location for this new merged row */ | |
2349 pivot_row_start = pfree ; | |
2350 | |
2351 /* initialize new row counts to zero */ | |
2352 pivot_row_degree = 0 ; | |
2353 | |
2354 /* tag pivot column as having been visited so it isn't included */ | |
2355 /* in merged pivot row */ | |
2356 Col [pivot_col].shared1.thickness = -pivot_col_thickness ; | |
2357 | |
2358 /* pivot row is the union of all rows in the pivot column pattern */ | |
2359 cp = &A [Col [pivot_col].start] ; | |
2360 cp_end = cp + Col [pivot_col].length ; | |
2361 while (cp < cp_end) | |
2362 { | |
2363 /* get a row */ | |
2364 row = *cp++ ; | |
2365 DEBUG4 (("Pivot col pattern %d %d\n", ROW_IS_ALIVE (row), row)) ; | |
2366 /* skip if row is dead */ | |
2367 if (ROW_IS_ALIVE (row)) | |
2368 { | |
2369 rp = &A [Row [row].start] ; | |
2370 rp_end = rp + Row [row].length ; | |
2371 while (rp < rp_end) | |
2372 { | |
2373 /* get a column */ | |
2374 col = *rp++ ; | |
2375 /* add the column, if alive and untagged */ | |
2376 col_thickness = Col [col].shared1.thickness ; | |
2377 if (col_thickness > 0 && COL_IS_ALIVE (col)) | |
2378 { | |
2379 /* tag column in pivot row */ | |
2380 Col [col].shared1.thickness = -col_thickness ; | |
2381 ASSERT (pfree < Alen) ; | |
2382 /* place column in pivot row */ | |
2383 A [pfree++] = col ; | |
2384 pivot_row_degree += col_thickness ; | |
2385 } | |
2386 } | |
2387 } | |
2388 } | |
2389 | |
2390 /* clear tag on pivot column */ | |
2391 Col [pivot_col].shared1.thickness = pivot_col_thickness ; | |
2392 max_deg = MAX (max_deg, pivot_row_degree) ; | |
2393 | |
2394 #ifndef NDEBUG | |
2395 DEBUG3 (("check2\n")) ; | |
2396 debug_mark (n_row, Row, tag_mark, max_mark) ; | |
2397 #endif /* NDEBUG */ | |
2398 | |
2399 /* === Kill all rows used to construct pivot row ==================== */ | |
2400 | |
2401 /* also kill pivot row, temporarily */ | |
2402 cp = &A [Col [pivot_col].start] ; | |
2403 cp_end = cp + Col [pivot_col].length ; | |
2404 while (cp < cp_end) | |
2405 { | |
2406 /* may be killing an already dead row */ | |
2407 row = *cp++ ; | |
2408 DEBUG3 (("Kill row in pivot col: %d\n", row)) ; | |
2409 KILL_ROW (row) ; | |
2410 } | |
2411 | |
2412 /* === Select a row index to use as the new pivot row =============== */ | |
2413 | |
2414 pivot_row_length = pfree - pivot_row_start ; | |
2415 if (pivot_row_length > 0) | |
2416 { | |
2417 /* pick the "pivot" row arbitrarily (first row in col) */ | |
2418 pivot_row = A [Col [pivot_col].start] ; | |
2419 DEBUG3 (("Pivotal row is %d\n", pivot_row)) ; | |
2420 } | |
2421 else | |
2422 { | |
2423 /* there is no pivot row, since it is of zero length */ | |
2424 pivot_row = EMPTY ; | |
2425 ASSERT (pivot_row_length == 0) ; | |
2426 } | |
2427 ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ; | |
2428 | |
2429 /* === Approximate degree computation =============================== */ | |
2430 | |
2431 /* Here begins the computation of the approximate degree. The column */ | |
2432 /* score is the sum of the pivot row "length", plus the size of the */ | |
2433 /* set differences of each row in the column minus the pattern of the */ | |
2434 /* pivot row itself. The column ("thickness") itself is also */ | |
2435 /* excluded from the column score (we thus use an approximate */ | |
2436 /* external degree). */ | |
2437 | |
2438 /* The time taken by the following code (compute set differences, and */ | |
2439 /* add them up) is proportional to the size of the data structure */ | |
2440 /* being scanned - that is, the sum of the sizes of each column in */ | |
2441 /* the pivot row. Thus, the amortized time to compute a column score */ | |
2442 /* is proportional to the size of that column (where size, in this */ | |
2443 /* context, is the column "length", or the number of row indices */ | |
2444 /* in that column). The number of row indices in a column is */ | |
2445 /* monotonically non-decreasing, from the length of the original */ | |
2446 /* column on input to colamd. */ | |
2447 | |
2448 /* === Compute set differences ====================================== */ | |
2449 | |
2450 DEBUG3 (("** Computing set differences phase. **\n")) ; | |
2451 | |
2452 /* pivot row is currently dead - it will be revived later. */ | |
2453 | |
2454 DEBUG3 (("Pivot row: ")) ; | |
2455 /* for each column in pivot row */ | |
2456 rp = &A [pivot_row_start] ; | |
2457 rp_end = rp + pivot_row_length ; | |
2458 while (rp < rp_end) | |
2459 { | |
2460 col = *rp++ ; | |
2461 ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ; | |
2462 DEBUG3 (("Col: %d\n", col)) ; | |
2463 | |
2464 /* clear tags used to construct pivot row pattern */ | |
2465 col_thickness = -Col [col].shared1.thickness ; | |
2466 ASSERT (col_thickness > 0) ; | |
2467 Col [col].shared1.thickness = col_thickness ; | |
2468 | |
2469 /* === Remove column from degree list =========================== */ | |
2470 | |
2471 cur_score = Col [col].shared2.score ; | |
2472 prev_col = Col [col].shared3.prev ; | |
2473 next_col = Col [col].shared4.degree_next ; | |
2474 ASSERT (cur_score >= 0) ; | |
2475 ASSERT (cur_score <= n_col) ; | |
2476 ASSERT (cur_score >= EMPTY) ; | |
2477 if (prev_col == EMPTY) | |
2478 { | |
2479 head [cur_score] = next_col ; | |
2480 } | |
2481 else | |
2482 { | |
2483 Col [prev_col].shared4.degree_next = next_col ; | |
2484 } | |
2485 if (next_col != EMPTY) | |
2486 { | |
2487 Col [next_col].shared3.prev = prev_col ; | |
