damecco.tex
author Alpar Juttner <alpar@cs.elte.hu>
Wed, 30 Nov 2016 23:20:34 +0100
changeset 25 217340b8dec7
parent 24 bdf97dafabfb
child 27 497868c58d36
permissions -rw-r--r--
Some polishing
alpar@0
     1
%% 
alpar@0
     2
%% Copyright 2007, 2008, 2009 Elsevier Ltd
alpar@0
     3
%% 
alpar@0
     4
%% This file is part of the 'Elsarticle Bundle'.
alpar@0
     5
%% ---------------------------------------------
alpar@0
     6
%% 
alpar@0
     7
%% It may be distributed under the conditions of the LaTeX Project Public
alpar@0
     8
%% License, either version 1.2 of this license or (at your option) any
alpar@0
     9
%% later version.  The latest version of this license is in
alpar@0
    10
%%    http://www.latex-project.org/lppl.txt
alpar@0
    11
%% and version 1.2 or later is part of all distributions of LaTeX
alpar@0
    12
%% version 1999/12/01 or later.
alpar@0
    13
%% 
alpar@0
    14
%% The list of all files belonging to the 'Elsarticle Bundle' is
alpar@0
    15
%% given in the file `manifest.txt'.
alpar@0
    16
%% 
alpar@0
    17
alpar@0
    18
%% Template article for Elsevier's document class `elsarticle'
alpar@0
    19
%% with numbered style bibliographic references
alpar@0
    20
%% SP 2008/03/01
alpar@0
    21
alpar@0
    22
\documentclass[preprint,12pt]{elsarticle}
alpar@0
    23
alpar@0
    24
%% Use the option review to obtain double line spacing
alpar@0
    25
%% \documentclass[authoryear,preprint,review,12pt]{elsarticle}
alpar@0
    26
alpar@0
    27
%% Use the options 1p,twocolumn; 3p; 3p,twocolumn; 5p; or 5p,twocolumn
alpar@0
    28
%% for a journal layout:
alpar@0
    29
%% \documentclass[final,1p,times]{elsarticle}
alpar@0
    30
%% \documentclass[final,1p,times,twocolumn]{elsarticle}
alpar@0
    31
%% \documentclass[final,3p,times]{elsarticle}
alpar@0
    32
%% \documentclass[final,3p,times,twocolumn]{elsarticle}
alpar@0
    33
%% \documentclass[final,5p,times]{elsarticle}
alpar@0
    34
%% \documentclass[final,5p,times,twocolumn]{elsarticle}
alpar@0
    35
alpar@0
    36
%% For including figures, graphicx.sty has been loaded in
alpar@0
    37
%% elsarticle.cls. If you prefer to use the old commands
alpar@0
    38
%% please give \usepackage{epsfig}
alpar@0
    39
alpar@0
    40
%% The amssymb package provides various useful mathematical symbols
alpar@0
    41
\usepackage{amssymb}
alpar@0
    42
%% The amsthm package provides extended theorem environments
alpar@0
    43
%% \usepackage{amsthm}
alpar@0
    44
alpar@0
    45
%% The lineno packages adds line numbers. Start line numbering with
alpar@0
    46
%% \begin{linenumbers}, end it with \end{linenumbers}. Or switch it on
alpar@0
    47
%% for the whole article with \linenumbers.
alpar@0
    48
%% \usepackage{lineno}
alpar@0
    49
alpar@2
    50
\usepackage{amsmath}
alpar@2
    51
%% \usepackage[pdftex]{graphicx}
alpar@2
    52
alpar@2
    53
\usepackage{pgfplots}
alpar@2
    54
\pgfplotsset{width=9cm}
alpar@2
    55
\pgfplotsset{compat=1.8}
alpar@2
    56
alpar@2
    57
\usepackage{caption}
alpar@2
    58
\usepackage{subcaption} 
alpar@2
    59
alpar@2
    60
\usepackage{algorithm}
alpar@2
    61
\usepackage{algpseudocode}
alpar@2
    62
\usepackage{tikz}
alpar@2
    63
alpar@2
    64
\usepackage{amsthm,amssymb}
alpar@2
    65
\renewcommand{\qedsymbol}{\rule{0.7em}{0.7em}}
alpar@2
    66
alpar@2
    67
\newtheorem{theorem}{Theorem}[subsection]
alpar@2
    68
\newtheorem{corollary}{Corollary}[theorem]
alpar@2
    69
\newtheorem{claim}[theorem]{Claim}
alpar@2
    70
alpar@2
    71
\newtheorem{definition}{Definition}[subsection]
alpar@2
    72
\newtheorem{notation}{Notation}[subsection]
alpar@2
    73
\newtheorem{example}{Example}[subsection]
alpar@2
    74
\usetikzlibrary{decorations.markings}
alpar@2
    75
\let\oldproofname=\proofname
alpar@2
    76
%% \renewcommand{\proofname}{\rm\bf{Proof:}}
alpar@2
    77
Madarasi@7
    78
\captionsetup{font=normalsize}
Madarasi@7
    79
alpar@1
    80
\journal{Discrete Applied Mathematics}
alpar@0
    81
alpar@0
    82
\begin{document}
alpar@0
    83
alpar@0
    84
\begin{frontmatter}
alpar@0
    85
alpar@0
    86
%% Title, authors and addresses
alpar@0
    87
alpar@0
    88
%% use the tnoteref command within \title for footnotes;
alpar@0
    89
%% use the tnotetext command for theassociated footnote;
alpar@0
    90
%% use the fnref command within \author or \address for footnotes;
alpar@0
    91
%% use the fntext command for theassociated footnote;
alpar@0
    92
%% use the corref command within \author for corresponding author footnotes;
alpar@0
    93
%% use the cortext command for theassociated footnote;
alpar@0
    94
%% use the ead command for the email address,
alpar@0
    95
%% and the form \ead[url] for the home page:
alpar@0
    96
%% \title{Title\tnoteref{label1}}
alpar@0
    97
%% \tnotetext[label1]{}
alpar@0
    98
%% \author{Name\corref{cor1}\fnref{label2}}
alpar@0
    99
%% \ead{email address}
alpar@0
   100
%% \ead[url]{home page}
alpar@0
   101
%% \fntext[label2]{}
alpar@0
   102
%% \cortext[cor1]{}
alpar@0
   103
%% \address{Address\fnref{label3}}
alpar@0
   104
%% \fntext[label3]{}
alpar@0
   105
alpar@24
   106
\title{VF2++ --- An Improved Subgraph Isomorphism Algorithm}
alpar@0
   107
alpar@0
   108
%% use optional labels to link authors explicitly to addresses:
alpar@0
   109
%% \author[label1,label2]{}
alpar@0
   110
%% \address[label1]{}
alpar@0
   111
%% \address[label2]{}
alpar@0
   112
alpar@24
   113
\author[egres,elte]{Alp{\'a}r J{\"u}ttner}
alpar@24
   114
\ead{alpar@cs.elte.hu}
alpar@24
   115
\author[elte]{P{\'e}ter Madarasi}
alpar@24
   116
\ead{madarasip@caesar.elte.hu}
alpar@24
   117
\address[egres]{MTA-ELTE Egerv{\'a}ry Research Group, Budapest, Hungary.}
alpar@24
   118
\address[elte]{Department of Operations Research, E{\"o}tv{\"o}s Lor{\'a}nd University, Budapest, Hungary.}
alpar@0
   119
alpar@0
   120
\begin{abstract}
alpar@0
   121
alpar@24
   122
  This paper presents a largely improved version of the VF2 algorithm
alpar@24
   123
  for the \emph{Subgraph Isomorphism Problem}. The improvements are
alpar@24
   124
  twofold. Firstly, it is based on a new approach for determining the
alpar@24
   125
  matching order of the nodes, and secondly, more efficient -
alpar@24
   126
  nevertheless easier to compute - cutting rules significantly
alpar@24
   127
  reducing the search space are applied.
