maps.dox
author Peter Kovacs <kpeter@inf.elte.hu>
Mon, 22 Feb 2010 02:03:25 +0100
changeset 49 c8c5a2a4ec71
parent 46 58557724a139
child 57 18404ec968ca
permissions -rw-r--r--
Port the remaining 0.x tutorial contents from SVN -r 3524
kpeter@46
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
kpeter@46
     2
 *
kpeter@46
     3
 * This file is a part of LEMON, a generic C++ optimization library.
kpeter@46
     4
 *
kpeter@46
     5
 * Copyright (C) 2003-2010
kpeter@46
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@46
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@46
     8
 *
kpeter@46
     9
 * Permission to use, modify and distribute this software is granted
kpeter@46
    10
 * provided that this copyright notice appears in all copies. For
kpeter@46
    11
 * precise terms see the accompanying LICENSE file.
kpeter@46
    12
 *
kpeter@46
    13
 * This software is provided "AS IS" with no warranty of any kind,
kpeter@46
    14
 * express or implied, and with no claim as to its suitability for any
kpeter@46
    15
 * purpose.
kpeter@46
    16
 *
kpeter@46
    17
 */
kpeter@46
    18
kpeter@46
    19
namespace lemon {
kpeter@46
    20
/**
kpeter@46
    21
[PAGE]sec_maps[PAGE] Maps
kpeter@46
    22
kpeter@46
    23
\todo This page is under construction.
kpeter@46
    24
kpeter@49
    25
\todo The following contents are ported from the LEMON 0.x tutorial,
kpeter@49
    26
thus they have to thouroughly revised, reorganized and reworked.
kpeter@49
    27
kpeter@49
    28
The LEMON maps are not only just storage classes, but also
kpeter@49
    29
they are %concepts of any key--value based data access.
kpeter@49
    30
Beside the standard digraph maps, LEMON contains several "lightweight"
kpeter@49
    31
\e map \e adaptor \e classes, which perform various operations on the
kpeter@49
    32
data of the adapted maps when their access operations are called,
kpeter@49
    33
but without actually copying or modifying the original storage.
kpeter@49
    34
These classes also conform to the map %concepts, thus they can be used
kpeter@49
    35
like standard LEMON maps.
kpeter@49
    36
kpeter@49
    37
Let us suppose that we have a traffic network stored in a LEMON digraph
kpeter@49
    38
structure with two arc maps \c length and \c speed, which
kpeter@49
    39
denote the physical length of each arc and the maximum (or average)
kpeter@49
    40
speed that can be achieved on the corresponding road-section,
kpeter@49
    41
respectively. If we are interested in the best traveling times,
kpeter@49
    42
the following code can be used.
kpeter@49
    43
kpeter@49
    44
\code
kpeter@49
    45
  dijkstra(g, divMap(length, speed)).distMap(dist).run(s);
kpeter@49
    46
\endcode
kpeter@49
    47
kpeter@49
    48
kpeter@49
    49
Maps play a central role in LEMON. As their name suggests, they map a
kpeter@49
    50
certain range of \e keys to certain \e values. Each map has two
kpeter@49
    51
<tt>typedef</tt>'s to determine the types of keys and values, like this:
kpeter@49
    52
kpeter@49
    53
\code
kpeter@49
    54
  typedef Arc Key;
kpeter@49
    55
  typedef double Value;
kpeter@49
    56
\endcode
kpeter@49
    57
kpeter@49
    58
A map can be 
kpeter@49
    59
\e readable (\ref lemon::concepts::ReadMap "ReadMap", for short),
kpeter@49
    60
\e writable (\ref lemon::concepts::WriteMap "WriteMap") or both
kpeter@49
    61
(\ref lemon::concepts::ReadWriteMap "ReadWriteMap").
kpeter@49
    62
There also exists a special type of
kpeter@49
    63
ReadWrite map called \ref lemon::concepts::ReferenceMap "reference map".
kpeter@49
    64
In addition that you can
kpeter@49
    65
read and write the values of a key, a reference map
kpeter@49
    66
can also give you a reference to the
kpeter@49
    67
value belonging to a key, so you have a direct access to the memory address
kpeter@49
    68
where it is stored.