2488 } | |
2489 | |
2490 /* === Scan the column ========================================== */ | |
2491 | |
2492 cp = &A [Col [col].start] ; | |
2493 cp_end = cp + Col [col].length ; | |
2494 while (cp < cp_end) | |
2495 { | |
2496 /* get a row */ | |
2497 row = *cp++ ; | |
2498 row_mark = Row [row].shared2.mark ; | |
2499 /* skip if dead */ | |
2500 if (ROW_IS_MARKED_DEAD (row_mark)) | |
2501 { | |
2502 continue ; | |
2503 } | |
2504 ASSERT (row != pivot_row) ; | |
2505 set_difference = row_mark - tag_mark ; | |
2506 /* check if the row has been seen yet */ | |
2507 if (set_difference < 0) | |
2508 { | |
2509 ASSERT (Row [row].shared1.degree <= max_deg) ; | |
2510 set_difference = Row [row].shared1.degree ; | |
2511 } | |
2512 /* subtract column thickness from this row's set difference */ | |
2513 set_difference -= col_thickness ; | |
2514 ASSERT (set_difference >= 0) ; | |
2515 /* absorb this row if the set difference becomes zero */ | |
2516 if (set_difference == 0 && aggressive) | |
2517 { | |
2518 DEBUG3 (("aggressive absorption. Row: %d\n", row)) ; | |
2519 KILL_ROW (row) ; | |
2520 } | |
2521 else | |
2522 { | |
2523 /* save the new mark */ | |
2524 Row [row].shared2.mark = set_difference + tag_mark ; | |
2525 } | |
2526 } | |
2527 } | |
2528 | |
2529 #ifndef NDEBUG | |
2530 debug_deg_lists (n_row, n_col, Row, Col, head, | |
2531 min_score, n_col2-k-pivot_row_degree, max_deg) ; | |
2532 #endif /* NDEBUG */ | |
2533 | |
2534 /* === Add up set differences for each column ======================= */ | |
2535 | |
2536 DEBUG3 (("** Adding set differences phase. **\n")) ; | |
2537 | |
2538 /* for each column in pivot row */ | |
2539 rp = &A [pivot_row_start] ; | |
2540 rp_end = rp + pivot_row_length ; | |
2541 while (rp < rp_end) | |
2542 { | |
2543 /* get a column */ | |
2544 col = *rp++ ; | |
2545 ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ; | |
2546 hash = 0 ; | |
2547 cur_score = 0 ; | |
2548 cp = &A [Col [col].start] ; | |
2549 /* compact the column */ | |
2550 new_cp = cp ; | |
2551 cp_end = cp + Col [col].length ; | |
2552 | |
2553 DEBUG4 (("Adding set diffs for Col: %d.\n", col)) ; | |
2554 | |
2555 while (cp < cp_end) | |
2556 { | |
2557 /* get a row */ | |
2558 row = *cp++ ; | |
2559 ASSERT(row >= 0 && row < n_row) ; | |
2560 row_mark = Row [row].shared2.mark ; | |
2561 /* skip if dead */ | |
2562 if (ROW_IS_MARKED_DEAD (row_mark)) | |
2563 { | |
2564 DEBUG4 ((" Row %d, dead\n", row)) ; | |
2565 continue ; | |
2566 } | |
2567 DEBUG4 ((" Row %d, set diff %d\n", row, row_mark-tag_mark)); | |
2568 ASSERT (row_mark >= tag_mark) ; | |
2569 /* compact the column */ | |
2570 *new_cp++ = row ; | |
2571 /* compute hash function */ | |
2572 hash += row ; | |
2573 /* add set difference */ | |
2574 cur_score += row_mark - tag_mark ; | |
2575 /* integer overflow... */ | |
2576 cur_score = MIN (cur_score, n_col) ; | |
2577 } | |
2578 | |
2579 /* recompute the column's length */ | |
2580 Col [col].length = (Int) (new_cp - &A [Col [col].start]) ; | |
2581 | |
2582 /* === Further mass elimination ================================= */ | |
2583 | |
2584 if (Col [col].length == 0) | |
2585 { | |
2586 DEBUG4 (("further mass elimination. Col: %d\n", col)) ; | |
2587 /* nothing left but the pivot row in this column */ | |
2588 KILL_PRINCIPAL_COL (col) ; | |
2589 pivot_row_degree -= Col [col].shared1.thickness ; | |
2590 ASSERT (pivot_row_degree >= 0) ; | |
2591 /* order it */ | |
2592 Col [col].shared2.order = k ; | |
2593 /* increment order count by column thickness */ | |
2594 k += Col [col].shared1.thickness ; | |
2595 } | |
2596 else | |
2597 { | |
2598 /* === Prepare for supercolumn detection ==================== */ | |
2599 | |
2600 DEBUG4 (("Preparing supercol detection for Col: %d.\n", col)) ; | |
2601 | |
2602 /* save score so far */ | |
2603 Col [col].shared2.score = cur_score ; | |
2604 | |
2605 /* add column to hash table, for supercolumn detection */ | |
2606 hash %= n_col + 1 ; | |
2607 | |
2608 DEBUG4 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ; | |
2609 ASSERT (((Int) hash) <= n_col) ; | |
2610 | |
2611 head_column = head [hash] ; | |
2612 if (head_column > EMPTY) | |
2613 { | |
2614 /* degree list "hash" is non-empty, use prev (shared3) of */ | |
2615 /* first column in degree list as head of hash bucket */ | |
2616 first_col = Col [head_column].shared3.headhash ; | |
2617 Col [head_column].shared3.headhash = col ; | |
2618 } | |
2619 else | |
2620 { | |
2621 /* degree list "hash" is empty, use head as hash bucket */ | |
2622 first_col = - (head_column + 2) ; | |
2623 head [hash] = - (col + 2) ; | |
2624 } | |
2625 Col [col].shared4.hash_next = first_col ; | |
2626 | |
2627 /* save hash function in Col [col].shared3.hash */ | |
2628 Col [col].shared3.hash = (Int) hash ; | |
2629 ASSERT (COL_IS_ALIVE (col)) ; | |
2630 } | |
2631 } | |
2632 | |
2633 /* The approximate external column degree is now computed. */ | |
2634 | |
2635 /* === Supercolumn detection ======================================== */ | |
2636 | |
2637 DEBUG3 (("** Supercolumn detection phase. **\n")) ; | |
2638 | |
2639 detect_super_cols ( | |
2640 | |
2641 #ifndef NDEBUG | |
2642 n_col, Row, | |
2643 #endif /* NDEBUG */ | |
2644 | |
2645 Col, A, head, pivot_row_start, pivot_row_length) ; | |
2646 | |
2647 /* === Kill the pivotal column ====================================== */ | |
2648 | |
2649 KILL_PRINCIPAL_COL (pivot_col) ; | |
