lemon-project-template-glpk
comparison deps/glpk/src/glpnpp04.c @ 9:33de93886c88
Import GLPK 4.47
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 20:59:10 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:0915f0d70620 |
---|---|
1 /* glpnpp04.c */ | |
2 | |
3 /*********************************************************************** | |
4 * This code is part of GLPK (GNU Linear Programming Kit). | |
5 * | |
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, | |
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, | |
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. | |
9 * E-mail: <mao@gnu.org>. | |
10 * | |
11 * GLPK is free software: you can redistribute it and/or modify it | |
12 * under the terms of the GNU General Public License as published by | |
13 * the Free Software Foundation, either version 3 of the License, or | |
14 * (at your option) any later version. | |
15 * | |
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT | |
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | |
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public | |
19 * License for more details. | |
20 * | |
21 * You should have received a copy of the GNU General Public License | |
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. | |
23 ***********************************************************************/ | |
24 | |
25 #include "glpnpp.h" | |
26 | |
27 /*********************************************************************** | |
28 * NAME | |
29 * | |
30 * npp_binarize_prob - binarize MIP problem | |
31 * | |
32 * SYNOPSIS | |
33 * | |
34 * #include "glpnpp.h" | |
35 * int npp_binarize_prob(NPP *npp); | |
36 * | |
37 * DESCRIPTION | |
38 * | |
39 * The routine npp_binarize_prob replaces in the original MIP problem | |
40 * every integer variable: | |
41 * | |
42 * l[q] <= x[q] <= u[q], (1) | |
43 * | |
44 * where l[q] < u[q], by an equivalent sum of binary variables. | |
45 * | |
46 * RETURNS | |
47 * | |
48 * The routine returns the number of integer variables for which the | |
49 * transformation failed, because u[q] - l[q] > d_max. | |
50 * | |
51 * PROBLEM TRANSFORMATION | |
52 * | |
53 * If variable x[q] has non-zero lower bound, it is first processed | |
54 * with the routine npp_lbnd_col. Thus, we can assume that: | |
55 * | |
56 * 0 <= x[q] <= u[q]. (2) | |
57 * | |
58 * If u[q] = 1, variable x[q] is already binary, so further processing | |
59 * is not needed. Let, therefore, that 2 <= u[q] <= d_max, and n be a | |
60 * smallest integer such that u[q] <= 2^n - 1 (n >= 2, since u[q] >= 2). | |
61 * Then variable x[q] can be replaced by the following sum: | |
62 * | |
63 * n-1 | |
64 * x[q] = sum 2^k x[k], (3) | |
65 * k=0 | |
66 * | |
67 * where x[k] are binary columns (variables). If u[q] < 2^n - 1, the | |
68 * following additional inequality constraint must be also included in | |
69 * the transformed problem: | |
70 * | |
71 * n-1 | |
72 * sum 2^k x[k] <= u[q]. (4) | |
73 * k=0 | |
74 * | |
75 * Note: Assuming that in the transformed problem x[q] becomes binary | |
76 * variable x[0], this transformation causes new n-1 binary variables | |
77 * to appear. | |
78 * | |
79 * Substituting x[q] from (3) to the objective row gives: | |
80 * | |
81 * z = sum c[j] x[j] + c[0] = | |
82 * j | |
83 * | |
84 * = sum c[j] x[j] + c[q] x[q] + c[0] = | |
85 * j!=q | |
86 * n-1 | |
87 * = sum c[j] x[j] + c[q] sum 2^k x[k] + c[0] = | |
88 * j!=q k=0 | |
89 * n-1 | |
90 * = sum c[j] x[j] + sum c[k] x[k] + c[0], | |
91 * j!=q k=0 | |
92 * | |
93 * where: | |
94 * | |
95 * c[k] = 2^k c[q], k = 0, ..., n-1. (5) | |
96 * | |
97 * And substituting x[q] from (3) to i-th constraint row i gives: | |
98 * | |
99 * L[i] <= sum a[i,j] x[j] <= U[i] ==> | |
100 * j | |
101 * | |
102 * L[i] <= sum a[i,j] x[j] + a[i,q] x[q] <= U[i] ==> | |
103 * j!=q | |
104 * n-1 | |
105 * L[i] <= sum a[i,j] x[j] + a[i,q] sum 2^k x[k] <= U[i] ==> | |
106 * j!=q k=0 | |
107 * n-1 | |
108 * L[i] <= sum a[i,j] x[j] + sum a[i,k] x[k] <= U[i], | |
109 * j!=q k=0 | |
110 * | |
111 * where: | |
112 * | |
113 * a[i,k] = 2^k a[i,q], k = 0, ..., n-1. (6) | |
114 * | |
115 * RECOVERING SOLUTION | |
116 * | |
117 * Value of variable x[q] is computed with formula (3). */ | |
118 | |
119 struct binarize | |
120 { int q; | |
121 /* column reference number for x[q] = x[0] */ | |
122 int j; | |
123 /* column reference number for x[1]; x[2] has reference number | |
124 j+1, x[3] - j+2, etc. */ | |
125 int n; | |
126 /* total number of binary variables, n >= 2 */ | |
127 }; | |
128 | |
129 static int rcv_binarize_prob(NPP *npp, void *info); | |
130 | |
131 int npp_binarize_prob(NPP *npp) | |
132 { /* binarize MIP problem */ | |
133 struct binarize *info; | |
134 NPPROW *row; | |
135 NPPCOL *col, *bin; | |
136 NPPAIJ *aij; | |
137 int u, n, k, temp, nfails, nvars, nbins, nrows; | |
138 /* new variables will be added to the end of the column list, so | |
139 we go from the end to beginning of the column list */ | |
140 nfails = nvars = nbins = nrows = 0; | |
141 for (col = npp->c_tail; col != NULL; col = col->prev) | |
142 { /* skip continuous variable */ | |
143 if (!col->is_int) continue; | |
144 /* skip fixed variable */ | |
145 if (col->lb == col->ub) continue; | |
146 /* skip binary variable */ | |
147 if (col->lb == 0.0 && col->ub == 1.0) continue; | |
148 /* check if the transformation is applicable */ | |
149 if (col->lb < -1e6 || col->ub > +1e6 || | |
150 col->ub - col->lb > 4095.0) | |
151 { /* unfortunately, not */ | |
152 nfails++; | |
153 continue; | |
154 } | |
155 /* process integer non-binary variable x[q] */ | |
156 nvars++; | |
157 /* make x[q] non-negative, if its lower bound is non-zero */ | |
158 if (col->lb != 0.0) | |
159 npp_lbnd_col(npp, col); | |
160 /* now 0 <= x[q] <= u[q] */ | |
161 xassert(col->lb == 0.0); | |
162 u = (int)col->ub; | |
163 xassert(col->ub == (double)u); | |
164 /* if x[q] is binary, further processing is not needed */ | |
165 if (u == 1) continue; | |
166 /* determine smallest n such that u <= 2^n - 1 (thus, n is the | |
167 number of binary variables needed) */ | |
168 n = 2, temp = 4; | |
169 while (u >= temp) | |
170 n++, temp += temp; | |
171 nbins += n; | |
172 /* create transformation stack entry */ | |
173 info = npp_push_tse(npp, | |
174 rcv_binarize_prob, sizeof(struct binarize)); | |
175 info->q = col->j; | |
176 info->j = 0; /* will be set below */ | |
177 info->n = n; | |
178 /* if u < 2^n - 1, we need one additional row for (4) */ | |
179 if (u < temp - 1) | |
180 { row = npp_add_row(npp), nrows++; | |
181 row->lb = -DBL_MAX, row->ub = u; | |
182 } | |