kpeter@49
    69
kpeter@49
    70
Each digraph structure in LEMON provides two standard map templates called
kpeter@49
    71
\c ArcMap and \c NodeMap. Both are reference maps and you can easily
kpeter@49
    72
assign data to the nodes and to the arcs of the digraph. For example if you
kpeter@49
    73
have a digraph \c g defined as
kpeter@49
    74
\code
kpeter@49
    75
  ListDigraph g;
kpeter@49
    76
\endcode
kpeter@49
    77
and you want to assign a floating point value to each arc, you can do
kpeter@49
    78
it like this.
kpeter@49
    79
\code
kpeter@49
    80
  ListDigraph::ArcMap<double> length(g);
kpeter@49
    81
\endcode
kpeter@49
    82
Note that you must give the underlying digraph to the constructor.
kpeter@49
    83
kpeter@49
    84
The value of a readable map can be obtained by <tt>operator[]</tt>.
kpeter@49
    85
\code
kpeter@49
    86
  d=length[e];
kpeter@49
    87
\endcode
kpeter@49
    88
where \c e is an instance of \c ListDigraph::Arc.
kpeter@49
    89
(Or anything else
kpeter@49
    90
that converts to \c ListDigraph::Arc, like  \c ListDigraph::ArcIt or
kpeter@49
    91
\c ListDigraph::OutArcIt etc.)
kpeter@49
    92
kpeter@49
    93
There are two ways to assign a new value to a key
kpeter@49
    94
kpeter@49
    95
- In case of a <em>reference map</em> <tt>operator[]</tt>
kpeter@49
    96
gives you a reference to the
kpeter@49
    97
value, thus you can use this.
kpeter@49
    98
\code
kpeter@49
    99
  length[e]=3.5;
kpeter@49
   100
\endcode
kpeter@49
   101
- <em>Writable maps</em> have
kpeter@49
   102
a member function \c set(Key,const Value &)
kpeter@49
   103
for this purpose.
kpeter@49
   104
\code
kpeter@49
   105
  length.set(e,3.5);
kpeter@49
   106
\endcode
kpeter@49
   107
kpeter@49
   108
The first case is more comfortable and if you store complex structures in your
kpeter@49
   109
map, it might be more efficient. However, there are writable but
kpeter@49
   110
not reference maps, so if you want to write a generic algorithm, you should
kpeter@49
   111
insist on the second way.
kpeter@49
   112
kpeter@49
   113
\section how-to-write-your-own-map How to Write Your Own Maps
kpeter@49
   114
kpeter@49
   115
\subsection read-maps Readable Maps
kpeter@49
   116
kpeter@49
   117
Readable maps are very frequently used as the input of an
kpeter@49
   118
algorithm.  For this purpose the most straightforward way is the use of the
kpeter@49
   119
default maps provided by LEMON's digraph structures.
kpeter@49
   120
Very often however, it is more
kpeter@49
   121
convenient and/or more efficient to write your own readable map.
kpeter@49
   122
kpeter@49
   123
You can find some examples below. In these examples \c Digraph is the
kpeter@49
   124
type of the particular digraph structure you use.
kpeter@49
   125
kpeter@49
   126
kpeter@49
   127
This simple map assigns \f$\pi\f$ to each arc.
kpeter@49
   128
kpeter@49
   129
\code
kpeter@49
   130
struct MyMap 
kpeter@49
   131
{
kpeter@49
   132
  typedef double Value;
kpeter@49
   133
  typedef Digraph::Arc Key;
kpeter@49
   134
  double operator[](Key e) const { return PI;}
kpeter@49
   135
};
kpeter@49
   136
\endcode
kpeter@49
   137
kpeter@49
   138
An alternative way to define maps is to use \c MapBase
kpeter@49
   139
kpeter@49
   140
\code
kpeter@49
   141
struct MyMap : public MapBase<Digraph::Arc,double>
kpeter@49
   142
{
kpeter@49
   143
  Value operator[](Key e) const { return PI;}
kpeter@49
   144
};
kpeter@49
   145
\endcode
kpeter@49
   146
kpeter@49
   147
Here is a bit more complex example.
