lemon-project-template-glpk

annotate deps/glpk/src/colamd/colamd.c @ 9:33de93886c88

Import GLPK 4.47
author Alpar Juttner <alpar@cs.elte.hu>
date Sun, 06 Nov 2011 20:59:10 +0100
parents
children
rev   line source
alpar@9 1 /* ========================================================================== */
alpar@9 2 /* === colamd/symamd - a sparse matrix column ordering algorithm ============ */
alpar@9 3 /* ========================================================================== */
alpar@9 4
alpar@9 5 /* COLAMD / SYMAMD
alpar@9 6
alpar@9 7 colamd: an approximate minimum degree column ordering algorithm,
alpar@9 8 for LU factorization of symmetric or unsymmetric matrices,
alpar@9 9 QR factorization, least squares, interior point methods for
alpar@9 10 linear programming problems, and other related problems.
alpar@9 11
alpar@9 12 symamd: an approximate minimum degree ordering algorithm for Cholesky
alpar@9 13 factorization of symmetric matrices.
alpar@9 14
alpar@9 15 Purpose:
alpar@9 16
alpar@9 17 Colamd computes a permutation Q such that the Cholesky factorization of
alpar@9 18 (AQ)'(AQ) has less fill-in and requires fewer floating point operations
alpar@9 19 than A'A. This also provides a good ordering for sparse partial
alpar@9 20 pivoting methods, P(AQ) = LU, where Q is computed prior to numerical
alpar@9 21 factorization, and P is computed during numerical factorization via
alpar@9 22 conventional partial pivoting with row interchanges. Colamd is the
alpar@9 23 column ordering method used in SuperLU, part of the ScaLAPACK library.
alpar@9 24 It is also available as built-in function in MATLAB Version 6,
alpar@9 25 available from MathWorks, Inc. (http://www.mathworks.com). This
alpar@9 26 routine can be used in place of colmmd in MATLAB.
alpar@9 27
alpar@9 28 Symamd computes a permutation P of a symmetric matrix A such that the
alpar@9 29 Cholesky factorization of PAP' has less fill-in and requires fewer
alpar@9 30 floating point operations than A. Symamd constructs a matrix M such
alpar@9 31 that M'M has the same nonzero pattern of A, and then orders the columns
alpar@9 32 of M using colmmd. The column ordering of M is then returned as the
alpar@9 33 row and column ordering P of A.
alpar@9 34
alpar@9 35 Authors:
alpar@9 36
alpar@9 37 The authors of the code itself are Stefan I. Larimore and Timothy A.
alpar@9 38 Davis (davis at cise.ufl.edu), University of Florida. The algorithm was
alpar@9 39 developed in collaboration with John Gilbert, Xerox PARC, and Esmond
alpar@9 40 Ng, Oak Ridge National Laboratory.
alpar@9 41
alpar@9 42 Acknowledgements:
alpar@9 43
alpar@9 44 This work was supported by the National Science Foundation, under
alpar@9 45 grants DMS-9504974 and DMS-9803599.
alpar@9 46
alpar@9 47 Copyright and License:
alpar@9 48
alpar@9 49 Copyright (c) 1998-2007, Timothy A. Davis, All Rights Reserved.
alpar@9 50 COLAMD is also available under alternate licenses, contact T. Davis
alpar@9 51 for details.
alpar@9 52
alpar@9 53 This library is free software; you can redistribute it and/or
alpar@9 54 modify it under the terms of the GNU Lesser General Public
alpar@9 55 License as published by the Free Software Foundation; either
alpar@9 56 version 2.1 of the License, or (at your option) any later version.
alpar@9 57
alpar@9 58 This library is distributed in the hope that it will be useful,
alpar@9 59 but WITHOUT ANY WARRANTY; without even the implied warranty of
alpar@9 60 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
alpar@9 61 Lesser General Public License for more details.
alpar@9 62
alpar@9 63 You should have received a copy of the GNU Lesser General Public
alpar@9 64 License along with this library; if not, write to the Free Software
alpar@9 65 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
alpar@9 66 USA
alpar@9 67
alpar@9 68 Permission is hereby granted to use or copy this program under the
alpar@9 69 terms of the GNU LGPL, provided that the Copyright, this License,
alpar@9 70 and the Availability of the original version is retained on all copies.
alpar@9 71 User documentation of any code that uses this code or any modified
alpar@9 72 version of this code must cite the Copyright, this License, the
alpar@9 73 Availability note, and "Used by permission." Permission to modify
alpar@9 74 the code and to distribute modified code is granted, provided the
alpar@9 75 Copyright, this License, and the Availability note are retained,
alpar@9 76 and a notice that the code was modified is included.
alpar@9 77
alpar@9 78 Availability:
alpar@9 79
alpar@9 80 The colamd/symamd library is available at
alpar@9 81
alpar@9 82 http://www.cise.ufl.edu/research/sparse/colamd/
alpar@9 83
alpar@9 84 This is the http://www.cise.ufl.edu/research/sparse/colamd/colamd.c
alpar@9 85 file. It requires the colamd.h file. It is required by the colamdmex.c
alpar@9 86 and symamdmex.c files, for the MATLAB interface to colamd and symamd.
alpar@9 87 Appears as ACM Algorithm 836.
alpar@9 88
alpar@9 89 See the ChangeLog file for changes since Version 1.0.
alpar@9 90
alpar@9 91 References:
alpar@9 92
alpar@9 93 T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, An approximate column
alpar@9 94 minimum degree ordering algorithm, ACM Transactions on Mathematical
alpar@9 95 Software, vol. 30, no. 3., pp. 353-376, 2004.
alpar@9 96
alpar@9 97 T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, Algorithm 836: COLAMD,
alpar@9 98 an approximate column minimum degree ordering algorithm, ACM
alpar@9 99 Transactions on Mathematical Software, vol. 30, no. 3., pp. 377-380,
alpar@9 100 2004.
alpar@9 101
alpar@9 102 */
alpar@9 103
alpar@9 104 /* ========================================================================== */
alpar@9 105 /* === Description of user-callable routines ================================ */
alpar@9 106 /* ========================================================================== */
alpar@9 107
alpar@9 108 /* COLAMD includes both int and UF_long versions of all its routines. The
alpar@9 109 * description below is for the int version. For UF_long, all int arguments
alpar@9 110 * become UF_long. UF_long is normally defined as long, except for WIN64.
alpar@9 111
alpar@9 112 ----------------------------------------------------------------------------
alpar@9 113 colamd_recommended:
alpar@9 114 ----------------------------------------------------------------------------
alpar@9 115
alpar@9 116 C syntax:
alpar@9 117
alpar@9 118 #include "colamd.h"
alpar@9 119 size_t colamd_recommended (int nnz, int n_row, int n_col) ;
alpar@9 120 size_t colamd_l_recommended (UF_long nnz, UF_long n_row,
alpar@9 121 UF_long n_col) ;
alpar@9 122
alpar@9 123 Purpose:
alpar@9 124
alpar@9 125 Returns recommended value of Alen for use by colamd. Returns 0
alpar@9 126 if any input argument is negative. The use of this routine
alpar@9 127 is optional. Not needed for symamd, which dynamically allocates
alpar@9 128 its own memory.
alpar@9 129
alpar@9 130 Note that in v2.4 and earlier, these routines returned int or long.
alpar@9 131 They now return a value of type size_t.
alpar@9 132
alpar@9 133 Arguments (all input arguments):
alpar@9 134
alpar@9 135 int nnz ; Number of nonzeros in the matrix A. This must
alpar@9 136 be the same value as p [n_col] in the call to
alpar@9 137 colamd - otherwise you will get a wrong value
alpar@9 138 of the recommended memory to use.
alpar@9 139
alpar@9 140 int n_row ; Number of rows in the matrix A.
alpar@9 141
alpar@9 142 int n_col ; Number of columns in the matrix A.
alpar@9 143
alpar@9 144 ----------------------------------------------------------------------------
alpar@9 145 colamd_set_defaults:
alpar@9 146 ----------------------------------------------------------------------------
alpar@9 147
alpar@9 148 C syntax:
alpar@9 149
alpar@9 150 #include "colamd.h"
alpar@9 151 colamd_set_defaults (double knobs [COLAMD_KNOBS]) ;
alpar@9 152 colamd_l_set_defaults (double knobs [COLAMD_KNOBS]) ;
alpar@9 153
alpar@9 154 Purpose:
alpar@9 155
alpar@9 156 Sets the default parameters. The use of this routine is optional.
alpar@9 157
alpar@9 158 Arguments:
alpar@9 159
alpar@9 160 double knobs [COLAMD_KNOBS] ; Output only.
alpar@9 161
alpar@9 162 NOTE: the meaning of the dense row/col knobs has changed in v2.4
alpar@9 163
alpar@9 164 knobs [0] and knobs [1] control dense row and col detection:
alpar@9 165
alpar@9 166 Colamd: rows with more than
alpar@9 167 max (16, knobs [COLAMD_DENSE_ROW] * sqrt (n_col))
alpar@9 168 entries are removed prior to ordering. Columns with more than
alpar@9 169 max (16, knobs [COLAMD_DENSE_COL] * sqrt (MIN (n_row,n_col)))
alpar@9 170 entries are removed prior to
alpar@9 171 ordering, and placed last in the output column ordering.
alpar@9 172
alpar@9 173 Symamd: uses only knobs [COLAMD_DENSE_ROW], which is knobs [0].
alpar@9 174 Rows and columns with more than
alpar@9 175 max (16, knobs [COLAMD_DENSE_ROW] * sqrt (n))
alpar@9 176 entries are removed prior to ordering, and placed last in the
alpar@9 177 output ordering.
alpar@9 178
alpar@9 179 COLAMD_DENSE_ROW and COLAMD_DENSE_COL are defined as 0 and 1,
alpar@9 180 respectively, in colamd.h. Default values of these two knobs
alpar@9 181 are both 10. Currently, only knobs [0] and knobs [1] are
alpar@9 182 used, but future versions may use more knobs. If so, they will
alpar@9 183 be properly set to their defaults by the future version of
alpar@9 184 colamd_set_defaults, so that the code that calls colamd will
alpar@9 185 not need to change, assuming that you either use
alpar@9 186 colamd_set_defaults, or pass a (double *) NULL pointer as the
alpar@9 187 knobs array to colamd or symamd.
alpar@9 188
alpar@9 189 knobs [2]: aggressive absorption
alpar@9 190
alpar@9 191 knobs [COLAMD_AGGRESSIVE] controls whether or not to do
alpar@9 192 aggressive absorption during the ordering. Default is TRUE.
alpar@9 193
alpar@9 194
alpar@9 195 ----------------------------------------------------------------------------
alpar@9 196 colamd:
alpar@9 197 ----------------------------------------------------------------------------
alpar@9 198
alpar@9 199 C syntax:
alpar@9 200
alpar@9 201 #include "colamd.h"
alpar@9 202 int colamd (int n_row, int n_col, int Alen, int *A, int *p,
alpar@9 203 double knobs [COLAMD_KNOBS], int stats [COLAMD_STATS]) ;
alpar@9 204 UF_long colamd_l (UF_long n_row, UF_long n_col, UF_long Alen,
alpar@9 205 UF_long *A, UF_long *p, double knobs [COLAMD_KNOBS],
alpar@9 206 UF_long stats [COLAMD_STATS]) ;
alpar@9 207
alpar@9 208 Purpose:
alpar@9 209
alpar@9 210 Computes a column ordering (Q) of A such that P(AQ)=LU or
alpar@9 211 (AQ)'AQ=LL' have less fill-in and require fewer floating point
alpar@9 212 operations than factorizing the unpermuted matrix A or A'A,
alpar@9 213 respectively.
alpar@9 214
alpar@9 215 Returns:
alpar@9 216
alpar@9 217 TRUE (1) if successful, FALSE (0) otherwise.
alpar@9 218
alpar@9 219 Arguments:
alpar@9 220
alpar@9 221 int n_row ; Input argument.
alpar@9 222
alpar@9 223 Number of rows in the matrix A.
alpar@9 224 Restriction: n_row >= 0.
alpar@9 225 Colamd returns FALSE if n_row is negative.
alpar@9 226
alpar@9 227 int n_col ; Input argument.
alpar@9 228
alpar@9 229 Number of columns in the matrix A.
alpar@9 230 Restriction: n_col >= 0.
alpar@9 231 Colamd returns FALSE if n_col is negative.
alpar@9 232
alpar@9 233 int Alen ; Input argument.
alpar@9 234
alpar@9 235 Restriction (see note):
alpar@9 236 Alen >= 2*nnz + 6*(n_col+1) + 4*(n_row+1) + n_col
alpar@9 237 Colamd returns FALSE if these conditions are not met.
alpar@9 238
alpar@9 239 Note: this restriction makes an modest assumption regarding
alpar@9 240 the size of the two typedef's structures in colamd.h.
alpar@9 241 We do, however, guarantee that
alpar@9 242
alpar@9 243 Alen >= colamd_recommended (nnz, n_row, n_col)
alpar@9 244
alpar@9 245 will be sufficient. Note: the macro version does not check
alpar@9 246 for integer overflow, and thus is not recommended. Use
alpar@9 247 the colamd_recommended routine instead.
alpar@9 248
alpar@9 249 int A [Alen] ; Input argument, undefined on output.
alpar@9 250
alpar@9 251 A is an integer array of size Alen. Alen must be at least as
alpar@9 252 large as the bare minimum value given above, but this is very
alpar@9 253 low, and can result in excessive run time. For best
alpar@9 254 performance, we recommend that Alen be greater than or equal to
alpar@9 255 colamd_recommended (nnz, n_row, n_col), which adds
alpar@9 256 nnz/5 to the bare minimum value given above.
alpar@9 257
alpar@9 258 On input, the row indices of the entries in column c of the
alpar@9 259 matrix are held in A [(p [c]) ... (p [c+1]-1)]. The row indices
alpar@9 260 in a given column c need not be in ascending order, and
alpar@9 261 duplicate row indices may be be present. However, colamd will
alpar@9 262 work a little faster if both of these conditions are met
alpar@9 263 (Colamd puts the matrix into this format, if it finds that the
alpar@9 264 the conditions are not met).
alpar@9 265
alpar@9 266 The matrix is 0-based. That is, rows are in the range 0 to
alpar@9 267 n_row-1, and columns are in the range 0 to n_col-1. Colamd
alpar@9 268 returns FALSE if any row index is out of range.
alpar@9 269
alpar@9 270 The contents of A are modified during ordering, and are
alpar@9 271 undefined on output.
alpar@9 272
alpar@9 273 int p [n_col+1] ; Both input and output argument.
alpar@9 274
alpar@9 275 p is an integer array of size n_col+1. On input, it holds the
alpar@9 276 "pointers" for the column form of the matrix A. Column c of
alpar@9 277 the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first
alpar@9 278 entry, p [0], must be zero, and p [c] <= p [c+1] must hold
alpar@9 279 for all c in the range 0 to n_col-1. The value p [n_col] is
alpar@9 280 thus the total number of entries in the pattern of the matrix A.
alpar@9 281 Colamd returns FALSE if these conditions are not met.
alpar@9 282
alpar@9 283 On output, if colamd returns TRUE, the array p holds the column
alpar@9 284 permutation (Q, for P(AQ)=LU or (AQ)'(AQ)=LL'), where p [0] is
alpar@9 285 the first column index in the new ordering, and p [n_col-1] is
alpar@9 286 the last. That is, p [k] = j means that column j of A is the
alpar@9 287 kth pivot column, in AQ, where k is in the range 0 to n_col-1
alpar@9 288 (p [0] = j means that column j of A is the first column in AQ).
alpar@9 289
alpar@9 290 If colamd returns FALSE, then no permutation is returned, and
alpar@9 291 p is undefined on output.
alpar@9 292
alpar@9 293 double knobs [COLAMD_KNOBS] ; Input argument.
alpar@9 294
alpar@9 295 See colamd_set_defaults for a description.
alpar@9 296
alpar@9 297 int stats [COLAMD_STATS] ; Output argument.
alpar@9 298
alpar@9 299 Statistics on the ordering, and error status.
alpar@9 300 See colamd.h for related definitions.
alpar@9 301 Colamd returns FALSE if stats is not present.
alpar@9 302
alpar@9 303 stats [0]: number of dense or empty rows ignored.
alpar@9 304
alpar@9 305 stats [1]: number of dense or empty columns ignored (and
alpar@9 306 ordered last in the output permutation p)
alpar@9 307 Note that a row can become "empty" if it
alpar@9 308 contains only "dense" and/or "empty" columns,
alpar@9 309 and similarly a column can become "empty" if it
alpar@9 310 only contains "dense" and/or "empty" rows.
alpar@9 311
alpar@9 312 stats [2]: number of garbage collections performed.
alpar@9 313 This can be excessively high if Alen is close
alpar@9 314 to the minimum required value.
alpar@9 315
alpar@9 316 stats [3]: status code. < 0 is an error code.
alpar@9 317 > 1 is a warning or notice.
alpar@9 318
alpar@9 319 0 OK. Each column of the input matrix contained
alpar@9 320 row indices in increasing order, with no
alpar@9 321 duplicates.
alpar@9 322
alpar@9 323 1 OK, but columns of input matrix were jumbled
alpar@9 324 (unsorted columns or duplicate entries). Colamd
alpar@9 325 had to do some extra work to sort the matrix
alpar@9 326 first and remove duplicate entries, but it
alpar@9 327 still was able to return a valid permutation
alpar@9 328 (return value of colamd was TRUE).
alpar@9 329
alpar@9 330 stats [4]: highest numbered column that
alpar@9 331 is unsorted or has duplicate
alpar@9 332 entries.
alpar@9 333 stats [5]: last seen duplicate or
alpar@9 334 unsorted row index.
alpar@9 335 stats [6]: number of duplicate or
alpar@9 336 unsorted row indices.
alpar@9 337
alpar@9 338 -1 A is a null pointer
alpar@9 339
alpar@9 340 -2 p is a null pointer
alpar@9 341
alpar@9 342 -3 n_row is negative
alpar@9 343
alpar@9 344 stats [4]: n_row
alpar@9 345
alpar@9 346 -4 n_col is negative
alpar@9 347
alpar@9 348 stats [4]: n_col
alpar@9 349
alpar@9 350 -5 number of nonzeros in matrix is negative
alpar@9 351
alpar@9 352 stats [4]: number of nonzeros, p [n_col]
alpar@9 353
alpar@9 354 -6 p [0] is nonzero
alpar@9 355
alpar@9 356 stats [4]: p [0]
alpar@9 357
alpar@9 358 -7 A is too small
alpar@9 359
alpar@9 360 stats [4]: required size
alpar@9 361 stats [5]: actual size (Alen)
alpar@9 362
alpar@9 363 -8 a column has a negative number of entries
alpar@9 364
alpar@9 365 stats [4]: column with < 0 entries
alpar@9 366 stats [5]: number of entries in col
alpar@9 367
alpar@9 368 -9 a row index is out of bounds
alpar@9 369
alpar@9 370 stats [4]: column with bad row index
alpar@9 371 stats [5]: bad row index
alpar@9 372 stats [6]: n_row, # of rows of matrx
alpar@9 373
alpar@9 374 -10 (unused; see symamd.c)
alpar@9 375
alpar@9 376 -999 (unused; see symamd.c)
alpar@9 377
alpar@9 378 Future versions may return more statistics in the stats array.
alpar@9 379
alpar@9 380 Example:
alpar@9 381
alpar@9 382 See http://www.cise.ufl.edu/research/sparse/colamd/example.c
alpar@9 383 for a complete example.
alpar@9 384
alpar@9 385 To order the columns of a 5-by-4 matrix with 11 nonzero entries in
alpar@9 386 the following nonzero pattern
alpar@9 387
alpar@9 388 x 0 x 0
alpar@9 389 x 0 x x
alpar@9 390 0 x x 0
alpar@9 391 0 0 x x
alpar@9 392 x x 0 0
alpar@9 393
alpar@9 394 with default knobs and no output statistics, do the following:
alpar@9 395
alpar@9 396 #include "colamd.h"
alpar@9 397 #define ALEN 100
alpar@9 398 int A [ALEN] = {0, 1, 4, 2, 4, 0, 1, 2, 3, 1, 3} ;
alpar@9 399 int p [ ] = {0, 3, 5, 9, 11} ;
alpar@9 400 int stats [COLAMD_STATS] ;
alpar@9 401 colamd (5, 4, ALEN, A, p, (double *) NULL, stats) ;
alpar@9 402
alpar@9 403 The permutation is returned in the array p, and A is destroyed.
alpar@9 404
alpar@9 405 ----------------------------------------------------------------------------
alpar@9 406 symamd:
alpar@9 407 ----------------------------------------------------------------------------
alpar@9 408
alpar@9 409 C syntax:
alpar@9 410
alpar@9 411 #include "colamd.h"
alpar@9 412 int symamd (int n, int *A, int *p, int *perm,
alpar@9 413 double knobs [COLAMD_KNOBS], int stats [COLAMD_STATS],
alpar@9 414 void (*allocate) (size_t, size_t), void (*release) (void *)) ;
alpar@9 415 UF_long symamd_l (UF_long n, UF_long *A, UF_long *p, UF_long *perm,
alpar@9 416 double knobs [COLAMD_KNOBS], UF_long stats [COLAMD_STATS],
alpar@9 417 void (*allocate) (size_t, size_t), void (*release) (void *)) ;
alpar@9 418
alpar@9 419 Purpose:
alpar@9 420
alpar@9 421 The symamd routine computes an ordering P of a symmetric sparse
alpar@9 422 matrix A such that the Cholesky factorization PAP' = LL' remains
alpar@9 423 sparse. It is based on a column ordering of a matrix M constructed
alpar@9 424 so that the nonzero pattern of M'M is the same as A. The matrix A
alpar@9 425 is assumed to be symmetric; only the strictly lower triangular part
alpar@9 426 is accessed. You must pass your selected memory allocator (usually
alpar@9 427 calloc/free or mxCalloc/mxFree) to symamd, for it to allocate
alpar@9 428 memory for the temporary matrix M.
alpar@9 429
alpar@9 430 Returns:
alpar@9 431
alpar@9 432 TRUE (1) if successful, FALSE (0) otherwise.
alpar@9 433
alpar@9 434 Arguments:
alpar@9 435
alpar@9 436 int n ; Input argument.