183 else | |
184 row = NULL; | |
185 /* in the transformed problem variable x[q] becomes binary | |
186 variable x[0], so its objective and constraint coefficients | |
187 are not changed */ | |
188 col->ub = 1.0; | |
189 /* include x[0] into constraint (4) */ | |
190 if (row != NULL) | |
191 npp_add_aij(npp, row, col, 1.0); | |
192 /* add other binary variables x[1], ..., x[n-1] */ | |
193 for (k = 1, temp = 2; k < n; k++, temp += temp) | |
194 { /* add new binary variable x[k] */ | |
195 bin = npp_add_col(npp); | |
196 bin->is_int = 1; | |
197 bin->lb = 0.0, bin->ub = 1.0; | |
198 bin->coef = (double)temp * col->coef; | |
199 /* store column reference number for x[1] */ | |
200 if (info->j == 0) | |
201 info->j = bin->j; | |
202 else | |
203 xassert(info->j + (k-1) == bin->j); | |
204 /* duplicate constraint coefficients for x[k]; this also | |
205 automatically includes x[k] into constraint (4) */ | |
206 for (aij = col->ptr; aij != NULL; aij = aij->c_next) | |
207 npp_add_aij(npp, aij->row, bin, (double)temp * aij->val); | |
208 } | |
209 } | |
210 if (nvars > 0) | |
211 xprintf("%d integer variable(s) were replaced by %d binary one" | |
212 "s\n", nvars, nbins); | |
213 if (nrows > 0) | |
214 xprintf("%d row(s) were added due to binarization\n", nrows); | |
215 if (nfails > 0) | |
216 xprintf("Binarization failed for %d integer variable(s)\n", | |
217 nfails); | |
218 return nfails; | |
219 } | |
220 | |
221 static int rcv_binarize_prob(NPP *npp, void *_info) | |
222 { /* recovery binarized variable */ | |
223 struct binarize *info = _info; | |
224 int k, temp; | |
225 double sum; | |
226 /* compute value of x[q]; see formula (3) */ | |
227 sum = npp->c_value[info->q]; | |
228 for (k = 1, temp = 2; k < info->n; k++, temp += temp) | |
229 sum += (double)temp * npp->c_value[info->j + (k-1)]; | |
230 npp->c_value[info->q] = sum; | |
231 return 0; | |
232 } | |
233 | |
234 /**********************************************************************/ | |
235 | |
236 struct elem | |
237 { /* linear form element a[j] x[j] */ | |
238 double aj; | |
239 /* non-zero coefficient value */ | |
240 NPPCOL *xj; | |
241 /* pointer to variable (column) */ | |
242 struct elem *next; | |
243 /* pointer to another term */ | |
244 }; | |
245 | |
246 static struct elem *copy_form(NPP *npp, NPPROW *row, double s) | |
247 { /* copy linear form */ | |
248 NPPAIJ *aij; | |
249 struct elem *ptr, *e; | |
250 ptr = NULL; | |
251 for (aij = row->ptr; aij != NULL; aij = aij->r_next) | |
252 { e = dmp_get_atom(npp->pool, sizeof(struct elem)); | |
253 e->aj = s * aij->val; | |
254 e->xj = aij->col; | |
255 e->next = ptr; | |
256 ptr = e; | |
257 } | |
258 return ptr; | |
259 } | |
260 | |
261 static void drop_form(NPP *npp, struct elem *ptr) | |
262 { /* drop linear form */ | |
263 struct elem *e; | |
264 while (ptr != NULL) | |
265 { e = ptr; | |
266 ptr = e->next; | |
267 dmp_free_atom(npp->pool, e, sizeof(struct elem)); | |
268 } | |
269 return; | |
270 } | |
271 | |
272 /*********************************************************************** | |
273 * NAME | |
274 * | |
275 * npp_is_packing - test if constraint is packing inequality | |
276 * | |
277 * SYNOPSIS | |
278 * | |
279 * #include "glpnpp.h" | |
280 * int npp_is_packing(NPP *npp, NPPROW *row); | |
281 * | |
282 * RETURNS | |
283 * | |
284 * If the specified row (constraint) is packing inequality (see below), | |
285 * the routine npp_is_packing returns non-zero. Otherwise, it returns | |
286 * zero. | |
287 * | |
288 * PACKING INEQUALITIES | |
289 * | |
290 * In canonical format the packing inequality is the following: | |
291 * | |
292 * sum x[j] <= 1, (1) | |
293 * j in J | |
294 * | |
295 * where all variables x[j] are binary. This inequality expresses the | |
296 * condition that in any integer feasible solution at most one variable | |
297 * from set J can take non-zero (unity) value while other variables | |
298 * must be equal to zero. W.l.o.g. it is assumed that |J| >= 2, because | |
299 * if J is empty or |J| = 1, the inequality (1) is redundant. | |
300 * | |
301 * In general case the packing inequality may include original variables | |
302 * x[j] as well as their complements x~[j]: | |
303 * | |
304 * sum x[j] + sum x~[j] <= 1, (2) | |
305 * j in Jp j in Jn | |
306 * | |
307 * where Jp and Jn are not intersected. Therefore, using substitution | |
308 * x~[j] = 1 - x[j] gives the packing inequality in generalized format: | |
309 * | |
310 * sum x[j] - sum x[j] <= 1 - |Jn|. (3) | |
311 * j in Jp j in Jn */ | |
312 | |
313 int npp_is_packing(NPP *npp, NPPROW *row) | |
314 { /* test if constraint is packing inequality */ | |
315 NPPCOL *col; | |
316 NPPAIJ *aij; | |
317 int b; | |
318 xassert(npp == npp); | |
319 if (!(row->lb == -DBL_MAX && row->ub != +DBL_MAX)) | |
320 return 0; | |
321 b = 1; | |
322 for (aij = row->ptr; aij != NULL; aij = aij->r_next) | |
323 { col = aij->col; | |
324 if (!(col->is_int && col->lb == 0.0 && col->ub == 1.0)) | |
325 return 0; | |
326 if (aij->val == +1.0) | |
327 ; | |
328 else if (aij->val == -1.0) | |
329 b--; | |
330 else | |
331 return 0; | |
332 } | |
333 if (row->ub != (double)b) return 0; | |
334 return 1; | |
335 } | |
336 | |
337 /*********************************************************************** | |
338 * NAME | |
339 * | |
340 * npp_hidden_packing - identify hidden packing inequality | |
341 * | |
342 * SYNOPSIS | |
343 * | |
344 * #include "glpnpp.h" | |
345 * int npp_hidden_packing(NPP *npp, NPPROW *row); | |
346 * | |
347 * DESCRIPTION | |
348 * | |
349 * The routine npp_hidden_packing processes specified inequality | |
350 * constraint, which includes only binary variables, and the number of | |
351 * the variables is not less than two. If the original inequality is | |
352 * equivalent to a packing inequality, the routine replaces it by this | |
353 * equivalent inequality. If the original constraint is double-sided | |
354 * inequality, it is replaced by a pair of single-sided inequalities, | |
355 * if necessary. | |
356 * | |
357 * RETURNS | |
358 * | |
359 * If the original inequality constraint was replaced by equivalent | |
360 * packing inequality, the routine npp_hidden_packing returns non-zero. | |
361 * Otherwise, it returns zero. | |
362 * | |
363 * PROBLEM TRANSFORMATION | |
364 * | |
365 * Consider an inequality constraint: | |
366 * | |
367 * sum a[j] x[j] <= b, (1) | |
368 * j in J | |
369 * | |
370 * where all variables x[j] are binary, and |J| >= 2. (In case of '>=' | |
371 * inequality it can be transformed to '<=' format by multiplying both | |
372 * its sides by -1.) | |