2650 | |
2651 /* === Clear mark =================================================== */ | |
2652 | |
2653 tag_mark = clear_mark (tag_mark+max_deg+1, max_mark, n_row, Row) ; | |
2654 | |
2655 #ifndef NDEBUG | |
2656 DEBUG3 (("check3\n")) ; | |
2657 debug_mark (n_row, Row, tag_mark, max_mark) ; | |
2658 #endif /* NDEBUG */ | |
2659 | |
2660 /* === Finalize the new pivot row, and column scores ================ */ | |
2661 | |
2662 DEBUG3 (("** Finalize scores phase. **\n")) ; | |
2663 | |
2664 /* for each column in pivot row */ | |
2665 rp = &A [pivot_row_start] ; | |
2666 /* compact the pivot row */ | |
2667 new_rp = rp ; | |
2668 rp_end = rp + pivot_row_length ; | |
2669 while (rp < rp_end) | |
2670 { | |
2671 col = *rp++ ; | |
2672 /* skip dead columns */ | |
2673 if (COL_IS_DEAD (col)) | |
2674 { | |
2675 continue ; | |
2676 } | |
2677 *new_rp++ = col ; | |
2678 /* add new pivot row to column */ | |
2679 A [Col [col].start + (Col [col].length++)] = pivot_row ; | |
2680 | |
2681 /* retrieve score so far and add on pivot row's degree. */ | |
2682 /* (we wait until here for this in case the pivot */ | |
2683 /* row's degree was reduced due to mass elimination). */ | |
2684 cur_score = Col [col].shared2.score + pivot_row_degree ; | |
2685 | |
2686 /* calculate the max possible score as the number of */ | |
2687 /* external columns minus the 'k' value minus the */ | |
2688 /* columns thickness */ | |
2689 max_score = n_col - k - Col [col].shared1.thickness ; | |
2690 | |
2691 /* make the score the external degree of the union-of-rows */ | |
2692 cur_score -= Col [col].shared1.thickness ; | |
2693 | |
2694 /* make sure score is less or equal than the max score */ | |
2695 cur_score = MIN (cur_score, max_score) ; | |
2696 ASSERT (cur_score >= 0) ; | |
2697 | |
2698 /* store updated score */ | |
2699 Col [col].shared2.score = cur_score ; | |
2700 | |
2701 /* === Place column back in degree list ========================= */ | |
2702 | |
2703 ASSERT (min_score >= 0) ; | |
2704 ASSERT (min_score <= n_col) ; | |
2705 ASSERT (cur_score >= 0) ; | |
2706 ASSERT (cur_score <= n_col) ; | |
2707 ASSERT (head [cur_score] >= EMPTY) ; | |
2708 next_col = head [cur_score] ; | |
2709 Col [col].shared4.degree_next = next_col ; | |
2710 Col [col].shared3.prev = EMPTY ; | |
2711 if (next_col != EMPTY) | |
2712 { | |
2713 Col [next_col].shared3.prev = col ; | |
2714 } | |
2715 head [cur_score] = col ; | |
2716 | |
2717 /* see if this score is less than current min */ | |
2718 min_score = MIN (min_score, cur_score) ; | |
2719 | |
2720 } | |
2721 | |
2722 #ifndef NDEBUG | |
2723 debug_deg_lists (n_row, n_col, Row, Col, head, | |
2724 min_score, n_col2-k, max_deg) ; | |
2725 #endif /* NDEBUG */ | |
2726 | |
2727 /* === Resurrect the new pivot row ================================== */ | |
2728 | |
2729 if (pivot_row_degree > 0) | |
2730 { | |
2731 /* update pivot row length to reflect any cols that were killed */ | |
2732 /* during super-col detection and mass elimination */ | |
2733 Row [pivot_row].start = pivot_row_start ; | |
2734 Row [pivot_row].length = (Int) (new_rp - &A[pivot_row_start]) ; | |
2735 ASSERT (Row [pivot_row].length > 0) ; | |
2736 Row [pivot_row].shared1.degree = pivot_row_degree ; | |
2737 Row [pivot_row].shared2.mark = 0 ; | |
2738 /* pivot row is no longer dead */ | |
2739 | |
2740 DEBUG1 (("Resurrect Pivot_row %d deg: %d\n", | |
2741 pivot_row, pivot_row_degree)) ; | |
2742 } | |
2743 } | |
2744 | |
2745 /* === All principal columns have now been ordered ====================== */ | |
2746 | |
2747 return (ngarbage) ; | |
2748 } | |
2749 | |
2750 | |
2751 /* ========================================================================== */ | |
2752 /* === order_children ======================================================= */ | |
2753 /* ========================================================================== */ | |
2754 | |
2755 /* | |
2756 The find_ordering routine has ordered all of the principal columns (the | |
2757 representatives of the supercolumns). The non-principal columns have not | |
2758 yet been ordered. This routine orders those columns by walking up the | |
2759 parent tree (a column is a child of the column which absorbed it). The | |
2760 final permutation vector is then placed in p [0 ... n_col-1], with p [0] | |
2761 being the first column, and p [n_col-1] being the last. It doesn't look | |
2762 like it at first glance, but be assured that this routine takes time linear | |
2763 in the number of columns. Although not immediately obvious, the time | |
2764 taken by this routine is O (n_col), that is, linear in the number of | |
2765 columns. Not user-callable. | |
2766 */ | |
2767 | |
2768 PRIVATE void order_children | |
2769 ( | |
2770 /* === Parameters ======================================================= */ | |
2771 | |
2772 Int n_col, /* number of columns of A */ | |
2773 Colamd_Col Col [], /* of size n_col+1 */ | |
2774 Int p [] /* p [0 ... n_col-1] is the column permutation*/ | |
2775 ) | |
2776 { | |
2777 /* === Local variables ================================================== */ | |
2778 | |
2779 Int i ; /* loop counter for all columns */ | |
2780 Int c ; /* column index */ | |
2781 Int parent ; /* index of column's parent */ | |
2782 Int order ; /* column's order */ | |
2783 | |
2784 /* === Order each non-principal column ================================== */ | |
2785 | |
2786 for (i = 0 ; i < n_col ; i++) | |