alpar@9 437
alpar@9 438 Number of rows and columns in the symmetrix matrix A.
alpar@9 439 Restriction: n >= 0.
alpar@9 440 Symamd returns FALSE if n is negative.
alpar@9 441
alpar@9 442 int A [nnz] ; Input argument.
alpar@9 443
alpar@9 444 A is an integer array of size nnz, where nnz = p [n].
alpar@9 445
alpar@9 446 The row indices of the entries in column c of the matrix are
alpar@9 447 held in A [(p [c]) ... (p [c+1]-1)]. The row indices in a
alpar@9 448 given column c need not be in ascending order, and duplicate
alpar@9 449 row indices may be present. However, symamd will run faster
alpar@9 450 if the columns are in sorted order with no duplicate entries.
alpar@9 451
alpar@9 452 The matrix is 0-based. That is, rows are in the range 0 to
alpar@9 453 n-1, and columns are in the range 0 to n-1. Symamd
alpar@9 454 returns FALSE if any row index is out of range.
alpar@9 455
alpar@9 456 The contents of A are not modified.
alpar@9 457
alpar@9 458 int p [n+1] ; Input argument.
alpar@9 459
alpar@9 460 p is an integer array of size n+1. On input, it holds the
alpar@9 461 "pointers" for the column form of the matrix A. Column c of
alpar@9 462 the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first
alpar@9 463 entry, p [0], must be zero, and p [c] <= p [c+1] must hold
alpar@9 464 for all c in the range 0 to n-1. The value p [n] is
alpar@9 465 thus the total number of entries in the pattern of the matrix A.
alpar@9 466 Symamd returns FALSE if these conditions are not met.
alpar@9 467
alpar@9 468 The contents of p are not modified.
alpar@9 469
alpar@9 470 int perm [n+1] ; Output argument.
alpar@9 471
alpar@9 472 On output, if symamd returns TRUE, the array perm holds the
alpar@9 473 permutation P, where perm [0] is the first index in the new
alpar@9 474 ordering, and perm [n-1] is the last. That is, perm [k] = j
alpar@9 475 means that row and column j of A is the kth column in PAP',
alpar@9 476 where k is in the range 0 to n-1 (perm [0] = j means
alpar@9 477 that row and column j of A are the first row and column in
alpar@9 478 PAP'). The array is used as a workspace during the ordering,
alpar@9 479 which is why it must be of length n+1, not just n.
alpar@9 480
alpar@9 481 double knobs [COLAMD_KNOBS] ; Input argument.
alpar@9 482
alpar@9 483 See colamd_set_defaults for a description.
alpar@9 484
alpar@9 485 int stats [COLAMD_STATS] ; Output argument.
alpar@9 486
alpar@9 487 Statistics on the ordering, and error status.
alpar@9 488 See colamd.h for related definitions.
alpar@9 489 Symamd returns FALSE if stats is not present.
alpar@9 490
alpar@9 491 stats [0]: number of dense or empty row and columns ignored
alpar@9 492 (and ordered last in the output permutation
alpar@9 493 perm). Note that a row/column can become
alpar@9 494 "empty" if it contains only "dense" and/or
alpar@9 495 "empty" columns/rows.
alpar@9 496
alpar@9 497 stats [1]: (same as stats [0])
alpar@9 498
alpar@9 499 stats [2]: number of garbage collections performed.
alpar@9 500
alpar@9 501 stats [3]: status code. < 0 is an error code.
alpar@9 502 > 1 is a warning or notice.
alpar@9 503
alpar@9 504 0 OK. Each column of the input matrix contained
alpar@9 505 row indices in increasing order, with no
alpar@9 506 duplicates.
alpar@9 507
alpar@9 508 1 OK, but columns of input matrix were jumbled
alpar@9 509 (unsorted columns or duplicate entries). Symamd
alpar@9 510 had to do some extra work to sort the matrix
alpar@9 511 first and remove duplicate entries, but it
alpar@9 512 still was able to return a valid permutation
alpar@9 513 (return value of symamd was TRUE).
alpar@9 514
alpar@9 515 stats [4]: highest numbered column that
alpar@9 516 is unsorted or has duplicate
alpar@9 517 entries.
alpar@9 518 stats [5]: last seen duplicate or
alpar@9 519 unsorted row index.
alpar@9 520 stats [6]: number of duplicate or
alpar@9 521 unsorted row indices.
alpar@9 522
alpar@9 523 -1 A is a null pointer
alpar@9 524
alpar@9 525 -2 p is a null pointer
alpar@9 526
alpar@9 527 -3 (unused, see colamd.c)
alpar@9 528
alpar@9 529 -4 n is negative
alpar@9 530
alpar@9 531 stats [4]: n
alpar@9 532
alpar@9 533 -5 number of nonzeros in matrix is negative
alpar@9 534
alpar@9 535 stats [4]: # of nonzeros (p [n]).
alpar@9 536
alpar@9 537 -6 p [0] is nonzero
alpar@9 538
alpar@9 539 stats [4]: p [0]
alpar@9 540
alpar@9 541 -7 (unused)
alpar@9 542
alpar@9 543 -8 a column has a negative number of entries
alpar@9 544
alpar@9 545 stats [4]: column with < 0 entries
alpar@9 546 stats [5]: number of entries in col
alpar@9 547
alpar@9 548 -9 a row index is out of bounds
alpar@9 549
alpar@9 550 stats [4]: column with bad row index
alpar@9 551 stats [5]: bad row index
alpar@9 552 stats [6]: n_row, # of rows of matrx
alpar@9 553
alpar@9 554 -10 out of memory (unable to allocate temporary
alpar@9 555 workspace for M or count arrays using the
alpar@9 556 "allocate" routine passed into symamd).
alpar@9 557
alpar@9 558 Future versions may return more statistics in the stats array.
alpar@9 559
alpar@9 560 void * (*allocate) (size_t, size_t)
alpar@9 561
alpar@9 562 A pointer to a function providing memory allocation. The
alpar@9 563 allocated memory must be returned initialized to zero. For a
alpar@9 564 C application, this argument should normally be a pointer to
alpar@9 565 calloc. For a MATLAB mexFunction, the routine mxCalloc is
alpar@9 566 passed instead.
alpar@9 567
alpar@9 568 void (*release) (size_t, size_t)
alpar@9 569
alpar@9 570 A pointer to a function that frees memory allocated by the
alpar@9 571 memory allocation routine above. For a C application, this
alpar@9 572 argument should normally be a pointer to free. For a MATLAB
alpar@9 573 mexFunction, the routine mxFree is passed instead.
alpar@9 574
alpar@9 575
alpar@9 576 ----------------------------------------------------------------------------
alpar@9 577 colamd_report:
alpar@9 578 ----------------------------------------------------------------------------
alpar@9 579
alpar@9 580 C syntax:
alpar@9 581
alpar@9 582 #include "colamd.h"
alpar@9 583 colamd_report (int stats [COLAMD_STATS]) ;
alpar@9 584 colamd_l_report (UF_long stats [COLAMD_STATS]) ;
alpar@9 585
alpar@9 586 Purpose:
alpar@9 587
alpar@9 588 Prints the error status and statistics recorded in the stats
alpar@9 589 array on the standard error output (for a standard C routine)
alpar@9 590 or on the MATLAB output (for a mexFunction).
alpar@9 591
alpar@9 592 Arguments:
alpar@9 593
alpar@9 594 int stats [COLAMD_STATS] ; Input only. Statistics from colamd.
alpar@9 595
alpar@9 596
alpar@9 597 ----------------------------------------------------------------------------
alpar@9 598 symamd_report:
alpar@9 599 ----------------------------------------------------------------------------
alpar@9 600
alpar@9 601 C syntax:
alpar@9 602
alpar@9 603 #include "colamd.h"
alpar@9 604 symamd_report (int stats [COLAMD_STATS]) ;
alpar@9 605 symamd_l_report (UF_long stats [COLAMD_STATS]) ;
alpar@9 606
alpar@9 607 Purpose:
alpar@9 608
alpar@9 609 Prints the error status and statistics recorded in the stats
alpar@9 610 array on the standard error output (for a standard C routine)
alpar@9 611 or on the MATLAB output (for a mexFunction).
alpar@9 612
alpar@9 613 Arguments:
alpar@9 614
alpar@9 615 int stats [COLAMD_STATS] ; Input only. Statistics from symamd.
alpar@9 616
alpar@9 617
alpar@9 618 */
alpar@9 619
alpar@9 620 /* ========================================================================== */
alpar@9 621 /* === Scaffolding code definitions ======================================== */
alpar@9 622 /* ========================================================================== */
alpar@9 623
alpar@9 624 /* Ensure that debugging is turned off: */
alpar@9 625 #ifndef NDEBUG
alpar@9 626 #define NDEBUG
alpar@9 627 #endif
alpar@9 628
alpar@9 629 /* turn on debugging by uncommenting the following line
alpar@9 630 #undef NDEBUG
alpar@9 631 */
alpar@9 632
alpar@9 633 /*
alpar@9 634 Our "scaffolding code" philosophy: In our opinion, well-written library
alpar@9 635 code should keep its "debugging" code, and just normally have it turned off
alpar@9 636 by the compiler so as not to interfere with performance. This serves
alpar@9 637 several purposes:
alpar@9 638
alpar@9 639 (1) assertions act as comments to the reader, telling you what the code
alpar@9 640 expects at that point. All assertions will always be true (unless
alpar@9 641 there really is a bug, of course).
alpar@9 642
alpar@9 643 (2) leaving in the scaffolding code assists anyone who would like to modify
alpar@9 644 the code, or understand the algorithm (by reading the debugging output,
alpar@9 645 one can get a glimpse into what the code is doing).
alpar@9 646
alpar@9 647 (3) (gasp!) for actually finding bugs. This code has been heavily tested
alpar@9 648 and "should" be fully functional and bug-free ... but you never know...
alpar@9 649
alpar@9 650 The code will become outrageously slow when debugging is
alpar@9 651 enabled. To control the level of debugging output, set an environment
alpar@9 652 variable D to 0 (little), 1 (some), 2, 3, or 4 (lots). When debugging,
alpar@9 653 you should see the following message on the standard output:
alpar@9 654
alpar@9 655 colamd: debug version, D = 1 (THIS WILL BE SLOW!)
alpar@9 656
alpar@9 657 or a similar message for symamd. If you don't, then debugging has not
alpar@9 658 been enabled.
alpar@9 659
alpar@9 660 */
alpar@9 661
alpar@9 662 /* ========================================================================== */
alpar@9 663 /* === Include files ======================================================== */
alpar@9 664 /* ========================================================================== */
alpar@9 665
alpar@9 666 #include "colamd.h"
alpar@9 667
alpar@9 668 #if 0 /* by mao */
alpar@9 669 #include <limits.h>
alpar@9 670 #include <math.h>
alpar@9 671
alpar@9 672 #ifdef MATLAB_MEX_FILE
alpar@9 673 #include "mex.h"
alpar@9 674 #include "matrix.h"
alpar@9 675 #endif /* MATLAB_MEX_FILE */
alpar@9 676
alpar@9 677 #if !defined (NPRINT) || !defined (NDEBUG)
alpar@9 678 #include <stdio.h>
alpar@9 679 #endif
alpar@9 680
alpar@9 681 #ifndef NULL
alpar@9 682 #define NULL ((void *) 0)
alpar@9 683 #endif
alpar@9 684 #endif
alpar@9 685
alpar@9 686 /* ========================================================================== */
alpar@9 687 /* === int or UF_long ======================================================= */
alpar@9 688 /* ========================================================================== */
alpar@9 689
alpar@9 690 #if 0 /* by mao */
alpar@9 691 /* define UF_long */
alpar@9 692 #include "UFconfig.h"
alpar@9 693 #endif
alpar@9 694
alpar@9 695 #ifdef DLONG
alpar@9 696
alpar@9 697 #define Int UF_long
alpar@9 698 #define ID UF_long_id
alpar@9 699 #define Int_MAX UF_long_max
alpar@9 700
alpar@9 701 #define COLAMD_recommended colamd_l_recommended
alpar@9 702 #define COLAMD_set_defaults colamd_l_set_defaults
alpar@9 703 #define COLAMD_MAIN colamd_l
alpar@9 704 #define SYMAMD_MAIN symamd_l
alpar@9 705 #define COLAMD_report colamd_l_report
alpar@9 706 #define SYMAMD_report symamd_l_report
alpar@9 707
alpar@9 708 #else
alpar@9 709
alpar@9 710 #define Int int
alpar@9 711 #define ID "%d"
alpar@9 712 #define Int_MAX INT_MAX
alpar@9 713
alpar@9 714 #define COLAMD_recommended colamd_recommended
alpar@9 715 #define COLAMD_set_defaults colamd_set_defaults
alpar@9 716 #define COLAMD_MAIN colamd
alpar@9 717 #define SYMAMD_MAIN symamd
alpar@9 718 #define COLAMD_report colamd_report
alpar@9 719 #define SYMAMD_report symamd_report
alpar@9 720
alpar@9 721 #endif
alpar@9 722
alpar@9 723 /* ========================================================================== */
alpar@9 724 /* === Row and Column structures ============================================ */
alpar@9 725 /* ========================================================================== */
alpar@9 726
alpar@9 727 /* User code that makes use of the colamd/symamd routines need not directly */
alpar@9 728 /* reference these structures. They are used only for colamd_recommended. */
alpar@9 729
alpar@9 730 typedef struct Colamd_Col_struct
alpar@9 731 {
alpar@9 732 Int start ; /* index for A of first row in this column, or DEAD */
alpar@9 733 /* if column is dead */
alpar@9 734 Int length ; /* number of rows in this column */
alpar@9 735 union
alpar@9 736 {
alpar@9 737 Int thickness ; /* number of original columns represented by this */
alpar@9 738 /* col, if the column is alive */
alpar@9 739 Int parent ; /* parent in parent tree super-column structure, if */
alpar@9 740 /* the column is dead */
alpar@9 741 } shared1 ;
alpar@9 742 union
alpar@9 743 {
alpar@9 744 Int score ; /* the score used to maintain heap, if col is alive */
alpar@9 745 Int order ; /* pivot ordering of this column, if col is dead */
alpar@9 746 } shared2 ;
alpar@9 747 union
alpar@9 748 {
alpar@9 749 Int headhash ; /* head of a hash bucket, if col is at the head of */
alpar@9 750 /* a degree list */
alpar@9 751 Int hash ; /* hash value, if col is not in a degree list */
alpar@9 752 Int prev ; /* previous column in degree list, if col is in a */
alpar@9 753 /* degree list (but not at the head of a degree list) */
alpar@9 754 } shared3 ;
alpar@9 755 union
alpar@9 756 {
alpar@9 757 Int degree_next ; /* next column, if col is in a degree list */
alpar@9 758 Int hash_next ; /* next column, if col is in a hash list */
alpar@9 759 } shared4 ;
alpar@9 760
alpar@9 761 } Colamd_Col ;
alpar@9 762
alpar@9 763 typedef struct Colamd_Row_struct
alpar@9 764 {
alpar@9 765 Int start ; /* index for A of first col in this row */
alpar@9 766 Int length ; /* number of principal columns in this row */
alpar@9 767 union
alpar@9 768 {
alpar@9 769 Int degree ; /* number of principal & non-principal columns in row */
alpar@9 770 Int p ; /* used as a row pointer in init_rows_cols () */
alpar@9 771 } shared1 ;
alpar@9 772 union
alpar@9 773 {
alpar@9 774 Int mark ; /* for computing set differences and marking dead rows*/
alpar@9 775 Int first_column ;/* first column in row (used in garbage collection) */
alpar@9 776 } shared2 ;
alpar@9 777
alpar@9 778 } Colamd_Row ;
alpar@9 779
alpar@9 780 /* ========================================================================== */
alpar@9 781 /* === Definitions ========================================================== */
alpar@9 782 /* ========================================================================== */
alpar@9 783
alpar@9 784 /* Routines are either PUBLIC (user-callable) or PRIVATE (not user-callable) */
alpar@9 785 #define PUBLIC
alpar@9 786 #define PRIVATE static
alpar@9 787
alpar@9 788 #define DENSE_DEGREE(alpha,n) \
alpar@9 789 ((Int) MAX (16.0, (alpha) * sqrt ((double) (n))))
alpar@9 790
alpar@9 791 #define MAX(a,b) (((a) > (b)) ? (a) : (b))
alpar@9 792 #define MIN(a,b) (((a) < (b)) ? (a) : (b))
alpar@9 793
alpar@9 794 #define ONES_COMPLEMENT(r) (-(r)-1)
alpar@9 795
alpar@9 796 /* -------------------------------------------------------------------------- */
alpar@9 797 /* Change for version 2.1: define TRUE and FALSE only if not yet defined */
alpar@9 798 /* -------------------------------------------------------------------------- */
alpar@9 799
alpar@9 800 #ifndef TRUE
alpar@9 801 #define TRUE (1)
alpar@9 802 #endif
alpar@9 803
alpar@9 804 #ifndef FALSE
alpar@9 805 #define FALSE (0)
alpar@9 806 #endif
alpar@9 807
alpar@9 808 /* -------------------------------------------------------------------------- */
alpar@9 809
alpar@9 810 #define EMPTY (-1)
alpar@9 811
alpar@9 812 /* Row and column status */
alpar@9 813 #define ALIVE (0)
alpar@9 814 #define DEAD (-1)
alpar@9 815
alpar@9 816 /* Column status */
alpar@9 817 #define DEAD_PRINCIPAL (-1)
alpar@9 818 #define DEAD_NON_PRINCIPAL (-2)
alpar@9 819
alpar@9 820 /* Macros for row and column status update and checking. */
alpar@9 821 #define ROW_IS_DEAD(r) ROW_IS_MARKED_DEAD (Row[r].shared2.mark)
alpar@9 822 #define ROW_IS_MARKED_DEAD(row_mark) (row_mark < ALIVE)
alpar@9 823 #define ROW_IS_ALIVE(r) (Row [r].shared2.mark >= ALIVE)
alpar@9 824 #define COL_IS_DEAD(c) (Col [c].start < ALIVE)
alpar@9 825 #define COL_IS_ALIVE(c) (Col [c].start >= ALIVE)
alpar@9 826 #define COL_IS_DEAD_PRINCIPAL(c) (Col [c].start == DEAD_PRINCIPAL)
alpar@9 827 #define KILL_ROW(r) { Row [r].shared2.mark = DEAD ; }
alpar@9 828 #define KILL_PRINCIPAL_COL(c) { Col [c].start = DEAD_PRINCIPAL ; }
alpar@9 829 #define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; }
alpar@9 830
alpar@9 831 /* ========================================================================== */
alpar@9 832 /* === Colamd reporting mechanism =========================================== */
alpar@9 833 /* ========================================================================== */
alpar@9 834
alpar@9 835 #if defined (MATLAB_MEX_FILE) || defined (MATHWORKS)
alpar@9 836 /* In MATLAB, matrices are 1-based to the user, but 0-based internally */
alpar@9 837 #define INDEX(i) ((i)+1)
alpar@9 838 #else
alpar@9 839 /* In C, matrices are 0-based and indices are reported as such in *_report */
alpar@9 840 #define INDEX(i) (i)
alpar@9 841 #endif
alpar@9 842
alpar@9 843 /* All output goes through the PRINTF macro. */
alpar@9 844 #define PRINTF(params) { if (colamd_printf != NULL) (void) colamd_printf params ; }
alpar@9 845
alpar@9 846 /* ========================================================================== */
alpar@9 847 /* === Prototypes of PRIVATE routines ======================================= */
alpar@9 848 /* ========================================================================== */
alpar@9 849
alpar@9 850 PRIVATE Int init_rows_cols
alpar@9 851 (
alpar@9 852 Int n_row,
alpar@9 853 Int n_col,
alpar@9 854 Colamd_Row Row [],
alpar@9 855 Colamd_Col Col [],
alpar@9 856 Int A [],
alpar@9 857 Int p [],
alpar@9 858 Int stats [COLAMD_STATS]
alpar@9 859 ) ;
alpar@9 860
alpar@9 861 PRIVATE void init_scoring
alpar@9 862 (
alpar@9 863 Int n_row,
alpar@9 864 Int n_col,
alpar@9 865 Colamd_Row Row [],
alpar@9 866 Colamd_Col Col [],
alpar@9 867 Int A [],
alpar@9 868 Int head [],
alpar@9 869 double knobs [COLAMD_KNOBS],
alpar@9 870 Int *p_n_row2,
alpar@9 871 Int *p_n_col2,
alpar@9 872 Int *p_max_deg
alpar@9 873 ) ;
alpar@9 874
alpar@9 875 PRIVATE Int find_ordering
alpar@9 876 (
alpar@9 877 Int n_row,
alpar@9 878 Int n_col,
alpar@9 879 Int Alen,
alpar@9 880 Colamd_Row Row [],
alpar@9 881 Colamd_Col Col [],
alpar@9 882 Int A [],
alpar@9 883 Int head [],
alpar@9 884 Int n_col2,
alpar@9 885 Int max_deg,
alpar@9 886 Int pfree,
alpar@9 887 Int aggressive
alpar@9 888 ) ;
alpar@9 889
alpar@9 890 PRIVATE void order_children
alpar@9 891 (
alpar@9 892 Int n_col,
alpar@9 893 Colamd_Col Col [],
alpar@9 894 Int p []
alpar@9 895 ) ;
alpar@9 896
alpar@9 897 PRIVATE void detect_super_cols
alpar@9 898 (
alpar@9 899
alpar@9 900 #ifndef NDEBUG
alpar@9 901 Int n_col,
alpar@9 902 Colamd_Row Row [],
alpar@9 903 #endif /* NDEBUG */
alpar@9 904
alpar@9 905 Colamd_Col Col [],
alpar@9 906 Int A [],
alpar@9 907 Int head [],
alpar@9 908 Int row_start,
alpar@9 909 Int row_length
alpar@9 910 ) ;
alpar@9 911
alpar@9 912 PRIVATE Int garbage_collection
alpar@9 913 (
alpar@9 914 Int n_row,
alpar@9 915 Int n_col,
alpar@9 916 Colamd_Row Row [],
alpar@9 917 Colamd_Col Col [],
alpar@9 918 Int A [],
alpar@9 919 Int *pfree
alpar@9 920 ) ;
alpar@9 921
alpar@9 922 PRIVATE Int clear_mark
alpar@9 923 (
alpar@9 924 Int tag_mark,
alpar@9 925 Int max_mark,
alpar@9 926 Int n_row,
alpar@9 927 Colamd_Row Row []
alpar@9 928 ) ;
alpar@9 929
alpar@9 930 PRIVATE void print_report
alpar@9 931 (
alpar@9 932 char *method,
alpar@9 933 Int stats [COLAMD_STATS]
alpar@9 934 ) ;
alpar@9 935
alpar@9 936 /* ========================================================================== */
alpar@9 937 /* === Debugging prototypes and definitions ================================= */
alpar@9 938 /* ========================================================================== */
alpar@9 939
alpar@9 940 #ifndef NDEBUG
alpar@9 941
alpar@9 942 #if 0 /* by mao */
alpar@9 943 #include <assert.h>
alpar@9 944 #endif
alpar@9 945
alpar@9 946 /* colamd_debug is the *ONLY* global variable, and is only */
alpar@9 947 /* present when debugging */
alpar@9 948
alpar@9 949 PRIVATE Int colamd_debug = 0 ; /* debug print level */
alpar@9 950
alpar@9 951 #define DEBUG0(params) { PRINTF (params) ; }
alpar@9 952 #define DEBUG1(params) { if (colamd_debug >= 1) PRINTF (params) ; }
alpar@9 953 #define DEBUG2(params) { if (colamd_debug >= 2) PRINTF (params) ; }
alpar@9 954 #define DEBUG3(params) { if (colamd_debug >= 3) PRINTF (params) ; }
alpar@9 955 #define DEBUG4(params) { if (colamd_debug >= 4) PRINTF (params) ; }
alpar@9 956
alpar@9 957 #if 0 /* by mao */
alpar@9 958 #ifdef MATLAB_MEX_FILE
alpar@9 959 #define ASSERT(expression) (mxAssert ((expression), ""))
alpar@9 960 #else
alpar@9 961 #define ASSERT(expression) (assert (expression))
alpar@9 962 #endif /* MATLAB_MEX_FILE */
alpar@9 963 #else
alpar@9 964 #define ASSERT xassert
alpar@9 965 #endif
alpar@9 966
alpar@9 967 PRIVATE void colamd_get_debug /* gets the debug print level from getenv */
alpar@9 968 (
alpar@9 969 char *method
alpar@9 970 ) ;
alpar@9 971
alpar@9 972 PRIVATE void debug_deg_lists
alpar@9 973 (
alpar@9 974 Int n_row,
alpar@9 975 Int n_col,
alpar@9 976 Colamd_Row Row [],
alpar@9 977 Colamd_Col Col [],
alpar@9 978 Int head [],
alpar@9 979 Int min_score,
alpar@9 980 Int should,
alpar@9 981 Int max_deg
alpar@9 982 ) ;
alpar@9 983
alpar@9 984 PRIVATE void debug_mark
alpar@9 985 (
alpar@9 986 Int n_row,
alpar@9 987 Colamd_Row Row [],
alpar@9 988 Int tag_mark,
alpar@9 989 Int max_mark
alpar@9 990 ) ;
alpar@9 991
alpar@9 992 PRIVATE void debug_matrix
alpar@9 993 (
alpar@9 994 Int n_row,
alpar@9 995 Int n_col,
alpar@9 996 Colamd_Row Row [],
alpar@9 997 Colamd_Col Col [],
alpar@9 998 Int A []
alpar@9 999 ) ;
alpar@9 1000
alpar@9 1001 PRIVATE void debug_structures
alpar@9 1002 (
alpar@9 1003 Int n_row,
alpar@9 1004 Int n_col,
alpar@9 1005 Colamd_Row Row [],
alpar@9 1006 Colamd_Col Col [],
alpar@9 1007 Int A [],
alpar@9 1008 Int n_col2
alpar@9 1009 ) ;
alpar@9 1010
alpar@9 1011 #else /* NDEBUG */
alpar@9 1012
alpar@9 1013 /* === No debugging ========================================================= */
alpar@9 1014
alpar@9 1015 #define DEBUG0(params) ;
alpar@9 1016 #define DEBUG1(params) ;
alpar@9 1017 #define DEBUG2(params) ;
alpar@9 1018 #define DEBUG3(params) ;
alpar@9 1019 #define DEBUG4(params) ;
alpar@9 1020
alpar@9 1021 #define ASSERT(expression)
alpar@9 1022
alpar@9 1023 #endif /* NDEBUG */
alpar@9 1024
alpar@9 1025 /* ========================================================================== */
alpar@9 1026 /* === USER-CALLABLE ROUTINES: ============================================== */
alpar@9 1027 /* ========================================================================== */
alpar@9 1028
alpar@9 1029 /* ========================================================================== */
alpar@9 1030 /* === colamd_recommended =================================================== */
alpar@9 1031 /* ========================================================================== */
alpar@9 1032
alpar@9 1033 /*
alpar@9 1034 The colamd_recommended routine returns the suggested size for Alen. This
alpar@9 1035 value has been determined to provide good balance between the number of
alpar@9 1036 garbage collections and the memory requirements for colamd. If any
alpar@9 1037 argument is negative, or if integer overflow occurs, a 0 is returned as an
alpar@9 1038 error condition. 2*nnz space is required for the row and column
alpar@9 1039 indices of the matrix. COLAMD_C (n_col) + COLAMD_R (n_row) space is
alpar@9 1040 required for the Col and Row arrays, respectively, which are internal to
alpar@9 1041 colamd (roughly 6*n_col + 4*n_row). An additional n_col space is the
alpar@9 1042 minimal amount of "elbow room", and nnz/5 more space is recommended for
alpar@9 1043 run time efficiency.