373 * | |
374 * Let Jp = {j: a[j] > 0}, Jn = {j: a[j] < 0}. Performing substitution | |
375 * x[j] = 1 - x~[j] for all j in Jn, we have: | |
376 * | |
377 * sum a[j] x[j] <= b ==> | |
378 * j in J | |
379 * | |
380 * sum a[j] x[j] + sum a[j] x[j] <= b ==> | |
381 * j in Jp j in Jn | |
382 * | |
383 * sum a[j] x[j] + sum a[j] (1 - x~[j]) <= b ==> | |
384 * j in Jp j in Jn | |
385 * | |
386 * sum a[j] x[j] - sum a[j] x~[j] <= b - sum a[j]. | |
387 * j in Jp j in Jn j in Jn | |
388 * | |
389 * Thus, meaning the transformation above, we can assume that in | |
390 * inequality (1) all coefficients a[j] are positive. Moreover, we can | |
391 * assume that a[j] <= b. In fact, let a[j] > b; then the following | |
392 * three cases are possible: | |
393 * | |
394 * 1) b < 0. In this case inequality (1) is infeasible, so the problem | |
395 * has no feasible solution (see the routine npp_analyze_row); | |
396 * | |
397 * 2) b = 0. In this case inequality (1) is a forcing inequality on its | |
398 * upper bound (see the routine npp_forcing row), from which it | |
399 * follows that all variables x[j] should be fixed at zero; | |
400 * | |
401 * 3) b > 0. In this case inequality (1) defines an implied zero upper | |
402 * bound for variable x[j] (see the routine npp_implied_bounds), from | |
403 * which it follows that x[j] should be fixed at zero. | |
404 * | |
405 * It is assumed that all three cases listed above have been recognized | |
406 * by the routine npp_process_prob, which performs basic MIP processing | |
407 * prior to a call the routine npp_hidden_packing. So, if one of these | |
408 * cases occurs, we should just skip processing such constraint. | |
409 * | |
410 * Thus, let 0 < a[j] <= b. Then it is obvious that constraint (1) is | |
411 * equivalent to packing inquality only if: | |
412 * | |
413 * a[j] + a[k] > b + eps (2) | |
414 * | |
415 * for all j, k in J, j != k, where eps is an absolute tolerance for | |
416 * row (linear form) value. Checking the condition (2) for all j and k, | |
417 * j != k, requires time O(|J|^2). However, this time can be reduced to | |
418 * O(|J|), if use minimal a[j] and a[k], in which case it is sufficient | |
419 * to check the condition (2) only once. | |
420 * | |
421 * Once the original inequality (1) is replaced by equivalent packing | |
422 * inequality, we need to perform back substitution x~[j] = 1 - x[j] for | |
423 * all j in Jn (see above). | |
424 * | |
425 * RECOVERING SOLUTION | |
426 * | |
427 * None needed. */ | |
428 | |
429 static int hidden_packing(NPP *npp, struct elem *ptr, double *_b) | |
430 { /* process inequality constraint: sum a[j] x[j] <= b; | |
431 0 - specified row is NOT hidden packing inequality; | |
432 1 - specified row is packing inequality; | |
433 2 - specified row is hidden packing inequality. */ | |
434 struct elem *e, *ej, *ek; | |
435 int neg; | |
436 double b = *_b, eps; | |
437 xassert(npp == npp); | |
438 /* a[j] must be non-zero, x[j] must be binary, for all j in J */ | |
439 for (e = ptr; e != NULL; e = e->next) | |
440 { xassert(e->aj != 0.0); | |
441 xassert(e->xj->is_int); | |
442 xassert(e->xj->lb == 0.0 && e->xj->ub == 1.0); | |
443 } | |
444 /* check if the specified inequality constraint already has the | |
445 form of packing inequality */ | |
446 neg = 0; /* neg is |Jn| */ | |
447 for (e = ptr; e != NULL; e = e->next) | |
448 { if (e->aj == +1.0) | |
449 ; | |
450 else if (e->aj == -1.0) | |
451 neg++; | |
452 else | |
453 break; | |
454 } | |
455 if (e == NULL) | |
456 { /* all coefficients a[j] are +1 or -1; check rhs b */ | |
457 if (b == (double)(1 - neg)) | |
458 { /* it is packing inequality; no processing is needed */ | |
459 return 1; | |
460 } | |
461 } | |
462 /* substitute x[j] = 1 - x~[j] for all j in Jn to make all a[j] | |
463 positive; the result is a~[j] = |a[j]| and new rhs b */ | |
464 for (e = ptr; e != NULL; e = e->next) | |
465 if (e->aj < 0) b -= e->aj; | |
466 /* now a[j] > 0 for all j in J (actually |a[j]| are used) */ | |
467 /* if a[j] > b, skip processing--this case must not appear */ | |
468 for (e = ptr; e != NULL; e = e->next) | |
469 if (fabs(e->aj) > b) return 0; | |
470 /* now 0 < a[j] <= b for all j in J */ | |
471 /* find two minimal coefficients a[j] and a[k], j != k */ | |
472 ej = NULL; | |
473 for (e = ptr; e != NULL; e = e->next) | |
474 if (ej == NULL || fabs(ej->aj) > fabs(e->aj)) ej = e; | |
475 xassert(ej != NULL); | |
476 ek = NULL; | |
477 for (e = ptr; e != NULL; e = e->next) | |
478 if (e != ej) | |
479 if (ek == NULL || fabs(ek->aj) > fabs(e->aj)) ek = e; | |
480 xassert(ek != NULL); | |
481 /* the specified constraint is equivalent to packing inequality | |
482 iff a[j] + a[k] > b + eps */ | |
483 eps = 1e-3 + 1e-6 * fabs(b); | |
484 if (fabs(ej->aj) + fabs(ek->aj) <= b + eps) return 0; | |
485 /* perform back substitution x~[j] = 1 - x[j] and construct the | |
486 final equivalent packing inequality in generalized format */ | |
487 b = 1.0; | |
488 for (e = ptr; e != NULL; e = e->next) | |
489 { if (e->aj > 0.0) | |
490 e->aj = +1.0; | |
491 else /* e->aj < 0.0 */ | |
492 e->aj = -1.0, b -= 1.0; | |
493 } | |
494 *_b = b; | |
495 return 2; | |
496 } | |
497 | |
498 int npp_hidden_packing(NPP *npp, NPPROW *row) | |
499 { /* identify hidden packing inequality */ | |
500 NPPROW *copy; | |
501 NPPAIJ *aij; | |
502 struct elem *ptr, *e; | |
503 int kase, ret, count = 0; | |
504 double b; | |
505 /* the row must be inequality constraint */ | |
506 xassert(row->lb < row->ub); | |
507 for (kase = 0; kase <= 1; kase++) | |
508 { if (kase == 0) | |
509 { /* process row upper bound */ | |
510 if (row->ub == +DBL_MAX) continue; | |
511 ptr = copy_form(npp, row, +1.0); | |
512 b = + row->ub; | |
513 } | |
514 else | |
515 { /* process row lower bound */ | |
516 if (row->lb == -DBL_MAX) continue; | |
517 ptr = copy_form(npp, row, -1.0); | |
518 b = - row->lb; | |
519 } | |
520 /* now the inequality has the form "sum a[j] x[j] <= b" */ | |
521 ret = hidden_packing(npp, ptr, &b); | |
522 xassert(0 <= ret && ret <= 2); | |
523 if (kase == 1 && ret == 1 || ret == 2) | |
524 { /* the original inequality has been identified as hidden | |
525 packing inequality */ | |
526 count++; | |
527 #ifdef GLP_DEBUG | |
528 xprintf("Original constraint:\n"); | |
529 for (aij = row->ptr; aij != NULL; aij = aij->r_next) | |
530 xprintf(" %+g x%d", aij->val, aij->col->j); | |
531 if (row->lb != -DBL_MAX) xprintf(", >= %g", row->lb); | |
532 if (row->ub != +DBL_MAX) xprintf(", <= %g", row->ub); | |
533 xprintf("\n"); | |
534 xprintf("Equivalent packing inequality:\n"); | |