alpar@1
   128
alpar@24
   129
  In addition to the usual subgraph isomorphism, the paper also
alpar@24
   130
  presents specialized versions for the \emph{Induced Subgraph
alpar@24
   131
    Isomorphism} and for the \emph{Graph Isomorphism Problems}.
alpar@1
   132
alpar@24
   133
  Finally, an extensive experimental evaluation is provided using a
alpar@24
   134
  wide range of inputs, including both real life biological and
alpar@24
   135
  chemical datasets and standard randomly generated graph series. The
alpar@24
   136
  results show major and consistent running time improvements over the
alpar@24
   137
  other known methods.
alpar@24
   138
 
alpar@24
   139
  The C++ implementations of the algorithms are available open source as
alpar@24
   140
  the part of the LEMON graph and network optimization library.
alpar@24
   141
  
alpar@0
   142
\end{abstract}
alpar@0
   143
alpar@0
   144
\begin{keyword}
alpar@24
   145
  Computational Biology, Subgraph Isomorphism Problem
alpar@0
   146
%% keywords here, in the form: keyword \sep keyword
alpar@0
   147
alpar@0
   148
%% PACS codes here, in the form: \PACS code \sep code
alpar@0
   149
alpar@0
   150
%% MSC codes here, in the form: \MSC code \sep code
alpar@0
   151
%% or \MSC[2008] code \sep code (2000 is the default)
alpar@0
   152
alpar@0
   153
\end{keyword}
alpar@0
   154
alpar@0
   155
\end{frontmatter}
alpar@0
   156
alpar@0
   157
%% \linenumbers
alpar@0
   158
alpar@0
   159
%% main text
alpar@2
   160
\section{Introduction}
alpar@2
   161
\label{sec:intro}
alpar@2
   162
alpar@3
   163
In the last decades, combinatorial structures, and especially graphs
alpar@3
   164
have been considered with ever increasing interest, and applied to the
alpar@3
   165
solution of several new and revised questions.  The expressiveness,
alpar@3
   166
the simplicity and the studiedness of graphs make them practical for
alpar@3
   167
modelling and appear constantly in several seemingly independent
Madarasi@19
   168
fields, such as bioinformatics and chemistry.
alpar@2
   169
alpar@3
   170
Complex biological systems arise from the interaction and cooperation
alpar@3
   171
of plenty of molecular components. Getting acquainted with such
Madarasi@19
   172
systems at the molecular level is of primary importance, since
alpar@3
   173
protein-protein interaction, DNA-protein interaction, metabolic
alpar@3
   174
interaction, transcription factor binding, neuronal networks, and
Madarasi@19
   175
hormone signaling networks can be understood this way.
alpar@2
   176
Madarasi@19
   177
Many chemical and biological structures can easily be modeled
Madarasi@19
   178
as graphs, for instance, a molecular structure can be
Madarasi@19
   179
considered as a graph, whose nodes correspond to atoms and whose
Madarasi@19
   180
edges to chemical bonds. The similarity and dissimilarity of
Madarasi@19
   181
objects corresponding to nodes are incorporated to the model
Madarasi@19
   182
by \emph{node labels}. Understanding such networks basically
Madarasi@19
   183
requires finding specific subgraphs, thus calls for efficient
Madarasi@19
   184
graph matching algorithms.
alpar@2
   185
Madarasi@19
   186
Other real-world fields related to some
Madarasi@19
   187
variants of graph matching include pattern recognition
alpar@3
   188
and machine vision \cite{HorstBunkeApplications}, symbol recognition
alpar@3
   189
\cite{CordellaVentoSymbolRecognition}, face identification
alpar@3
   190
\cite{JianzhuangYongFaceIdentification}.  \\
alpar@2
   191
alpar@3
   192
Subgraph and induced subgraph matching problems are known to be
alpar@3
   193
NP-Complete\cite{SubgraphNPC}, while the graph isomorphism problem is
alpar@3
   194
one of the few problems in NP neither known to be in P nor
alpar@3
   195
NP-Complete. Although polynomial time isomorphism algorithms are known
alpar@3
   196
for various graph classes, like trees and planar
alpar@3
   197
graphs\cite{PlanarGraphIso}, bounded valence
alpar@3
   198
graphs\cite{BondedDegGraphIso}, interval graphs\cite{IntervalGraphIso}
Madarasi@19
   199
or permutation graphs\cite{PermGraphIso}, and recently, an FPT algorithm has been presented for the coloured hypergraph isomorphism problem in \cite{ColoredHiperGraphIso}.
alpar@2
   200
alpar@3
   201
In the following, some algorithms based on other approaches are
Madarasi@19
   202
summarized, which do not need any restrictions on the graphs. Even though,
alpar@3
   203
an overall polynomial behaviour is not expectable from such an
Madarasi@19
   204
alternative, it may often have good practical performance, in fact,
Madarasi@19
   205
it might be the best choice even on a graph class for which polynomial
Madarasi@19
   206
algorithm is known.
alpar@2
   207
alpar@3
   208
The first practically usable approach was due to
Madarasi@19
   209
\emph{Ullmann}\cite{Ullmann} which is a commonly used depth-first
alpar@3
   210
search based algorithm with a complex heuristic for reducing the
alpar@3
   211
number of visited states. A major problem is its $\Theta(n^3)$ space
alpar@3
   212
complexity, which makes it impractical in the case of big sparse
alpar@3
   213
graphs.
alpar@2
   214
alpar@4
   215
In a recent paper, Ullmann\cite{UllmannBit} presents an
alpar@3
   216
improved version of this algorithm based on a bit-vector solution for
alpar@3
   217
the binary Constraint Satisfaction Problem.
alpar@2
   218
Madarasi@19
   219
The \emph{Nauty} algorithm\cite{Nauty} transforms the two graphs to
alpar@3
   220
a canonical form before starting to check for the isomorphism. It has
alpar@3
   221
been considered as one of the fastest graph isomorphism algorithms,
alpar@3
   222
although graph categories were shown in which it takes exponentially
alpar@3
   223
many steps. This algorithm handles only the graph isomorphism problem.
alpar@2
   224
alpar@4
   225
The \emph{LAD} algorithm\cite{Lad} uses a depth-first search
alpar@3
   226
strategy and formulates the matching as a Constraint Satisfaction
alpar@3
   227
Problem to prune the search tree. The constraints are that the mapping
alpar@3
   228
has to be injective and edge-preserving, hence it is possible to
alpar@3
   229
handle new matching types as well.
alpar@2
   230
Madarasi@19
   231
The \emph{RI} algorithm\cite{RI} and its variations are based on a
alpar@3
   232
state space representation. After reordering the nodes of the graphs,
alpar@3
   233
it uses some fast executable heuristic checks without using any
alpar@3
   234
complex pruning rules. It seems to run really efficiently on graphs
alpar@3
   235
coming from biology, and won the International Contest on Pattern
alpar@3
   236
Search in Biological Databases\cite{Content}.