alpar@9 1044
alpar@9 1045 Alen is approximately 2.2*nnz + 7*n_col + 4*n_row + 10.
alpar@9 1046
alpar@9 1047 This function is not needed when using symamd.
alpar@9 1048 */
alpar@9 1049
alpar@9 1050 /* add two values of type size_t, and check for integer overflow */
alpar@9 1051 static size_t t_add (size_t a, size_t b, int *ok)
alpar@9 1052 {
alpar@9 1053 (*ok) = (*ok) && ((a + b) >= MAX (a,b)) ;
alpar@9 1054 return ((*ok) ? (a + b) : 0) ;
alpar@9 1055 }
alpar@9 1056
alpar@9 1057 /* compute a*k where k is a small integer, and check for integer overflow */
alpar@9 1058 static size_t t_mult (size_t a, size_t k, int *ok)
alpar@9 1059 {
alpar@9 1060 size_t i, s = 0 ;
alpar@9 1061 for (i = 0 ; i < k ; i++)
alpar@9 1062 {
alpar@9 1063 s = t_add (s, a, ok) ;
alpar@9 1064 }
alpar@9 1065 return (s) ;
alpar@9 1066 }
alpar@9 1067
alpar@9 1068 /* size of the Col and Row structures */
alpar@9 1069 #define COLAMD_C(n_col,ok) \
alpar@9 1070 ((t_mult (t_add (n_col, 1, ok), sizeof (Colamd_Col), ok) / sizeof (Int)))
alpar@9 1071
alpar@9 1072 #define COLAMD_R(n_row,ok) \
alpar@9 1073 ((t_mult (t_add (n_row, 1, ok), sizeof (Colamd_Row), ok) / sizeof (Int)))
alpar@9 1074
alpar@9 1075
alpar@9 1076 PUBLIC size_t COLAMD_recommended /* returns recommended value of Alen. */
alpar@9 1077 (
alpar@9 1078 /* === Parameters ======================================================= */
alpar@9 1079
alpar@9 1080 Int nnz, /* number of nonzeros in A */
alpar@9 1081 Int n_row, /* number of rows in A */
alpar@9 1082 Int n_col /* number of columns in A */
alpar@9 1083 )
alpar@9 1084 {
alpar@9 1085 size_t s, c, r ;
alpar@9 1086 int ok = TRUE ;
alpar@9 1087 if (nnz < 0 || n_row < 0 || n_col < 0)
alpar@9 1088 {
alpar@9 1089 return (0) ;
alpar@9 1090 }
alpar@9 1091 s = t_mult (nnz, 2, &ok) ; /* 2*nnz */
alpar@9 1092 c = COLAMD_C (n_col, &ok) ; /* size of column structures */
alpar@9 1093 r = COLAMD_R (n_row, &ok) ; /* size of row structures */
alpar@9 1094 s = t_add (s, c, &ok) ;
alpar@9 1095 s = t_add (s, r, &ok) ;
alpar@9 1096 s = t_add (s, n_col, &ok) ; /* elbow room */
alpar@9 1097 s = t_add (s, nnz/5, &ok) ; /* elbow room */
alpar@9 1098 ok = ok && (s < Int_MAX) ;
alpar@9 1099 return (ok ? s : 0) ;
alpar@9 1100 }
alpar@9 1101
alpar@9 1102
alpar@9 1103 /* ========================================================================== */
alpar@9 1104 /* === colamd_set_defaults ================================================== */
alpar@9 1105 /* ========================================================================== */
alpar@9 1106
alpar@9 1107 /*
alpar@9 1108 The colamd_set_defaults routine sets the default values of the user-
alpar@9 1109 controllable parameters for colamd and symamd:
alpar@9 1110
alpar@9 1111 Colamd: rows with more than max (16, knobs [0] * sqrt (n_col))
alpar@9 1112 entries are removed prior to ordering. Columns with more than
alpar@9 1113 max (16, knobs [1] * sqrt (MIN (n_row,n_col))) entries are removed
alpar@9 1114 prior to ordering, and placed last in the output column ordering.
alpar@9 1115
alpar@9 1116 Symamd: Rows and columns with more than max (16, knobs [0] * sqrt (n))
alpar@9 1117 entries are removed prior to ordering, and placed last in the
alpar@9 1118 output ordering.
alpar@9 1119
alpar@9 1120 knobs [0] dense row control
alpar@9 1121
alpar@9 1122 knobs [1] dense column control
alpar@9 1123
alpar@9 1124 knobs [2] if nonzero, do aggresive absorption
alpar@9 1125
alpar@9 1126 knobs [3..19] unused, but future versions might use this
alpar@9 1127
alpar@9 1128 */
alpar@9 1129
alpar@9 1130 PUBLIC void COLAMD_set_defaults
alpar@9 1131 (
alpar@9 1132 /* === Parameters ======================================================= */
alpar@9 1133
alpar@9 1134 double knobs [COLAMD_KNOBS] /* knob array */
alpar@9 1135 )
alpar@9 1136 {
alpar@9 1137 /* === Local variables ================================================== */
alpar@9 1138
alpar@9 1139 Int i ;
alpar@9 1140
alpar@9 1141 if (!knobs)
alpar@9 1142 {
alpar@9 1143 return ; /* no knobs to initialize */
alpar@9 1144 }
alpar@9 1145 for (i = 0 ; i < COLAMD_KNOBS ; i++)
alpar@9 1146 {
alpar@9 1147 knobs [i] = 0 ;
alpar@9 1148 }
alpar@9 1149 knobs [COLAMD_DENSE_ROW] = 10 ;
alpar@9 1150 knobs [COLAMD_DENSE_COL] = 10 ;
alpar@9 1151 knobs [COLAMD_AGGRESSIVE] = TRUE ; /* default: do aggressive absorption*/
alpar@9 1152 }
alpar@9 1153
alpar@9 1154
alpar@9 1155 /* ========================================================================== */
alpar@9 1156 /* === symamd =============================================================== */
alpar@9 1157 /* ========================================================================== */
alpar@9 1158
alpar@9 1159 PUBLIC Int SYMAMD_MAIN /* return TRUE if OK, FALSE otherwise */
alpar@9 1160 (
alpar@9 1161 /* === Parameters ======================================================= */
alpar@9 1162
alpar@9 1163 Int n, /* number of rows and columns of A */
alpar@9 1164 Int A [], /* row indices of A */
alpar@9 1165 Int p [], /* column pointers of A */
alpar@9 1166 Int perm [], /* output permutation, size n+1 */
alpar@9 1167 double knobs [COLAMD_KNOBS], /* parameters (uses defaults if NULL) */
alpar@9 1168 Int stats [COLAMD_STATS], /* output statistics and error codes */
alpar@9 1169 void * (*allocate) (size_t, size_t),
alpar@9 1170 /* pointer to calloc (ANSI C) or */
alpar@9 1171 /* mxCalloc (for MATLAB mexFunction) */
alpar@9 1172 void (*release) (void *)
alpar@9 1173 /* pointer to free (ANSI C) or */
alpar@9 1174 /* mxFree (for MATLAB mexFunction) */
alpar@9 1175 )
alpar@9 1176 {
alpar@9 1177 /* === Local variables ================================================== */
alpar@9 1178
alpar@9 1179 Int *count ; /* length of each column of M, and col pointer*/
alpar@9 1180 Int *mark ; /* mark array for finding duplicate entries */
alpar@9 1181 Int *M ; /* row indices of matrix M */
alpar@9 1182 size_t Mlen ; /* length of M */
alpar@9 1183 Int n_row ; /* number of rows in M */
alpar@9 1184 Int nnz ; /* number of entries in A */
alpar@9 1185 Int i ; /* row index of A */
alpar@9 1186 Int j ; /* column index of A */
alpar@9 1187 Int k ; /* row index of M */
alpar@9 1188 Int mnz ; /* number of nonzeros in M */
alpar@9 1189 Int pp ; /* index into a column of A */
alpar@9 1190 Int last_row ; /* last row seen in the current column */
alpar@9 1191 Int length ; /* number of nonzeros in a column */
alpar@9 1192
alpar@9 1193 double cknobs [COLAMD_KNOBS] ; /* knobs for colamd */
alpar@9 1194 double default_knobs [COLAMD_KNOBS] ; /* default knobs for colamd */
alpar@9 1195
alpar@9 1196 #ifndef NDEBUG
alpar@9 1197 colamd_get_debug ("symamd") ;
alpar@9 1198 #endif /* NDEBUG */
alpar@9 1199
alpar@9 1200 /* === Check the input arguments ======================================== */
alpar@9 1201
alpar@9 1202 if (!stats)
alpar@9 1203 {
alpar@9 1204 DEBUG0 (("symamd: stats not present\n")) ;
alpar@9 1205 return (FALSE) ;
alpar@9 1206 }
alpar@9 1207 for (i = 0 ; i < COLAMD_STATS ; i++)
alpar@9 1208 {
alpar@9 1209 stats [i] = 0 ;
alpar@9 1210 }
alpar@9 1211 stats [COLAMD_STATUS] = COLAMD_OK ;
alpar@9 1212 stats [COLAMD_INFO1] = -1 ;
alpar@9 1213 stats [COLAMD_INFO2] = -1 ;
alpar@9 1214
alpar@9 1215 if (!A)
alpar@9 1216 {
alpar@9 1217 stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
alpar@9 1218 DEBUG0 (("symamd: A not present\n")) ;
alpar@9 1219 return (FALSE) ;
alpar@9 1220 }
alpar@9 1221
alpar@9 1222 if (!p) /* p is not present */
alpar@9 1223 {
alpar@9 1224 stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
alpar@9 1225 DEBUG0 (("symamd: p not present\n")) ;
alpar@9 1226 return (FALSE) ;
alpar@9 1227 }
alpar@9 1228
alpar@9 1229 if (n < 0) /* n must be >= 0 */
alpar@9 1230 {
alpar@9 1231 stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
alpar@9 1232 stats [COLAMD_INFO1] = n ;
alpar@9 1233 DEBUG0 (("symamd: n negative %d\n", n)) ;
alpar@9 1234 return (FALSE) ;
alpar@9 1235 }
alpar@9 1236
alpar@9 1237 nnz = p [n] ;
alpar@9 1238 if (nnz < 0) /* nnz must be >= 0 */
alpar@9 1239 {
alpar@9 1240 stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
alpar@9 1241 stats [COLAMD_INFO1] = nnz ;
alpar@9 1242 DEBUG0 (("symamd: number of entries negative %d\n", nnz)) ;
alpar@9 1243 return (FALSE) ;
alpar@9 1244 }
alpar@9 1245
alpar@9 1246 if (p [0] != 0)
alpar@9 1247 {
alpar@9 1248 stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ;
alpar@9 1249 stats [COLAMD_INFO1] = p [0] ;
alpar@9 1250 DEBUG0 (("symamd: p[0] not zero %d\n", p [0])) ;
alpar@9 1251 return (FALSE) ;
alpar@9 1252 }
alpar@9 1253
alpar@9 1254 /* === If no knobs, set default knobs =================================== */
alpar@9 1255
alpar@9 1256 if (!knobs)
alpar@9 1257 {
alpar@9 1258 COLAMD_set_defaults (default_knobs) ;
alpar@9 1259 knobs = default_knobs ;
alpar@9 1260 }
alpar@9 1261
alpar@9 1262 /* === Allocate count and mark ========================================== */
alpar@9 1263
alpar@9 1264 count = (Int *) ((*allocate) (n+1, sizeof (Int))) ;
alpar@9 1265 if (!count)
alpar@9 1266 {
alpar@9 1267 stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
alpar@9 1268 DEBUG0 (("symamd: allocate count (size %d) failed\n", n+1)) ;
alpar@9 1269 return (FALSE) ;
alpar@9 1270 }
alpar@9 1271
alpar@9 1272 mark = (Int *) ((*allocate) (n+1, sizeof (Int))) ;
alpar@9 1273 if (!mark)
alpar@9 1274 {
alpar@9 1275 stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
alpar@9 1276 (*release) ((void *) count) ;
alpar@9 1277 DEBUG0 (("symamd: allocate mark (size %d) failed\n", n+1)) ;
alpar@9 1278 return (FALSE) ;
alpar@9 1279 }
alpar@9 1280
alpar@9 1281 /* === Compute column counts of M, check if A is valid ================== */
alpar@9 1282
alpar@9 1283 stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/
alpar@9 1284
alpar@9 1285 for (i = 0 ; i < n ; i++)
alpar@9 1286 {
alpar@9 1287 mark [i] = -1 ;
alpar@9 1288 }
alpar@9 1289
alpar@9 1290 for (j = 0 ; j < n ; j++)
alpar@9 1291 {
alpar@9 1292 last_row = -1 ;
alpar@9 1293
alpar@9 1294 length = p [j+1] - p [j] ;
alpar@9 1295 if (length < 0)
alpar@9 1296 {
alpar@9 1297 /* column pointers must be non-decreasing */
alpar@9 1298 stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
alpar@9 1299 stats [COLAMD_INFO1] = j ;
alpar@9 1300 stats [COLAMD_INFO2] = length ;
alpar@9 1301 (*release) ((void *) count) ;
alpar@9 1302 (*release) ((void *) mark) ;
alpar@9 1303 DEBUG0 (("symamd: col %d negative length %d\n", j, length)) ;
alpar@9 1304 return (FALSE) ;
alpar@9 1305 }
alpar@9 1306
alpar@9 1307 for (pp = p [j] ; pp < p [j+1] ; pp++)
alpar@9 1308 {
alpar@9 1309 i = A [pp] ;
alpar@9 1310 if (i < 0 || i >= n)
alpar@9 1311 {
alpar@9 1312 /* row index i, in column j, is out of bounds */
alpar@9 1313 stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
alpar@9 1314 stats [COLAMD_INFO1] = j ;
alpar@9 1315 stats [COLAMD_INFO2] = i ;
alpar@9 1316 stats [COLAMD_INFO3] = n ;
alpar@9 1317 (*release) ((void *) count) ;
alpar@9 1318 (*release) ((void *) mark) ;
alpar@9 1319 DEBUG0 (("symamd: row %d col %d out of bounds\n", i, j)) ;
alpar@9 1320 return (FALSE) ;
alpar@9 1321 }
alpar@9 1322
alpar@9 1323 if (i <= last_row || mark [i] == j)
alpar@9 1324 {
alpar@9 1325 /* row index is unsorted or repeated (or both), thus col */
alpar@9 1326 /* is jumbled. This is a notice, not an error condition. */
alpar@9 1327 stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ;
alpar@9 1328 stats [COLAMD_INFO1] = j ;
alpar@9 1329 stats [COLAMD_INFO2] = i ;
alpar@9 1330 (stats [COLAMD_INFO3]) ++ ;
alpar@9 1331 DEBUG1 (("symamd: row %d col %d unsorted/duplicate\n", i, j)) ;
alpar@9 1332 }
alpar@9 1333
alpar@9 1334 if (i > j && mark [i] != j)
alpar@9 1335 {
alpar@9 1336 /* row k of M will contain column indices i and j */
alpar@9 1337 count [i]++ ;
alpar@9 1338 count [j]++ ;
alpar@9 1339 }
alpar@9 1340
alpar@9 1341 /* mark the row as having been seen in this column */
alpar@9 1342 mark [i] = j ;
alpar@9 1343
alpar@9 1344 last_row = i ;
alpar@9 1345 }
alpar@9 1346 }
alpar@9 1347
alpar@9 1348 /* v2.4: removed free(mark) */
alpar@9 1349
alpar@9 1350 /* === Compute column pointers of M ===================================== */
alpar@9 1351
alpar@9 1352 /* use output permutation, perm, for column pointers of M */
alpar@9 1353 perm [0] = 0 ;
alpar@9 1354 for (j = 1 ; j <= n ; j++)
alpar@9 1355 {
alpar@9 1356 perm [j] = perm [j-1] + count [j-1] ;
alpar@9 1357 }
alpar@9 1358 for (j = 0 ; j < n ; j++)
alpar@9 1359 {
alpar@9 1360 count [j] = perm [j] ;
alpar@9 1361 }
alpar@9 1362
alpar@9 1363 /* === Construct M ====================================================== */
alpar@9 1364
alpar@9 1365 mnz = perm [n] ;
alpar@9 1366 n_row = mnz / 2 ;
alpar@9 1367 Mlen = COLAMD_recommended (mnz, n_row, n) ;
alpar@9 1368 M = (Int *) ((*allocate) (Mlen, sizeof (Int))) ;
alpar@9 1369 DEBUG0 (("symamd: M is %d-by-%d with %d entries, Mlen = %g\n",
alpar@9 1370 n_row, n, mnz, (double) Mlen)) ;
alpar@9 1371
alpar@9 1372 if (!M)
alpar@9 1373 {
alpar@9 1374 stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
alpar@9 1375 (*release) ((void *) count) ;
alpar@9 1376 (*release) ((void *) mark) ;
alpar@9 1377 DEBUG0 (("symamd: allocate M (size %g) failed\n", (double) Mlen)) ;
alpar@9 1378 return (FALSE) ;
alpar@9 1379 }
alpar@9 1380
alpar@9 1381 k = 0 ;
alpar@9 1382
alpar@9 1383 if (stats [COLAMD_STATUS] == COLAMD_OK)
alpar@9 1384 {
alpar@9 1385 /* Matrix is OK */
alpar@9 1386 for (j = 0 ; j < n ; j++)
alpar@9 1387 {
alpar@9 1388 ASSERT (p [j+1] - p [j] >= 0) ;
alpar@9 1389 for (pp = p [j] ; pp < p [j+1] ; pp++)
alpar@9 1390 {
alpar@9 1391 i = A [pp] ;
alpar@9 1392 ASSERT (i >= 0 && i < n) ;
alpar@9 1393 if (i > j)
alpar@9 1394 {
alpar@9 1395 /* row k of M contains column indices i and j */
alpar@9 1396 M [count [i]++] = k ;
alpar@9 1397 M [count [j]++] = k ;
alpar@9 1398 k++ ;
alpar@9 1399 }
alpar@9 1400 }
alpar@9 1401 }
alpar@9 1402 }
alpar@9 1403 else
alpar@9 1404 {
alpar@9 1405 /* Matrix is jumbled. Do not add duplicates to M. Unsorted cols OK. */
alpar@9 1406 DEBUG0 (("symamd: Duplicates in A.\n")) ;
alpar@9 1407 for (i = 0 ; i < n ; i++)
alpar@9 1408 {
alpar@9 1409 mark [i] = -1 ;
alpar@9 1410 }
alpar@9 1411 for (j = 0 ; j < n ; j++)
alpar@9 1412 {
alpar@9 1413 ASSERT (p [j+1] - p [j] >= 0) ;
alpar@9 1414 for (pp = p [j] ; pp < p [j+1] ; pp++)
alpar@9 1415 {
alpar@9 1416 i = A [pp] ;
alpar@9 1417 ASSERT (i >= 0 && i < n) ;
alpar@9 1418 if (i > j && mark [i] != j)
alpar@9 1419 {
alpar@9 1420 /* row k of M contains column indices i and j */
alpar@9 1421 M [count [i]++] = k ;
alpar@9 1422 M [count [j]++] = k ;
alpar@9 1423 k++ ;
alpar@9 1424 mark [i] = j ;
alpar@9 1425 }
alpar@9 1426 }
alpar@9 1427 }
alpar@9 1428 /* v2.4: free(mark) moved below */
alpar@9 1429 }
alpar@9 1430
alpar@9 1431 /* count and mark no longer needed */
alpar@9 1432 (*release) ((void *) count) ;
alpar@9 1433 (*release) ((void *) mark) ; /* v2.4: free (mark) moved here */
alpar@9 1434 ASSERT (k == n_row) ;
alpar@9 1435
alpar@9 1436 /* === Adjust the knobs for M =========================================== */
alpar@9 1437
alpar@9 1438 for (i = 0 ; i < COLAMD_KNOBS ; i++)
alpar@9 1439 {
alpar@9 1440 cknobs [i] = knobs [i] ;
alpar@9 1441 }
alpar@9 1442
alpar@9 1443 /* there are no dense rows in M */
alpar@9 1444 cknobs [COLAMD_DENSE_ROW] = -1 ;
alpar@9 1445 cknobs [COLAMD_DENSE_COL] = knobs [COLAMD_DENSE_ROW] ;
alpar@9 1446
alpar@9 1447 /* === Order the columns of M =========================================== */
alpar@9 1448
alpar@9 1449 /* v2.4: colamd cannot fail here, so the error check is removed */
alpar@9 1450 (void) COLAMD_MAIN (n_row, n, (Int) Mlen, M, perm, cknobs, stats) ;
alpar@9 1451
alpar@9 1452 /* Note that the output permutation is now in perm */
alpar@9 1453
alpar@9 1454 /* === get the statistics for symamd from colamd ======================== */
alpar@9 1455
alpar@9 1456 /* a dense column in colamd means a dense row and col in symamd */
alpar@9 1457 stats [COLAMD_DENSE_ROW] = stats [COLAMD_DENSE_COL] ;
alpar@9 1458
alpar@9 1459 /* === Free M =========================================================== */
alpar@9 1460
alpar@9 1461 (*release) ((void *) M) ;
alpar@9 1462 DEBUG0 (("symamd: done.\n")) ;
alpar@9 1463 return (TRUE) ;
alpar@9 1464
alpar@9 1465 }
alpar@9 1466
alpar@9 1467 /* ========================================================================== */
alpar@9 1468 /* === colamd =============================================================== */
alpar@9 1469 /* ========================================================================== */
alpar@9 1470
alpar@9 1471 /*
alpar@9 1472 The colamd routine computes a column ordering Q of a sparse matrix
alpar@9 1473 A such that the LU factorization P(AQ) = LU remains sparse, where P is
alpar@9 1474 selected via partial pivoting. The routine can also be viewed as
alpar@9 1475 providing a permutation Q such that the Cholesky factorization
alpar@9 1476 (AQ)'(AQ) = LL' remains sparse.