535 for (e = ptr; e != NULL; e = e->next) | |
536 xprintf(" %sx%d", e->aj > 0.0 ? "+" : "-", e->xj->j); | |
537 xprintf(", <= %g\n", b); | |
538 #endif | |
539 if (row->lb == -DBL_MAX || row->ub == +DBL_MAX) | |
540 { /* the original row is single-sided inequality; no copy | |
541 is needed */ | |
542 copy = NULL; | |
543 } | |
544 else | |
545 { /* the original row is double-sided inequality; we need | |
546 to create its copy for other bound before replacing it | |
547 with the equivalent inequality */ | |
548 copy = npp_add_row(npp); | |
549 if (kase == 0) | |
550 { /* the copy is for lower bound */ | |
551 copy->lb = row->lb, copy->ub = +DBL_MAX; | |
552 } | |
553 else | |
554 { /* the copy is for upper bound */ | |
555 copy->lb = -DBL_MAX, copy->ub = row->ub; | |
556 } | |
557 /* copy original row coefficients */ | |
558 for (aij = row->ptr; aij != NULL; aij = aij->r_next) | |
559 npp_add_aij(npp, copy, aij->col, aij->val); | |
560 } | |
561 /* replace the original inequality by equivalent one */ | |
562 npp_erase_row(npp, row); | |
563 row->lb = -DBL_MAX, row->ub = b; | |
564 for (e = ptr; e != NULL; e = e->next) | |
565 npp_add_aij(npp, row, e->xj, e->aj); | |
566 /* continue processing lower bound for the copy */ | |
567 if (copy != NULL) row = copy; | |
568 } | |
569 drop_form(npp, ptr); | |
570 } | |
571 return count; | |
572 } | |
573 | |
574 /*********************************************************************** | |
575 * NAME | |
576 * | |
577 * npp_implied_packing - identify implied packing inequality | |
578 * | |
579 * SYNOPSIS | |
580 * | |
581 * #include "glpnpp.h" | |
582 * int npp_implied_packing(NPP *npp, NPPROW *row, int which, | |
583 * NPPCOL *var[], char set[]); | |
584 * | |
585 * DESCRIPTION | |
586 * | |
587 * The routine npp_implied_packing processes specified row (constraint) | |
588 * of general format: | |
589 * | |
590 * L <= sum a[j] x[j] <= U. (1) | |
591 * j | |
592 * | |
593 * If which = 0, only lower bound L, which must exist, is considered, | |
594 * while upper bound U is ignored. Similarly, if which = 1, only upper | |
595 * bound U, which must exist, is considered, while lower bound L is | |
596 * ignored. Thus, if the specified row is a double-sided inequality or | |
597 * equality constraint, this routine should be called twice for both | |
598 * lower and upper bounds. | |
599 * | |
600 * The routine npp_implied_packing attempts to find a non-trivial (i.e. | |
601 * having not less than two binary variables) packing inequality: | |
602 * | |
603 * sum x[j] - sum x[j] <= 1 - |Jn|, (2) | |
604 * j in Jp j in Jn | |
605 * | |
606 * which is relaxation of the constraint (1) in the sense that any | |
607 * solution satisfying to that constraint also satisfies to the packing | |
608 * inequality (2). If such relaxation exists, the routine stores | |
609 * pointers to descriptors of corresponding binary variables and their | |
610 * flags, resp., to locations var[1], var[2], ..., var[len] and set[1], | |
611 * set[2], ..., set[len], where set[j] = 0 means that j in Jp and | |
612 * set[j] = 1 means that j in Jn. | |
613 * | |
614 * RETURNS | |
615 * | |
616 * The routine npp_implied_packing returns len, which is the total | |
617 * number of binary variables in the packing inequality found, len >= 2. | |
618 * However, if the relaxation does not exist, the routine returns zero. | |
619 * | |
620 * ALGORITHM | |
621 * | |
622 * If which = 0, the constraint coefficients (1) are multiplied by -1 | |
623 * and b is assigned -L; if which = 1, the constraint coefficients (1) | |
624 * are not changed and b is assigned +U. In both cases the specified | |
625 * constraint gets the following format: | |
626 * | |
627 * sum a[j] x[j] <= b. (3) | |
628 * j | |
629 * | |
630 * (Note that (3) is a relaxation of (1), because one of bounds L or U | |
631 * is ignored.) | |
632 * | |
633 * Let J be set of binary variables, Kp be set of non-binary (integer | |
634 * or continuous) variables with a[j] > 0, and Kn be set of non-binary | |
635 * variables with a[j] < 0. Then the inequality (3) can be written as | |
636 * follows: | |
637 * | |
638 * sum a[j] x[j] <= b - sum a[j] x[j] - sum a[j] x[j]. (4) | |
639 * j in J j in Kp j in Kn | |
640 * | |
641 * To get rid of non-binary variables we can replace the inequality (4) | |
642 * by the following relaxed inequality: | |
643 * | |
644 * sum a[j] x[j] <= b~, (5) | |
645 * j in J | |
646 * | |
647 * where: | |
648 * | |
649 * b~ = sup(b - sum a[j] x[j] - sum a[j] x[j]) = | |
650 * j in Kp j in Kn | |
651 * | |
652 * = b - inf sum a[j] x[j] - inf sum a[j] x[j] = (6) | |
653 * j in Kp j in Kn | |
654 * | |
655 * = b - sum a[j] l[j] - sum a[j] u[j]. | |
656 * j in Kp j in Kn | |
657 * | |
658 * Note that if lower bound l[j] (if j in Kp) or upper bound u[j] | |
659 * (if j in Kn) of some non-binary variable x[j] does not exist, then | |
660 * formally b = +oo, in which case further analysis is not performed. | |
661 * | |
662 * Let Bp = {j in J: a[j] > 0}, Bn = {j in J: a[j] < 0}. To make all | |
663 * the inequality coefficients in (5) positive, we replace all x[j] in | |
664 * Bn by their complementaries, substituting x[j] = 1 - x~[j] for all | |
665 * j in Bn, that gives: | |
666 * | |
667 * sum a[j] x[j] - sum a[j] x~[j] <= b~ - sum a[j]. (7) | |
668 * j in Bp j in Bn j in Bn | |
669 * | |
670 * This inequality is a relaxation of the original constraint (1), and | |
671 * it is a binary knapsack inequality. Writing it in the standard format | |
672 * we have: | |
673 * | |
674 * sum alfa[j] z[j] <= beta, (8) | |
675 * j in J | |
676 * | |
677 * where: | |
678 * ( + a[j], if j in Bp, | |
679 * alfa[j] = < (9) | |
680 * ( - a[j], if j in Bn, | |
681 * | |
682 * ( x[j], if j in Bp, | |
683 * z[j] = < (10) | |
684 * ( 1 - x[j], if j in Bn, | |
685 * | |
686 * beta = b~ - sum a[j]. (11) | |
687 * j in Bn | |
688 * | |
689 * In the inequality (8) all coefficients are positive, therefore, the | |
690 * packing relaxation to be found for this inequality is the following: | |
691 * | |
692 * sum z[j] <= 1. (12) | |
693 * j in P | |
694 * | |
695 * It is obvious that set P within J, which we would like to find, must | |
696 * satisfy to the following condition: | |
697 * | |
698 * alfa[j] + alfa[k] > beta + eps for all j, k in P, j != k, (13) | |
699 * | |
700 * where eps is an absolute tolerance for value of the linear form. | |
701 * Thus, it is natural to take P = {j: alpha[j] > (beta + eps) / 2}. | |
702 * Moreover, if in the equality (8) there exist coefficients alfa[k], | |