kpeter@49
   148
It provides a length function obtained
kpeter@49
   149
from a base length function shifted by a potential difference.
kpeter@49
   150
kpeter@49
   151
\code
kpeter@49
   152
class ReducedLengthMap  : public MapBase<Digraph::Arc,double>
kpeter@49
   153
{
kpeter@49
   154
  const Digraph &g;
kpeter@49
   155
  const Digraph::ArcMap<double> &orig_len;
kpeter@49
   156
  const Digraph::NodeMap<double> &pot;
kpeter@49
   157
  
kpeter@49
   158
public:
kpeter@49
   159
  Value operator[](Key e) const {
kpeter@49
   160
    return orig_len[e]-(pot[g.target(e)]-pot[g.source(e)]);
kpeter@49
   161
  }
kpeter@49
   162
  
kpeter@49
   163
  ReducedLengthMap(const Digraph &_g,
kpeter@49
   164
                   const Digraph::ArcMap &_o,
kpeter@49
   165
                   const Digraph::NodeMap &_p)
kpeter@49
   166
    : g(_g), orig_len(_o), pot(_p) {};
kpeter@49
   167
};
kpeter@49
   168
\endcode
kpeter@49
   169
kpeter@49
   170
Then, you can call e.g. Dijkstra algoritm on this map like this:
kpeter@49
   171
\code
kpeter@49
   172
  ...
kpeter@49
   173
  ReducedLengthMap rm(g,len,pot);
kpeter@49
   174
  Dijkstra<Digraph,ReducedLengthMap> dij(g,rm);
kpeter@49
   175
  dij.run(s);
kpeter@49
   176
  ...
kpeter@49
   177
\endcode
kpeter@49
   178
kpeter@49
   179
kpeter@49
   180
In the previous section we discussed digraph topology. That is the skeleton a complex
kpeter@49
   181
digraph represented data-set needs. But how to assign the data itself to that skeleton?<br>
kpeter@49
   182
Here come the \b maps in.
kpeter@49
   183
kpeter@49
   184
\section maps_intro Introduction to maps
kpeter@49
   185
Maps play a central role in LEMON. As their name suggests, they map a certain range of <i>keys</i> to certain <i>values</i>.
kpeter@49
   186
In LEMON there is many types of maps. Each map has two typedef's to determine the types of keys and values, like this:
kpeter@49
   187
\code
kpeter@49
   188
  typedef Arc Key;
kpeter@49
   189
  typedef double Value;
kpeter@49
   190
\endcode
kpeter@49
   191
(Except matrix maps, they have two key types.)
kpeter@49
   192
kpeter@49
   193
To make easy to use them - especially as template parameters - there are <i>map concepts</i> like by digraph classes.
kpeter@49
   194
<ul>
kpeter@49
   195
<li>\ref concepts::ReadMap "ReadMap" - values can be read out with the \c operator[].
kpeter@49
   196
\code value_typed_variable = map_instance[key_value]; \endcode
kpeter@49
   197
</li>
kpeter@49
   198
<li>\ref concepts::WriteMap "WriteMap" - values can be set with the \c set() member function.
kpeter@49
   199
\code map_instance.set(key_value, value_typed_expression); \endcode
kpeter@49
   200
</li>
kpeter@49
   201
<li>\ref concepts::ReadWriteMap "ReadWriteMap" - it's just a shortcut to indicate that the map is both
kpeter@49
   202
readable and writable. It is delivered from them.
kpeter@49
   203
</li>
kpeter@49
   204
<li>\ref concepts::ReferenceMap "ReferenceMap" - a subclass of ReadWriteMap. It has two additional typedefs
kpeter@49
   205
<i>Reference</i> and <i>ConstReference</i> and two overloads of \c operator[] to
kpeter@49
   206
providing you constant or non-constant reference to the value belonging to a key,
kpeter@49
   207
so you have a direct access to the memory address where it is stored.
kpeter@49
   208
</li>
kpeter@49
   209
<li>And there are the Matrix version of these maps, where the values are assigned to a pair of keys.