alpar@2
   237
alpar@3
   238
The currently most commonly used algorithm is the
Madarasi@19
   239
\emph{VF2}\cite{VF2}, the improved version of \emph{VF}\cite{VF}, which was
alpar@3
   240
designed for solving pattern matching and computer vision problems,
alpar@3
   241
and has been one of the best overall algorithms for more than a
alpar@3
   242
decade. Although, it can't be up to new specialized algorithms, it is
alpar@3
   243
still widely used due to its simplicity and space efficiency. VF2 uses
alpar@3
   244
a state space representation and checks some conditions in each state
alpar@3
   245
to prune the search tree.
alpar@2
   246
Madarasi@19
   247
Meanwhile, another variant called \emph{VF2 Plus}\cite{VF2Plus} has
alpar@3
   248
been published. It is considered to be as efficient as the RI
alpar@3
   249
algorithm and has a strictly better behavior on large graphs.  The
alpar@3
   250
main idea of VF2 Plus is to precompute a heuristic node order of the
alpar@3
   251
small graph, in which the VF2 works more efficiently.
alpar@2
   252
Madarasi@19
   253
This paper introduces \emph{VF2++}, a new further improved algorithm
Madarasi@19
   254
for the graph and (induced)subgraph isomorphism problem, which uses
Madarasi@19
   255
efficient cutting rules and determines a node order in which VF2 runs
Madarasi@19
   256
significantly faster on practical inputs.
Madarasi@19
   257
alpar@25
   258
The rest of the paper is structured as
alpar@25
   259
follows. Section~\ref{sec:ProbStat} defines the exact problems to be
alpar@25
   260
solved, Section~\ref{sec:VF2Alg} provides a description of VF2. Based
alpar@25
   261
on that, Section~\ref{sec:VF2ppAlg} introduces VF2++. Some technical
alpar@25
   262
details necessary for an efficient implementation are discussed in
alpar@25
   263
Section~\ref{sec:VF2ppImpl}.  Finally, Section~\ref{sec:ExpRes}
alpar@25
   264
provide a detailed experimental evaluation of VF2++ and its comparison
alpar@25
   265
to the state-of-the-art algorithms.
Madarasi@19
   266
alpar@25
   267
It must also be mentioned that the C++ implementations of the
alpar@25
   268
algorithms have been made available for evaluation and use under an
alpar@25
   269
open source license as a part of LEMON\cite{LEMON} open source graph
alpar@25
   270
library.
Madarasi@22
   271
Madarasi@22
   272
\section{Problem Statement}\label{sec:ProbStat}
Madarasi@19
   273
This section provides a formal description of the problems to be
alpar@3
   274
solved.
alpar@2
   275
\subsection{Definitions}
alpar@2
   276
Madarasi@19
   277
Throughout the paper $G_{1}=(V_{1}, E_{1})$ and
Madarasi@19
   278
$G_{2}=(V_{2}, E_{2})$ denote two undirected graphs.
Madarasi@19
   279
Madarasi@19
   280
\begin{definition}
Madarasi@19
   281
$\mathcal{L}: (V_{1}\cup V_{2}) \longrightarrow K$ is a \textbf{node
Madarasi@19
   282
    label function}, where K is an arbitrary set. The elements in K
Madarasi@19
   283
  are the \textbf{node labels}. Two nodes, u and v are said to be
Madarasi@19
   284
  \textbf{equivalent} if $\mathcal{L}(u)=\mathcal{L}(v)$.
Madarasi@19
   285
\end{definition}
Madarasi@19
   286
Madarasi@19
   287
For the sake of simplicity, in this paper the graph, subgraph and induced subgraph isomorphisms are defined in a more general way.
Madarasi@19
   288
alpar@2
   289
\begin{definition}\label{sec:ismorphic}
Madarasi@19
   290
$G_{1}$ and $G_{2}$ are \textbf{isomorphic} (by the node label $\mathcal{L}$) if $\exists \mathfrak{m}:
Madarasi@19
   291
  V_{1} \longrightarrow V_{2}$ bijection, for which the
alpar@3
   292
  following is true:
alpar@2
   293
\begin{center}
Madarasi@20
   294
$\forall u\in{V_{1}} : \mathcal{L}(u)=\mathcal{L}(\mathfrak{m}(u))$ and\\
Madarasi@19
   295
$\forall u,v\in{V_{1}} : (u,v)\in{E_{1}} \Leftrightarrow (\mathfrak{m}(u),\mathfrak{m}(v))\in{E_{2}}$
alpar@2
   296
\end{center}
alpar@2
   297
\end{definition}
Madarasi@19
   298
alpar@2
   299
\begin{definition}
Madarasi@19
   300
$G_{1}$ is a \textbf{subgraph} of $G_{2}$ (by the node label $\mathcal{L}$) if $\exists \mathfrak{m}:
Madarasi@19
   301
  V_{1}\longrightarrow V_{2}$ injection, for which the
alpar@3
   302
  following is true:
alpar@2
   303
\begin{center}
Madarasi@20
   304
$\forall u\in{V_{1}} : \mathcal{L}(u)=\mathcal{L}(\mathfrak{m}(u))$ and\\
Madarasi@19
   305
$\forall u,v \in{V_{1}} : (u,v)\in{E_{1}} \Rightarrow (\mathfrak{m}(u),\mathfrak{m}(v))\in E_{2}$
alpar@2
   306
\end{center}
alpar@2
   307
\end{definition}
alpar@2
   308
alpar@2
   309
\begin{definition} 
Madarasi@19
   310
$G_{1}$ is an \textbf{induced subgraph} of $G_{2}$ (by the node label $\mathcal{L}$) if $\exists
Madarasi@19
   311
  \mathfrak{m}: V_{1}\longrightarrow V_{2}$ injection, for which the
alpar@3
   312
  following is true:
alpar@2
   313
\begin{center}
Madarasi@19
   314
$\forall u\in{V_{1}} : \mathcal{L}(u)=\mathcal{L}(\mathfrak{m}(u))$ and
Madarasi@19
   315
Madarasi@19
   316
$\forall u,v \in{V_{1}} : (u,v)\in{E_{1}} \Leftrightarrow
Madarasi@19
   317
  (\mathfrak{m}(u),\mathfrak{m}(v))\in E_{2}$
alpar@2
   318
\end{center}
alpar@2
   319
\end{definition}
alpar@2
   320
alpar@2
   321
alpar@2
   322
\subsection{Common problems}\label{sec:CommProb}
alpar@2
   323
alpar@3
   324
The focus of this paper is on two extensively studied topics, the
alpar@3
   325
subgraph isomorphism and its variations. However, the following
alpar@3
   326
problems also appear in many applications.
alpar@2
   327
alpar@3
   328
The \textbf{subgraph matching problem} is the following: is
Madarasi@19
   329
$G_{1}$ isomorphic to any subgraph of $G_{2}$ by a given node
alpar@3
   330
label?
alpar@2
   331
alpar@3
   332
The \textbf{induced subgraph matching problem} asks the same about the
alpar@3
   333
existence of an induced subgraph.
alpar@2
   334
alpar@3
   335
The \textbf{graph isomorphism problem} can be defined as induced
alpar@3
   336
subgraph matching problem where the sizes of the two graphs are equal.
alpar@2
   337
Madarasi@22
   338
In addition, one may want to find a \textbf{single} mapping or \textbf{enumerate} all of them.
alpar@2
   339
Madarasi@22
   340
Note that some authors refer to the term
alpar@3
   341
\emph{subgraph isomorphism problem} as an \emph{induced subgraph
alpar@3
   342
  isomorphism problem}.
alpar@2
   343
Madarasi@22
   344
\section{The VF2 Algorithm}\label{sec:VF2Alg}
alpar@3
   345
This algorithm is the basis of both the VF2++ and the VF2 Plus.  VF2
alpar@4
   346
is able to handle all the variations mentioned in Section
alpar@4
   347
  \ref{sec:CommProb}.  Although it can also handle directed graphs,
alpar@3
   348
for the sake of simplicity, only the undirected case will be
alpar@3
   349
discussed.
alpar@2
   350
alpar@2
   351
alpar@2
   352
\subsection{Common notations}
Madarasi@19
   353
\indent Assume $G_{1}$ is searched in $G_{2}$.  The following
alpar@3
   354
definitions and notations will be used throughout the whole paper.
alpar@2
   355
\begin{definition}
Madarasi@19
   356
An injection $\mathfrak{m} : D \longrightarrow V_2$ is called (partial) \textbf{mapping}, where $D\subseteq V_1$.