703 * for which alfa[k] <= (beta + eps) / 2, but which, nevertheless, | |
704 * satisfies to the condition (13) for all j in P, *one* corresponding | |
705 * variable z[k] (having, for example, maximal coefficient alfa[k]) can | |
706 * be included in set P, that allows increasing the number of binary | |
707 * variables in (12) by one. | |
708 * | |
709 * Once the set P has been built, for the inequality (12) we need to | |
710 * perform back substitution according to (10) in order to express it | |
711 * through the original binary variables. As the result of such back | |
712 * substitution the relaxed packing inequality get its final format (2), | |
713 * where Jp = J intersect Bp, and Jn = J intersect Bn. */ | |
714 | |
715 int npp_implied_packing(NPP *npp, NPPROW *row, int which, | |
716 NPPCOL *var[], char set[]) | |
717 { struct elem *ptr, *e, *i, *k; | |
718 int len = 0; | |
719 double b, eps; | |
720 /* build inequality (3) */ | |
721 if (which == 0) | |
722 { ptr = copy_form(npp, row, -1.0); | |
723 xassert(row->lb != -DBL_MAX); | |
724 b = - row->lb; | |
725 } | |
726 else if (which == 1) | |
727 { ptr = copy_form(npp, row, +1.0); | |
728 xassert(row->ub != +DBL_MAX); | |
729 b = + row->ub; | |
730 } | |
731 /* remove non-binary variables to build relaxed inequality (5); | |
732 compute its right-hand side b~ with formula (6) */ | |
733 for (e = ptr; e != NULL; e = e->next) | |
734 { if (!(e->xj->is_int && e->xj->lb == 0.0 && e->xj->ub == 1.0)) | |
735 { /* x[j] is non-binary variable */ | |
736 if (e->aj > 0.0) | |
737 { if (e->xj->lb == -DBL_MAX) goto done; | |
738 b -= e->aj * e->xj->lb; | |
739 } | |
740 else /* e->aj < 0.0 */ | |
741 { if (e->xj->ub == +DBL_MAX) goto done; | |
742 b -= e->aj * e->xj->ub; | |
743 } | |
744 /* a[j] = 0 means that variable x[j] is removed */ | |
745 e->aj = 0.0; | |
746 } | |
747 } | |
748 /* substitute x[j] = 1 - x~[j] to build knapsack inequality (8); | |
749 compute its right-hand side beta with formula (11) */ | |
750 for (e = ptr; e != NULL; e = e->next) | |
751 if (e->aj < 0.0) b -= e->aj; | |
752 /* if beta is close to zero, the knapsack inequality is either | |
753 infeasible or forcing inequality; this must never happen, so | |
754 we skip further analysis */ | |
755 if (b < 1e-3) goto done; | |
756 /* build set P as well as sets Jp and Jn, and determine x[k] as | |
757 explained above in comments to the routine */ | |
758 eps = 1e-3 + 1e-6 * b; | |
759 i = k = NULL; | |
760 for (e = ptr; e != NULL; e = e->next) | |
761 { /* note that alfa[j] = |a[j]| */ | |
762 if (fabs(e->aj) > 0.5 * (b + eps)) | |
763 { /* alfa[j] > (b + eps) / 2; include x[j] in set P, i.e. in | |
764 set Jp or Jn */ | |
765 var[++len] = e->xj; | |
766 set[len] = (char)(e->aj > 0.0 ? 0 : 1); | |
767 /* alfa[i] = min alfa[j] over all j included in set P */ | |
768 if (i == NULL || fabs(i->aj) > fabs(e->aj)) i = e; | |
769 } | |
770 else if (fabs(e->aj) >= 1e-3) | |
771 { /* alfa[k] = max alfa[j] over all j not included in set P; | |
772 we skip coefficient a[j] if it is close to zero to avoid | |
773 numerically unreliable results */ | |
774 if (k == NULL || fabs(k->aj) < fabs(e->aj)) k = e; | |
775 } | |
776 } | |
777 /* if alfa[k] satisfies to condition (13) for all j in P, include | |
778 x[k] in P */ | |
779 if (i != NULL && k != NULL && fabs(i->aj) + fabs(k->aj) > b + eps) | |
780 { var[++len] = k->xj; | |
781 set[len] = (char)(k->aj > 0.0 ? 0 : 1); | |
782 } | |
783 /* trivial packing inequality being redundant must never appear, | |
784 so we just ignore it */ | |
785 if (len < 2) len = 0; | |
786 done: drop_form(npp, ptr); | |
787 return len; | |
788 } | |
789 | |
790 /*********************************************************************** | |
791 * NAME | |
792 * | |
793 * npp_is_covering - test if constraint is covering inequality | |
794 * | |
795 * SYNOPSIS | |
796 * | |
797 * #include "glpnpp.h" | |
798 * int npp_is_covering(NPP *npp, NPPROW *row); | |
799 * | |
800 * RETURNS | |
801 * | |
802 * If the specified row (constraint) is covering inequality (see below), | |
803 * the routine npp_is_covering returns non-zero. Otherwise, it returns | |
804 * zero. | |
805 * | |
806 * COVERING INEQUALITIES | |
807 * | |
808 * In canonical format the covering inequality is the following: | |
809 * | |
810 * sum x[j] >= 1, (1) | |
811 * j in J | |
812 * | |
813 * where all variables x[j] are binary. This inequality expresses the | |
814 * condition that in any integer feasible solution variables in set J | |
815 * cannot be all equal to zero at the same time, i.e. at least one | |
816 * variable must take non-zero (unity) value. W.l.o.g. it is assumed | |
817 * that |J| >= 2, because if J is empty, the inequality (1) is | |
818 * infeasible, and if |J| = 1, the inequality (1) is a forcing row. | |
819 * | |
820 * In general case the covering inequality may include original | |
821 * variables x[j] as well as their complements x~[j]: | |
822 * | |
823 * sum x[j] + sum x~[j] >= 1, (2) | |
824 * j in Jp j in Jn | |
825 * | |
826 * where Jp and Jn are not intersected. Therefore, using substitution | |
827 * x~[j] = 1 - x[j] gives the packing inequality in generalized format: | |
828 * | |
829 * sum x[j] - sum x[j] >= 1 - |Jn|. (3) | |
830 * j in Jp j in Jn | |
831 * | |
832 * (May note that the inequality (3) cuts off infeasible solutions, | |
833 * where x[j] = 0 for all j in Jp and x[j] = 1 for all j in Jn.) | |
834 * | |
835 * NOTE: If |J| = 2, the inequality (3) is equivalent to packing | |
836 * inequality (see the routine npp_is_packing). */ | |
837 | |
838 int npp_is_covering(NPP *npp, NPPROW *row) | |
839 { /* test if constraint is covering inequality */ | |
840 NPPCOL *col; | |
841 NPPAIJ *aij; | |
842 int b; | |
843 xassert(npp == npp); | |
844 if (!(row->lb != -DBL_MAX && row->ub == +DBL_MAX)) | |
845 return 0; | |
846 b = 1; | |
847 for (aij = row->ptr; aij != NULL; aij = aij->r_next) | |
848 { col = aij->col; | |
849 if (!(col->is_int && col->lb == 0.0 && col->ub == 1.0)) | |
850 return 0; | |
851 if (aij->val == +1.0) | |
852 ; | |
853 else if (aij->val == -1.0) | |
854 b--; | |
855 else | |
856 return 0; | |
857 } | |
858 if (row->lb != (double)b) return 0; | |
859 return 1; | |
860 } | |
861 | |
862 /*********************************************************************** | |
863 * NAME | |
864 * | |
865 * npp_hidden_covering - identify hidden covering inequality | |
866 * | |
867 * SYNOPSIS | |
868 * | |
869 * #include "glpnpp.h" | |
870 * int npp_hidden_covering(NPP *npp, NPPROW *row); | |
871 * | |
872 * DESCRIPTION | |
873 * | |