alpar@9 1477 */
alpar@9 1478
alpar@9 1479 PUBLIC Int COLAMD_MAIN /* returns TRUE if successful, FALSE otherwise*/
alpar@9 1480 (
alpar@9 1481 /* === Parameters ======================================================= */
alpar@9 1482
alpar@9 1483 Int n_row, /* number of rows in A */
alpar@9 1484 Int n_col, /* number of columns in A */
alpar@9 1485 Int Alen, /* length of A */
alpar@9 1486 Int A [], /* row indices of A */
alpar@9 1487 Int p [], /* pointers to columns in A */
alpar@9 1488 double knobs [COLAMD_KNOBS],/* parameters (uses defaults if NULL) */
alpar@9 1489 Int stats [COLAMD_STATS] /* output statistics and error codes */
alpar@9 1490 )
alpar@9 1491 {
alpar@9 1492 /* === Local variables ================================================== */
alpar@9 1493
alpar@9 1494 Int i ; /* loop index */
alpar@9 1495 Int nnz ; /* nonzeros in A */
alpar@9 1496 size_t Row_size ; /* size of Row [], in integers */
alpar@9 1497 size_t Col_size ; /* size of Col [], in integers */
alpar@9 1498 size_t need ; /* minimum required length of A */
alpar@9 1499 Colamd_Row *Row ; /* pointer into A of Row [0..n_row] array */
alpar@9 1500 Colamd_Col *Col ; /* pointer into A of Col [0..n_col] array */
alpar@9 1501 Int n_col2 ; /* number of non-dense, non-empty columns */
alpar@9 1502 Int n_row2 ; /* number of non-dense, non-empty rows */
alpar@9 1503 Int ngarbage ; /* number of garbage collections performed */
alpar@9 1504 Int max_deg ; /* maximum row degree */
alpar@9 1505 double default_knobs [COLAMD_KNOBS] ; /* default knobs array */
alpar@9 1506 Int aggressive ; /* do aggressive absorption */
alpar@9 1507 int ok ;
alpar@9 1508
alpar@9 1509 #ifndef NDEBUG
alpar@9 1510 colamd_get_debug ("colamd") ;
alpar@9 1511 #endif /* NDEBUG */
alpar@9 1512
alpar@9 1513 /* === Check the input arguments ======================================== */
alpar@9 1514
alpar@9 1515 if (!stats)
alpar@9 1516 {
alpar@9 1517 DEBUG0 (("colamd: stats not present\n")) ;
alpar@9 1518 return (FALSE) ;
alpar@9 1519 }
alpar@9 1520 for (i = 0 ; i < COLAMD_STATS ; i++)
alpar@9 1521 {
alpar@9 1522 stats [i] = 0 ;
alpar@9 1523 }
alpar@9 1524 stats [COLAMD_STATUS] = COLAMD_OK ;
alpar@9 1525 stats [COLAMD_INFO1] = -1 ;
alpar@9 1526 stats [COLAMD_INFO2] = -1 ;
alpar@9 1527
alpar@9 1528 if (!A) /* A is not present */
alpar@9 1529 {
alpar@9 1530 stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
alpar@9 1531 DEBUG0 (("colamd: A not present\n")) ;
alpar@9 1532 return (FALSE) ;
alpar@9 1533 }
alpar@9 1534
alpar@9 1535 if (!p) /* p is not present */
alpar@9 1536 {
alpar@9 1537 stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
alpar@9 1538 DEBUG0 (("colamd: p not present\n")) ;
alpar@9 1539 return (FALSE) ;
alpar@9 1540 }
alpar@9 1541
alpar@9 1542 if (n_row < 0) /* n_row must be >= 0 */
alpar@9 1543 {
alpar@9 1544 stats [COLAMD_STATUS] = COLAMD_ERROR_nrow_negative ;
alpar@9 1545 stats [COLAMD_INFO1] = n_row ;
alpar@9 1546 DEBUG0 (("colamd: nrow negative %d\n", n_row)) ;
alpar@9 1547 return (FALSE) ;
alpar@9 1548 }
alpar@9 1549
alpar@9 1550 if (n_col < 0) /* n_col must be >= 0 */
alpar@9 1551 {
alpar@9 1552 stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
alpar@9 1553 stats [COLAMD_INFO1] = n_col ;
alpar@9 1554 DEBUG0 (("colamd: ncol negative %d\n", n_col)) ;
alpar@9 1555 return (FALSE) ;
alpar@9 1556 }
alpar@9 1557
alpar@9 1558 nnz = p [n_col] ;
alpar@9 1559 if (nnz < 0) /* nnz must be >= 0 */
alpar@9 1560 {
alpar@9 1561 stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
alpar@9 1562 stats [COLAMD_INFO1] = nnz ;
alpar@9 1563 DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ;
alpar@9 1564 return (FALSE) ;
alpar@9 1565 }
alpar@9 1566
alpar@9 1567 if (p [0] != 0)
alpar@9 1568 {
alpar@9 1569 stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ;
alpar@9 1570 stats [COLAMD_INFO1] = p [0] ;
alpar@9 1571 DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ;
alpar@9 1572 return (FALSE) ;
alpar@9 1573 }
alpar@9 1574
alpar@9 1575 /* === If no knobs, set default knobs =================================== */
alpar@9 1576
alpar@9 1577 if (!knobs)
alpar@9 1578 {
alpar@9 1579 COLAMD_set_defaults (default_knobs) ;
alpar@9 1580 knobs = default_knobs ;
alpar@9 1581 }
alpar@9 1582
alpar@9 1583 aggressive = (knobs [COLAMD_AGGRESSIVE] != FALSE) ;
alpar@9 1584
alpar@9 1585 /* === Allocate the Row and Col arrays from array A ===================== */
alpar@9 1586
alpar@9 1587 ok = TRUE ;
alpar@9 1588 Col_size = COLAMD_C (n_col, &ok) ; /* size of Col array of structs */
alpar@9 1589 Row_size = COLAMD_R (n_row, &ok) ; /* size of Row array of structs */
alpar@9 1590
alpar@9 1591 /* need = 2*nnz + n_col + Col_size + Row_size ; */
alpar@9 1592 need = t_mult (nnz, 2, &ok) ;
alpar@9 1593 need = t_add (need, n_col, &ok) ;
alpar@9 1594 need = t_add (need, Col_size, &ok) ;
alpar@9 1595 need = t_add (need, Row_size, &ok) ;
alpar@9 1596
alpar@9 1597 if (!ok || need > (size_t) Alen || need > Int_MAX)
alpar@9 1598 {
alpar@9 1599 /* not enough space in array A to perform the ordering */
alpar@9 1600 stats [COLAMD_STATUS] = COLAMD_ERROR_A_too_small ;
alpar@9 1601 stats [COLAMD_INFO1] = need ;
alpar@9 1602 stats [COLAMD_INFO2] = Alen ;
alpar@9 1603 DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen));
alpar@9 1604 return (FALSE) ;
alpar@9 1605 }
alpar@9 1606
alpar@9 1607 Alen -= Col_size + Row_size ;
alpar@9 1608 Col = (Colamd_Col *) &A [Alen] ;
alpar@9 1609 Row = (Colamd_Row *) &A [Alen + Col_size] ;
alpar@9 1610
alpar@9 1611 /* === Construct the row and column data structures ===================== */
alpar@9 1612
alpar@9 1613 if (!init_rows_cols (n_row, n_col, Row, Col, A, p, stats))
alpar@9 1614 {
alpar@9 1615 /* input matrix is invalid */
alpar@9 1616 DEBUG0 (("colamd: Matrix invalid\n")) ;
alpar@9 1617 return (FALSE) ;
alpar@9 1618 }
alpar@9 1619
alpar@9 1620 /* === Initialize scores, kill dense rows/columns ======================= */
alpar@9 1621
alpar@9 1622 init_scoring (n_row, n_col, Row, Col, A, p, knobs,
alpar@9 1623 &n_row2, &n_col2, &max_deg) ;
alpar@9 1624
alpar@9 1625 /* === Order the supercolumns =========================================== */
alpar@9 1626
alpar@9 1627 ngarbage = find_ordering (n_row, n_col, Alen, Row, Col, A, p,
alpar@9 1628 n_col2, max_deg, 2*nnz, aggressive) ;
alpar@9 1629
alpar@9 1630 /* === Order the non-principal columns ================================== */
alpar@9 1631
alpar@9 1632 order_children (n_col, Col, p) ;
alpar@9 1633
alpar@9 1634 /* === Return statistics in stats ======================================= */
alpar@9 1635
alpar@9 1636 stats [COLAMD_DENSE_ROW] = n_row - n_row2 ;
alpar@9 1637 stats [COLAMD_DENSE_COL] = n_col - n_col2 ;
alpar@9 1638 stats [COLAMD_DEFRAG_COUNT] = ngarbage ;
alpar@9 1639 DEBUG0 (("colamd: done.\n")) ;
alpar@9 1640 return (TRUE) ;
alpar@9 1641 }
alpar@9 1642
alpar@9 1643
alpar@9 1644 /* ========================================================================== */
alpar@9 1645 /* === colamd_report ======================================================== */
alpar@9 1646 /* ========================================================================== */
alpar@9 1647
alpar@9 1648 PUBLIC void COLAMD_report
alpar@9 1649 (
alpar@9 1650 Int stats [COLAMD_STATS]
alpar@9 1651 )
alpar@9 1652 {
alpar@9 1653 print_report ("colamd", stats) ;
alpar@9 1654 }
alpar@9 1655
alpar@9 1656
alpar@9 1657 /* ========================================================================== */
alpar@9 1658 /* === symamd_report ======================================================== */
alpar@9 1659 /* ========================================================================== */
alpar@9 1660
alpar@9 1661 PUBLIC void SYMAMD_report
alpar@9 1662 (
alpar@9 1663 Int stats [COLAMD_STATS]
alpar@9 1664 )
alpar@9 1665 {
alpar@9 1666 print_report ("symamd", stats) ;
alpar@9 1667 }
alpar@9 1668
alpar@9 1669
alpar@9 1670
alpar@9 1671 /* ========================================================================== */
alpar@9 1672 /* === NON-USER-CALLABLE ROUTINES: ========================================== */
alpar@9 1673 /* ========================================================================== */
alpar@9 1674
alpar@9 1675 /* There are no user-callable routines beyond this point in the file */
alpar@9 1676
alpar@9 1677
alpar@9 1678 /* ========================================================================== */
alpar@9 1679 /* === init_rows_cols ======================================================= */
alpar@9 1680 /* ========================================================================== */
alpar@9 1681
alpar@9 1682 /*
alpar@9 1683 Takes the column form of the matrix in A and creates the row form of the
alpar@9 1684 matrix. Also, row and column attributes are stored in the Col and Row
alpar@9 1685 structs. If the columns are un-sorted or contain duplicate row indices,
alpar@9 1686 this routine will also sort and remove duplicate row indices from the
alpar@9 1687 column form of the matrix. Returns FALSE if the matrix is invalid,
alpar@9 1688 TRUE otherwise. Not user-callable.
alpar@9 1689 */
alpar@9 1690
alpar@9 1691 PRIVATE Int init_rows_cols /* returns TRUE if OK, or FALSE otherwise */
alpar@9 1692 (
alpar@9 1693 /* === Parameters ======================================================= */
alpar@9 1694
alpar@9 1695 Int n_row, /* number of rows of A */
alpar@9 1696 Int n_col, /* number of columns of A */
alpar@9 1697 Colamd_Row Row [], /* of size n_row+1 */
alpar@9 1698 Colamd_Col Col [], /* of size n_col+1 */
alpar@9 1699 Int A [], /* row indices of A, of size Alen */
alpar@9 1700 Int p [], /* pointers to columns in A, of size n_col+1 */
alpar@9 1701 Int stats [COLAMD_STATS] /* colamd statistics */
alpar@9 1702 )
alpar@9 1703 {
alpar@9 1704 /* === Local variables ================================================== */
alpar@9 1705
alpar@9 1706 Int col ; /* a column index */
alpar@9 1707 Int row ; /* a row index */
alpar@9 1708 Int *cp ; /* a column pointer */
alpar@9 1709 Int *cp_end ; /* a pointer to the end of a column */
alpar@9 1710 Int *rp ; /* a row pointer */
alpar@9 1711 Int *rp_end ; /* a pointer to the end of a row */
alpar@9 1712 Int last_row ; /* previous row */
alpar@9 1713
alpar@9 1714 /* === Initialize columns, and check column pointers ==================== */
alpar@9 1715
alpar@9 1716 for (col = 0 ; col < n_col ; col++)
alpar@9 1717 {
alpar@9 1718 Col [col].start = p [col] ;
alpar@9 1719 Col [col].length = p [col+1] - p [col] ;
alpar@9 1720
alpar@9 1721 if (Col [col].length < 0)
alpar@9 1722 {
alpar@9 1723 /* column pointers must be non-decreasing */
alpar@9 1724 stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
alpar@9 1725 stats [COLAMD_INFO1] = col ;
alpar@9 1726 stats [COLAMD_INFO2] = Col [col].length ;
alpar@9 1727 DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ;
alpar@9 1728 return (FALSE) ;
alpar@9 1729 }
alpar@9 1730
alpar@9 1731 Col [col].shared1.thickness = 1 ;
alpar@9 1732 Col [col].shared2.score = 0 ;
alpar@9 1733 Col [col].shared3.prev = EMPTY ;
alpar@9 1734 Col [col].shared4.degree_next = EMPTY ;
alpar@9 1735 }
alpar@9 1736
alpar@9 1737 /* p [0..n_col] no longer needed, used as "head" in subsequent routines */
alpar@9 1738
alpar@9 1739 /* === Scan columns, compute row degrees, and check row indices ========= */
alpar@9 1740
alpar@9 1741 stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/
alpar@9 1742
alpar@9 1743 for (row = 0 ; row < n_row ; row++)
alpar@9 1744 {
alpar@9 1745 Row [row].length = 0 ;
alpar@9 1746 Row [row].shared2.mark = -1 ;
alpar@9 1747 }
alpar@9 1748
alpar@9 1749 for (col = 0 ; col < n_col ; col++)
alpar@9 1750 {
alpar@9 1751 last_row = -1 ;
alpar@9 1752
alpar@9 1753 cp = &A [p [col]] ;
alpar@9 1754 cp_end = &A [p [col+1]] ;
alpar@9 1755
alpar@9 1756 while (cp < cp_end)
alpar@9 1757 {
alpar@9 1758 row = *cp++ ;
alpar@9 1759
alpar@9 1760 /* make sure row indices within range */
alpar@9 1761 if (row < 0 || row >= n_row)
alpar@9 1762 {
alpar@9 1763 stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
alpar@9 1764 stats [COLAMD_INFO1] = col ;
alpar@9 1765 stats [COLAMD_INFO2] = row ;
alpar@9 1766 stats [COLAMD_INFO3] = n_row ;
alpar@9 1767 DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ;
alpar@9 1768 return (FALSE) ;
alpar@9 1769 }
alpar@9 1770
alpar@9 1771 if (row <= last_row || Row [row].shared2.mark == col)
alpar@9 1772 {
alpar@9 1773 /* row index are unsorted or repeated (or both), thus col */
alpar@9 1774 /* is jumbled. This is a notice, not an error condition. */
alpar@9 1775 stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ;
alpar@9 1776 stats [COLAMD_INFO1] = col ;
alpar@9 1777 stats [COLAMD_INFO2] = row ;
alpar@9 1778 (stats [COLAMD_INFO3]) ++ ;
alpar@9 1779 DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col));
alpar@9 1780 }
alpar@9 1781
alpar@9 1782 if (Row [row].shared2.mark != col)
alpar@9 1783 {
alpar@9 1784 Row [row].length++ ;
alpar@9 1785 }
alpar@9 1786 else
alpar@9 1787 {
alpar@9 1788 /* this is a repeated entry in the column, */
alpar@9 1789 /* it will be removed */
alpar@9 1790 Col [col].length-- ;
alpar@9 1791 }
alpar@9 1792
alpar@9 1793 /* mark the row as having been seen in this column */
alpar@9 1794 Row [row].shared2.mark = col ;
alpar@9 1795
alpar@9 1796 last_row = row ;
alpar@9 1797 }
alpar@9 1798 }
alpar@9 1799
alpar@9 1800 /* === Compute row pointers ============================================= */
alpar@9 1801
alpar@9 1802 /* row form of the matrix starts directly after the column */
alpar@9 1803 /* form of matrix in A */
alpar@9 1804 Row [0].start = p [n_col] ;
alpar@9 1805 Row [0].shared1.p = Row [0].start ;
alpar@9 1806 Row [0].shared2.mark = -1 ;
alpar@9 1807 for (row = 1 ; row < n_row ; row++)
alpar@9 1808 {
alpar@9 1809 Row [row].start = Row [row-1].start + Row [row-1].length ;
alpar@9 1810 Row [row].shared1.p = Row [row].start ;
alpar@9 1811 Row [row].shared2.mark = -1 ;
alpar@9 1812 }
alpar@9 1813
alpar@9 1814 /* === Create row form ================================================== */
alpar@9 1815
alpar@9 1816 if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
alpar@9 1817 {
alpar@9 1818 /* if cols jumbled, watch for repeated row indices */
alpar@9 1819 for (col = 0 ; col < n_col ; col++)
alpar@9 1820 {
alpar@9 1821 cp = &A [p [col]] ;
alpar@9 1822 cp_end = &A [p [col+1]] ;
alpar@9 1823 while (cp < cp_end)
alpar@9 1824 {
alpar@9 1825 row = *cp++ ;
alpar@9 1826 if (Row [row].shared2.mark != col)
alpar@9 1827 {
alpar@9 1828 A [(Row [row].shared1.p)++] = col ;
alpar@9 1829 Row [row].shared2.mark = col ;
alpar@9 1830 }
alpar@9 1831 }
alpar@9 1832 }
alpar@9 1833 }
alpar@9 1834 else
alpar@9 1835 {
alpar@9 1836 /* if cols not jumbled, we don't need the mark (this is faster) */
alpar@9 1837 for (col = 0 ; col < n_col ; col++)
alpar@9 1838 {
alpar@9 1839 cp = &A [p [col]] ;
alpar@9 1840 cp_end = &A [p [col+1]] ;
alpar@9 1841 while (cp < cp_end)
alpar@9 1842 {
alpar@9 1843 A [(Row [*cp++].shared1.p)++] = col ;
alpar@9 1844 }
alpar@9 1845 }
alpar@9 1846 }
alpar@9 1847
alpar@9 1848 /* === Clear the row marks and set row degrees ========================== */
alpar@9 1849
alpar@9 1850 for (row = 0 ; row < n_row ; row++)
alpar@9 1851 {
alpar@9 1852 Row [row].shared2.mark = 0 ;
alpar@9 1853 Row [row].shared1.degree = Row [row].length ;
alpar@9 1854 }
alpar@9 1855
alpar@9 1856 /* === See if we need to re-create columns ============================== */
alpar@9 1857
alpar@9 1858 if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
alpar@9 1859 {
alpar@9 1860 DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ;
alpar@9 1861
alpar@9 1862 #ifndef NDEBUG
alpar@9 1863 /* make sure column lengths are correct */
alpar@9 1864 for (col = 0 ; col < n_col ; col++)
alpar@9 1865 {
alpar@9 1866 p [col] = Col [col].length ;
alpar@9 1867 }
alpar@9 1868 for (row = 0 ; row < n_row ; row++)
alpar@9 1869 {
alpar@9 1870 rp = &A [Row [row].start] ;
alpar@9 1871 rp_end = rp + Row [row].length ;
alpar@9 1872 while (rp < rp_end)
alpar@9 1873 {
alpar@9 1874 p [*rp++]-- ;
alpar@9 1875 }
alpar@9 1876 }
alpar@9 1877 for (col = 0 ; col < n_col ; col++)
alpar@9 1878 {
alpar@9 1879 ASSERT (p [col] == 0) ;
alpar@9 1880 }
alpar@9 1881 /* now p is all zero (different than when debugging is turned off) */
alpar@9 1882 #endif /* NDEBUG */
alpar@9 1883
alpar@9 1884 /* === Compute col pointers ========================================= */
alpar@9 1885
alpar@9 1886 /* col form of the matrix starts at A [0]. */
alpar@9 1887 /* Note, we may have a gap between the col form and the row */
alpar@9 1888 /* form if there were duplicate entries, if so, it will be */
alpar@9 1889 /* removed upon the first garbage collection */
alpar@9 1890 Col [0].start = 0 ;
alpar@9 1891 p [0] = Col [0].start ;
alpar@9 1892 for (col = 1 ; col < n_col ; col++)
alpar@9 1893 {
alpar@9 1894 /* note that the lengths here are for pruned columns, i.e. */
alpar@9 1895 /* no duplicate row indices will exist for these columns */
alpar@9 1896 Col [col].start = Col [col-1].start + Col [col-1].length ;
alpar@9 1897 p [col] = Col [col].start ;
alpar@9 1898 }
alpar@9 1899
alpar@9 1900 /* === Re-create col form =========================================== */
alpar@9 1901
alpar@9 1902 for (row = 0 ; row < n_row ; row++)
alpar@9 1903 {
alpar@9 1904 rp = &A [Row [row].start] ;
alpar@9 1905 rp_end = rp + Row [row].length ;
alpar@9 1906 while (rp < rp_end)
alpar@9 1907 {
alpar@9 1908 A [(p [*rp++])++] = row ;
alpar@9 1909 }
alpar@9 1910 }
alpar@9 1911 }
alpar@9 1912
alpar@9 1913 /* === Done. Matrix is not (or no longer) jumbled ====================== */
alpar@9 1914
alpar@9 1915 return (TRUE) ;
alpar@9 1916 }
alpar@9 1917
alpar@9 1918
alpar@9 1919 /* ========================================================================== */
alpar@9 1920 /* === init_scoring ========================================================= */
alpar@9 1921 /* ========================================================================== */
alpar@9 1922
alpar@9 1923 /*
alpar@9 1924 Kills dense or empty columns and rows, calculates an initial score for
alpar@9 1925 each column, and places all columns in the degree lists. Not user-callable.