Madarasi@19
   357
\end{definition}
Madarasi@19
   358
Madarasi@19
   359
\begin{notation}
Madarasi@19
   360
$\mathfrak{D}(f)$ and $\mathfrak{R}(f)$ denote the domain and the range of a function $f$, respectively.
Madarasi@19
   361
\end{notation}
Madarasi@19
   362
Madarasi@19
   363
\begin{definition}
Madarasi@19
   364
Mapping $\mathfrak{m}$ \textbf{covers} a node $u\in V_1\cup V_2$ if $u\in \mathfrak{D}(\mathfrak{m})\cup \mathfrak{R}(\mathfrak{m})$.
alpar@2
   365
\end{definition}
alpar@2
   366
alpar@2
   367
\begin{definition}
Madarasi@19
   368
A mapping $\mathfrak{m}$ is $\mathbf{whole\ mapping}$ if $\mathfrak{m}$ covers all the
Madarasi@19
   369
nodes of $V_{1}$, i.e. $\mathfrak{D}(\mathfrak{m})=V_1$.
alpar@2
   370
\end{definition}
alpar@2
   371
alpar@2
   372
\begin{definition}
Madarasi@20
   373
Let \textbf{extend}$(\mathfrak{m},(u,v))$ denote the function $f : \mathfrak{D}(\mathfrak{m})\cup\{u\}\longrightarrow\mathfrak{R}(\mathfrak{m})\cup\{v\}$, for which $\forall w\in \mathfrak{D}(\mathfrak{m}) : \mathfrak{m}(w)=f(w)$ and $f(u)=v$ holds. Where $u\in V_1\setminus\mathfrak{D}(\mathfrak{m})$ and $v\in V_2\setminus\mathfrak{R}(\mathfrak{m})$, otherwise $extend(\mathfrak{m},(u,v))$ is undefined.
alpar@2
   374
\end{definition}
alpar@2
   375
alpar@2
   376
\begin{notation}
Madarasi@19
   377
Throughout the paper, $\mathbf{PT}$ denotes a generic problem type
Madarasi@19
   378
which can be substituted by any of the $\mathbf{ISO}$, $\mathbf{SUB}$
Madarasi@19
   379
and $\mathbf{IND}$ problems.
alpar@2
   380
\end{notation}
alpar@2
   381
alpar@2
   382
\begin{definition}
Madarasi@19
   383
Let $\mathfrak{m}$ be a mapping. A logical function $\mathbf{Cons_{PT}}$ is a
Madarasi@17
   384
\textbf{consistency function by } $\mathbf{PT}$ if the following
Madarasi@19
   385
holds. If there exists a whole mapping $w$ satisfying the requirements of $PT$, for which $\mathfrak{m}$ is exactly $w$ restricted to $\mathfrak{D}(\mathfrak{m})$.
alpar@2
   386
\end{definition}
alpar@2
   387
alpar@2
   388
\begin{definition} 
Madarasi@19
   389
Let $\mathfrak{m}$ be a mapping. A logical function $\mathbf{Cut_{PT}}$ is a
Madarasi@17
   390
\textbf{cutting function by } $\mathbf{PT}$ if the following
Madarasi@19
   391
holds. $\mathbf{Cut_{PT}(\mathfrak{m})}$ is false if there exists a sequence of extend operations, which results in a whole mapping satisfying the requirements of $PT$.
alpar@2
   392
\end{definition}
alpar@2
   393
alpar@2
   394
\begin{definition}
Madarasi@19
   395
$\mathfrak{m}$ is said to be \textbf{consistent mapping by} $\mathbf{PT}$ if
Madarasi@19
   396
  $Cons_{PT}(\mathfrak{m})$ is true.
alpar@2
   397
\end{definition}
alpar@2
   398
alpar@2
   399
$Cons_{PT}$ and $Cut_{PT}$ will often be used in the following form.
alpar@2
   400
\begin{notation}
Madarasi@19
   401
Let $\mathbf{Cons_{PT}(p, \mathfrak{m})}:=Cons_{PT}(extend(\mathfrak{m},p))$, and
Madarasi@19
   402
$\mathbf{Cut_{PT}(p, \mathfrak{m})}:=Cut_{PT}(extend(\mathfrak{m},p))$, where
Madarasi@19
   403
$p\in{V_{1}\backslash\mathfrak{D}(\mathfrak{m}) \!\times\!V_{2}\backslash\mathfrak{R}(\mathfrak{m})}$.
alpar@2
   404
\end{notation}
alpar@2
   405
alpar@3
   406
$Cons_{PT}$ will be used to check the consistency of the already
alpar@3
   407
covered nodes, while $Cut_{PT}$ is for looking ahead to recognize if
alpar@3
   408
no whole consistent mapping can contain the current mapping.
alpar@2
   409
alpar@2
   410
\subsection{Overview of the algorithm}
alpar@3
   411
VF2 uses a state space representation of mappings, $Cons_{PT}$ for
alpar@3
   412
excluding inconsistency with the problem type and $Cut_{PT}$ for
Madarasi@19
   413
pruning the search tree.
alpar@2
   414
alpar@4
   415
Algorithm~\ref{alg:VF2Pseu} is a high level description of
Madarasi@19
   416
the VF2 matching algorithm. Each state of the matching process can
Madarasi@19
   417
be associated with a mapping $\mathfrak{m}$. The initial state
Madarasi@19
   418
is associated with a mapping $\mathfrak{m}$, for which
Madarasi@19
   419
$\mathfrak{D}(\mathfrak{m})=\emptyset$, i.e. it starts with an empty mapping.
alpar@2
   420
alpar@2
   421
alpar@2
   422
\begin{algorithm}
Madarasi@13
   423
\algtext*{EndIf}%ne nyomtasson end if-et
Madarasi@13
   424
\algtext*{EndFor}%ne
Madarasi@13
   425
\algtext*{EndProcedure}%ne nyomtasson ..