2787 { | |
2788 /* find an un-ordered non-principal column */ | |
2789 ASSERT (COL_IS_DEAD (i)) ; | |
2790 if (!COL_IS_DEAD_PRINCIPAL (i) && Col [i].shared2.order == EMPTY) | |
2791 { | |
2792 parent = i ; | |
2793 /* once found, find its principal parent */ | |
2794 do | |
2795 { | |
2796 parent = Col [parent].shared1.parent ; | |
2797 } while (!COL_IS_DEAD_PRINCIPAL (parent)) ; | |
2798 | |
2799 /* now, order all un-ordered non-principal columns along path */ | |
2800 /* to this parent. collapse tree at the same time */ | |
2801 c = i ; | |
2802 /* get order of parent */ | |
2803 order = Col [parent].shared2.order ; | |
2804 | |
2805 do | |
2806 { | |
2807 ASSERT (Col [c].shared2.order == EMPTY) ; | |
2808 | |
2809 /* order this column */ | |
2810 Col [c].shared2.order = order++ ; | |
2811 /* collaps tree */ | |
2812 Col [c].shared1.parent = parent ; | |
2813 | |
2814 /* get immediate parent of this column */ | |
2815 c = Col [c].shared1.parent ; | |
2816 | |
2817 /* continue until we hit an ordered column. There are */ | |
2818 /* guarranteed not to be anymore unordered columns */ | |
2819 /* above an ordered column */ | |
2820 } while (Col [c].shared2.order == EMPTY) ; | |
2821 | |
2822 /* re-order the super_col parent to largest order for this group */ | |
2823 Col [parent].shared2.order = order ; | |
2824 } | |
2825 } | |
2826 | |
2827 /* === Generate the permutation ========================================= */ | |
2828 | |
2829 for (c = 0 ; c < n_col ; c++) | |
2830 { | |
2831 p [Col [c].shared2.order] = c ; | |
2832 } | |
2833 } | |
2834 | |
2835 | |
2836 /* ========================================================================== */ | |
2837 /* === detect_super_cols ==================================================== */ | |
2838 /* ========================================================================== */ | |
2839 | |
2840 /* | |
2841 Detects supercolumns by finding matches between columns in the hash buckets. | |
2842 Check amongst columns in the set A [row_start ... row_start + row_length-1]. | |
2843 The columns under consideration are currently *not* in the degree lists, | |
2844 and have already been placed in the hash buckets. | |
2845 | |
2846 The hash bucket for columns whose hash function is equal to h is stored | |
2847 as follows: | |
2848 | |
2849 if head [h] is >= 0, then head [h] contains a degree list, so: | |
2850 | |
2851 head [h] is the first column in degree bucket h. | |
2852 Col [head [h]].headhash gives the first column in hash bucket h. | |
2853 | |
2854 otherwise, the degree list is empty, and: | |
2855 | |
2856 -(head [h] + 2) is the first column in hash bucket h. | |
2857 | |
2858 For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous | |
2859 column" pointer. Col [c].shared3.hash is used instead as the hash number | |
2860 for that column. The value of Col [c].shared4.hash_next is the next column | |
2861 in the same hash bucket. | |
2862 | |
2863 Assuming no, or "few" hash collisions, the time taken by this routine is | |
2864 linear in the sum of the sizes (lengths) of each column whose score has | |
2865 just been computed in the approximate degree computation. | |
2866 Not user-callable. | |
2867 */ | |
2868 | |
2869 PRIVATE void detect_super_cols | |
2870 ( | |
2871 /* === Parameters ======================================================= */ | |
2872 | |
2873 #ifndef NDEBUG | |
2874 /* these two parameters are only needed when debugging is enabled: */ | |
2875 Int n_col, /* number of columns of A */ | |
2876 Colamd_Row Row [], /* of size n_row+1 */ | |
2877 #endif /* NDEBUG */ | |
2878 | |
2879 Colamd_Col Col [], /* of size n_col+1 */ | |
2880 Int A [], /* row indices of A */ | |
2881 Int head [], /* head of degree lists and hash buckets */ | |
2882 Int row_start, /* pointer to set of columns to check */ | |
2883 Int row_length /* number of columns to check */ | |
2884 ) | |
2885 { | |
2886 /* === Local variables ================================================== */ | |
2887 | |
2888 Int hash ; /* hash value for a column */ | |
2889 Int *rp ; /* pointer to a row */ | |
2890 Int c ; /* a column index */ | |
2891 Int super_c ; /* column index of the column to absorb into */ | |
2892 Int *cp1 ; /* column pointer for column super_c */ | |
2893 Int *cp2 ; /* column pointer for column c */ | |
2894 Int length ; /* length of column super_c */ | |
2895 Int prev_c ; /* column preceding c in hash bucket */ | |
2896 Int i ; /* loop counter */ | |
2897 Int *rp_end ; /* pointer to the end of the row */ | |
2898 Int col ; /* a column index in the row to check */ | |
2899 Int head_column ; /* first column in hash bucket or degree list */ | |
2900 Int first_col ; /* first column in hash bucket */ | |
2901 | |
2902 /* === Consider each column in the row ================================== */ | |
2903 | |
2904 rp = &A [row_start] ; | |
2905 rp_end = rp + row_length ; | |
2906 while (rp < rp_end) | |
2907 { | |
2908 col = *rp++ ; | |
2909 if (COL_IS_DEAD (col)) | |
2910 { | |
2911 continue ; | |
2912 } | |
2913 | |
2914 /* get hash number for this column */ | |
2915 hash = Col [col].shared3.hash ; | |
2916 ASSERT (hash <= n_col) ; | |
2917 | |
2918 /* === Get the first column in this hash bucket ===================== */ | |
2919 | |
2920 head_column = head [hash] ; | |
2921 if (head_column > EMPTY) | |
2922 { | |
2923 first_col = Col [head_column].shared3.headhash ; | |