alpar@9 1926 */
alpar@9 1927
alpar@9 1928 PRIVATE void init_scoring
alpar@9 1929 (
alpar@9 1930 /* === Parameters ======================================================= */
alpar@9 1931
alpar@9 1932 Int n_row, /* number of rows of A */
alpar@9 1933 Int n_col, /* number of columns of A */
alpar@9 1934 Colamd_Row Row [], /* of size n_row+1 */
alpar@9 1935 Colamd_Col Col [], /* of size n_col+1 */
alpar@9 1936 Int A [], /* column form and row form of A */
alpar@9 1937 Int head [], /* of size n_col+1 */
alpar@9 1938 double knobs [COLAMD_KNOBS],/* parameters */
alpar@9 1939 Int *p_n_row2, /* number of non-dense, non-empty rows */
alpar@9 1940 Int *p_n_col2, /* number of non-dense, non-empty columns */
alpar@9 1941 Int *p_max_deg /* maximum row degree */
alpar@9 1942 )
alpar@9 1943 {
alpar@9 1944 /* === Local variables ================================================== */
alpar@9 1945
alpar@9 1946 Int c ; /* a column index */
alpar@9 1947 Int r, row ; /* a row index */
alpar@9 1948 Int *cp ; /* a column pointer */
alpar@9 1949 Int deg ; /* degree of a row or column */
alpar@9 1950 Int *cp_end ; /* a pointer to the end of a column */
alpar@9 1951 Int *new_cp ; /* new column pointer */
alpar@9 1952 Int col_length ; /* length of pruned column */
alpar@9 1953 Int score ; /* current column score */
alpar@9 1954 Int n_col2 ; /* number of non-dense, non-empty columns */
alpar@9 1955 Int n_row2 ; /* number of non-dense, non-empty rows */
alpar@9 1956 Int dense_row_count ; /* remove rows with more entries than this */
alpar@9 1957 Int dense_col_count ; /* remove cols with more entries than this */
alpar@9 1958 Int min_score ; /* smallest column score */
alpar@9 1959 Int max_deg ; /* maximum row degree */
alpar@9 1960 Int next_col ; /* Used to add to degree list.*/
alpar@9 1961
alpar@9 1962 #ifndef NDEBUG
alpar@9 1963 Int debug_count ; /* debug only. */
alpar@9 1964 #endif /* NDEBUG */
alpar@9 1965
alpar@9 1966 /* === Extract knobs ==================================================== */
alpar@9 1967
alpar@9 1968 /* Note: if knobs contains a NaN, this is undefined: */
alpar@9 1969 if (knobs [COLAMD_DENSE_ROW] < 0)
alpar@9 1970 {
alpar@9 1971 /* only remove completely dense rows */
alpar@9 1972 dense_row_count = n_col-1 ;
alpar@9 1973 }
alpar@9 1974 else
alpar@9 1975 {
alpar@9 1976 dense_row_count = DENSE_DEGREE (knobs [COLAMD_DENSE_ROW], n_col) ;
alpar@9 1977 }
alpar@9 1978 if (knobs [COLAMD_DENSE_COL] < 0)
alpar@9 1979 {
alpar@9 1980 /* only remove completely dense columns */
alpar@9 1981 dense_col_count = n_row-1 ;
alpar@9 1982 }
alpar@9 1983 else
alpar@9 1984 {
alpar@9 1985 dense_col_count =
alpar@9 1986 DENSE_DEGREE (knobs [COLAMD_DENSE_COL], MIN (n_row, n_col)) ;
alpar@9 1987 }
alpar@9 1988
alpar@9 1989 DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ;
alpar@9 1990 max_deg = 0 ;
alpar@9 1991 n_col2 = n_col ;
alpar@9 1992 n_row2 = n_row ;
alpar@9 1993
alpar@9 1994 /* === Kill empty columns =============================================== */
alpar@9 1995
alpar@9 1996 /* Put the empty columns at the end in their natural order, so that LU */
alpar@9 1997 /* factorization can proceed as far as possible. */
alpar@9 1998 for (c = n_col-1 ; c >= 0 ; c--)
alpar@9 1999 {
alpar@9 2000 deg = Col [c].length ;
alpar@9 2001 if (deg == 0)
alpar@9 2002 {
alpar@9 2003 /* this is a empty column, kill and order it last */
alpar@9 2004 Col [c].shared2.order = --n_col2 ;
alpar@9 2005 KILL_PRINCIPAL_COL (c) ;
alpar@9 2006 }
alpar@9 2007 }
alpar@9 2008 DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ;
alpar@9 2009
alpar@9 2010 /* === Kill dense columns =============================================== */
alpar@9 2011
alpar@9 2012 /* Put the dense columns at the end, in their natural order */
alpar@9 2013 for (c = n_col-1 ; c >= 0 ; c--)
alpar@9 2014 {
alpar@9 2015 /* skip any dead columns */
alpar@9 2016 if (COL_IS_DEAD (c))
alpar@9 2017 {
alpar@9 2018 continue ;
alpar@9 2019 }
alpar@9 2020 deg = Col [c].length ;
alpar@9 2021 if (deg > dense_col_count)
alpar@9 2022 {
alpar@9 2023 /* this is a dense column, kill and order it last */
alpar@9 2024 Col [c].shared2.order = --n_col2 ;
alpar@9 2025 /* decrement the row degrees */
alpar@9 2026 cp = &A [Col [c].start] ;
alpar@9 2027 cp_end = cp + Col [c].length ;
alpar@9 2028 while (cp < cp_end)
alpar@9 2029 {
alpar@9 2030 Row [*cp++].shared1.degree-- ;
alpar@9 2031 }
alpar@9 2032 KILL_PRINCIPAL_COL (c) ;
alpar@9 2033 }
alpar@9 2034 }
alpar@9 2035 DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ;
alpar@9 2036
alpar@9 2037 /* === Kill dense and empty rows ======================================== */
alpar@9 2038
alpar@9 2039 for (r = 0 ; r < n_row ; r++)
alpar@9 2040 {
alpar@9 2041 deg = Row [r].shared1.degree ;
alpar@9 2042 ASSERT (deg >= 0 && deg <= n_col) ;
alpar@9 2043 if (deg > dense_row_count || deg == 0)
alpar@9 2044 {
alpar@9 2045 /* kill a dense or empty row */
alpar@9 2046 KILL_ROW (r) ;
alpar@9 2047 --n_row2 ;
alpar@9 2048 }
alpar@9 2049 else
alpar@9 2050 {
alpar@9 2051 /* keep track of max degree of remaining rows */
alpar@9 2052 max_deg = MAX (max_deg, deg) ;
alpar@9 2053 }
alpar@9 2054 }
alpar@9 2055 DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ;
alpar@9 2056
alpar@9 2057 /* === Compute initial column scores ==================================== */
alpar@9 2058
alpar@9 2059 /* At this point the row degrees are accurate. They reflect the number */
alpar@9 2060 /* of "live" (non-dense) columns in each row. No empty rows exist. */
alpar@9 2061 /* Some "live" columns may contain only dead rows, however. These are */
alpar@9 2062 /* pruned in the code below. */
alpar@9 2063
alpar@9 2064 /* now find the initial matlab score for each column */
alpar@9 2065 for (c = n_col-1 ; c >= 0 ; c--)
alpar@9 2066 {
alpar@9 2067 /* skip dead column */
alpar@9 2068 if (COL_IS_DEAD (c))
alpar@9 2069 {
alpar@9 2070 continue ;
alpar@9 2071 }
alpar@9 2072 score = 0 ;
alpar@9 2073 cp = &A [Col [c].start] ;
alpar@9 2074 new_cp = cp ;
alpar@9 2075 cp_end = cp + Col [c].length ;
alpar@9 2076 while (cp < cp_end)
alpar@9 2077 {
alpar@9 2078 /* get a row */
alpar@9 2079 row = *cp++ ;
alpar@9 2080 /* skip if dead */
alpar@9 2081 if (ROW_IS_DEAD (row))
alpar@9 2082 {
alpar@9 2083 continue ;
alpar@9 2084 }
alpar@9 2085 /* compact the column */
alpar@9 2086 *new_cp++ = row ;
alpar@9 2087 /* add row's external degree */
alpar@9 2088 score += Row [row].shared1.degree - 1 ;
alpar@9 2089 /* guard against integer overflow */
alpar@9 2090 score = MIN (score, n_col) ;
alpar@9 2091 }
alpar@9 2092 /* determine pruned column length */
alpar@9 2093 col_length = (Int) (new_cp - &A [Col [c].start]) ;
alpar@9 2094 if (col_length == 0)
alpar@9 2095 {
alpar@9 2096 /* a newly-made null column (all rows in this col are "dense" */
alpar@9 2097 /* and have already been killed) */
alpar@9 2098 DEBUG2 (("Newly null killed: %d\n", c)) ;
alpar@9 2099 Col [c].shared2.order = --n_col2 ;
alpar@9 2100 KILL_PRINCIPAL_COL (c) ;
alpar@9 2101 }
alpar@9 2102 else
alpar@9 2103 {
alpar@9 2104 /* set column length and set score */
alpar@9 2105 ASSERT (score >= 0) ;
alpar@9 2106 ASSERT (score <= n_col) ;
alpar@9 2107 Col [c].length = col_length ;
alpar@9 2108 Col [c].shared2.score = score ;
alpar@9 2109 }
alpar@9 2110 }
alpar@9 2111 DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n",
alpar@9 2112 n_col-n_col2)) ;
alpar@9 2113
alpar@9 2114 /* At this point, all empty rows and columns are dead. All live columns */
alpar@9 2115 /* are "clean" (containing no dead rows) and simplicial (no supercolumns */
alpar@9 2116 /* yet). Rows may contain dead columns, but all live rows contain at */
alpar@9 2117 /* least one live column. */
alpar@9 2118
alpar@9 2119 #ifndef NDEBUG
alpar@9 2120 debug_structures (n_row, n_col, Row, Col, A, n_col2) ;
alpar@9 2121 #endif /* NDEBUG */
alpar@9 2122
alpar@9 2123 /* === Initialize degree lists ========================================== */
alpar@9 2124
alpar@9 2125 #ifndef NDEBUG
alpar@9 2126 debug_count = 0 ;
alpar@9 2127 #endif /* NDEBUG */
alpar@9 2128
alpar@9 2129 /* clear the hash buckets */
alpar@9 2130 for (c = 0 ; c <= n_col ; c++)
alpar@9 2131 {
alpar@9 2132 head [c] = EMPTY ;
alpar@9 2133 }
alpar@9 2134 min_score = n_col ;
alpar@9 2135 /* place in reverse order, so low column indices are at the front */
alpar@9 2136 /* of the lists. This is to encourage natural tie-breaking */
alpar@9 2137 for (c = n_col-1 ; c >= 0 ; c--)
alpar@9 2138 {
alpar@9 2139 /* only add principal columns to degree lists */
alpar@9 2140 if (COL_IS_ALIVE (c))
alpar@9 2141 {
alpar@9 2142 DEBUG4 (("place %d score %d minscore %d ncol %d\n",
alpar@9 2143 c, Col [c].shared2.score, min_score, n_col)) ;
alpar@9 2144
alpar@9 2145 /* === Add columns score to DList =============================== */
alpar@9 2146
alpar@9 2147 score = Col [c].shared2.score ;
alpar@9 2148
alpar@9 2149 ASSERT (min_score >= 0) ;
alpar@9 2150 ASSERT (min_score <= n_col) ;
alpar@9 2151 ASSERT (score >= 0) ;
alpar@9 2152 ASSERT (score <= n_col) ;
alpar@9 2153 ASSERT (head [score] >= EMPTY) ;
alpar@9 2154
alpar@9 2155 /* now add this column to dList at proper score location */
alpar@9 2156 next_col = head [score] ;
alpar@9 2157 Col [c].shared3.prev = EMPTY ;
alpar@9 2158 Col [c].shared4.degree_next = next_col ;
alpar@9 2159
alpar@9 2160 /* if there already was a column with the same score, set its */
alpar@9 2161 /* previous pointer to this new column */
alpar@9 2162 if (next_col != EMPTY)
alpar@9 2163 {
alpar@9 2164 Col [next_col].shared3.prev = c ;
alpar@9 2165 }
alpar@9 2166 head [score] = c ;
alpar@9 2167
alpar@9 2168 /* see if this score is less than current min */
alpar@9 2169 min_score = MIN (min_score, score) ;
alpar@9 2170
alpar@9 2171 #ifndef NDEBUG
alpar@9 2172 debug_count++ ;
alpar@9 2173 #endif /* NDEBUG */
alpar@9 2174
alpar@9 2175 }
alpar@9 2176 }
alpar@9 2177
alpar@9 2178 #ifndef NDEBUG
alpar@9 2179 DEBUG1 (("colamd: Live cols %d out of %d, non-princ: %d\n",
alpar@9 2180 debug_count, n_col, n_col-debug_count)) ;
alpar@9 2181 ASSERT (debug_count == n_col2) ;
alpar@9 2182 debug_deg_lists (n_row, n_col, Row, Col, head, min_score, n_col2, max_deg) ;
alpar@9 2183 #endif /* NDEBUG */
alpar@9 2184
alpar@9 2185 /* === Return number of remaining columns, and max row degree =========== */
alpar@9 2186
alpar@9 2187 *p_n_col2 = n_col2 ;
alpar@9 2188 *p_n_row2 = n_row2 ;
alpar@9 2189 *p_max_deg = max_deg ;
alpar@9 2190 }
alpar@9 2191
alpar@9 2192
alpar@9 2193 /* ========================================================================== */
alpar@9 2194 /* === find_ordering ======================================================== */
alpar@9 2195 /* ========================================================================== */
alpar@9 2196
alpar@9 2197 /*
alpar@9 2198 Order the principal columns of the supercolumn form of the matrix
alpar@9 2199 (no supercolumns on input). Uses a minimum approximate column minimum
alpar@9 2200 degree ordering method. Not user-callable.