alpar@2
   426
\caption{\hspace{0.5cm}$A\ high\ level\ description\ of\ VF2$}\label{alg:VF2Pseu}
alpar@2
   427
\begin{algorithmic}[1]
alpar@2
   428
Madarasi@19
   429
\Procedure{VF2}{Mapping $\mathfrak{m}$, ProblemType $PT$}
Madarasi@19
   430
  \If{$\mathfrak{m}$ covers
Madarasi@19
   431
    $V_{1}$} \State Output($\mathfrak{m}$)
Madarasi@19
   432
  \Else
Madarasi@19
   433
  \State Compute the set $P_\mathfrak{m}$ of the pairs candidate for inclusion
Madarasi@19
   434
  in $\mathfrak{m}$ \ForAll{$p\in{P_\mathfrak{m}}$} \If{Cons$_{PT}$($p,\mathfrak{m}$) $\wedge$
Madarasi@19
   435
    $\neg$Cut$_{PT}$($p,\mathfrak{m}$)}
Madarasi@19
   436
    \State \textbf{call}
Madarasi@19
   437
  VF2($extend(\mathfrak{m},p)$, $PT$) \EndIf \EndFor \EndIf \EndProcedure
alpar@2
   438
\end{algorithmic}
alpar@2
   439
\end{algorithm}
alpar@2
   440
alpar@2
   441
Madarasi@19
   442
For the current mapping $\mathfrak{m}$, the algorithm computes $P_\mathfrak{m}$, the set of
Madarasi@19
   443
candidate node pairs for adding to the current mapping $\mathfrak{m}_s$.
alpar@2
   444
Madarasi@19
   445
For each pair $p$ in $P_\mathfrak{m}$, $Cons_{PT}(p,\mathfrak{m})$ and
Madarasi@19
   446
$Cut_{PT}(p,\mathfrak{m})$ are evaluated. If the former is true and
Madarasi@19
   447
the latter is false, the whole process is recursively applied to
Madarasi@19
   448
$extend(\mathfrak{m},p)$. Otherwise, $extend(\mathfrak{m},p)$ is not consistent by $PT$, or it
Madarasi@19
   449
can be proved that $\mathfrak{m}$ can not be extended to a whole mapping.
alpar@2
   450
Madarasi@11
   451
In order to make sure of the correctness, see
alpar@2
   452
\begin{claim}
alpar@3
   453
Through consistent mappings, only consistent whole mappings can be
Madarasi@19
   454
reached, and all the consistent whole mappings are reachable through
alpar@3
   455
consistent mappings.
alpar@2
   456
\end{claim}
alpar@2
   457
Madarasi@19
   458
Note that a mapping may be reached in exponentially many different ways, since the
Madarasi@19
   459
order of extensions does not influence the nascent mapping.
alpar@2
   460
alpar@2
   461
However, one may observe
alpar@2
   462
alpar@2
   463
\begin{claim}
alpar@2
   464
\label{claim:claimTotOrd}
Madarasi@19
   465
Let $\prec$ be an arbitrary total ordering relation on $V_{1}$.  If
Madarasi@19
   466
the algorithm ignores each $p=(u,v) \in P_\mathfrak{m}$, for which
alpar@2
   467
\begin{center}
Madarasi@19
   468
$\exists (\tilde{u},\tilde{v})\in P_\mathfrak{m}: \tilde{u} \prec u$,
alpar@2
   469
\end{center}
Madarasi@19
   470
then no mapping can be reached more than once, and each whole mapping remains reachable.
alpar@2
   471
\end{claim}
alpar@2
   472
alpar@3
   473
Note that the cornerstone of the improvements to VF2 is a proper
alpar@3
   474
choice of a total ordering.
alpar@2
   475
Madarasi@19
   476
\subsection{The candidate set}
alpar@2
   477
\label{candidateComputingVF2}
Madarasi@19
   478
Let $P_\mathfrak{m}$ be the set of the candidate pairs for inclusion in $\mathfrak{m}$.
alpar@2
   479
alpar@2
   480
\begin{notation}
Madarasi@19
   481
Let $\mathbf{T_{1}(\mathfrak{m})}:=\{u \in V_{1}\backslash\mathfrak{D}(\mathfrak{m}) : \exists \tilde{u}\in{\mathfrak{D}(\mathfrak{m}): (u,\tilde{u})\in E_{1}}\}$, and
Madarasi@19
   482
 $\mathbf{T_{2}(\mathfrak{m})} := \{v \in V_{2}\backslash\mathfrak{R}(\mathfrak{m}) : \exists\tilde{v}\in{\mathfrak{R}(\mathfrak{m}):(v,\tilde{v})\in E_{2}}\}$.
alpar@2
   483
\end{notation}
alpar@2
   484
Madarasi@19
   485
The set $P_\mathfrak{m}$ includes the pairs of uncovered neighbours of covered
Madarasi@17
   486
nodes, and if there is not such a node pair, all the pairs containing
alpar@3
   487
two uncovered nodes are added. Formally, let
alpar@2
   488
\[
Madarasi@19
   489
 P_\mathfrak{m}\!=\!
alpar@2
   490
  \begin{cases} 
Madarasi@19
   491
   T_{1}(\mathfrak{m})\times T_{2}(\mathfrak{m})&\hspace{-0.15cm}\text{if }
Madarasi@19
   492
   T_{1}(\mathfrak{m})\!\neq\!\emptyset\ \text{and }T_{2}(\mathfrak{m})\!\neq
Madarasi@19
   493
   \emptyset,\\ (V_{1}\!\setminus\!\mathfrak{D}(\mathfrak{m}))\!\times\!(V_{2}\!\setminus\!\mathfrak{R}(\mathfrak{m}))
Madarasi@19
   494
   &\hspace{-0.15cm}\text{otherwise}.
alpar@2
   495
  \end{cases}
alpar@2
   496
\]
alpar@2
   497
alpar@2
   498
\subsection{Consistency}
Madarasi@19
   499
Suppose $p=(u,v)$, where $u\in V_{1}$ and $v\in V_{2}$, $\mathfrak{m}$ is a consistent mapping by
Madarasi@19
   500
$PT$. $Cons_{PT}(p,\mathfrak{m})$ checks whether
Madarasi@19
   501
including pair $p$ into $\mathfrak{m}$ leads to a consistent mapping by $PT$.
Madarasi@15
   502
Madarasi@15
   503
For example, the consistency function of induced subgraph isomorphism is as follows.
alpar@2
   504
\begin{notation}
Madarasi@19
   505
Let $\mathbf{\Gamma_{1} (u)}:=\{\tilde{u}\in V_{1} :
Madarasi@19
   506
(u,\tilde{u})\in E_{1}\}$, and $\mathbf{\Gamma_{2}
Madarasi@19
   507
  (v)}:=\{\tilde{v}\in V_{2} : (v,\tilde{v})\in E_{2}\}$, where $u\in V_{1}$ and $v\in V_{2}$.
alpar@2
   508
\end{notation}
alpar@2
   509
Madarasi@19
   510
$extend(\mathfrak{m},(u,v))$ is a consistent mapping by $IND$ $\Leftrightarrow
Madarasi@19
   511
(\forall \tilde{u}\in \mathfrak{D}(\mathfrak{m}): (u,\tilde{u})\in E_{1}
Madarasi@19
   512
\Leftrightarrow (v,\mathfrak{m}(\tilde{u}))\in E_{2})$. The
alpar@3
   513
following formulation gives an efficient way of calculating
alpar@3
   514
$Cons_{IND}$.
alpar@2
   515
\begin{claim}
Madarasi@19
   516
$Cons_{IND}((u,v),\mathfrak{m}):=\mathcal{L}(u)\!\!=\!\!\mathcal{L}(v)\wedge(\forall \tilde{v}\in \Gamma_{2}(v)\cap\mathfrak{R}(\mathfrak{m}):(u,\mathfrak{m}^{-1}(\tilde{v}))\in E_{1})\wedge
Madarasi@19
   517
  (\forall \tilde{u}\in \Gamma_{1}(u)
Madarasi@19
   518
  \cap \mathfrak{D}(\mathfrak{m}):(v,\mathfrak{m}(\tilde{u}))\in E_{2})$ is a
alpar@3
   519
  consistency function in the case of $IND$.
alpar@2
   520
\end{claim}
alpar@2
   521
alpar@2
   522
\subsection{Cutting rules}
Madarasi@19
   523
$Cut_{PT}(p,\mathfrak{m})$ is defined by a collection of efficiently
Madarasi@19
   524
verifiable conditions. The requirement is that $Cut_{PT}(p,\mathfrak{m})$ can
Madarasi@19
   525
be true only if it is impossible to extend $extend(\mathfrak{m},p)$ to a
alpar@3
   526
whole mapping.