874 * The routine npp_hidden_covering processes specified inequality | |
875 * constraint, which includes only binary variables, and the number of | |
876 * the variables is not less than three. If the original inequality is | |
877 * equivalent to a covering inequality (see below), the routine | |
878 * replaces it by the equivalent inequality. If the original constraint | |
879 * is double-sided inequality, it is replaced by a pair of single-sided | |
880 * inequalities, if necessary. | |
881 * | |
882 * RETURNS | |
883 * | |
884 * If the original inequality constraint was replaced by equivalent | |
885 * covering inequality, the routine npp_hidden_covering returns | |
886 * non-zero. Otherwise, it returns zero. | |
887 * | |
888 * PROBLEM TRANSFORMATION | |
889 * | |
890 * Consider an inequality constraint: | |
891 * | |
892 * sum a[j] x[j] >= b, (1) | |
893 * j in J | |
894 * | |
895 * where all variables x[j] are binary, and |J| >= 3. (In case of '<=' | |
896 * inequality it can be transformed to '>=' format by multiplying both | |
897 * its sides by -1.) | |
898 * | |
899 * Let Jp = {j: a[j] > 0}, Jn = {j: a[j] < 0}. Performing substitution | |
900 * x[j] = 1 - x~[j] for all j in Jn, we have: | |
901 * | |
902 * sum a[j] x[j] >= b ==> | |
903 * j in J | |
904 * | |
905 * sum a[j] x[j] + sum a[j] x[j] >= b ==> | |
906 * j in Jp j in Jn | |
907 * | |
908 * sum a[j] x[j] + sum a[j] (1 - x~[j]) >= b ==> | |
909 * j in Jp j in Jn | |
910 * | |
911 * sum m a[j] x[j] - sum a[j] x~[j] >= b - sum a[j]. | |
912 * j in Jp j in Jn j in Jn | |
913 * | |
914 * Thus, meaning the transformation above, we can assume that in | |
915 * inequality (1) all coefficients a[j] are positive. Moreover, we can | |
916 * assume that b > 0, because otherwise the inequality (1) would be | |
917 * redundant (see the routine npp_analyze_row). It is then obvious that | |
918 * constraint (1) is equivalent to covering inequality only if: | |
919 * | |
920 * a[j] >= b, (2) | |
921 * | |
922 * for all j in J. | |
923 * | |
924 * Once the original inequality (1) is replaced by equivalent covering | |
925 * inequality, we need to perform back substitution x~[j] = 1 - x[j] for | |
926 * all j in Jn (see above). | |
927 * | |
928 * RECOVERING SOLUTION | |
929 * | |
930 * None needed. */ | |
931 | |
932 static int hidden_covering(NPP *npp, struct elem *ptr, double *_b) | |
933 { /* process inequality constraint: sum a[j] x[j] >= b; | |
934 0 - specified row is NOT hidden covering inequality; | |
935 1 - specified row is covering inequality; | |
936 2 - specified row is hidden covering inequality. */ | |
937 struct elem *e; | |
938 int neg; | |
939 double b = *_b, eps; | |
940 xassert(npp == npp); | |
941 /* a[j] must be non-zero, x[j] must be binary, for all j in J */ | |
942 for (e = ptr; e != NULL; e = e->next) | |
943 { xassert(e->aj != 0.0); | |
944 xassert(e->xj->is_int); | |
945 xassert(e->xj->lb == 0.0 && e->xj->ub == 1.0); | |
946 } | |
947 /* check if the specified inequality constraint already has the | |
948 form of covering inequality */ | |
949 neg = 0; /* neg is |Jn| */ | |
950 for (e = ptr; e != NULL; e = e->next) | |
951 { if (e->aj == +1.0) | |
952 ; | |
953 else if (e->aj == -1.0) | |
954 neg++; | |
955 else | |
956 break; | |
957 } | |
958 if (e == NULL) | |
959 { /* all coefficients a[j] are +1 or -1; check rhs b */ | |
960 if (b == (double)(1 - neg)) | |
961 { /* it is covering inequality; no processing is needed */ | |
962 return 1; | |
963 } | |
964 } | |
965 /* substitute x[j] = 1 - x~[j] for all j in Jn to make all a[j] | |
966 positive; the result is a~[j] = |a[j]| and new rhs b */ | |
967 for (e = ptr; e != NULL; e = e->next) | |
968 if (e->aj < 0) b -= e->aj; | |
969 /* now a[j] > 0 for all j in J (actually |a[j]| are used) */ | |
970 /* if b <= 0, skip processing--this case must not appear */ | |
971 if (b < 1e-3) return 0; | |
972 /* now a[j] > 0 for all j in J, and b > 0 */ | |
973 /* the specified constraint is equivalent to covering inequality | |
974 iff a[j] >= b for all j in J */ | |
975 eps = 1e-9 + 1e-12 * fabs(b); | |
976 for (e = ptr; e != NULL; e = e->next) | |
977 if (fabs(e->aj) < b - eps) return 0; | |
978 /* perform back substitution x~[j] = 1 - x[j] and construct the | |
979 final equivalent covering inequality in generalized format */ | |
980 b = 1.0; | |
981 for (e = ptr; e != NULL; e = e->next) | |
982 { if (e->aj > 0.0) | |
983 e->aj = +1.0; | |
984 else /* e->aj < 0.0 */ | |
985 e->aj = -1.0, b -= 1.0; | |
986 } | |
987 *_b = b; | |
988 return 2; | |
989 } | |
990 | |
991 int npp_hidden_covering(NPP *npp, NPPROW *row) | |
992 { /* identify hidden covering inequality */ | |
993 NPPROW *copy; | |
994 NPPAIJ *aij; | |
995 struct elem *ptr, *e; | |
996 int kase, ret, count = 0; | |
997 double b; | |
998 /* the row must be inequality constraint */ | |
999 xassert(row->lb < row->ub); | |
1000 for (kase = 0; kase <= 1; kase++) | |
1001 { if (kase == 0) | |
1002 { /* process row lower bound */ | |
1003 if (row->lb == -DBL_MAX) continue; | |
1004 ptr = copy_form(npp, row, +1.0); | |
1005 b = + row->lb; | |
1006 } | |
1007 else | |
1008 { /* process row upper bound */ | |
1009 if (row->ub == +DBL_MAX) continue; | |
1010 ptr = copy_form(npp, row, -1.0); | |
1011 b = - row->ub; | |
1012 } | |
1013 /* now the inequality has the form "sum a[j] x[j] >= b" */ | |
1014 ret = hidden_covering(npp, ptr, &b); | |
1015 xassert(0 <= ret && ret <= 2); | |
1016 if (kase == 1 && ret == 1 || ret == 2) | |
1017 { /* the original inequality has been identified as hidden | |
1018 covering inequality */ | |
1019 count++; | |
1020 #ifdef GLP_DEBUG | |
1021 xprintf("Original constraint:\n"); | |
1022 for (aij = row->ptr; aij != NULL; aij = aij->r_next) | |
1023 xprintf(" %+g x%d", aij->val, aij->col->j); | |
1024 if (row->lb != -DBL_MAX) xprintf(", >= %g", row->lb); | |
1025 if (row->ub != +DBL_MAX) xprintf(", <= %g", row->ub); | |
1026 xprintf("\n"); | |
1027 xprintf("Equivalent covering inequality:\n"); | |
1028 for (e = ptr; e != NULL; e = e->next) | |
1029 xprintf(" %sx%d", e->aj > 0.0 ? "+" : "-", e->xj->j); | |
1030 xprintf(", >= %g\n", b); | |
1031 #endif | |
1032 if (row->lb == -DBL_MAX || row->ub == +DBL_MAX) | |
1033 { /* the original row is single-sided inequality; no copy | |
1034 is needed */ | |
1035 copy = NULL; | |
1036 } | |
1037 else | |
1038 { /* the original row is double-sided inequality; we need | |
1039 to create its copy for other bound before replacing it | |
1040 with the equivalent inequality */ | |
1041 copy = npp_add_row(npp); | |
1042 if (kase == 0) | |
1043 { /* the copy is for upper bound */ | |