alpar@9 2201 */
alpar@9 2202
alpar@9 2203 PRIVATE Int find_ordering /* return the number of garbage collections */
alpar@9 2204 (
alpar@9 2205 /* === Parameters ======================================================= */
alpar@9 2206
alpar@9 2207 Int n_row, /* number of rows of A */
alpar@9 2208 Int n_col, /* number of columns of A */
alpar@9 2209 Int Alen, /* size of A, 2*nnz + n_col or larger */
alpar@9 2210 Colamd_Row Row [], /* of size n_row+1 */
alpar@9 2211 Colamd_Col Col [], /* of size n_col+1 */
alpar@9 2212 Int A [], /* column form and row form of A */
alpar@9 2213 Int head [], /* of size n_col+1 */
alpar@9 2214 Int n_col2, /* Remaining columns to order */
alpar@9 2215 Int max_deg, /* Maximum row degree */
alpar@9 2216 Int pfree, /* index of first free slot (2*nnz on entry) */
alpar@9 2217 Int aggressive
alpar@9 2218 )
alpar@9 2219 {
alpar@9 2220 /* === Local variables ================================================== */
alpar@9 2221
alpar@9 2222 Int k ; /* current pivot ordering step */
alpar@9 2223 Int pivot_col ; /* current pivot column */
alpar@9 2224 Int *cp ; /* a column pointer */
alpar@9 2225 Int *rp ; /* a row pointer */
alpar@9 2226 Int pivot_row ; /* current pivot row */
alpar@9 2227 Int *new_cp ; /* modified column pointer */
alpar@9 2228 Int *new_rp ; /* modified row pointer */
alpar@9 2229 Int pivot_row_start ; /* pointer to start of pivot row */
alpar@9 2230 Int pivot_row_degree ; /* number of columns in pivot row */
alpar@9 2231 Int pivot_row_length ; /* number of supercolumns in pivot row */
alpar@9 2232 Int pivot_col_score ; /* score of pivot column */
alpar@9 2233 Int needed_memory ; /* free space needed for pivot row */
alpar@9 2234 Int *cp_end ; /* pointer to the end of a column */
alpar@9 2235 Int *rp_end ; /* pointer to the end of a row */
alpar@9 2236 Int row ; /* a row index */
alpar@9 2237 Int col ; /* a column index */
alpar@9 2238 Int max_score ; /* maximum possible score */
alpar@9 2239 Int cur_score ; /* score of current column */
alpar@9 2240 unsigned Int hash ; /* hash value for supernode detection */
alpar@9 2241 Int head_column ; /* head of hash bucket */
alpar@9 2242 Int first_col ; /* first column in hash bucket */
alpar@9 2243 Int tag_mark ; /* marker value for mark array */
alpar@9 2244 Int row_mark ; /* Row [row].shared2.mark */
alpar@9 2245 Int set_difference ; /* set difference size of row with pivot row */
alpar@9 2246 Int min_score ; /* smallest column score */
alpar@9 2247 Int col_thickness ; /* "thickness" (no. of columns in a supercol) */
alpar@9 2248 Int max_mark ; /* maximum value of tag_mark */
alpar@9 2249 Int pivot_col_thickness ; /* number of columns represented by pivot col */
alpar@9 2250 Int prev_col ; /* Used by Dlist operations. */
alpar@9 2251 Int next_col ; /* Used by Dlist operations. */
alpar@9 2252 Int ngarbage ; /* number of garbage collections performed */
alpar@9 2253
alpar@9 2254 #ifndef NDEBUG
alpar@9 2255 Int debug_d ; /* debug loop counter */
alpar@9 2256 Int debug_step = 0 ; /* debug loop counter */
alpar@9 2257 #endif /* NDEBUG */
alpar@9 2258
alpar@9 2259 /* === Initialization and clear mark ==================================== */
alpar@9 2260
alpar@9 2261 max_mark = INT_MAX - n_col ; /* INT_MAX defined in <limits.h> */
alpar@9 2262 tag_mark = clear_mark (0, max_mark, n_row, Row) ;
alpar@9 2263 min_score = 0 ;
alpar@9 2264 ngarbage = 0 ;
alpar@9 2265 DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ;
alpar@9 2266
alpar@9 2267 /* === Order the columns ================================================ */
alpar@9 2268
alpar@9 2269 for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */)
alpar@9 2270 {
alpar@9 2271
alpar@9 2272 #ifndef NDEBUG
alpar@9 2273 if (debug_step % 100 == 0)
alpar@9 2274 {
alpar@9 2275 DEBUG2 (("\n... Step k: %d out of n_col2: %d\n", k, n_col2)) ;
alpar@9 2276 }
alpar@9 2277 else
alpar@9 2278 {
alpar@9 2279 DEBUG3 (("\n----------Step k: %d out of n_col2: %d\n", k, n_col2)) ;
alpar@9 2280 }
alpar@9 2281 debug_step++ ;
alpar@9 2282 debug_deg_lists (n_row, n_col, Row, Col, head,
alpar@9 2283 min_score, n_col2-k, max_deg) ;
alpar@9 2284 debug_matrix (n_row, n_col, Row, Col, A) ;
alpar@9 2285 #endif /* NDEBUG */
alpar@9 2286
alpar@9 2287 /* === Select pivot column, and order it ============================ */
alpar@9 2288
alpar@9 2289 /* make sure degree list isn't empty */
alpar@9 2290 ASSERT (min_score >= 0) ;
alpar@9 2291 ASSERT (min_score <= n_col) ;
alpar@9 2292 ASSERT (head [min_score] >= EMPTY) ;
alpar@9 2293
alpar@9 2294 #ifndef NDEBUG
alpar@9 2295 for (debug_d = 0 ; debug_d < min_score ; debug_d++)
alpar@9 2296 {
alpar@9 2297 ASSERT (head [debug_d] == EMPTY) ;
alpar@9 2298 }
alpar@9 2299 #endif /* NDEBUG */
alpar@9 2300
alpar@9 2301 /* get pivot column from head of minimum degree list */
alpar@9 2302 while (head [min_score] == EMPTY && min_score < n_col)
alpar@9 2303 {
alpar@9 2304 min_score++ ;
alpar@9 2305 }
alpar@9 2306 pivot_col = head [min_score] ;
alpar@9 2307 ASSERT (pivot_col >= 0 && pivot_col <= n_col) ;
alpar@9 2308 next_col = Col [pivot_col].shared4.degree_next ;
alpar@9 2309 head [min_score] = next_col ;
alpar@9 2310 if (next_col != EMPTY)
alpar@9 2311 {
alpar@9 2312 Col [next_col].shared3.prev = EMPTY ;
alpar@9 2313 }
alpar@9 2314
alpar@9 2315 ASSERT (COL_IS_ALIVE (pivot_col)) ;
alpar@9 2316
alpar@9 2317 /* remember score for defrag check */
alpar@9 2318 pivot_col_score = Col [pivot_col].shared2.score ;
alpar@9 2319
alpar@9 2320 /* the pivot column is the kth column in the pivot order */
alpar@9 2321 Col [pivot_col].shared2.order = k ;
alpar@9 2322
alpar@9 2323 /* increment order count by column thickness */
alpar@9 2324 pivot_col_thickness = Col [pivot_col].shared1.thickness ;
alpar@9 2325 k += pivot_col_thickness ;
alpar@9 2326 ASSERT (pivot_col_thickness > 0) ;
alpar@9 2327 DEBUG3 (("Pivot col: %d thick %d\n", pivot_col, pivot_col_thickness)) ;
alpar@9 2328
alpar@9 2329 /* === Garbage_collection, if necessary ============================= */
alpar@9 2330
alpar@9 2331 needed_memory = MIN (pivot_col_score, n_col - k) ;
alpar@9 2332 if (pfree + needed_memory >= Alen)
alpar@9 2333 {
alpar@9 2334 pfree = garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ;
alpar@9 2335 ngarbage++ ;
alpar@9 2336 /* after garbage collection we will have enough */
alpar@9 2337 ASSERT (pfree + needed_memory < Alen) ;
alpar@9 2338 /* garbage collection has wiped out the Row[].shared2.mark array */
alpar@9 2339 tag_mark = clear_mark (0, max_mark, n_row, Row) ;
alpar@9 2340
alpar@9 2341 #ifndef NDEBUG
alpar@9 2342 debug_matrix (n_row, n_col, Row, Col, A) ;
alpar@9 2343 #endif /* NDEBUG */
alpar@9 2344 }
alpar@9 2345
alpar@9 2346 /* === Compute pivot row pattern ==================================== */
alpar@9 2347
alpar@9 2348 /* get starting location for this new merged row */
alpar@9 2349 pivot_row_start = pfree ;
alpar@9 2350
alpar@9 2351 /* initialize new row counts to zero */
alpar@9 2352 pivot_row_degree = 0 ;
alpar@9 2353
alpar@9 2354 /* tag pivot column as having been visited so it isn't included */
alpar@9 2355 /* in merged pivot row */
alpar@9 2356 Col [pivot_col].shared1.thickness = -pivot_col_thickness ;
alpar@9 2357
alpar@9 2358 /* pivot row is the union of all rows in the pivot column pattern */
alpar@9 2359 cp = &A [Col [pivot_col].start] ;
alpar@9 2360 cp_end = cp + Col [pivot_col].length ;
alpar@9 2361 while (cp < cp_end)
alpar@9 2362 {
alpar@9 2363 /* get a row */
alpar@9 2364 row = *cp++ ;
alpar@9 2365 DEBUG4 (("Pivot col pattern %d %d\n", ROW_IS_ALIVE (row), row)) ;
alpar@9 2366 /* skip if row is dead */
alpar@9 2367 if (ROW_IS_ALIVE (row))
alpar@9 2368 {
alpar@9 2369 rp = &A [Row [row].start] ;
alpar@9 2370 rp_end = rp + Row [row].length ;
alpar@9 2371 while (rp < rp_end)
alpar@9 2372 {
alpar@9 2373 /* get a column */
alpar@9 2374 col = *rp++ ;
alpar@9 2375 /* add the column, if alive and untagged */
alpar@9 2376 col_thickness = Col [col].shared1.thickness ;
alpar@9 2377 if (col_thickness > 0 && COL_IS_ALIVE (col))
alpar@9 2378 {
alpar@9 2379 /* tag column in pivot row */
alpar@9 2380 Col [col].shared1.thickness = -col_thickness ;
alpar@9 2381 ASSERT (pfree < Alen) ;
alpar@9 2382 /* place column in pivot row */
alpar@9 2383 A [pfree++] = col ;
alpar@9 2384 pivot_row_degree += col_thickness ;
alpar@9 2385 }
alpar@9 2386 }
alpar@9 2387 }
alpar@9 2388 }
alpar@9 2389
alpar@9 2390 /* clear tag on pivot column */
alpar@9 2391 Col [pivot_col].shared1.thickness = pivot_col_thickness ;
alpar@9 2392 max_deg = MAX (max_deg, pivot_row_degree) ;
alpar@9 2393
alpar@9 2394 #ifndef NDEBUG
alpar@9 2395 DEBUG3 (("check2\n")) ;
alpar@9 2396 debug_mark (n_row, Row, tag_mark, max_mark) ;
alpar@9 2397 #endif /* NDEBUG */
alpar@9 2398
alpar@9 2399 /* === Kill all rows used to construct pivot row ==================== */
alpar@9 2400
alpar@9 2401 /* also kill pivot row, temporarily */
alpar@9 2402 cp = &A [Col [pivot_col].start] ;
alpar@9 2403 cp_end = cp + Col [pivot_col].length ;
alpar@9 2404 while (cp < cp_end)
alpar@9 2405 {
alpar@9 2406 /* may be killing an already dead row */
alpar@9 2407 row = *cp++ ;
alpar@9 2408 DEBUG3 (("Kill row in pivot col: %d\n", row)) ;
alpar@9 2409 KILL_ROW (row) ;
alpar@9 2410 }
alpar@9 2411
alpar@9 2412 /* === Select a row index to use as the new pivot row =============== */
alpar@9 2413
alpar@9 2414 pivot_row_length = pfree - pivot_row_start ;
alpar@9 2415 if (pivot_row_length > 0)
alpar@9 2416 {
alpar@9 2417 /* pick the "pivot" row arbitrarily (first row in col) */
alpar@9 2418 pivot_row = A [Col [pivot_col].start] ;
alpar@9 2419 DEBUG3 (("Pivotal row is %d\n", pivot_row)) ;
alpar@9 2420 }
alpar@9 2421 else
alpar@9 2422 {
alpar@9 2423 /* there is no pivot row, since it is of zero length */
alpar@9 2424 pivot_row = EMPTY ;
alpar@9 2425 ASSERT (pivot_row_length == 0) ;
alpar@9 2426 }
alpar@9 2427 ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ;
alpar@9 2428
alpar@9 2429 /* === Approximate degree computation =============================== */
alpar@9 2430
alpar@9 2431 /* Here begins the computation of the approximate degree. The column */
alpar@9 2432 /* score is the sum of the pivot row "length", plus the size of the */
alpar@9 2433 /* set differences of each row in the column minus the pattern of the */
alpar@9 2434 /* pivot row itself. The column ("thickness") itself is also */
alpar@9 2435 /* excluded from the column score (we thus use an approximate */
alpar@9 2436 /* external degree). */
alpar@9 2437
alpar@9 2438 /* The time taken by the following code (compute set differences, and */
alpar@9 2439 /* add them up) is proportional to the size of the data structure */
alpar@9 2440 /* being scanned - that is, the sum of the sizes of each column in */
alpar@9 2441 /* the pivot row. Thus, the amortized time to compute a column score */
alpar@9 2442 /* is proportional to the size of that column (where size, in this */
alpar@9 2443 /* context, is the column "length", or the number of row indices */
alpar@9 2444 /* in that column). The number of row indices in a column is */
alpar@9 2445 /* monotonically non-decreasing, from the length of the original */
alpar@9 2446 /* column on input to colamd. */
alpar@9 2447
alpar@9 2448 /* === Compute set differences ====================================== */
alpar@9 2449
alpar@9 2450 DEBUG3 (("** Computing set differences phase. **\n")) ;
alpar@9 2451
alpar@9 2452 /* pivot row is currently dead - it will be revived later. */
alpar@9 2453
alpar@9 2454 DEBUG3 (("Pivot row: ")) ;
alpar@9 2455 /* for each column in pivot row */
alpar@9 2456 rp = &A [pivot_row_start] ;
alpar@9 2457 rp_end = rp + pivot_row_length ;
alpar@9 2458 while (rp < rp_end)
alpar@9 2459 {
alpar@9 2460 col = *rp++ ;
alpar@9 2461 ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
alpar@9 2462 DEBUG3 (("Col: %d\n", col)) ;
alpar@9 2463
alpar@9 2464 /* clear tags used to construct pivot row pattern */
alpar@9 2465 col_thickness = -Col [col].shared1.thickness ;
alpar@9 2466 ASSERT (col_thickness > 0) ;
alpar@9 2467 Col [col].shared1.thickness = col_thickness ;
alpar@9 2468
alpar@9 2469 /* === Remove column from degree list =========================== */
alpar@9 2470
alpar@9 2471 cur_score = Col [col].shared2.score ;
alpar@9 2472 prev_col = Col [col].shared3.prev ;
alpar@9 2473 next_col = Col [col].shared4.degree_next ;
alpar@9 2474 ASSERT (cur_score >= 0) ;
alpar@9 2475 ASSERT (cur_score <= n_col) ;
alpar@9 2476 ASSERT (cur_score >= EMPTY) ;
alpar@9 2477 if (prev_col == EMPTY)
alpar@9 2478 {
alpar@9 2479 head [cur_score] = next_col ;
alpar@9 2480 }
alpar@9 2481 else
alpar@9 2482 {
alpar@9 2483 Col [prev_col].shared4.degree_next = next_col ;
alpar@9 2484 }
alpar@9 2485 if (next_col != EMPTY)
alpar@9 2486 {
alpar@9 2487 Col [next_col].shared3.prev = prev_col ;
alpar@9 2488 }
alpar@9 2489
alpar@9 2490 /* === Scan the column ========================================== */
alpar@9 2491
alpar@9 2492 cp = &A [Col [col].start] ;
alpar@9 2493 cp_end = cp + Col [col].length ;
alpar@9 2494 while (cp < cp_end)
alpar@9 2495 {
alpar@9 2496 /* get a row */
alpar@9 2497 row = *cp++ ;
alpar@9 2498 row_mark = Row [row].shared2.mark ;
alpar@9 2499 /* skip if dead */
alpar@9 2500 if (ROW_IS_MARKED_DEAD (row_mark))
alpar@9 2501 {
alpar@9 2502 continue ;
alpar@9 2503 }
alpar@9 2504 ASSERT (row != pivot_row) ;
alpar@9 2505 set_difference = row_mark - tag_mark ;
alpar@9 2506 /* check if the row has been seen yet */
alpar@9 2507 if (set_difference < 0)
alpar@9 2508 {
alpar@9 2509 ASSERT (Row [row].shared1.degree <= max_deg) ;
alpar@9 2510 set_difference = Row [row].shared1.degree ;
alpar@9 2511 }
alpar@9 2512 /* subtract column thickness from this row's set difference */
alpar@9 2513 set_difference -= col_thickness ;
alpar@9 2514 ASSERT (set_difference >= 0) ;
alpar@9 2515 /* absorb this row if the set difference becomes zero */
alpar@9 2516 if (set_difference == 0 && aggressive)
alpar@9 2517 {
alpar@9 2518 DEBUG3 (("aggressive absorption. Row: %d\n", row)) ;
alpar@9 2519 KILL_ROW (row) ;
alpar@9 2520 }
alpar@9 2521 else
alpar@9 2522 {
alpar@9 2523 /* save the new mark */
alpar@9 2524 Row [row].shared2.mark = set_difference + tag_mark ;
alpar@9 2525 }
alpar@9 2526 }
alpar@9 2527 }
alpar@9 2528
alpar@9 2529 #ifndef NDEBUG
alpar@9 2530 debug_deg_lists (n_row, n_col, Row, Col, head,
alpar@9 2531 min_score, n_col2-k-pivot_row_degree, max_deg) ;
alpar@9 2532 #endif /* NDEBUG */
alpar@9 2533
alpar@9 2534 /* === Add up set differences for each column ======================= */
alpar@9 2535
alpar@9 2536 DEBUG3 (("** Adding set differences phase. **\n")) ;
alpar@9 2537
alpar@9 2538 /* for each column in pivot row */
alpar@9 2539 rp = &A [pivot_row_start] ;
alpar@9 2540 rp_end = rp + pivot_row_length ;
alpar@9 2541 while (rp < rp_end)
alpar@9 2542 {
alpar@9 2543 /* get a column */
alpar@9 2544 col = *rp++ ;
alpar@9 2545 ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
alpar@9 2546 hash = 0 ;
alpar@9 2547 cur_score = 0 ;
alpar@9 2548 cp = &A [Col [col].start] ;
alpar@9 2549 /* compact the column */
alpar@9 2550 new_cp = cp ;
alpar@9 2551 cp_end = cp + Col [col].length ;
alpar@9 2552
alpar@9 2553 DEBUG4 (("Adding set diffs for Col: %d.\n", col)) ;
alpar@9 2554
alpar@9 2555 while (cp < cp_end)
alpar@9 2556 {
alpar@9 2557 /* get a row */
alpar@9 2558 row = *cp++ ;
alpar@9 2559 ASSERT(row >= 0 && row < n_row) ;
alpar@9 2560 row_mark = Row [row].shared2.mark ;
alpar@9 2561 /* skip if dead */
alpar@9 2562 if (ROW_IS_MARKED_DEAD (row_mark))
alpar@9 2563 {
alpar@9 2564 DEBUG4 ((" Row %d, dead\n", row)) ;
alpar@9 2565 continue ;
alpar@9 2566 }
alpar@9 2567 DEBUG4 ((" Row %d, set diff %d\n", row, row_mark-tag_mark));
alpar@9 2568 ASSERT (row_mark >= tag_mark) ;
alpar@9 2569 /* compact the column */
alpar@9 2570 *new_cp++ = row ;
alpar@9 2571 /* compute hash function */
alpar@9 2572 hash += row ;
alpar@9 2573 /* add set difference */
alpar@9 2574 cur_score += row_mark - tag_mark ;
alpar@9 2575 /* integer overflow... */
alpar@9 2576 cur_score = MIN (cur_score, n_col) ;
alpar@9 2577 }
alpar@9 2578
alpar@9 2579 /* recompute the column's length */
alpar@9 2580 Col [col].length = (Int) (new_cp - &A [Col [col].start]) ;
alpar@9 2581
alpar@9 2582 /* === Further mass elimination ================================= */
alpar@9 2583
alpar@9 2584 if (Col [col].length == 0)
alpar@9 2585 {
alpar@9 2586 DEBUG4 (("further mass elimination. Col: %d\n", col)) ;
alpar@9 2587 /* nothing left but the pivot row in this column */
alpar@9 2588 KILL_PRINCIPAL_COL (col) ;
alpar@9 2589 pivot_row_degree -= Col [col].shared1.thickness ;
alpar@9 2590 ASSERT (pivot_row_degree >= 0) ;
alpar@9 2591 /* order it */
alpar@9 2592 Col [col].shared2.order = k ;
alpar@9 2593 /* increment order count by column thickness */
alpar@9 2594 k += Col [col].shared1.thickness ;
alpar@9 2595 }
alpar@9 2596 else
alpar@9 2597 {
alpar@9 2598 /* === Prepare for supercolumn detection ==================== */
alpar@9 2599
alpar@9 2600 DEBUG4 (("Preparing supercol detection for Col: %d.\n", col)) ;
alpar@9 2601
alpar@9 2602 /* save score so far */
alpar@9 2603 Col [col].shared2.score = cur_score ;
alpar@9 2604
alpar@9 2605 /* add column to hash table, for supercolumn detection */
alpar@9 2606 hash %= n_col + 1 ;
alpar@9 2607
alpar@9 2608 DEBUG4 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ;
alpar@9 2609 ASSERT (((Int) hash) <= n_col) ;
alpar@9 2610
alpar@9 2611 head_column = head [hash] ;
alpar@9 2612 if (head_column > EMPTY)
alpar@9 2613 {
alpar@9 2614 /* degree list "hash" is non-empty, use prev (shared3) of */
alpar@9 2615 /* first column in degree list as head of hash bucket */
alpar@9 2616 first_col = Col [head_column].shared3.headhash ;
alpar@9 2617 Col [head_column].shared3.headhash = col ;
alpar@9 2618 }
alpar@9 2619 else
alpar@9 2620 {
alpar@9 2621 /* degree list "hash" is empty, use head as hash bucket */
alpar@9 2622 first_col = - (head_column + 2) ;
alpar@9 2623 head [hash] = - (col + 2) ;
alpar@9 2624 }
alpar@9 2625 Col [col].shared4.hash_next = first_col ;
alpar@9 2626
alpar@9 2627 /* save hash function in Col [col].shared3.hash */
alpar@9 2628 Col [col].shared3.hash = (Int) hash ;
alpar@9 2629 ASSERT (COL_IS_ALIVE (col)) ;
alpar@9 2630 }
alpar@9 2631 }
alpar@9 2632
alpar@9 2633 /* The approximate external column degree is now computed. */
alpar@9 2634
alpar@9 2635 /* === Supercolumn detection ======================================== */
alpar@9 2636
alpar@9 2637 DEBUG3 (("** Supercolumn detection phase. **\n")) ;
alpar@9 2638
alpar@9 2639 detect_super_cols (
alpar@9 2640
alpar@9 2641 #ifndef NDEBUG
alpar@9 2642 n_col, Row,
alpar@9 2643 #endif /* NDEBUG */
alpar@9 2644
alpar@9 2645 Col, A, head, pivot_row_start, pivot_row_length) ;
alpar@9 2646
alpar@9 2647 /* === Kill the pivotal column ====================================== */
alpar@9 2648
alpar@9 2649 KILL_PRINCIPAL_COL (pivot_col) ;
alpar@9 2650
alpar@9 2651 /* === Clear mark =================================================== */
alpar@9 2652
alpar@9 2653 tag_mark = clear_mark (tag_mark+max_deg+1, max_mark, n_row, Row) ;
alpar@9 2654
alpar@9 2655 #ifndef NDEBUG
alpar@9 2656 DEBUG3 (("check3\n")) ;
alpar@9 2657 debug_mark (n_row, Row, tag_mark, max_mark) ;
alpar@9 2658 #endif /* NDEBUG */
alpar@9 2659
alpar@9 2660 /* === Finalize the new pivot row, and column scores ================ */
alpar@9 2661
alpar@9 2662 DEBUG3 (("** Finalize scores phase. **\n")) ;
alpar@9 2663
alpar@9 2664 /* for each column in pivot row */
alpar@9 2665 rp = &A [pivot_row_start] ;
alpar@9 2666 /* compact the pivot row */
alpar@9 2667 new_rp = rp ;
alpar@9 2668 rp_end = rp + pivot_row_length ;
alpar@9 2669 while (rp < rp_end)
alpar@9 2670 {
alpar@9 2671 col = *rp++ ;
alpar@9 2672 /* skip dead columns */
alpar@9 2673 if (COL_IS_DEAD (col))
alpar@9 2674 {
alpar@9 2675 continue ;
alpar@9 2676 }
alpar@9 2677 *new_rp++ = col ;
alpar@9 2678 /* add new pivot row to column */
alpar@9 2679 A [Col [col].start + (Col [col].length++)] = pivot_row ;
alpar@9 2680
alpar@9 2681 /* retrieve score so far and add on pivot row's degree. */
alpar@9 2682 /* (we wait until here for this in case the pivot */
alpar@9 2683 /* row's degree was reduced due to mass elimination). */
alpar@9 2684 cur_score = Col [col].shared2.score + pivot_row_degree ;
alpar@9 2685
alpar@9 2686 /* calculate the max possible score as the number of */
alpar@9 2687 /* external columns minus the 'k' value minus the */
alpar@9 2688 /* columns thickness */
alpar@9 2689 max_score = n_col - k - Col [col].shared1.thickness ;
alpar@9 2690
alpar@9 2691 /* make the score the external degree of the union-of-rows */
alpar@9 2692 cur_score -= Col [col].shared1.thickness ;
alpar@9 2693
alpar@9 2694 /* make sure score is less or equal than the max score */
alpar@9 2695 cur_score = MIN (cur_score, max_score) ;
alpar@9 2696 ASSERT (cur_score >= 0) ;
alpar@9 2697
alpar@9 2698 /* store updated score */
alpar@9 2699 Col [col].shared2.score = cur_score ;
alpar@9 2700
alpar@9 2701 /* === Place column back in degree list ========================= */
alpar@9 2702
alpar@9 2703 ASSERT (min_score >= 0) ;
alpar@9 2704 ASSERT (min_score <= n_col) ;
alpar@9 2705 ASSERT (cur_score >= 0) ;
alpar@9 2706 ASSERT (cur_score <= n_col) ;
alpar@9 2707 ASSERT (head [cur_score] >= EMPTY) ;
alpar@9 2708 next_col = head [cur_score] ;
alpar@9 2709 Col [col].shared4.degree_next = next_col ;
alpar@9 2710 Col [col].shared3.prev = EMPTY ;
alpar@9 2711 if (next_col != EMPTY)
alpar@9 2712 {
alpar@9 2713 Col [next_col].shared3.prev = col ;
alpar@9 2714 }
alpar@9 2715 head [cur_score] = col ;
alpar@9 2716
alpar@9 2717 /* see if this score is less than current min */
alpar@9 2718 min_score = MIN (min_score, cur_score) ;
alpar@9 2719
alpar@9 2720 }
alpar@9 2721
alpar@9 2722 #ifndef NDEBUG
alpar@9 2723 debug_deg_lists (n_row, n_col, Row, Col, head,
alpar@9 2724 min_score, n_col2-k, max_deg) ;
alpar@9 2725 #endif /* NDEBUG */
alpar@9 2726
alpar@9 2727 /* === Resurrect the new pivot row ================================== */
alpar@9 2728
alpar@9 2729 if (pivot_row_degree > 0)
alpar@9 2730 {
alpar@9 2731 /* update pivot row length to reflect any cols that were killed */
alpar@9 2732 /* during super-col detection and mass elimination */
alpar@9 2733 Row [pivot_row].start = pivot_row_start ;
alpar@9 2734 Row [pivot_row].length = (Int) (new_rp - &A[pivot_row_start]) ;
alpar@9 2735 ASSERT (Row [pivot_row].length > 0) ;
alpar@9 2736 Row [pivot_row].shared1.degree = pivot_row_degree ;
alpar@9 2737 Row [pivot_row].shared2.mark = 0 ;
alpar@9 2738 /* pivot row is no longer dead */
alpar@9 2739
alpar@9 2740 DEBUG1 (("Resurrect Pivot_row %d deg: %d\n",
alpar@9 2741 pivot_row, pivot_row_degree)) ;
alpar@9 2742 }
alpar@9 2743 }
alpar@9 2744
alpar@9 2745 /* === All principal columns have now been ordered ====================== */
alpar@9 2746
alpar@9 2747 return (ngarbage) ;
alpar@9 2748 }
alpar@9 2749
alpar@9 2750
alpar@9 2751 /* ========================================================================== */
alpar@9 2752 /* === order_children ======================================================= */
alpar@9 2753 /* ========================================================================== */
alpar@9 2754
alpar@9 2755 /*
alpar@9 2756 The find_ordering routine has ordered all of the principal columns (the
alpar@9 2757 representatives of the supercolumns). The non-principal columns have not
alpar@9 2758 yet been ordered. This routine orders those columns by walking up the
alpar@9 2759 parent tree (a column is a child of the column which absorbed it). The
alpar@9 2760 final permutation vector is then placed in p [0 ... n_col-1], with p [0]
alpar@9 2761 being the first column, and p [n_col-1] being the last. It doesn't look
alpar@9 2762 like it at first glance, but be assured that this routine takes time linear
alpar@9 2763 in the number of columns. Although not immediately obvious, the time
alpar@9 2764 taken by this routine is O (n_col), that is, linear in the number of
alpar@9 2765 columns. Not user-callable.