Madarasi@15
   527
Madarasi@15
   528
As an example, the cutting function of induced subgraph isomorphism is presented.
alpar@2
   529
\begin{notation}
Madarasi@19
   530
Let $\mathbf{\tilde{T}_{1}}(\mathfrak{m}):=(V_{1}\backslash
Madarasi@19
   531
\mathfrak{D}(\mathfrak{m}))\backslash T_{1}(\mathfrak{m})$, and
Madarasi@19
   532
\\ $\mathbf{\tilde{T}_{2}}(\mathfrak{m}):=(V_{2}\backslash
Madarasi@19
   533
\mathfrak{R}(\mathfrak{m}))\backslash T_{2}(\mathfrak{m})$.
alpar@2
   534
\end{notation}
Madarasi@15
   535
alpar@2
   536
\begin{claim}
Madarasi@19
   537
$Cut_{IND}((u,v),\mathfrak{m}):= |\Gamma_{2} (v)\ \cap\ T_{2}(\mathfrak{m})| <
Madarasi@19
   538
  |\Gamma_{1} (u)\ \cap\ T_{1}(\mathfrak{m})| \vee |\Gamma_{2}(v)\cap
Madarasi@19
   539
  \tilde{T}_{2}(\mathfrak{m})| < |\Gamma_{1}(u)\cap
Madarasi@19
   540
  \tilde{T}_{1}(\mathfrak{m})|$ is a cutting function by $IND$.
alpar@2
   541
\end{claim}
alpar@2
   542
Madarasi@22
   543
\section{The VF2++ Algorithm}\label{sec:VF2ppAlg}
alpar@3
   544
Although any total ordering relation makes the search space of VF2 a
alpar@3
   545
tree, its choice turns out to dramatically influence the number of
alpar@3
   546
visited states. The goal is to determine an efficient one as quickly
alpar@3
   547
as possible.
alpar@2
   548
alpar@3
   549
The main reason for VF2++' superiority over VF2 is twofold. Firstly,
alpar@3
   550
taking into account the structure and the node labeling of the graph,
alpar@3
   551
VF2++ determines a state order in which most of the unfruitful
alpar@3
   552
branches of the search space can be pruned immediately. Secondly,
alpar@3
   553
introducing more efficient --- nevertheless still easier to compute
alpar@3
   554
--- cutting rules reduces the chance of going astray even further.
alpar@2
   555
alpar@3
   556
In addition to the usual subgraph isomorphism, specialized versions
alpar@3
   557
for induced subgraph isomorphism and for graph isomorphism have been
Madarasi@22
   558
designed.
alpar@2
   559
Madarasi@22
   560
Note that a weaker version of the cutting rules and an efficient
Madarasi@22
   561
candidate set calculating were described in \cite{VF2Plus}.
alpar@2
   562
alpar@3
   563
It should be noted that all the methods described in this section are
Madarasi@22
   564
extendable to handle directed graphs and edge labels as well.
alpar@3
   565
The basic ideas and the detailed description of VF2++ are provided in
Madarasi@22
   566
the following.\newline
alpar@2
   567
Madarasi@19
   568
The goal is to find a matching order in which the algorithm is able to
Madarasi@19
   569
recognize inconsistency or prune the infeasible branches on the
Madarasi@19
   570
highest levels and goes deep only if it is needed.
Madarasi@19
   571
Madarasi@19
   572
\begin{notation}
Madarasi@19
   573
Let $\mathbf{Conn_{H}(u)}:=|\Gamma_{1}(u)\cap H\}|$, that is the
Madarasi@19
   574
number of neighbours of u which are in H, where $u\in V_{1} $ and
Madarasi@19
   575
$H\subseteq V_{1}$.
Madarasi@19
   576
\end{notation}
Madarasi@19
   577
Madarasi@19
   578
The principal question is the following. Suppose a mapping $\mathfrak{m}$ is
Madarasi@19
   579
given. For which node of $T_{1}(\mathfrak{m})$ is the hardest to find a
Madarasi@19
   580
consistent pair in $G_{2}$? The more covered neighbours a node in
Madarasi@19
   581
$T_{1}(\mathfrak{m})$ has --- i.e. the largest $Conn_{\mathfrak{D}(\mathfrak{m})}$ it has
Madarasi@19
   582
---, the more rarely satisfiable consistency constraints for its pair
Madarasi@19
   583
are given.
Madarasi@19
   584
Madarasi@19
   585
In biology, most of the graphs are sparse, thus several nodes in
Madarasi@19
   586
$T_{1}(\mathfrak{m})$ may have the same $Conn_{\mathfrak{D}(\mathfrak{m})}$, which makes
Madarasi@19
   587
reasonable to define a secondary and a tertiary order between them.
Madarasi@19
   588
The observation above proves itself to be as determining, that the
Madarasi@19
   589
secondary ordering prefers nodes with the most uncovered neighbours
Madarasi@19
   590
among which have the same $Conn_{\mathfrak{D}(\mathfrak{m})}$ to increase
Madarasi@19
   591
$Conn_{\mathfrak{D}(\mathfrak{m})}$ of uncovered nodes so much, as possible.  The
Madarasi@19
   592
tertiary ordering prefers nodes having the rarest uncovered labels.
Madarasi@19
   593
Madarasi@19
   594
Note that the secondary ordering is the same as the ordering by $deg$,
Madarasi@19
   595
which is a static data in front of the above used.
Madarasi@19
   596
Madarasi@19
   597
These rules can easily result in a matching order which contains the
Madarasi@19
   598
nodes of a long path successively, whose nodes may have low $Conn$ and
Madarasi@19
   599
is easily matchable into $G_{2}$. To avoid that, a BFS order is
Madarasi@19
   600
used, which provides the shortest possible paths.
Madarasi@19
   601
\newline
Madarasi@19
   602
Madarasi@19
   603
In the following, some examples on which the VF2 may be slow are
Madarasi@19
   604
described, although they are easily solvable by using a proper
Madarasi@19
   605
matching order.
Madarasi@19
   606
Madarasi@19
   607
\begin{example}
Madarasi@19
   608
Suppose $G_{1}$ can be mapped into $G_{2}$ in many ways
Madarasi@19
   609
without node labels. Let $u\in V_{1}$ and $v\in V_{2}$.
Madarasi@19
   610
\newline
Madarasi@19
   611
$\mathcal{L}(u):=black$
Madarasi@19
   612
\newline
Madarasi@19
   613
$\mathcal{L}(v):=black$
Madarasi@19
   614
\newline
Madarasi@22
   615
$\mathcal{L}(\tilde{u}):=red \ \forall \tilde{u}\in V_{1}\backslash
Madarasi@22
   616
\{u\}$
Madarasi@19
   617
\newline
Madarasi@22
   618
$\mathcal{L}(\tilde{v}):=red \ \forall \tilde{v}\in V_{2}\backslash
Madarasi@22
   619
\{v\}$
Madarasi@19
   620
\newline
Madarasi@19
   621
Madarasi@19
   622
Now, any mapping by $\mathcal{L}$ must contain $(u,v)$, since
Madarasi@19
   623
$u$ is black and no node in $V_{2}$ has a black label except
Madarasi@19
   624
$v$. If unfortunately $u$ were the last node which will get covered,
Madarasi@19
   625
VF2 would check only in the last steps, whether $u$ can be matched to
Madarasi@19
   626
$v$.