kpeter@49
   210
The keys can be different types. (\ref concepts::ReadMatrixMap "ReadMatrixMap", 
kpeter@49
   211
\ref concepts::WriteMatrixMap "WriteMatrixMap", \ref concepts::ReadWriteMatrixMap "ReadWriteMatrixMap",
kpeter@49
   212
\ref concepts::ReferenceMatrixMap "ReferenceMatrixMap")
kpeter@49
   213
</li>
kpeter@49
   214
</ul>
kpeter@49
   215
kpeter@49
   216
\section maps_graph Digraphs' maps
kpeter@49
   217
Every \ref MappableDigraphComponent "mappable" digraph class has two public templates: NodeMap<VALUE> and ArcMap<VALUE>
kpeter@49
   218
satisfying the \ref DigraphMap concept.
kpeter@49
   219
If you want to assign data to nodes, just declare a NodeMap with the corresponding
kpeter@49
   220
type. As an example, think of a arc-weighted digraph.
kpeter@49
   221
\code ListDigraph::ArcMap<int>  weight(digraph); \endcode
kpeter@49
   222
You can see that the map needs the digraph whose arcs will mapped, but nothing more.
kpeter@49
   223
kpeter@49
   224
If the digraph class is extendable or erasable the map will automatically follow
kpeter@49
   225
the changes you make. If a new node is added a default value is mapped to it.
kpeter@49
   226
You can define the default value by passing a second argument to the map's constructor.
kpeter@49
   227
\code ListDigraph::ArcMap<int>  weight(digraph, 13); \endcode
kpeter@49
   228
But keep in mind that \c VALUE has to have copy constructor.
kpeter@49
   229
kpeter@49
   230
Of course \c VALUE can be a rather complex type.
kpeter@49
   231
kpeter@49
   232
For practice let's see the following template function (from \ref maps_summary "maps-summary.cc" in the \ref demo directory)!
kpeter@49
   233
\dontinclude maps_summary.cc
kpeter@49
   234
\skip template
kpeter@49
   235
\until }
kpeter@49
   236
The task is simple. We need the summary of some kind of data assigned to a digraph's nodes.
kpeter@49
   237
(Whit a little trick the summary can be calculated only to a sub-digraph without changing
kpeter@49
   238
this code. See \ref SubDigraph techniques - that's LEMON's true potential.)
kpeter@49
   239
kpeter@49
   240
And the usage is simpler than the declaration suggests. The compiler deduces the
kpeter@49
   241
template specialization, so the usage is like a simple function call.
kpeter@49
   242
\skip std
kpeter@49
   243
\until ;
kpeter@49
   244
kpeter@49
   245
Most of the time you will probably use digraph maps, but keep in mind, that in LEMON maps are more general and can be used widely.
kpeter@49
   246
kpeter@49
   247
If you want some 'real-life' examples see the next page, where we discuss \ref algorithms
kpeter@49
   248
(coming soon) and will use maps hardly.
kpeter@49
   249
Or if you want to know more about maps read these \ref maps2 "advanced map techniques".
kpeter@49
   250
kpeter@49
   251
Here we discuss some advanced map techniques. Like writing your own maps or how to
kpeter@49
   252
extend/modify a maps functionality with adaptors.
kpeter@49
   253
kpeter@49
   254
\section custom_maps Writing Custom ReadMap
kpeter@49
   255
\subsection custom_read_maps Readable Maps
kpeter@49
   256
kpeter@49
   257
Readable maps are very frequently used as the input of an
kpeter@49
   258
algorithm.  For this purpose the most straightforward way is the use of the
kpeter@49
   259
default maps provided by LEMON's digraph structures.
kpeter@49
   260
Very often however, it is more
kpeter@49
   261
convenient and/or more efficient to write your own readable map.
kpeter@49
   262
kpeter@49
   263
You can find some examples below. In these examples \c Digraph is the
kpeter@49
   264
type of the particular digraph structure you use.
kpeter@49
   265
kpeter@49
   266
kpeter@49
   267
This simple map assigns \f$\pi\f$ to each arc.