1044 copy->lb = -DBL_MAX, copy->ub = row->ub; | |
1045 } | |
1046 else | |
1047 { /* the copy is for lower bound */ | |
1048 copy->lb = row->lb, copy->ub = +DBL_MAX; | |
1049 } | |
1050 /* copy original row coefficients */ | |
1051 for (aij = row->ptr; aij != NULL; aij = aij->r_next) | |
1052 npp_add_aij(npp, copy, aij->col, aij->val); | |
1053 } | |
1054 /* replace the original inequality by equivalent one */ | |
1055 npp_erase_row(npp, row); | |
1056 row->lb = b, row->ub = +DBL_MAX; | |
1057 for (e = ptr; e != NULL; e = e->next) | |
1058 npp_add_aij(npp, row, e->xj, e->aj); | |
1059 /* continue processing upper bound for the copy */ | |
1060 if (copy != NULL) row = copy; | |
1061 } | |
1062 drop_form(npp, ptr); | |
1063 } | |
1064 return count; | |
1065 } | |
1066 | |
1067 /*********************************************************************** | |
1068 * NAME | |
1069 * | |
1070 * npp_is_partitioning - test if constraint is partitioning equality | |
1071 * | |
1072 * SYNOPSIS | |
1073 * | |
1074 * #include "glpnpp.h" | |
1075 * int npp_is_partitioning(NPP *npp, NPPROW *row); | |
1076 * | |
1077 * RETURNS | |
1078 * | |
1079 * If the specified row (constraint) is partitioning equality (see | |
1080 * below), the routine npp_is_partitioning returns non-zero. Otherwise, | |
1081 * it returns zero. | |
1082 * | |
1083 * PARTITIONING EQUALITIES | |
1084 * | |
1085 * In canonical format the partitioning equality is the following: | |
1086 * | |
1087 * sum x[j] = 1, (1) | |
1088 * j in J | |
1089 * | |
1090 * where all variables x[j] are binary. This equality expresses the | |
1091 * condition that in any integer feasible solution exactly one variable | |
1092 * in set J must take non-zero (unity) value while other variables must | |
1093 * be equal to zero. W.l.o.g. it is assumed that |J| >= 2, because if | |
1094 * J is empty, the inequality (1) is infeasible, and if |J| = 1, the | |
1095 * inequality (1) is a fixing row. | |
1096 * | |
1097 * In general case the partitioning equality may include original | |
1098 * variables x[j] as well as their complements x~[j]: | |
1099 * | |
1100 * sum x[j] + sum x~[j] = 1, (2) | |
1101 * j in Jp j in Jn | |
1102 * | |
1103 * where Jp and Jn are not intersected. Therefore, using substitution | |
1104 * x~[j] = 1 - x[j] leads to the partitioning equality in generalized | |
1105 * format: | |
1106 * | |
1107 * sum x[j] - sum x[j] = 1 - |Jn|. (3) | |
1108 * j in Jp j in Jn */ | |
1109 | |
1110 int npp_is_partitioning(NPP *npp, NPPROW *row) | |
1111 { /* test if constraint is partitioning equality */ | |
1112 NPPCOL *col; | |
1113 NPPAIJ *aij; | |
1114 int b; | |
1115 xassert(npp == npp); | |
1116 if (row->lb != row->ub) return 0; | |
1117 b = 1; | |
1118 for (aij = row->ptr; aij != NULL; aij = aij->r_next) | |
1119 { col = aij->col; | |
1120 if (!(col->is_int && col->lb == 0.0 && col->ub == 1.0)) | |
1121 return 0; | |
1122 if (aij->val == +1.0) | |
1123 ; | |
1124 else if (aij->val == -1.0) | |
1125 b--; | |
1126 else | |
1127 return 0; | |
1128 } | |
1129 if (row->lb != (double)b) return 0; | |
1130 return 1; | |
1131 } | |
1132 | |
1133 /*********************************************************************** | |
1134 * NAME | |
1135 * | |
1136 * npp_reduce_ineq_coef - reduce inequality constraint coefficients | |
1137 * | |
1138 * SYNOPSIS | |
1139 * | |
1140 * #include "glpnpp.h" | |
1141 * int npp_reduce_ineq_coef(NPP *npp, NPPROW *row); | |
1142 * | |
1143 * DESCRIPTION | |
1144 * | |
1145 * The routine npp_reduce_ineq_coef processes specified inequality | |
1146 * constraint attempting to replace it by an equivalent constraint, | |
1147 * where magnitude of coefficients at binary variables is smaller than | |
1148 * in the original constraint. If the inequality is double-sided, it is | |
1149 * replaced by a pair of single-sided inequalities, if necessary. | |
1150 * | |
1151 * RETURNS | |
1152 * | |
1153 * The routine npp_reduce_ineq_coef returns the number of coefficients | |
1154 * reduced. | |
1155 * | |
1156 * BACKGROUND | |
1157 * | |
1158 * Consider an inequality constraint: | |
1159 * | |
1160 * sum a[j] x[j] >= b. (1) | |
1161 * j in J | |
1162 * | |
1163 * (In case of '<=' inequality it can be transformed to '>=' format by | |
1164 * multiplying both its sides by -1.) Let x[k] be a binary variable; | |
1165 * other variables can be integer as well as continuous. We can write | |
1166 * constraint (1) as follows: | |
1167 * | |
1168 * a[k] x[k] + t[k] >= b, (2) | |
1169 * | |
1170 * where: | |
1171 * | |
1172 * t[k] = sum a[j] x[j]. (3) | |
1173 * j in J\{k} | |
1174 * | |
1175 * Since x[k] is binary, constraint (2) is equivalent to disjunction of | |
1176 * the following two constraints: | |
1177 * | |
1178 * x[k] = 0, t[k] >= b (4) | |
1179 * | |
1180 * OR | |
1181 * | |
1182 * x[k] = 1, t[k] >= b - a[k]. (5) | |
1183 * | |
1184 * Let also that for the partial sum t[k] be known some its implied | |
1185 * lower bound inf t[k]. | |
1186 * | |
1187 * Case a[k] > 0. Let inf t[k] < b, since otherwise both constraints | |
1188 * (4) and (5) and therefore constraint (2) are redundant. | |
1189 * If inf t[k] > b - a[k], only constraint (5) is redundant, in which | |
1190 * case it can be replaced with the following redundant and therefore | |
1191 * equivalent constraint: | |
1192 * | |
1193 * t[k] >= b - a'[k] = inf t[k], (6) | |
1194 * | |
1195 * where: | |
1196 * | |
1197 * a'[k] = b - inf t[k]. (7) | |
1198 * | |
1199 * Thus, the original constraint (2) is equivalent to the following | |
1200 * constraint with coefficient at variable x[k] changed: | |
1201 * | |
1202 * a'[k] x[k] + t[k] >= b. (8) | |
1203 * | |
1204 * From inf t[k] < b it follows that a'[k] > 0, i.e. the coefficient | |
1205 * at x[k] keeps its sign. And from inf t[k] > b - a[k] it follows that | |
1206 * a'[k] < a[k], i.e. the coefficient reduces in magnitude. | |
1207 * | |
1208 * Case a[k] < 0. Let inf t[k] < b - a[k], since otherwise both | |
1209 * constraints (4) and (5) and therefore constraint (2) are redundant. | |
1210 * If inf t[k] > b, only constraint (4) is redundant, in which case it | |
1211 * can be replaced with the following redundant and therefore equivalent | |
1212 * constraint: | |
1213 * | |
1214 * t[k] >= b' = inf t[k]. (9) | |
1215 * | |
1216 * Rewriting constraint (5) as follows: | |
1217 * | |
1218 * t[k] >= b - a[k] = b' - a'[k], (10) | |
1219 * | |
1220 * where: | |
1221 * | |
1222 * a'[k] = a[k] + b' - b = a[k] + inf t[k] - b, (11) | |
1223 * | |
1224 * we can see that disjunction of constraint (9) and (10) is equivalent | |