2924 } | |
2925 else | |
2926 { | |
2927 first_col = - (head_column + 2) ; | |
2928 } | |
2929 | |
2930 /* === Consider each column in the hash bucket ====================== */ | |
2931 | |
2932 for (super_c = first_col ; super_c != EMPTY ; | |
2933 super_c = Col [super_c].shared4.hash_next) | |
2934 { | |
2935 ASSERT (COL_IS_ALIVE (super_c)) ; | |
2936 ASSERT (Col [super_c].shared3.hash == hash) ; | |
2937 length = Col [super_c].length ; | |
2938 | |
2939 /* prev_c is the column preceding column c in the hash bucket */ | |
2940 prev_c = super_c ; | |
2941 | |
2942 /* === Compare super_c with all columns after it ================ */ | |
2943 | |
2944 for (c = Col [super_c].shared4.hash_next ; | |
2945 c != EMPTY ; c = Col [c].shared4.hash_next) | |
2946 { | |
2947 ASSERT (c != super_c) ; | |
2948 ASSERT (COL_IS_ALIVE (c)) ; | |
2949 ASSERT (Col [c].shared3.hash == hash) ; | |
2950 | |
2951 /* not identical if lengths or scores are different */ | |
2952 if (Col [c].length != length || | |
2953 Col [c].shared2.score != Col [super_c].shared2.score) | |
2954 { | |
2955 prev_c = c ; | |
2956 continue ; | |
2957 } | |
2958 | |
2959 /* compare the two columns */ | |
2960 cp1 = &A [Col [super_c].start] ; | |
2961 cp2 = &A [Col [c].start] ; | |
2962 | |
2963 for (i = 0 ; i < length ; i++) | |
2964 { | |
2965 /* the columns are "clean" (no dead rows) */ | |
2966 ASSERT (ROW_IS_ALIVE (*cp1)) ; | |
2967 ASSERT (ROW_IS_ALIVE (*cp2)) ; | |
2968 /* row indices will same order for both supercols, */ | |
2969 /* no gather scatter nessasary */ | |
2970 if (*cp1++ != *cp2++) | |
2971 { | |
2972 break ; | |
2973 } | |
2974 } | |
2975 | |
2976 /* the two columns are different if the for-loop "broke" */ | |
2977 if (i != length) | |
2978 { | |
2979 prev_c = c ; | |
2980 continue ; | |
2981 } | |
2982 | |
2983 /* === Got it! two columns are identical =================== */ | |
2984 | |
2985 ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ; | |
2986 | |
2987 Col [super_c].shared1.thickness += Col [c].shared1.thickness ; | |
2988 Col [c].shared1.parent = super_c ; | |
2989 KILL_NON_PRINCIPAL_COL (c) ; | |
2990 /* order c later, in order_children() */ | |
2991 Col [c].shared2.order = EMPTY ; | |
2992 /* remove c from hash bucket */ | |
2993 Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ; | |
2994 } | |
2995 } | |
2996 | |
2997 /* === Empty this hash bucket ======================================= */ | |
2998 | |
2999 if (head_column > EMPTY) | |
3000 { | |
3001 /* corresponding degree list "hash" is not empty */ | |
3002 Col [head_column].shared3.headhash = EMPTY ; | |
3003 } | |
3004 else | |
3005 { | |
3006 /* corresponding degree list "hash" is empty */ | |
3007 head [hash] = EMPTY ; | |
3008 } | |
3009 } | |
3010 } | |
3011 | |
3012 | |
3013 /* ========================================================================== */ | |
3014 /* === garbage_collection =================================================== */ | |
3015 /* ========================================================================== */ | |
3016 | |
3017 /* | |
3018 Defragments and compacts columns and rows in the workspace A. Used when | |
3019 all avaliable memory has been used while performing row merging. Returns | |
3020 the index of the first free position in A, after garbage collection. The | |
3021 time taken by this routine is linear is the size of the array A, which is | |
3022 itself linear in the number of nonzeros in the input matrix. | |
3023 Not user-callable. | |
3024 */ | |
3025 | |
3026 PRIVATE Int garbage_collection /* returns the new value of pfree */ | |
3027 ( | |
3028 /* === Parameters ======================================================= */ | |
3029 | |
3030 Int n_row, /* number of rows */ | |
3031 Int n_col, /* number of columns */ | |
3032 Colamd_Row Row [], /* row info */ | |
3033 Colamd_Col Col [], /* column info */ | |
3034 Int A [], /* A [0 ... Alen-1] holds the matrix */ | |
3035 Int *pfree /* &A [0] ... pfree is in use */ | |
3036 ) | |
3037 { | |
3038 /* === Local variables ================================================== */ | |
3039 | |
3040 Int *psrc ; /* source pointer */ | |
3041 Int *pdest ; /* destination pointer */ | |
3042 Int j ; /* counter */ | |
3043 Int r ; /* a row index */ | |
3044 Int c ; /* a column index */ | |
3045 Int length ; /* length of a row or column */ | |
3046 | |
3047 #ifndef NDEBUG | |
3048 Int debug_rows ; | |
3049 DEBUG2 (("Defrag..\n")) ; | |
3050 for (psrc = &A[0] ; psrc < pfree ; psrc++) ASSERT (*psrc >= 0) ; | |
3051 debug_rows = 0 ; | |
3052 #endif /* NDEBUG */ | |
3053 | |
3054 /* === Defragment the columns =========================================== */ | |
3055 | |
3056 pdest = &A[0] ; | |
3057 for (c = 0 ; c < n_col ; c++) | |
3058 { | |
3059 if (COL_IS_ALIVE (c)) | |
3060 { | |
3061 psrc = &A [Col [c].start] ; | |
3062 | |
3063 /* move and compact the column */ | |
3064 ASSERT (pdest <= psrc) ; | |
3065 Col [c].start = (Int) (pdest - &A [0]) ; | |
3066 length = Col [c].length ; | |
3067 for (j = 0 ; j < length ; j++) | |
3068 { | |
3069 r = *psrc++ ; | |
3070 if (ROW_IS_ALIVE (r)) | |
3071 { | |
3072 *pdest++ = r ; | |
3073 } | |
3074 } | |
3075 Col [c].length = (Int) (pdest - &A [Col [c].start]) ; | |
3076 } | |
3077 } | |
3078 | |
3079 /* === Prepare to defragment the rows =================================== */ | |
3080 | |
3081 for (r = 0 ; r < n_row ; r++) | |
3082 { | |