kpeter@49
   268
kpeter@49
   269
\code
kpeter@49
   270
struct MyMap 
kpeter@49
   271
{
kpeter@49
   272
  typedef double Value;
kpeter@49
   273
  typedef Digraph::Arc Key;
kpeter@49
   274
  double operator[](const Key &e) const { return PI;}
kpeter@49
   275
};
kpeter@49
   276
\endcode
kpeter@49
   277
kpeter@49
   278
An alternative way to define maps is to use MapBase
kpeter@49
   279
kpeter@49
   280
\code
kpeter@49
   281
struct MyMap : public MapBase<Digraph::Arc,double>
kpeter@49
   282
{
kpeter@49
   283
  Value operator[](const Key& e) const { return PI;}
kpeter@49
   284
};
kpeter@49
   285
\endcode
kpeter@49
   286
kpeter@49
   287
Here is a bit more complex example.
kpeter@49
   288
It provides a length function obtained
kpeter@49
   289
from a base length function shifted by a potential difference.
kpeter@49
   290
kpeter@49
   291
\code
kpeter@49
   292
class ReducedLengthMap  : public MapBase<Digraph::Arc,double>
kpeter@49
   293
{
kpeter@49
   294
  const Digraph &g;
kpeter@49
   295
  const Digraph::ArcMap<double> &orig_len;
kpeter@49
   296
  const Digraph::NodeMap<double> &pot;
kpeter@49
   297
  
kpeter@49
   298
public:
kpeter@49
   299
  Value operator[](Key e) const {
kpeter@49
   300
    return orig_len[e]-(pot[g.target(e)]-pot[g.source(e)]);
kpeter@49
   301
  }
kpeter@49
   302
  
kpeter@49
   303
  ReducedLengthMap(const Digraph &_g,
kpeter@49
   304
                   const Digraph::ArcMap &_o,
kpeter@49
   305
                   const Digraph::NodeMap &_p)
kpeter@49
   306
    : g(_g), orig_len(_o), pot(_p) {};
kpeter@49
   307
};
kpeter@49
   308
\endcode
kpeter@49
   309
kpeter@49
   310
Then, you can call e.g. Dijkstra algoritm on this map like this:
kpeter@49
   311
\code
kpeter@49
   312
  ...
kpeter@49
   313
  ReducedLengthMap rm(g,len,pot);
kpeter@49
   314
  Dijkstra<Digraph,ReducedLengthMap> dij(g,rm);
kpeter@49
   315
  dij.run(s);
kpeter@49
   316
  ...
kpeter@49
   317
\endcode
kpeter@49
   318
kpeter@49
   319
kpeter@46
   320
[SEC]sec_map_concepts[SEC] Map Concepts
kpeter@46
   321
kpeter@46
   322
...
kpeter@46
   323
kpeter@46
   324
kpeter@46
   325
[SEC]sec_own_maps[SEC] Creating Own Maps
kpeter@46
   326
kpeter@46
   327
...
kpeter@46
   328
kpeter@46
   329
[SEC]sec_map_adaptors[SEC] Map Adaptors
kpeter@46
   330
kpeter@46
   331
See \ref map_adaptors in the reference manual.
kpeter@46
   332
kpeter@46
   333
kpeter@46
   334
[SEC]sec_algs_with_maps[SEC] Using Algorithms with Special Maps
kpeter@46
   335
kpeter@49
   336
The basic functionality of the algorithms can be highly extended using
kpeter@49
   337
special purpose map types for their internal data structures.
kpeter@49
   338
For example, the \ref Dijkstra class stores a 
kpeter@49
   339
ef ProcessedMap,
kpeter@49
   340
which has to be a writable node map of \ref bool value type.
kpeter@49
   341
The assigned value of each node is set to \ref true when the node is
kpeter@49
   342
processed, i.e., its actual distance is found.
kpeter@49
   343
Applying a special map, \ref LoggerBoolMap, the processed order of
kpeter@49
   344
the nodes can easily be stored in a standard container.