alpar@9 2766 */
alpar@9 2767
alpar@9 2768 PRIVATE void order_children
alpar@9 2769 (
alpar@9 2770 /* === Parameters ======================================================= */
alpar@9 2771
alpar@9 2772 Int n_col, /* number of columns of A */
alpar@9 2773 Colamd_Col Col [], /* of size n_col+1 */
alpar@9 2774 Int p [] /* p [0 ... n_col-1] is the column permutation*/
alpar@9 2775 )
alpar@9 2776 {
alpar@9 2777 /* === Local variables ================================================== */
alpar@9 2778
alpar@9 2779 Int i ; /* loop counter for all columns */
alpar@9 2780 Int c ; /* column index */
alpar@9 2781 Int parent ; /* index of column's parent */
alpar@9 2782 Int order ; /* column's order */
alpar@9 2783
alpar@9 2784 /* === Order each non-principal column ================================== */
alpar@9 2785
alpar@9 2786 for (i = 0 ; i < n_col ; i++)
alpar@9 2787 {
alpar@9 2788 /* find an un-ordered non-principal column */
alpar@9 2789 ASSERT (COL_IS_DEAD (i)) ;
alpar@9 2790 if (!COL_IS_DEAD_PRINCIPAL (i) && Col [i].shared2.order == EMPTY)
alpar@9 2791 {
alpar@9 2792 parent = i ;
alpar@9 2793 /* once found, find its principal parent */
alpar@9 2794 do
alpar@9 2795 {
alpar@9 2796 parent = Col [parent].shared1.parent ;
alpar@9 2797 } while (!COL_IS_DEAD_PRINCIPAL (parent)) ;
alpar@9 2798
alpar@9 2799 /* now, order all un-ordered non-principal columns along path */
alpar@9 2800 /* to this parent. collapse tree at the same time */
alpar@9 2801 c = i ;
alpar@9 2802 /* get order of parent */
alpar@9 2803 order = Col [parent].shared2.order ;
alpar@9 2804
alpar@9 2805 do
alpar@9 2806 {
alpar@9 2807 ASSERT (Col [c].shared2.order == EMPTY) ;
alpar@9 2808
alpar@9 2809 /* order this column */
alpar@9 2810 Col [c].shared2.order = order++ ;
alpar@9 2811 /* collaps tree */
alpar@9 2812 Col [c].shared1.parent = parent ;
alpar@9 2813
alpar@9 2814 /* get immediate parent of this column */
alpar@9 2815 c = Col [c].shared1.parent ;
alpar@9 2816
alpar@9 2817 /* continue until we hit an ordered column. There are */
alpar@9 2818 /* guarranteed not to be anymore unordered columns */
alpar@9 2819 /* above an ordered column */
alpar@9 2820 } while (Col [c].shared2.order == EMPTY) ;
alpar@9 2821
alpar@9 2822 /* re-order the super_col parent to largest order for this group */
alpar@9 2823 Col [parent].shared2.order = order ;
alpar@9 2824 }
alpar@9 2825 }
alpar@9 2826
alpar@9 2827 /* === Generate the permutation ========================================= */
alpar@9 2828
alpar@9 2829 for (c = 0 ; c < n_col ; c++)
alpar@9 2830 {
alpar@9 2831 p [Col [c].shared2.order] = c ;
alpar@9 2832 }
alpar@9 2833 }
alpar@9 2834
alpar@9 2835
alpar@9 2836 /* ========================================================================== */
alpar@9 2837 /* === detect_super_cols ==================================================== */
alpar@9 2838 /* ========================================================================== */
alpar@9 2839
alpar@9 2840 /*
alpar@9 2841 Detects supercolumns by finding matches between columns in the hash buckets.
alpar@9 2842 Check amongst columns in the set A [row_start ... row_start + row_length-1].
alpar@9 2843 The columns under consideration are currently *not* in the degree lists,
alpar@9 2844 and have already been placed in the hash buckets.
alpar@9 2845
alpar@9 2846 The hash bucket for columns whose hash function is equal to h is stored
alpar@9 2847 as follows:
alpar@9 2848
alpar@9 2849 if head [h] is >= 0, then head [h] contains a degree list, so:
alpar@9 2850
alpar@9 2851 head [h] is the first column in degree bucket h.
alpar@9 2852 Col [head [h]].headhash gives the first column in hash bucket h.
alpar@9 2853
alpar@9 2854 otherwise, the degree list is empty, and:
alpar@9 2855
alpar@9 2856 -(head [h] + 2) is the first column in hash bucket h.
alpar@9 2857
alpar@9 2858 For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous
alpar@9 2859 column" pointer. Col [c].shared3.hash is used instead as the hash number
alpar@9 2860 for that column. The value of Col [c].shared4.hash_next is the next column
alpar@9 2861 in the same hash bucket.
alpar@9 2862
alpar@9 2863 Assuming no, or "few" hash collisions, the time taken by this routine is
alpar@9 2864 linear in the sum of the sizes (lengths) of each column whose score has
alpar@9 2865 just been computed in the approximate degree computation.
alpar@9 2866 Not user-callable.
alpar@9 2867 */
alpar@9 2868
alpar@9 2869 PRIVATE void detect_super_cols
alpar@9 2870 (
alpar@9 2871 /* === Parameters ======================================================= */
alpar@9 2872
alpar@9 2873 #ifndef NDEBUG
alpar@9 2874 /* these two parameters are only needed when debugging is enabled: */
alpar@9 2875 Int n_col, /* number of columns of A */
alpar@9 2876 Colamd_Row Row [], /* of size n_row+1 */
alpar@9 2877 #endif /* NDEBUG */
alpar@9 2878
alpar@9 2879 Colamd_Col Col [], /* of size n_col+1 */
alpar@9 2880 Int A [], /* row indices of A */
alpar@9 2881 Int head [], /* head of degree lists and hash buckets */
alpar@9 2882 Int row_start, /* pointer to set of columns to check */
alpar@9 2883 Int row_length /* number of columns to check */
alpar@9 2884 )
alpar@9 2885 {
alpar@9 2886 /* === Local variables ================================================== */
alpar@9 2887
alpar@9 2888 Int hash ; /* hash value for a column */
alpar@9 2889 Int *rp ; /* pointer to a row */
alpar@9 2890 Int c ; /* a column index */
alpar@9 2891 Int super_c ; /* column index of the column to absorb into */
alpar@9 2892 Int *cp1 ; /* column pointer for column super_c */
alpar@9 2893 Int *cp2 ; /* column pointer for column c */
alpar@9 2894 Int length ; /* length of column super_c */
alpar@9 2895 Int prev_c ; /* column preceding c in hash bucket */
alpar@9 2896 Int i ; /* loop counter */
alpar@9 2897 Int *rp_end ; /* pointer to the end of the row */
alpar@9 2898 Int col ; /* a column index in the row to check */
alpar@9 2899 Int head_column ; /* first column in hash bucket or degree list */
alpar@9 2900 Int first_col ; /* first column in hash bucket */
alpar@9 2901
alpar@9 2902 /* === Consider each column in the row ================================== */
alpar@9 2903
alpar@9 2904 rp = &A [row_start] ;
alpar@9 2905 rp_end = rp + row_length ;
alpar@9 2906 while (rp < rp_end)
alpar@9 2907 {
alpar@9 2908 col = *rp++ ;
alpar@9 2909 if (COL_IS_DEAD (col))
alpar@9 2910 {
alpar@9 2911 continue ;
alpar@9 2912 }
alpar@9 2913
alpar@9 2914 /* get hash number for this column */
alpar@9 2915 hash = Col [col].shared3.hash ;
alpar@9 2916 ASSERT (hash <= n_col) ;
alpar@9 2917
alpar@9 2918 /* === Get the first column in this hash bucket ===================== */
alpar@9 2919
alpar@9 2920 head_column = head [hash] ;
alpar@9 2921 if (head_column > EMPTY)
alpar@9 2922 {
alpar@9 2923 first_col = Col [head_column].shared3.headhash ;
alpar@9 2924 }
alpar@9 2925 else
alpar@9 2926 {
alpar@9 2927 first_col = - (head_column + 2) ;
alpar@9 2928 }
alpar@9 2929
alpar@9 2930 /* === Consider each column in the hash bucket ====================== */
alpar@9 2931
alpar@9 2932 for (super_c = first_col ; super_c != EMPTY ;
alpar@9 2933 super_c = Col [super_c].shared4.hash_next)
alpar@9 2934 {
alpar@9 2935 ASSERT (COL_IS_ALIVE (super_c)) ;
alpar@9 2936 ASSERT (Col [super_c].shared3.hash == hash) ;
alpar@9 2937 length = Col [super_c].length ;
alpar@9 2938
alpar@9 2939 /* prev_c is the column preceding column c in the hash bucket */
alpar@9 2940 prev_c = super_c ;
alpar@9 2941
alpar@9 2942 /* === Compare super_c with all columns after it ================ */
alpar@9 2943
alpar@9 2944 for (c = Col [super_c].shared4.hash_next ;
alpar@9 2945 c != EMPTY ; c = Col [c].shared4.hash_next)
alpar@9 2946 {
alpar@9 2947 ASSERT (c != super_c) ;
alpar@9 2948 ASSERT (COL_IS_ALIVE (c)) ;
alpar@9 2949 ASSERT (Col [c].shared3.hash == hash) ;
alpar@9 2950
alpar@9 2951 /* not identical if lengths or scores are different */
alpar@9 2952 if (Col [c].length != length ||
alpar@9 2953 Col [c].shared2.score != Col [super_c].shared2.score)
alpar@9 2954 {
alpar@9 2955 prev_c = c ;
alpar@9 2956 continue ;
alpar@9 2957 }
alpar@9 2958
alpar@9 2959 /* compare the two columns */
alpar@9 2960 cp1 = &A [Col [super_c].start] ;
alpar@9 2961 cp2 = &A [Col [c].start] ;
alpar@9 2962
alpar@9 2963 for (i = 0 ; i < length ; i++)
alpar@9 2964 {
alpar@9 2965 /* the columns are "clean" (no dead rows) */
alpar@9 2966 ASSERT (ROW_IS_ALIVE (*cp1)) ;
alpar@9 2967 ASSERT (ROW_IS_ALIVE (*cp2)) ;
alpar@9 2968 /* row indices will same order for both supercols, */
alpar@9 2969 /* no gather scatter nessasary */
alpar@9 2970 if (*cp1++ != *cp2++)
alpar@9 2971 {
alpar@9 2972 break ;
alpar@9 2973 }
alpar@9 2974 }
alpar@9 2975
alpar@9 2976 /* the two columns are different if the for-loop "broke" */
alpar@9 2977 if (i != length)
alpar@9 2978 {
alpar@9 2979 prev_c = c ;
alpar@9 2980 continue ;
alpar@9 2981 }
alpar@9 2982
alpar@9 2983 /* === Got it! two columns are identical =================== */
alpar@9 2984
alpar@9 2985 ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ;
alpar@9 2986
alpar@9 2987 Col [super_c].shared1.thickness += Col [c].shared1.thickness ;
alpar@9 2988 Col [c].shared1.parent = super_c ;
alpar@9 2989 KILL_NON_PRINCIPAL_COL (c) ;
alpar@9 2990 /* order c later, in order_children() */
alpar@9 2991 Col [c].shared2.order = EMPTY ;
alpar@9 2992 /* remove c from hash bucket */
alpar@9 2993 Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ;
alpar@9 2994 }
alpar@9 2995 }
alpar@9 2996
alpar@9 2997 /* === Empty this hash bucket ======================================= */
alpar@9 2998
alpar@9 2999 if (head_column > EMPTY)
alpar@9 3000 {
alpar@9 3001 /* corresponding degree list "hash" is not empty */
alpar@9 3002 Col [head_column].shared3.headhash = EMPTY ;
alpar@9 3003 }
alpar@9 3004 else
alpar@9 3005 {
alpar@9 3006 /* corresponding degree list "hash" is empty */
alpar@9 3007 head [hash] = EMPTY ;
alpar@9 3008 }
alpar@9 3009 }
alpar@9 3010 }
alpar@9 3011
alpar@9 3012
alpar@9 3013 /* ========================================================================== */
alpar@9 3014 /* === garbage_collection =================================================== */
alpar@9 3015 /* ========================================================================== */
alpar@9 3016
alpar@9 3017 /*
alpar@9 3018 Defragments and compacts columns and rows in the workspace A. Used when
alpar@9 3019 all avaliable memory has been used while performing row merging. Returns
alpar@9 3020 the index of the first free position in A, after garbage collection. The
alpar@9 3021 time taken by this routine is linear is the size of the array A, which is
alpar@9 3022 itself linear in the number of nonzeros in the input matrix.
alpar@9 3023 Not user-callable.
alpar@9 3024 */
alpar@9 3025
alpar@9 3026 PRIVATE Int garbage_collection /* returns the new value of pfree */
alpar@9 3027 (
alpar@9 3028 /* === Parameters ======================================================= */
alpar@9 3029
alpar@9 3030 Int n_row, /* number of rows */
alpar@9 3031 Int n_col, /* number of columns */
alpar@9 3032 Colamd_Row Row [], /* row info */
alpar@9 3033 Colamd_Col Col [], /* column info */
alpar@9 3034 Int A [], /* A [0 ... Alen-1] holds the matrix */
alpar@9 3035 Int *pfree /* &A [0] ... pfree is in use */
alpar@9 3036 )
alpar@9 3037 {
alpar@9 3038 /* === Local variables ================================================== */
alpar@9 3039
alpar@9 3040 Int *psrc ; /* source pointer */
alpar@9 3041 Int *pdest ; /* destination pointer */
alpar@9 3042 Int j ; /* counter */
alpar@9 3043 Int r ; /* a row index */
alpar@9 3044 Int c ; /* a column index */
alpar@9 3045 Int length ; /* length of a row or column */
alpar@9 3046
alpar@9 3047 #ifndef NDEBUG
alpar@9 3048 Int debug_rows ;
alpar@9 3049 DEBUG2 (("Defrag..\n")) ;
alpar@9 3050 for (psrc = &A[0] ; psrc < pfree ; psrc++) ASSERT (*psrc >= 0) ;
alpar@9 3051 debug_rows = 0 ;
alpar@9 3052 #endif /* NDEBUG */
alpar@9 3053
alpar@9 3054 /* === Defragment the columns =========================================== */
alpar@9 3055
alpar@9 3056 pdest = &A[0] ;
alpar@9 3057 for (c = 0 ; c < n_col ; c++)
alpar@9 3058 {
alpar@9 3059 if (COL_IS_ALIVE (c))
alpar@9 3060 {
alpar@9 3061 psrc = &A [Col [c].start] ;
alpar@9 3062
alpar@9 3063 /* move and compact the column */
alpar@9 3064 ASSERT (pdest <= psrc) ;
alpar@9 3065 Col [c].start = (Int) (pdest - &A [0]) ;
alpar@9 3066 length = Col [c].length ;
alpar@9 3067 for (j = 0 ; j < length ; j++)
alpar@9 3068 {
alpar@9 3069 r = *psrc++ ;
alpar@9 3070 if (ROW_IS_ALIVE (r))
alpar@9 3071 {
alpar@9 3072 *pdest++ = r ;
alpar@9 3073 }
alpar@9 3074 }
alpar@9 3075 Col [c].length = (Int) (pdest - &A [Col [c].start]) ;
alpar@9 3076 }
alpar@9 3077 }
alpar@9 3078
alpar@9 3079 /* === Prepare to defragment the rows =================================== */
alpar@9 3080
alpar@9 3081 for (r = 0 ; r < n_row ; r++)
alpar@9 3082 {
alpar@9 3083 if (ROW_IS_DEAD (r) || (Row [r].length == 0))
alpar@9 3084 {
alpar@9 3085 /* This row is already dead, or is of zero length. Cannot compact
alpar@9 3086 * a row of zero length, so kill it. NOTE: in the current version,
alpar@9 3087 * there are no zero-length live rows. Kill the row (for the first
alpar@9 3088 * time, or again) just to be safe. */
alpar@9 3089 KILL_ROW (r) ;
alpar@9 3090 }
alpar@9 3091 else
alpar@9 3092 {
alpar@9 3093 /* save first column index in Row [r].shared2.first_column */
alpar@9 3094 psrc = &A [Row [r].start] ;
alpar@9 3095 Row [r].shared2.first_column = *psrc ;
alpar@9 3096 ASSERT (ROW_IS_ALIVE (r)) ;
alpar@9 3097 /* flag the start of the row with the one's complement of row */
alpar@9 3098 *psrc = ONES_COMPLEMENT (r) ;
alpar@9 3099 #ifndef NDEBUG
alpar@9 3100 debug_rows++ ;
alpar@9 3101 #endif /* NDEBUG */
alpar@9 3102 }
alpar@9 3103 }
alpar@9 3104
alpar@9 3105 /* === Defragment the rows ============================================== */
alpar@9 3106
alpar@9 3107 psrc = pdest ;
alpar@9 3108 while (psrc < pfree)
alpar@9 3109 {
alpar@9 3110 /* find a negative number ... the start of a row */
alpar@9 3111 if (*psrc++ < 0)
alpar@9 3112 {
alpar@9 3113 psrc-- ;
alpar@9 3114 /* get the row index */
alpar@9 3115 r = ONES_COMPLEMENT (*psrc) ;
alpar@9 3116 ASSERT (r >= 0 && r < n_row) ;
alpar@9 3117 /* restore first column index */
alpar@9 3118 *psrc = Row [r].shared2.first_column ;
alpar@9 3119 ASSERT (ROW_IS_ALIVE (r)) ;
alpar@9 3120 ASSERT (Row [r].length > 0) ;
alpar@9 3121 /* move and compact the row */
alpar@9 3122 ASSERT (pdest <= psrc) ;
alpar@9 3123 Row [r].start = (Int) (pdest - &A [0]) ;
alpar@9 3124 length = Row [r].length ;
alpar@9 3125 for (j = 0 ; j < length ; j++)
alpar@9 3126 {
alpar@9 3127 c = *psrc++ ;
alpar@9 3128 if (COL_IS_ALIVE (c))
alpar@9 3129 {
alpar@9 3130 *pdest++ = c ;
alpar@9 3131 }
alpar@9 3132 }
alpar@9 3133 Row [r].length = (Int) (pdest - &A [Row [r].start]) ;
alpar@9 3134 ASSERT (Row [r].length > 0) ;
alpar@9 3135 #ifndef NDEBUG
alpar@9 3136 debug_rows-- ;
alpar@9 3137 #endif /* NDEBUG */
alpar@9 3138 }
alpar@9 3139 }
alpar@9 3140 /* ensure we found all the rows */
alpar@9 3141 ASSERT (debug_rows == 0) ;
alpar@9 3142
alpar@9 3143 /* === Return the new value of pfree ==================================== */
alpar@9 3144
alpar@9 3145 return ((Int) (pdest - &A [0])) ;
alpar@9 3146 }
alpar@9 3147
alpar@9 3148
alpar@9 3149 /* ========================================================================== */
alpar@9 3150 /* === clear_mark =========================================================== */
alpar@9 3151 /* ========================================================================== */
alpar@9 3152
alpar@9 3153 /*
alpar@9 3154 Clears the Row [].shared2.mark array, and returns the new tag_mark.