3083 if (ROW_IS_DEAD (r) || (Row [r].length == 0)) | |
3084 { | |
3085 /* This row is already dead, or is of zero length. Cannot compact | |
3086 * a row of zero length, so kill it. NOTE: in the current version, | |
3087 * there are no zero-length live rows. Kill the row (for the first | |
3088 * time, or again) just to be safe. */ | |
3089 KILL_ROW (r) ; | |
3090 } | |
3091 else | |
3092 { | |
3093 /* save first column index in Row [r].shared2.first_column */ | |
3094 psrc = &A [Row [r].start] ; | |
3095 Row [r].shared2.first_column = *psrc ; | |
3096 ASSERT (ROW_IS_ALIVE (r)) ; | |
3097 /* flag the start of the row with the one's complement of row */ | |
3098 *psrc = ONES_COMPLEMENT (r) ; | |
3099 #ifndef NDEBUG | |
3100 debug_rows++ ; | |
3101 #endif /* NDEBUG */ | |
3102 } | |
3103 } | |
3104 | |
3105 /* === Defragment the rows ============================================== */ | |
3106 | |
3107 psrc = pdest ; | |
3108 while (psrc < pfree) | |
3109 { | |
3110 /* find a negative number ... the start of a row */ | |
3111 if (*psrc++ < 0) | |
3112 { | |
3113 psrc-- ; | |
3114 /* get the row index */ | |
3115 r = ONES_COMPLEMENT (*psrc) ; | |
3116 ASSERT (r >= 0 && r < n_row) ; | |
3117 /* restore first column index */ | |
3118 *psrc = Row [r].shared2.first_column ; | |
3119 ASSERT (ROW_IS_ALIVE (r)) ; | |
3120 ASSERT (Row [r].length > 0) ; | |
3121 /* move and compact the row */ | |
3122 ASSERT (pdest <= psrc) ; | |
3123 Row [r].start = (Int) (pdest - &A [0]) ; | |
3124 length = Row [r].length ; | |
3125 for (j = 0 ; j < length ; j++) | |
3126 { | |
3127 c = *psrc++ ; | |
3128 if (COL_IS_ALIVE (c)) | |
3129 { | |
3130 *pdest++ = c ; | |
3131 } | |
3132 } | |
3133 Row [r].length = (Int) (pdest - &A [Row [r].start]) ; | |
3134 ASSERT (Row [r].length > 0) ; | |
3135 #ifndef NDEBUG | |
3136 debug_rows-- ; | |
3137 #endif /* NDEBUG */ | |
3138 } | |
3139 } | |
3140 /* ensure we found all the rows */ | |
3141 ASSERT (debug_rows == 0) ; | |
3142 | |
3143 /* === Return the new value of pfree ==================================== */ | |
3144 | |
3145 return ((Int) (pdest - &A [0])) ; | |
3146 } | |
3147 | |
3148 | |
3149 /* ========================================================================== */ | |
3150 /* === clear_mark =========================================================== */ | |
3151 /* ========================================================================== */ | |
3152 | |
3153 /* | |
3154 Clears the Row [].shared2.mark array, and returns the new tag_mark. | |
3155 Return value is the new tag_mark. Not user-callable. | |
3156 */ | |
3157 | |
3158 PRIVATE Int clear_mark /* return the new value for tag_mark */ | |
3159 ( | |
3160 /* === Parameters ======================================================= */ | |
3161 | |
3162 Int tag_mark, /* new value of tag_mark */ | |
3163 Int max_mark, /* max allowed value of tag_mark */ | |
3164 | |
3165 Int n_row, /* number of rows in A */ | |
3166 Colamd_Row Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */ | |
3167 ) | |
3168 { | |
3169 /* === Local variables ================================================== */ | |
3170 | |
3171 Int r ; | |
3172 | |
3173 if (tag_mark <= 0 || tag_mark >= max_mark) | |
3174 { | |
3175 for (r = 0 ; r < n_row ; r++) | |
3176 { | |
3177 if (ROW_IS_ALIVE (r)) | |
3178 { | |
3179 Row [r].shared2.mark = 0 ; | |
3180 } | |
3181 } | |
3182 tag_mark = 1 ; | |
3183 } | |
3184 | |
3185 return (tag_mark) ; | |
3186 } | |
3187 | |
3188 | |
3189 /* ========================================================================== */ | |
3190 /* === print_report ========================================================= */ | |
3191 /* ========================================================================== */ | |
3192 | |
3193 PRIVATE void print_report | |
3194 ( | |
3195 char *method, | |
3196 Int stats [COLAMD_STATS] | |
3197 ) | |
3198 { | |
3199 | |
3200 Int i1, i2, i3 ; | |
3201 | |
3202 PRINTF (("\n%s version %d.%d, %s: ", method, | |
3203 COLAMD_MAIN_VERSION, COLAMD_SUB_VERSION, COLAMD_DATE)) ; | |
3204 | |
3205 if (!stats) | |
3206 { | |
3207 PRINTF (("No statistics available.\n")) ; | |
3208 return ; | |
3209 } | |
3210 | |
3211 i1 = stats [COLAMD_INFO1] ; | |
3212 i2 = stats [COLAMD_INFO2] ; | |
3213 i3 = stats [COLAMD_INFO3] ; | |
3214 | |
3215 if (stats [COLAMD_STATUS] >= 0) | |
3216 { | |
3217 PRINTF (("OK. ")) ; | |
3218 } | |
3219 else | |
3220 { | |
3221 PRINTF (("ERROR. ")) ; | |
3222 } | |
3223 | |
3224 switch (stats [COLAMD_STATUS]) | |
3225 { | |
3226 | |
3227 case COLAMD_OK_BUT_JUMBLED: | |
3228 | |
3229 PRINTF(("Matrix has unsorted or duplicate row indices.\n")) ; | |
3230 | |
3231 PRINTF(("%s: number of duplicate or out-of-order row indices: %d\n", | |
3232 method, i3)) ; | |
3233 | |
3234 PRINTF(("%s: last seen duplicate or out-of-order row index: %d\n", | |
3235 method, INDEX (i2))) ; | |
3236 | |
3237 PRINTF(("%s: last seen in column: %d", | |
3238 method, INDEX (i1))) ; | |
3239 | |
3240 /* no break - fall through to next case instead */ | |
3241 | |
3242 case COLAMD_OK: | |
3243 | |
3244 PRINTF(("\n")) ; | |
3245 | |
3246 PRINTF(("%s: number of dense or empty rows ignored: %d\n", | |
3247 method, stats [COLAMD_DENSE_ROW])) ; | |
3248 | |
3249 PRINTF(("%s: number of dense or empty columns ignored: %d\n", | |
3250 method, stats [COLAMD_DENSE_COL])) ; | |
3251 | |
3252 PRINTF(("%s: number of garbage collections performed: %d\n", | |