kpeter@49
   345
kpeter@49
   346
Such specific map types can be passed to the algorithms using the technique of
kpeter@49
   347
named template parameters. Similarly to the named function parameters,
kpeter@49
   348
they allow specifying any subset of the parameters and in arbitrary order.
kpeter@49
   349
kpeter@49
   350
\code
kpeter@49
   351
  typedef vector<ListDigraph::Node> Container;
kpeter@49
   352
  typedef back_insert_iterator<Container> InsertIterator;
kpeter@49
   353
  typedef LoggerBoolMap<InsertIterator> ProcessedMap;
kpeter@49
   354
  Dijkstra<ListDigraph>
kpeter@49
   355
    ::SetProcessedMap<ProcessedMap>
kpeter@49
   356
    ::Create dijktra(g, length);
kpeter@49
   357
kpeter@49
   358
  Container container;
kpeter@49
   359
  InsertIterator iterator(container);
kpeter@49
   360
  ProcessedMap processed(iterator);
kpeter@49
   361
kpeter@49
   362
  dijkstra.processedMap(processed).run(s);
kpeter@49
   363
\endcode
kpeter@49
   364
kpeter@49
   365
The function-type interfaces are considerably simpler, but they can be
kpeter@49
   366
used in almost all practical cases. Surprisingly, even the above example
kpeter@49
   367
can also be implemented using the \ref dijkstra() function and
kpeter@49
   368
named parameters, as follows.
kpeter@49
   369
Note that the function-type interface has the major advantage
kpeter@49
   370
that temporary objects can be passed as parameters.
kpeter@49
   371
kpeter@49
   372
\code
kpeter@49
   373
  vector<ListDigraph::Node> process_order;
kpeter@49
   374
  dijkstra(g, length)
kpeter@49
   375
    .processedMap(loggerBoolMap(back_inserter(process_order)))
kpeter@49
   376
    .run(s);
kpeter@49
   377
\endcode
kpeter@49
   378
kpeter@49
   379
LEMON also contains visitor based algorithm classes for
kpeter@49
   380
BFS and DFS.
kpeter@49
   381
kpeter@49
   382
Skeleton visitor classes are defined for both BFS and DFS, the concrete
kpeter@49
   383
implementations can be inherited from them.
kpeter@49
   384
\code
kpeter@49
   385
  template <typename GR>
kpeter@49
   386
  struct DfsVisitor {
kpeter@49
   387
    void start(const typename GR::Node& node) {}
kpeter@49
   388
    void stop(const typename GR::Node& node) {}
kpeter@49
   389
    void reach(const typename GR::Node& node) {}
kpeter@49
   390
    void leave(const typename GR::Node& node) {}
kpeter@49
   391
    void discover(const typename GR::Arc& arc) {}
kpeter@49
   392
    void examine(const typename GR::Arc& arc) {}
kpeter@49
   393
    void backtrack(const typename GR::Arc& arc) {}
kpeter@49
   394
  };
kpeter@49
   395
\endcode
kpeter@49
   396
kpeter@49
   397
In the following example, the \ref discover()} and \code{examine()
kpeter@49
   398
events are processed and the DFS tree is stored in an arc map.
kpeter@49
   399
The values of this map indicate whether the corresponding arc
kpeter@49
   400
reaches a new node or its target node is already reached.
kpeter@49
   401
\code
kpeter@49
   402
  template <typename GR>
kpeter@49
   403
  struct TreeVisitor : public DfsVisitor<GR> {
kpeter@49
   404
    TreeVisitor(typename GR::ArcMap<bool>& tree)
kpeter@49
   405
      : _tree(tree) {}
kpeter@49
   406
    void discover(const typename GR::Arc& arc)
kpeter@49
   407
      { _tree[arc] = true; }
kpeter@49
   408
    void examine(const typename GR::Arc& arc)
kpeter@49
   409
      { _tree[arc] = false; }
kpeter@49
   410
    typename GR::ArcMap<bool>& _tree;
kpeter@49
   411
  };
kpeter@49
   412
\endcode
kpeter@49
   413
kpeter@46
   414
kpeter@46
   415
[TRAILER]
kpeter@46
   416
*/
kpeter@46
   417
}