Madarasi@19
   627
\newline
Madarasi@19
   628
However, had $u$ been the first matched node, u would have been
Madarasi@19
   629
matched immediately to v, so all the mappings would have been
Madarasi@19
   630
precluded in which node labels can not correspond.
Madarasi@19
   631
\end{example}
Madarasi@19
   632
Madarasi@19
   633
\begin{example}
Madarasi@19
   634
Suppose there is no node label given, $G_{1}$ is a small graph and
Madarasi@19
   635
can not be mapped into $G_{2}$ and $u\in V_{1}$.
Madarasi@19
   636
\newline
Madarasi@19
   637
Let $G'_{1}:=(V_{1}\cup
Madarasi@19
   638
\{u'_{1},u'_{2},..,u'_{k}\},E_{1}\cup
Madarasi@19
   639
\{(u,u'_{1}),(u'_{1},u'_{2}),..,(u'_{k-1},u'_{k})\})$, that is,
Madarasi@19
   640
$G'_{1}$ is $G_{1}\cup \{ a\ k$ long path, which is disjoint
Madarasi@19
   641
from $G_{1}$ and one of its starting points is connected to $u\in
Madarasi@19
   642
V_{1}\}$.
Madarasi@19
   643
\newline
Madarasi@19
   644
Is there a subgraph of $G_{2}$, which is isomorph with
Madarasi@19
   645
$G'_{1}$?
Madarasi@19
   646
\newline
Madarasi@19
   647
If unfortunately the nodes of the path were the first $k$ nodes in the
Madarasi@19
   648
matching order, the algorithm would iterate through all the possible k
Madarasi@19
   649
long paths in $G_{2}$, and it would recognize that no path can be
Madarasi@19
   650
extended to $G'_{1}$.
Madarasi@19
   651
\newline
Madarasi@19
   652
However, had it started by the matching of $G_{1}$, it would not
Madarasi@19
   653
have matched any nodes of the path.
Madarasi@19
   654
\end{example}
Madarasi@19
   655
Madarasi@19
   656
These examples may look artificial, but the same problems also appear
Madarasi@19
   657
in real-world instances, even though in a less obvious way.
Madarasi@19
   658
alpar@2
   659
\subsection{Preparations}
alpar@2
   660
\begin{claim}
alpar@2
   661
\label{claim:claimCoverFromLeft}
alpar@3
   662
The total ordering relation uniquely determines a node order, in which
Madarasi@19
   663
the nodes of $V_{1}$ will be covered by VF2. From the point of
alpar@3
   664
view of the matching procedure, this means, that always the same node
Madarasi@19
   665
of $G_{1}$ will be covered on the d-th level.
alpar@2
   666
\end{claim}
alpar@2
   667
alpar@2
   668
\begin{definition}
Madarasi@19
   669
An order $(u_{\sigma(1)},u_{\sigma(2)},..,u_{\sigma(|V_{1}|)})$ of
Madarasi@19
   670
$V_{1}$ is \textbf{matching order} if exists $\prec$ total
alpar@3
   671
ordering relation, s.t. the VF2 with $\prec$ on the d-th level finds
Madarasi@19
   672
pair for $u_{\sigma(d)}$ for all $d\in\{1,..,|V_{1}|\}$.
alpar@2
   673
\end{definition}
alpar@2
   674
alpar@2
   675
\begin{claim}\label{claim:MOclaim}
Madarasi@17
   676
A total ordering is matching order iff the nodes of every component
alpar@3
   677
form an interval in the node sequence, and every node connects to a
Madarasi@17
   678
previous node in its component except the first node of each component.
alpar@2
   679
\end{claim}
alpar@2
   680
alpar@3
   681
To summing up, a total ordering always uniquely determines a matching
alpar@3
   682
order, and every matching order can be determined by a total ordering,
alpar@3
   683
however, more than one different total orderings may determine the
alpar@3
   684
same matching order.
alpar@2
   685
alpar@2
   686
\subsection{Total ordering}
Madarasi@19
   687
The matching order will be searched directly.
alpar@2
   688
\begin{notation}
Madarasi@19
   689
Let \textbf{F$_\mathcal{M}$(l)}$:=|\{v\in V_{2} :
Madarasi@19
   690
l=\mathcal{L}(v)\}|-|\{u\in V_{1}\backslash \mathcal{M} : l=\mathcal{L}(u)\}|$ ,
Madarasi@19
   691
where $l$ is a label and $\mathcal{M}\subseteq V_{1}$.
alpar@2
   692
\end{notation}
alpar@2
   693
Madarasi@17
   694
\begin{definition}Let $\mathbf{arg\ max}_{f}(S) :=\{u\in S : f(u)=max_{v\in S}\{f(v)\}\}$ and $\mathbf{arg\ min}_{f}(S) := arg\ max_{-f}(S)$, where $S$ is a finite set and $f:S\longrightarrow \mathbb{R}$.
alpar@2
   695
\end{definition}
alpar@2
   696
alpar@2
   697
\begin{algorithm}
Madarasi@8
   698
\algtext*{EndIf}
Madarasi@8
   699
\algtext*{EndProcedure}
alpar@2
   700
\algtext*{EndWhile}
Madarasi@13
   701
\algtext*{EndFor}
alpar@2
   702
\caption{\hspace{0.5cm}$The\ method\ of\ VF2++\ for\ determining\ the\ node\ order$}\label{alg:VF2PPPseu}
alpar@2
   703
\begin{algorithmic}[1]
alpar@3
   704
\Procedure{VF2++order}{} \State $\mathcal{M}$ := $\emptyset$
Madarasi@19
   705
\Comment{matching order} \While{$V_{1}\backslash \mathcal{M}
alpar@3
   706
  \neq\emptyset$} \State $r\in$ arg max$_{deg}$ (arg
Madarasi@19
   707
min$_{F_\mathcal{M}\circ \mathcal{L}}(V_{1}\backslash
alpar@3
   708
\mathcal{M})$)\label{alg:findMin} \State Compute $T$, a BFS tree with
alpar@3
   709
root node $r$.  \For{$d=0,1,...,depth(T)$} \State $V_d$:=nodes of the
alpar@3
   710
$d$-th level \State Process $V_d$ \Comment{See Algorithm
Madarasi@8
   711
  \ref{alg:VF2PPProcess1}} \EndFor
alpar@3
   712
\EndWhile \EndProcedure
alpar@2
   713
\end{algorithmic}
alpar@2
   714
\end{algorithm}
alpar@2
   715
alpar@2
   716
\begin{algorithm}
Madarasi@8
   717
\algtext*{EndIf}
Madarasi@8
   718
\algtext*{EndProcedure}%ne nyomtasson ..