3253 method, stats [COLAMD_DEFRAG_COUNT])) ; | |
3254 break ; | |
3255 | |
3256 case COLAMD_ERROR_A_not_present: | |
3257 | |
3258 PRINTF(("Array A (row indices of matrix) not present.\n")) ; | |
3259 break ; | |
3260 | |
3261 case COLAMD_ERROR_p_not_present: | |
3262 | |
3263 PRINTF(("Array p (column pointers for matrix) not present.\n")) ; | |
3264 break ; | |
3265 | |
3266 case COLAMD_ERROR_nrow_negative: | |
3267 | |
3268 PRINTF(("Invalid number of rows (%d).\n", i1)) ; | |
3269 break ; | |
3270 | |
3271 case COLAMD_ERROR_ncol_negative: | |
3272 | |
3273 PRINTF(("Invalid number of columns (%d).\n", i1)) ; | |
3274 break ; | |
3275 | |
3276 case COLAMD_ERROR_nnz_negative: | |
3277 | |
3278 PRINTF(("Invalid number of nonzero entries (%d).\n", i1)) ; | |
3279 break ; | |
3280 | |
3281 case COLAMD_ERROR_p0_nonzero: | |
3282 | |
3283 PRINTF(("Invalid column pointer, p [0] = %d, must be zero.\n", i1)); | |
3284 break ; | |
3285 | |
3286 case COLAMD_ERROR_A_too_small: | |
3287 | |
3288 PRINTF(("Array A too small.\n")) ; | |
3289 PRINTF((" Need Alen >= %d, but given only Alen = %d.\n", | |
3290 i1, i2)) ; | |
3291 break ; | |
3292 | |
3293 case COLAMD_ERROR_col_length_negative: | |
3294 | |
3295 PRINTF | |
3296 (("Column %d has a negative number of nonzero entries (%d).\n", | |
3297 INDEX (i1), i2)) ; | |
3298 break ; | |
3299 | |
3300 case COLAMD_ERROR_row_index_out_of_bounds: | |
3301 | |
3302 PRINTF | |
3303 (("Row index (row %d) out of bounds (%d to %d) in column %d.\n", | |
3304 INDEX (i2), INDEX (0), INDEX (i3-1), INDEX (i1))) ; | |
3305 break ; | |
3306 | |
3307 case COLAMD_ERROR_out_of_memory: | |
3308 | |
3309 PRINTF(("Out of memory.\n")) ; | |
3310 break ; | |
3311 | |
3312 /* v2.4: internal-error case deleted */ | |
3313 } | |
3314 } | |
3315 | |
3316 | |
3317 | |
3318 | |
3319 /* ========================================================================== */ | |
3320 /* === colamd debugging routines ============================================ */ | |
3321 /* ========================================================================== */ | |
3322 | |
3323 /* When debugging is disabled, the remainder of this file is ignored. */ | |
3324 | |
3325 #ifndef NDEBUG | |
3326 | |
3327 | |
3328 /* ========================================================================== */ | |
3329 /* === debug_structures ===================================================== */ | |
3330 /* ========================================================================== */ | |
3331 | |
3332 /* | |
3333 At this point, all empty rows and columns are dead. All live columns | |
3334 are "clean" (containing no dead rows) and simplicial (no supercolumns | |
3335 yet). Rows may contain dead columns, but all live rows contain at | |
3336 least one live column. | |
3337 */ | |
3338 | |
3339 PRIVATE void debug_structures | |
3340 ( | |
3341 /* === Parameters ======================================================= */ | |
3342 | |
3343 Int n_row, | |
3344 Int n_col, | |
3345 Colamd_Row Row [], | |
3346 Colamd_Col Col [], | |
3347 Int A [], | |
3348 Int n_col2 | |
3349 ) | |
3350 { | |
3351 /* === Local variables ================================================== */ | |
3352 | |
3353 Int i ; | |
3354 Int c ; | |
3355 Int *cp ; | |
3356 Int *cp_end ; | |
3357 Int len ; | |
3358 Int score ; | |
3359 Int r ; | |
3360 Int *rp ; | |
3361 Int *rp_end ; | |
3362 Int deg ; | |
3363 | |
3364 /* === Check A, Row, and Col ============================================ */ | |
3365 | |
3366 for (c = 0 ; c < n_col ; c++) | |
3367 { | |
3368 if (COL_IS_ALIVE (c)) | |
3369 { | |
3370 len = Col [c].length ; | |
3371 score = Col [c].shared2.score ; | |
3372 DEBUG4 (("initial live col %5d %5d %5d\n", c, len, score)) ; | |
3373 ASSERT (len > 0) ; | |
3374 ASSERT (score >= 0) ; | |
3375 ASSERT (Col [c].shared1.thickness == 1) ; | |
3376 cp = &A [Col [c].start] ; | |
3377 cp_end = cp + len ; | |
3378 while (cp < cp_end) | |
3379 { | |
3380 r = *cp++ ; | |
3381 ASSERT (ROW_IS_ALIVE (r)) ; | |
3382 } | |
3383 } | |
3384 else | |
3385 { | |
3386 i = Col [c].shared2.order ; | |
3387 ASSERT (i >= n_col2 && i < n_col) ; | |
3388 } | |
3389 } | |
3390 | |
3391 for (r = 0 ; r < n_row ; r++) | |
3392 { | |
3393 if (ROW_IS_ALIVE (r)) | |
3394 { | |
3395 i = 0 ; | |
3396 len = Row [r].length ; | |
3397 deg = Row [r].shared1.degree ; | |
3398 ASSERT (len > 0) ; | |
3399 ASSERT (deg > 0) ; | |
3400 rp = &A [Row [r].start] ; | |
3401 rp_end = rp + len ; | |
3402 while (rp < rp_end) | |
3403 { | |
3404 c = *rp++ ; | |
3405 if (COL_IS_ALIVE (c)) | |
3406 { | |
3407 i++ ; | |
3408 } | |
3409 } | |
3410 ASSERT (i > 0) ; | |
3411 } | |
3412 } | |
3413 } | |
3414 | |
3415 | |
3416 /* ========================================================================== */ | |
3417 /* === debug_deg_lists ====================================================== */ | |
3418 /* ========================================================================== */ | |
3419 | |
3420 /* | |
3421 Prints the contents of the degree lists. Counts the number of columns | |
3422 in the degree list and compares it to the total it should have. Also | |
3423 checks the row degrees. | |
3424 */ | |
3425 | |
3426 PRIVATE void debug_deg_lists | |
3427 ( | |
3428 /* === Parameters ======================================================= */ | |
3429 | |
3430 Int n_row, | |
3431 Int n_col, | |
3432 Colamd_Row Row [], | |
3433 Colamd_Col Col [], | |
3434 Int head [], | |