alpar@9 3155 Return value is the new tag_mark. Not user-callable.
alpar@9 3156 */
alpar@9 3157
alpar@9 3158 PRIVATE Int clear_mark /* return the new value for tag_mark */
alpar@9 3159 (
alpar@9 3160 /* === Parameters ======================================================= */
alpar@9 3161
alpar@9 3162 Int tag_mark, /* new value of tag_mark */
alpar@9 3163 Int max_mark, /* max allowed value of tag_mark */
alpar@9 3164
alpar@9 3165 Int n_row, /* number of rows in A */
alpar@9 3166 Colamd_Row Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */
alpar@9 3167 )
alpar@9 3168 {
alpar@9 3169 /* === Local variables ================================================== */
alpar@9 3170
alpar@9 3171 Int r ;
alpar@9 3172
alpar@9 3173 if (tag_mark <= 0 || tag_mark >= max_mark)
alpar@9 3174 {
alpar@9 3175 for (r = 0 ; r < n_row ; r++)
alpar@9 3176 {
alpar@9 3177 if (ROW_IS_ALIVE (r))
alpar@9 3178 {
alpar@9 3179 Row [r].shared2.mark = 0 ;
alpar@9 3180 }
alpar@9 3181 }
alpar@9 3182 tag_mark = 1 ;
alpar@9 3183 }
alpar@9 3184
alpar@9 3185 return (tag_mark) ;
alpar@9 3186 }
alpar@9 3187
alpar@9 3188
alpar@9 3189 /* ========================================================================== */
alpar@9 3190 /* === print_report ========================================================= */
alpar@9 3191 /* ========================================================================== */
alpar@9 3192
alpar@9 3193 PRIVATE void print_report
alpar@9 3194 (
alpar@9 3195 char *method,
alpar@9 3196 Int stats [COLAMD_STATS]
alpar@9 3197 )
alpar@9 3198 {
alpar@9 3199
alpar@9 3200 Int i1, i2, i3 ;
alpar@9 3201
alpar@9 3202 PRINTF (("\n%s version %d.%d, %s: ", method,
alpar@9 3203 COLAMD_MAIN_VERSION, COLAMD_SUB_VERSION, COLAMD_DATE)) ;
alpar@9 3204
alpar@9 3205 if (!stats)
alpar@9 3206 {
alpar@9 3207 PRINTF (("No statistics available.\n")) ;
alpar@9 3208 return ;
alpar@9 3209 }
alpar@9 3210
alpar@9 3211 i1 = stats [COLAMD_INFO1] ;
alpar@9 3212 i2 = stats [COLAMD_INFO2] ;
alpar@9 3213 i3 = stats [COLAMD_INFO3] ;
alpar@9 3214
alpar@9 3215 if (stats [COLAMD_STATUS] >= 0)
alpar@9 3216 {
alpar@9 3217 PRINTF (("OK. ")) ;
alpar@9 3218 }
alpar@9 3219 else
alpar@9 3220 {
alpar@9 3221 PRINTF (("ERROR. ")) ;
alpar@9 3222 }
alpar@9 3223
alpar@9 3224 switch (stats [COLAMD_STATUS])
alpar@9 3225 {
alpar@9 3226
alpar@9 3227 case COLAMD_OK_BUT_JUMBLED:
alpar@9 3228
alpar@9 3229 PRINTF(("Matrix has unsorted or duplicate row indices.\n")) ;
alpar@9 3230
alpar@9 3231 PRINTF(("%s: number of duplicate or out-of-order row indices: %d\n",
alpar@9 3232 method, i3)) ;
alpar@9 3233
alpar@9 3234 PRINTF(("%s: last seen duplicate or out-of-order row index: %d\n",
alpar@9 3235 method, INDEX (i2))) ;
alpar@9 3236
alpar@9 3237 PRINTF(("%s: last seen in column: %d",
alpar@9 3238 method, INDEX (i1))) ;
alpar@9 3239
alpar@9 3240 /* no break - fall through to next case instead */
alpar@9 3241
alpar@9 3242 case COLAMD_OK:
alpar@9 3243
alpar@9 3244 PRINTF(("\n")) ;
alpar@9 3245
alpar@9 3246 PRINTF(("%s: number of dense or empty rows ignored: %d\n",
alpar@9 3247 method, stats [COLAMD_DENSE_ROW])) ;
alpar@9 3248
alpar@9 3249 PRINTF(("%s: number of dense or empty columns ignored: %d\n",
alpar@9 3250 method, stats [COLAMD_DENSE_COL])) ;
alpar@9 3251
alpar@9 3252 PRINTF(("%s: number of garbage collections performed: %d\n",
alpar@9 3253 method, stats [COLAMD_DEFRAG_COUNT])) ;
alpar@9 3254 break ;
alpar@9 3255
alpar@9 3256 case COLAMD_ERROR_A_not_present:
alpar@9 3257
alpar@9 3258 PRINTF(("Array A (row indices of matrix) not present.\n")) ;
alpar@9 3259 break ;
alpar@9 3260
alpar@9 3261 case COLAMD_ERROR_p_not_present:
alpar@9 3262
alpar@9 3263 PRINTF(("Array p (column pointers for matrix) not present.\n")) ;
alpar@9 3264 break ;
alpar@9 3265
alpar@9 3266 case COLAMD_ERROR_nrow_negative:
alpar@9 3267
alpar@9 3268 PRINTF(("Invalid number of rows (%d).\n", i1)) ;
alpar@9 3269 break ;
alpar@9 3270
alpar@9 3271 case COLAMD_ERROR_ncol_negative:
alpar@9 3272
alpar@9 3273 PRINTF(("Invalid number of columns (%d).\n", i1)) ;
alpar@9 3274 break ;
alpar@9 3275
alpar@9 3276 case COLAMD_ERROR_nnz_negative:
alpar@9 3277
alpar@9 3278 PRINTF(("Invalid number of nonzero entries (%d).\n", i1)) ;
alpar@9 3279 break ;
alpar@9 3280
alpar@9 3281 case COLAMD_ERROR_p0_nonzero:
alpar@9 3282
alpar@9 3283 PRINTF(("Invalid column pointer, p [0] = %d, must be zero.\n", i1));
alpar@9 3284 break ;
alpar@9 3285
alpar@9 3286 case COLAMD_ERROR_A_too_small:
alpar@9 3287
alpar@9 3288 PRINTF(("Array A too small.\n")) ;
alpar@9 3289 PRINTF((" Need Alen >= %d, but given only Alen = %d.\n",
alpar@9 3290 i1, i2)) ;
alpar@9 3291 break ;
alpar@9 3292
alpar@9 3293 case COLAMD_ERROR_col_length_negative:
alpar@9 3294
alpar@9 3295 PRINTF
alpar@9 3296 (("Column %d has a negative number of nonzero entries (%d).\n",
alpar@9 3297 INDEX (i1), i2)) ;
alpar@9 3298 break ;
alpar@9 3299
alpar@9 3300 case COLAMD_ERROR_row_index_out_of_bounds:
alpar@9 3301
alpar@9 3302 PRINTF
alpar@9 3303 (("Row index (row %d) out of bounds (%d to %d) in column %d.\n",
alpar@9 3304 INDEX (i2), INDEX (0), INDEX (i3-1), INDEX (i1))) ;
alpar@9 3305 break ;
alpar@9 3306
alpar@9 3307 case COLAMD_ERROR_out_of_memory:
alpar@9 3308
alpar@9 3309 PRINTF(("Out of memory.\n")) ;
alpar@9 3310 break ;
alpar@9 3311
alpar@9 3312 /* v2.4: internal-error case deleted */
alpar@9 3313 }
alpar@9 3314 }
alpar@9 3315
alpar@9 3316
alpar@9 3317
alpar@9 3318
alpar@9 3319 /* ========================================================================== */
alpar@9 3320 /* === colamd debugging routines ============================================ */
alpar@9 3321 /* ========================================================================== */
alpar@9 3322
alpar@9 3323 /* When debugging is disabled, the remainder of this file is ignored. */
alpar@9 3324
alpar@9 3325 #ifndef NDEBUG
alpar@9 3326
alpar@9 3327
alpar@9 3328 /* ========================================================================== */
alpar@9 3329 /* === debug_structures ===================================================== */
alpar@9 3330 /* ========================================================================== */
alpar@9 3331
alpar@9 3332 /*
alpar@9 3333 At this point, all empty rows and columns are dead. All live columns
alpar@9 3334 are "clean" (containing no dead rows) and simplicial (no supercolumns
alpar@9 3335 yet). Rows may contain dead columns, but all live rows contain at
alpar@9 3336 least one live column.
alpar@9 3337 */
alpar@9 3338
alpar@9 3339 PRIVATE void debug_structures
alpar@9 3340 (
alpar@9 3341 /* === Parameters ======================================================= */
alpar@9 3342
alpar@9 3343 Int n_row,
alpar@9 3344 Int n_col,
alpar@9 3345 Colamd_Row Row [],
alpar@9 3346 Colamd_Col Col [],
alpar@9 3347 Int A [],
alpar@9 3348 Int n_col2
alpar@9 3349 )
alpar@9 3350 {
alpar@9 3351 /* === Local variables ================================================== */
alpar@9 3352
alpar@9 3353 Int i ;
alpar@9 3354 Int c ;
alpar@9 3355 Int *cp ;
alpar@9 3356 Int *cp_end ;
alpar@9 3357 Int len ;
alpar@9 3358 Int score ;
alpar@9 3359 Int r ;
alpar@9 3360 Int *rp ;
alpar@9 3361 Int *rp_end ;
alpar@9 3362 Int deg ;
alpar@9 3363
alpar@9 3364 /* === Check A, Row, and Col ============================================ */
alpar@9 3365
alpar@9 3366 for (c = 0 ; c < n_col ; c++)
alpar@9 3367 {
alpar@9 3368 if (COL_IS_ALIVE (c))
alpar@9 3369 {
alpar@9 3370 len = Col [c].length ;
alpar@9 3371 score = Col [c].shared2.score ;
alpar@9 3372 DEBUG4 (("initial live col %5d %5d %5d\n", c, len, score)) ;
alpar@9 3373 ASSERT (len > 0) ;
alpar@9 3374 ASSERT (score >= 0) ;
alpar@9 3375 ASSERT (Col [c].shared1.thickness == 1) ;
alpar@9 3376 cp = &A [Col [c].start] ;
alpar@9 3377 cp_end = cp + len ;
alpar@9 3378 while (cp < cp_end)
alpar@9 3379 {
alpar@9 3380 r = *cp++ ;
alpar@9 3381 ASSERT (ROW_IS_ALIVE (r)) ;
alpar@9 3382 }
alpar@9 3383 }
alpar@9 3384 else
alpar@9 3385 {
alpar@9 3386 i = Col [c].shared2.order ;
alpar@9 3387 ASSERT (i >= n_col2 && i < n_col) ;
alpar@9 3388 }
alpar@9 3389 }
alpar@9 3390
alpar@9 3391 for (r = 0 ; r < n_row ; r++)
alpar@9 3392 {
alpar@9 3393 if (ROW_IS_ALIVE (r))
alpar@9 3394 {
alpar@9 3395 i = 0 ;
alpar@9 3396 len = Row [r].length ;
alpar@9 3397 deg = Row [r].shared1.degree ;
alpar@9 3398 ASSERT (len > 0) ;
alpar@9 3399 ASSERT (deg > 0) ;
alpar@9 3400 rp = &A [Row [r].start] ;
alpar@9 3401 rp_end = rp + len ;
alpar@9 3402 while (rp < rp_end)
alpar@9 3403 {
alpar@9 3404 c = *rp++ ;
alpar@9 3405 if (COL_IS_ALIVE (c))
alpar@9 3406 {
alpar@9 3407 i++ ;
alpar@9 3408 }
alpar@9 3409 }
alpar@9 3410 ASSERT (i > 0) ;
alpar@9 3411 }
alpar@9 3412 }
alpar@9 3413 }
alpar@9 3414
alpar@9 3415
alpar@9 3416 /* ========================================================================== */
alpar@9 3417 /* === debug_deg_lists ====================================================== */
alpar@9 3418 /* ========================================================================== */
alpar@9 3419
alpar@9 3420 /*
alpar@9 3421 Prints the contents of the degree lists. Counts the number of columns
alpar@9 3422 in the degree list and compares it to the total it should have. Also
alpar@9 3423 checks the row degrees.
alpar@9 3424 */
alpar@9 3425
alpar@9 3426 PRIVATE void debug_deg_lists
alpar@9 3427 (
alpar@9 3428 /* === Parameters ======================================================= */
alpar@9 3429
alpar@9 3430 Int n_row,
alpar@9 3431 Int n_col,
alpar@9 3432 Colamd_Row Row [],
alpar@9 3433 Colamd_Col Col [],
alpar@9 3434 Int head [],
alpar@9 3435 Int min_score,
alpar@9 3436 Int should,
alpar@9 3437 Int max_deg
alpar@9 3438 )
alpar@9 3439 {
alpar@9 3440 /* === Local variables ================================================== */
alpar@9 3441
alpar@9 3442 Int deg ;
alpar@9 3443 Int col ;
alpar@9 3444 Int have ;
alpar@9 3445 Int row ;
alpar@9 3446
alpar@9 3447 /* === Check the degree lists =========================================== */
alpar@9 3448
alpar@9 3449 if (n_col > 10000 && colamd_debug <= 0)
alpar@9 3450 {
alpar@9 3451 return ;
alpar@9 3452 }
alpar@9 3453 have = 0 ;
alpar@9 3454 DEBUG4 (("Degree lists: %d\n", min_score)) ;
alpar@9 3455 for (deg = 0 ; deg <= n_col ; deg++)
alpar@9 3456 {
alpar@9 3457 col = head [deg] ;
alpar@9 3458 if (col == EMPTY)
alpar@9 3459 {
alpar@9 3460 continue ;
alpar@9 3461 }
alpar@9 3462 DEBUG4 (("%d:", deg)) ;
alpar@9 3463 while (col != EMPTY)
alpar@9 3464 {
alpar@9 3465 DEBUG4 ((" %d", col)) ;
alpar@9 3466 have += Col [col].shared1.thickness ;
alpar@9 3467 ASSERT (COL_IS_ALIVE (col)) ;
alpar@9 3468 col = Col [col].shared4.degree_next ;
alpar@9 3469 }
alpar@9 3470 DEBUG4 (("\n")) ;
alpar@9 3471 }
alpar@9 3472 DEBUG4 (("should %d have %d\n", should, have)) ;
alpar@9 3473 ASSERT (should == have) ;
alpar@9 3474
alpar@9 3475 /* === Check the row degrees ============================================ */
alpar@9 3476
alpar@9 3477 if (n_row > 10000 && colamd_debug <= 0)
alpar@9 3478 {
alpar@9 3479 return ;
alpar@9 3480 }
alpar@9 3481 for (row = 0 ; row < n_row ; row++)
alpar@9 3482 {
alpar@9 3483 if (ROW_IS_ALIVE (row))
alpar@9 3484 {
alpar@9 3485 ASSERT (Row [row].shared1.degree <= max_deg) ;
alpar@9 3486 }
alpar@9 3487 }
alpar@9 3488 }
alpar@9 3489
alpar@9 3490
alpar@9 3491 /* ========================================================================== */
alpar@9 3492 /* === debug_mark =========================================================== */
alpar@9 3493 /* ========================================================================== */
alpar@9 3494
alpar@9 3495 /*
alpar@9 3496 Ensures that the tag_mark is less that the maximum and also ensures that
alpar@9 3497 each entry in the mark array is less than the tag mark.
alpar@9 3498 */
alpar@9 3499
alpar@9 3500 PRIVATE void debug_mark
alpar@9 3501 (
alpar@9 3502 /* === Parameters ======================================================= */
alpar@9 3503
alpar@9 3504 Int n_row,
alpar@9 3505 Colamd_Row Row [],
alpar@9 3506 Int tag_mark,
alpar@9 3507 Int max_mark
alpar@9 3508 )
alpar@9 3509 {
alpar@9 3510 /* === Local variables ================================================== */
alpar@9 3511
alpar@9 3512 Int r ;
alpar@9 3513
alpar@9 3514 /* === Check the Row marks ============================================== */
alpar@9 3515
alpar@9 3516 ASSERT (tag_mark > 0 && tag_mark <= max_mark) ;
alpar@9 3517 if (n_row > 10000 && colamd_debug <= 0)
alpar@9 3518 {
alpar@9 3519 return ;
alpar@9 3520 }
alpar@9 3521 for (r = 0 ; r < n_row ; r++)
alpar@9 3522 {
alpar@9 3523 ASSERT (Row [r].shared2.mark < tag_mark) ;
alpar@9 3524 }
alpar@9 3525 }
alpar@9 3526
alpar@9 3527
alpar@9 3528 /* ========================================================================== */
alpar@9 3529 /* === debug_matrix ========================================================= */
alpar@9 3530 /* ========================================================================== */
alpar@9 3531
alpar@9 3532 /*
alpar@9 3533 Prints out the contents of the columns and the rows.
alpar@9 3534 */
alpar@9 3535
alpar@9 3536 PRIVATE void debug_matrix
alpar@9 3537 (
alpar@9 3538 /* === Parameters ======================================================= */
alpar@9 3539
alpar@9 3540 Int n_row,
alpar@9 3541 Int n_col,
alpar@9 3542 Colamd_Row Row [],
alpar@9 3543 Colamd_Col Col [],
alpar@9 3544 Int A []
alpar@9 3545 )
alpar@9 3546 {
alpar@9 3547 /* === Local variables ================================================== */
alpar@9 3548
alpar@9 3549 Int r ;
alpar@9 3550 Int c ;
alpar@9 3551 Int *rp ;
alpar@9 3552 Int *rp_end ;
alpar@9 3553 Int *cp ;
alpar@9 3554 Int *cp_end ;
alpar@9 3555
alpar@9 3556 /* === Dump the rows and columns of the matrix ========================== */
alpar@9 3557
alpar@9 3558 if (colamd_debug < 3)
alpar@9 3559 {
alpar@9 3560 return ;
alpar@9 3561 }
alpar@9 3562 DEBUG3 (("DUMP MATRIX:\n")) ;
alpar@9 3563 for (r = 0 ; r < n_row ; r++)
alpar@9 3564 {
alpar@9 3565 DEBUG3 (("Row %d alive? %d\n", r, ROW_IS_ALIVE (r))) ;
alpar@9 3566 if (ROW_IS_DEAD (r))
alpar@9 3567 {
alpar@9 3568 continue ;
alpar@9 3569 }
alpar@9 3570 DEBUG3 (("start %d length %d degree %d\n",
alpar@9 3571 Row [r].start, Row [r].length, Row [r].shared1.degree)) ;
alpar@9 3572 rp = &A [Row [r].start] ;
alpar@9 3573 rp_end = rp + Row [r].length ;
alpar@9 3574 while (rp < rp_end)
alpar@9 3575 {
alpar@9 3576 c = *rp++ ;
alpar@9 3577 DEBUG4 ((" %d col %d\n", COL_IS_ALIVE (c), c)) ;
alpar@9 3578 }
alpar@9 3579 }
alpar@9 3580
alpar@9 3581 for (c = 0 ; c < n_col ; c++)
alpar@9 3582 {
alpar@9 3583 DEBUG3 (("Col %d alive? %d\n", c, COL_IS_ALIVE (c))) ;
alpar@9 3584 if (COL_IS_DEAD (c))
alpar@9 3585 {
alpar@9 3586 continue ;
alpar@9 3587 }
alpar@9 3588 DEBUG3 (("start %d length %d shared1 %d shared2 %d\n",
alpar@9 3589 Col [c].start, Col [c].length,
alpar@9 3590 Col [c].shared1.thickness, Col [c].shared2.score)) ;
alpar@9 3591 cp = &A [Col [c].start] ;
alpar@9 3592 cp_end = cp + Col [c].length ;
alpar@9 3593 while (cp < cp_end)
alpar@9 3594 {
alpar@9 3595 r = *cp++ ;
alpar@9 3596 DEBUG4 ((" %d row %d\n", ROW_IS_ALIVE (r), r)) ;
alpar@9 3597 }
alpar@9 3598 }
alpar@9 3599 }
alpar@9 3600
alpar@9 3601 PRIVATE void colamd_get_debug
alpar@9 3602 (
alpar@9 3603 char *method
alpar@9 3604 )
alpar@9 3605 {
alpar@9 3606 FILE *f ;
alpar@9 3607 colamd_debug = 0 ; /* no debug printing */
alpar@9 3608 f = fopen ("debug", "r") ;
alpar@9 3609 if (f == (FILE *) NULL)
alpar@9 3610 {
alpar@9 3611 colamd_debug = 0 ;
alpar@9 3612 }
alpar@9 3613 else
alpar@9 3614 {
alpar@9 3615 fscanf (f, "%d", &colamd_debug) ;
alpar@9 3616 fclose (f) ;
alpar@9 3617 }
alpar@9 3618 DEBUG0 (("%s: debug version, D = %d (THIS WILL BE SLOW!)\n",
alpar@9 3619 method, colamd_debug)) ;
alpar@9 3620 }
alpar@9 3621
alpar@9 3622 #endif /* NDEBUG */