1225 * to disjunction of constraint (4) and (5), from which it follows that | |
1226 * the original constraint (2) is equivalent to the following constraint | |
1227 * with both coefficient at variable x[k] and right-hand side changed: | |
1228 * | |
1229 * a'[k] x[k] + t[k] >= b'. (12) | |
1230 * | |
1231 * From inf t[k] < b - a[k] it follows that a'[k] < 0, i.e. the | |
1232 * coefficient at x[k] keeps its sign. And from inf t[k] > b it follows | |
1233 * that a'[k] > a[k], i.e. the coefficient reduces in magnitude. | |
1234 * | |
1235 * PROBLEM TRANSFORMATION | |
1236 * | |
1237 * In the routine npp_reduce_ineq_coef the following implied lower | |
1238 * bound of the partial sum (3) is used: | |
1239 * | |
1240 * inf t[k] = sum a[j] l[j] + sum a[j] u[j], (13) | |
1241 * j in Jp\{k} k in Jn\{k} | |
1242 * | |
1243 * where Jp = {j : a[j] > 0}, Jn = {j : a[j] < 0}, l[j] and u[j] are | |
1244 * lower and upper bounds, resp., of variable x[j]. | |
1245 * | |
1246 * In order to compute inf t[k] more efficiently, the following formula, | |
1247 * which is equivalent to (13), is actually used: | |
1248 * | |
1249 * ( h - a[k] l[k] = h, if a[k] > 0, | |
1250 * inf t[k] = < (14) | |
1251 * ( h - a[k] u[k] = h - a[k], if a[k] < 0, | |
1252 * | |
1253 * where: | |
1254 * | |
1255 * h = sum a[j] l[j] + sum a[j] u[j] (15) | |
1256 * j in Jp j in Jn | |
1257 * | |
1258 * is the implied lower bound of row (1). | |
1259 * | |
1260 * Reduction of positive coefficient (a[k] > 0) does not change value | |
1261 * of h, since l[k] = 0. In case of reduction of negative coefficient | |
1262 * (a[k] < 0) from (11) it follows that: | |
1263 * | |
1264 * delta a[k] = a'[k] - a[k] = inf t[k] - b (> 0), (16) | |
1265 * | |
1266 * so new value of h (accounting that u[k] = 1) can be computed as | |
1267 * follows: | |
1268 * | |
1269 * h := h + delta a[k] = h + (inf t[k] - b). (17) | |
1270 * | |
1271 * RECOVERING SOLUTION | |
1272 * | |
1273 * None needed. */ | |
1274 | |
1275 static int reduce_ineq_coef(NPP *npp, struct elem *ptr, double *_b) | |
1276 { /* process inequality constraint: sum a[j] x[j] >= b */ | |
1277 /* returns: the number of coefficients reduced */ | |
1278 struct elem *e; | |
1279 int count = 0; | |
1280 double h, inf_t, new_a, b = *_b; | |
1281 xassert(npp == npp); | |
1282 /* compute h; see (15) */ | |
1283 h = 0.0; | |
1284 for (e = ptr; e != NULL; e = e->next) | |
1285 { if (e->aj > 0.0) | |
1286 { if (e->xj->lb == -DBL_MAX) goto done; | |
1287 h += e->aj * e->xj->lb; | |
1288 } | |
1289 else /* e->aj < 0.0 */ | |
1290 { if (e->xj->ub == +DBL_MAX) goto done; | |
1291 h += e->aj * e->xj->ub; | |
1292 } | |
1293 } | |
1294 /* perform reduction of coefficients at binary variables */ | |
1295 for (e = ptr; e != NULL; e = e->next) | |
1296 { /* skip non-binary variable */ | |
1297 if (!(e->xj->is_int && e->xj->lb == 0.0 && e->xj->ub == 1.0)) | |
1298 continue; | |
1299 if (e->aj > 0.0) | |
1300 { /* compute inf t[k]; see (14) */ | |
1301 inf_t = h; | |
1302 if (b - e->aj < inf_t && inf_t < b) | |
1303 { /* compute reduced coefficient a'[k]; see (7) */ | |
1304 new_a = b - inf_t; | |
1305 if (new_a >= +1e-3 && | |
1306 e->aj - new_a >= 0.01 * (1.0 + e->aj)) | |
1307 { /* accept a'[k] */ | |
1308 #ifdef GLP_DEBUG | |
1309 xprintf("+"); | |
1310 #endif | |
1311 e->aj = new_a; | |
1312 count++; | |
1313 } | |
1314 } | |
1315 } | |
1316 else /* e->aj < 0.0 */ | |
1317 { /* compute inf t[k]; see (14) */ | |
1318 inf_t = h - e->aj; | |
1319 if (b < inf_t && inf_t < b - e->aj) | |
1320 { /* compute reduced coefficient a'[k]; see (11) */ | |
1321 new_a = e->aj + (inf_t - b); | |
1322 if (new_a <= -1e-3 && | |
1323 new_a - e->aj >= 0.01 * (1.0 - e->aj)) | |
1324 { /* accept a'[k] */ | |
1325 #ifdef GLP_DEBUG | |
1326 xprintf("-"); | |
1327 #endif | |
1328 e->aj = new_a; | |
1329 /* update h; see (17) */ | |
1330 h += (inf_t - b); | |
1331 /* compute b'; see (9) */ | |
1332 b = inf_t; | |
1333 count++; | |
1334 } | |
1335 } | |
1336 } | |
1337 } | |
1338 *_b = b; | |
1339 done: return count; | |
1340 } | |
1341 | |
1342 int npp_reduce_ineq_coef(NPP *npp, NPPROW *row) | |
1343 { /* reduce inequality constraint coefficients */ | |
1344 NPPROW *copy; | |
1345 NPPAIJ *aij; | |
1346 struct elem *ptr, *e; | |
1347 int kase, count[2]; | |
1348 double b; | |
1349 /* the row must be inequality constraint */ | |
1350 xassert(row->lb < row->ub); | |
1351 count[0] = count[1] = 0; | |
1352 for (kase = 0; kase <= 1; kase++) | |
1353 { if (kase == 0) | |
1354 { /* process row lower bound */ | |
1355 if (row->lb == -DBL_MAX) continue; | |
1356 #ifdef GLP_DEBUG | |
1357 xprintf("L"); | |
1358 #endif | |
1359 ptr = copy_form(npp, row, +1.0); | |
1360 b = + row->lb; | |
1361 } | |
1362 else | |
1363 { /* process row upper bound */ | |
1364 if (row->ub == +DBL_MAX) continue; | |
1365 #ifdef GLP_DEBUG | |
1366 xprintf("U"); | |
1367 #endif | |
1368 ptr = copy_form(npp, row, -1.0); | |
1369 b = - row->ub; | |
1370 } | |
1371 /* now the inequality has the form "sum a[j] x[j] >= b" */ | |
1372 count[kase] = reduce_ineq_coef(npp, ptr, &b); | |
1373 if (count[kase] > 0) | |
1374 { /* the original inequality has been replaced by equivalent | |
1375 one with coefficients reduced */ | |
1376 if (row->lb == -DBL_MAX || row->ub == +DBL_MAX) | |
1377 { /* the original row is single-sided inequality; no copy | |
1378 is needed */ | |
1379 copy = NULL; | |
1380 } | |
1381 else | |
1382 { /* the original row is double-sided inequality; we need | |
1383 to create its copy for other bound before replacing it | |
1384 with the equivalent inequality */ | |
1385 #ifdef GLP_DEBUG | |
1386 xprintf("*"); | |
1387 #endif | |
1388 copy = npp_add_row(npp); | |
1389 if (kase == 0) | |
1390 { /* the copy is for upper bound */ | |
1391 copy->lb = -DBL_MAX, copy->ub = row->ub; | |
1392 } | |
1393 else | |
1394 { /* the copy is for lower bound */ | |
1395 copy->lb = row->lb, copy->ub = +DBL_MAX; | |
1396 } | |
1397 /* copy original row coefficients */ | |
1398 for (aij = row->ptr; aij != NULL; aij = aij->r_next) | |
1399 npp_add_aij(npp, copy, aij->col, aij->val); | |
1400 } | |
1401 /* replace the original inequality by equivalent one */ | |
1402 npp_erase_row(npp, row); | |
1403 row->lb = b, row->ub = +DBL_MAX; | |
1404 for (e = ptr; e != NULL; e = e->next) | |
1405 npp_add_aij(npp, row, e->xj, e->aj); | |
1406 /* continue processing upper bound for the copy */ | |
1407 if (copy != NULL) row = copy; | |
1408 } | |
1409 drop_form(npp, ptr); | |
1410 } | |
1411 return count[0] + count[1]; | |
1412 } | |
1413 | |
1414 /* eof */ |