3435 Int min_score, | |
3436 Int should, | |
3437 Int max_deg | |
3438 ) | |
3439 { | |
3440 /* === Local variables ================================================== */ | |
3441 | |
3442 Int deg ; | |
3443 Int col ; | |
3444 Int have ; | |
3445 Int row ; | |
3446 | |
3447 /* === Check the degree lists =========================================== */ | |
3448 | |
3449 if (n_col > 10000 && colamd_debug <= 0) | |
3450 { | |
3451 return ; | |
3452 } | |
3453 have = 0 ; | |
3454 DEBUG4 (("Degree lists: %d\n", min_score)) ; | |
3455 for (deg = 0 ; deg <= n_col ; deg++) | |
3456 { | |
3457 col = head [deg] ; | |
3458 if (col == EMPTY) | |
3459 { | |
3460 continue ; | |
3461 } | |
3462 DEBUG4 (("%d:", deg)) ; | |
3463 while (col != EMPTY) | |
3464 { | |
3465 DEBUG4 ((" %d", col)) ; | |
3466 have += Col [col].shared1.thickness ; | |
3467 ASSERT (COL_IS_ALIVE (col)) ; | |
3468 col = Col [col].shared4.degree_next ; | |
3469 } | |
3470 DEBUG4 (("\n")) ; | |
3471 } | |
3472 DEBUG4 (("should %d have %d\n", should, have)) ; | |
3473 ASSERT (should == have) ; | |
3474 | |
3475 /* === Check the row degrees ============================================ */ | |
3476 | |
3477 if (n_row > 10000 && colamd_debug <= 0) | |
3478 { | |
3479 return ; | |
3480 } | |
3481 for (row = 0 ; row < n_row ; row++) | |
3482 { | |
3483 if (ROW_IS_ALIVE (row)) | |
3484 { | |
3485 ASSERT (Row [row].shared1.degree <= max_deg) ; | |
3486 } | |
3487 } | |
3488 } | |
3489 | |
3490 | |
3491 /* ========================================================================== */ | |
3492 /* === debug_mark =========================================================== */ | |
3493 /* ========================================================================== */ | |
3494 | |
3495 /* | |
3496 Ensures that the tag_mark is less that the maximum and also ensures that | |
3497 each entry in the mark array is less than the tag mark. | |
3498 */ | |
3499 | |
3500 PRIVATE void debug_mark | |
3501 ( | |
3502 /* === Parameters ======================================================= */ | |
3503 | |
3504 Int n_row, | |
3505 Colamd_Row Row [], | |
3506 Int tag_mark, | |
3507 Int max_mark | |
3508 ) | |
3509 { | |
3510 /* === Local variables ================================================== */ | |
3511 | |
3512 Int r ; | |
3513 | |
3514 /* === Check the Row marks ============================================== */ | |
3515 | |
3516 ASSERT (tag_mark > 0 && tag_mark <= max_mark) ; | |
3517 if (n_row > 10000 && colamd_debug <= 0) | |
3518 { | |
3519 return ; | |
3520 } | |
3521 for (r = 0 ; r < n_row ; r++) | |
3522 { | |
3523 ASSERT (Row [r].shared2.mark < tag_mark) ; | |
3524 } | |
3525 } | |
3526 | |
3527 | |
3528 /* ========================================================================== */ | |
3529 /* === debug_matrix ========================================================= */ | |
3530 /* ========================================================================== */ | |
3531 | |
3532 /* | |
3533 Prints out the contents of the columns and the rows. | |
3534 */ | |
3535 | |
3536 PRIVATE void debug_matrix | |
3537 ( | |
3538 /* === Parameters ======================================================= */ | |
3539 | |
3540 Int n_row, | |
3541 Int n_col, | |
3542 Colamd_Row Row [], | |
3543 Colamd_Col Col [], | |
3544 Int A [] | |
3545 ) | |
3546 { | |
3547 /* === Local variables ================================================== */ | |
3548 | |
3549 Int r ; | |
3550 Int c ; | |
3551 Int *rp ; | |
3552 Int *rp_end ; | |
3553 Int *cp ; | |
3554 Int *cp_end ; | |
3555 | |
3556 /* === Dump the rows and columns of the matrix ========================== */ | |
3557 | |
3558 if (colamd_debug < 3) | |
3559 { | |
3560 return ; | |
3561 } | |
3562 DEBUG3 (("DUMP MATRIX:\n")) ; | |
3563 for (r = 0 ; r < n_row ; r++) | |
3564 { | |
3565 DEBUG3 (("Row %d alive? %d\n", r, ROW_IS_ALIVE (r))) ; | |
3566 if (ROW_IS_DEAD (r)) | |
3567 { | |
3568 continue ; | |
3569 } | |
3570 DEBUG3 (("start %d length %d degree %d\n", | |
3571 Row [r].start, Row [r].length, Row [r].shared1.degree)) ; | |
3572 rp = &A [Row [r].start] ; | |
3573 rp_end = rp + Row [r].length ; | |
3574 while (rp < rp_end) | |
3575 { | |
3576 c = *rp++ ; | |
3577 DEBUG4 ((" %d col %d\n", COL_IS_ALIVE (c), c)) ; | |
3578 } | |
3579 } | |
3580 | |
3581 for (c = 0 ; c < n_col ; c++) | |
3582 { | |
3583 DEBUG3 (("Col %d alive? %d\n", c, COL_IS_ALIVE (c))) ; | |
3584 if (COL_IS_DEAD (c)) | |
3585 { | |
3586 continue ; | |
3587 } | |
3588 DEBUG3 (("start %d length %d shared1 %d shared2 %d\n", | |
3589 Col [c].start, Col [c].length, | |
3590 Col [c].shared1.thickness, Col [c].shared2.score)) ; | |
3591 cp = &A [Col [c].start] ; | |
3592 cp_end = cp + Col [c].length ; | |
3593 while (cp < cp_end) | |
3594 { | |
3595 r = *cp++ ; | |
3596 DEBUG4 ((" %d row %d\n", ROW_IS_ALIVE (r), r)) ; | |
3597 } | |
3598 } | |
3599 } | |
3600 | |
3601 PRIVATE void colamd_get_debug | |
3602 ( | |
3603 char *method | |
3604 ) | |
3605 { | |
3606 FILE *f ; | |
3607 colamd_debug = 0 ; /* no debug printing */ | |
3608 f = fopen ("debug", "r") ; | |
3609 if (f == (FILE *) NULL) | |
3610 { | |
3611 colamd_debug = 0 ; | |
3612 } | |
3613 else | |
3614 { | |
3615 fscanf (f, "%d", &colamd_debug) ; | |
3616 fclose (f) ; | |
3617 } | |
3618 DEBUG0 (("%s: debug version, D = %d (THIS WILL BE SLOW!)\n", | |
3619 method, colamd_debug)) ; | |
3620 } | |
3621 | |
3622 #endif /* NDEBUG */ |