alpar@2
   719
\algtext*{EndWhile}
Madarasi@8
   720
\caption{\hspace{.5cm}$The\ method\ for\ processing\ a\ level\ of\ the\ BFS\ tree$}\label{alg:VF2PPProcess1}
alpar@2
   721
\begin{algorithmic}[1]
Madarasi@17
   722
\Procedure{VF2++ProcessLevel}{$V_{d}$} \While{$V_d\neq\emptyset$}
Madarasi@22
   723
\State $m\in$ arg min$_{F_{\mathcal{M}\circ\ \mathcal{L}}}($ arg max$_{deg}($arg
alpar@3
   724
max$_{Conn_{\mathcal{M}}}(V_{d})))$ \State $V_d:=V_d\backslash m$
alpar@3
   725
\State Append node $m$ to the end of $\mathcal{M}$ \State Refresh
alpar@3
   726
$F_\mathcal{M}$ \EndWhile \EndProcedure
alpar@2
   727
\end{algorithmic}
alpar@2
   728
\end{algorithm}
alpar@2
   729
alpar@4
   730
Algorithm~\ref{alg:VF2PPPseu} is a high level description of the
alpar@4
   731
matching order procedure of VF2++. It computes a BFS tree for each
Madarasi@19
   732
component in ascending order of their rarest node labels and largest $deg$,
alpar@4
   733
whose root vertex is the component's minimal
Madarasi@8
   734
node. Algorithm~\ref{alg:VF2PPProcess1} is a method to process a level of the BFS tree, which appends the nodes of the current level in descending
Madarasi@8
   735
lexicographic order by $(Conn_{\mathcal{M}},deg,-F_\mathcal{M})$ separately
Madarasi@8
   736
to $\mathcal{M}$, and refreshes $F_\mathcal{M}$ immediately.
alpar@2
   737
alpar@4
   738
Claim~\ref{claim:MOclaim} shows that Algorithm~\ref{alg:VF2PPPseu}
alpar@4
   739
provides a matching order.
alpar@2
   740
alpar@2
   741
alpar@2
   742
\subsection{Cutting rules}
alpar@2
   743
\label{VF2PPCuttingRules}
Madarasi@19
   744
This section presents the cutting rules of VF2++, which are improved by using extra information coming from the node labels.
alpar@2
   745
\begin{notation}
Madarasi@19
   746
Let $\mathbf{\Gamma_{1}^{l}(u)}:=\{\tilde{u} : \mathcal{L}(\tilde{u})=l
Madarasi@19
   747
\wedge \tilde{u}\in \Gamma_{1} (u)\}$ and
Madarasi@19
   748
$\mathbf{\Gamma_{2}^{l}(v)}:=\{\tilde{v} : \mathcal{L}(\tilde{v})=l \wedge
Madarasi@19
   749
\tilde{v}\in \Gamma_{2} (v)\}$, where $u\in V_{1}$, $v\in
Madarasi@19
   750
V_{2}$ and $l$ is a label.
alpar@2
   751
\end{notation}
alpar@2
   752
Madarasi@19
   753
\subsubsection{Induced subgraph isomorphism}
alpar@2
   754
\begin{claim}
Madarasi@19
   755
\[LabCut_{IND}((u,v),\mathfrak{m}):=\bigvee_{l\ is\ label}|\Gamma_{2}^{l} (v) \cap T_{2}(\mathfrak{m})|\!<\!|\Gamma_{1}^{l}(u)\cap T_{1}(\mathfrak{m})|\ \vee\]\[\bigvee_{l\ is\ label} \newline |\Gamma_{2}^{l}(v)\cap \tilde{T}_{2}(\mathfrak{m})| < |\Gamma_{1}^{l}(u)\cap \tilde{T}_{1}(\mathfrak{m})|\] is a cutting function by IND.
Madarasi@19
   756
\end{claim}
Madarasi@19
   757
\subsubsection{Graph isomorphism}
Madarasi@19
   758
\begin{claim}
Madarasi@19
   759
\[LabCut_{ISO}((u,v),\mathfrak{m}):=\bigvee_{l\ is\ label}|\Gamma_{2}^{l} (v) \cap T_{2}(\mathfrak{m})|\!\neq\!|\Gamma_{1}^{l}(u)\cap T_{1}(\mathfrak{m})|\  \vee\]\[\bigvee_{l\ is\ label} \newline |\Gamma_{2}^{l}(v)\cap \tilde{T}_{2}(\mathfrak{m})| \neq |\Gamma_{1}^{l}(u)\cap \tilde{T}_{1}(\mathfrak{m})|\] is a cutting function by ISO.
alpar@2
   760
\end{claim}
Madarasi@13
   761
Madarasi@19
   762
\subsubsection{Subgraph isomorphism}
Madarasi@19
   763
\begin{claim}
Madarasi@19
   764
\[LabCut_{SU\!B}((u,v),\mathfrak{m}):=\bigvee_{l\ is\ label}|\Gamma_{2}^{l} (v) \cap T_{2}(\mathfrak{m})|\!<\!|\Gamma_{1}^{l}(u)\cap T_{1}(\mathfrak{m})|\] is a cutting function by SUB.
Madarasi@19
   765
\end{claim}
alpar@2
   766
Madarasi@19
   767
Madarasi@19
   768
Madarasi@22
   769
\section{Implementation details}\label{sec:VF2ppImpl}
alpar@3
   770
This section provides a detailed summary of an efficient
alpar@3
   771
implementation of VF2++.
Madarasi@22
   772
\subsection{Storing a mapping}
alpar@3
   773
After fixing an arbitrary node order ($u_0, u_1, ..,
Madarasi@19
   774
u_{|G_{1}|-1}$) of $G_{1}$, an array $M$ is usable to store
alpar@3
   775
the current mapping in the following way.
alpar@2
   776
\[
alpar@3
   777
 M[i] =
alpar@2
   778
  \begin{cases} 
Madarasi@19
   779
   v & if\ (u_i,v)\ is\ in\ the\ mapping\\ INV\!ALI\!D &
Madarasi@17
   780
   if\ no\ node\ has\ been\ mapped\ to\ u_i,
alpar@2
   781
  \end{cases}
alpar@2
   782
\]
Madarasi@19
   783
where $i\in\{0,1, ..,|G_{1}|-1\}$, $v\in V_{2}$ and $INV\!ALI\!D$
alpar@3
   784
means "no node".
Madarasi@22
   785
\subsection{Avoiding the recurrence}
alpar@4
   786
The recursion of Algorithm~\ref{alg:VF2Pseu} can be realized
Madarasi@9
   787
as a \textit{while loop}, which has a loop counter $depth$ denoting the
Madarasi@9
   788
all-time depth of the recursion. Fixing a matching order, let $M$
Madarasi@9
   789
denote the array storing the all-time mapping. Based on Claim~\ref{claim:claimCoverFromLeft},
Madarasi@19
   790
$M$ is $INV\!ALI\!D$ from index $depth$+1 and not $INV\!ALI\!D$ before
Madarasi@9
   791
$depth$. $M[depth]$ changes
alpar@3
   792
while the state is being processed, but the property is held before
alpar@3
   793
both stepping back to a predecessor state and exploring a successor
alpar@3
   794
state.
alpar@2
   795
alpar@3
   796
The necessary part of the candidate set is easily maintainable or
alpar@3
   797
computable by following
alpar@4
   798
Section~\ref{candidateComputingVF2}. A much faster method
alpar@3
   799
has been designed for biological- and sparse graphs, see the next
alpar@3
   800
section for details.
alpar@2
   801
Madarasi@22
   802
\subsection{Calculating the candidates for a node}
alpar@4
   803
Being aware of Claim~\ref{claim:claimCoverFromLeft}, the
alpar@3
   804
task is not to maintain the candidate set, but to generate the
Madarasi@19
   805
candidate nodes in $G_{2}$ for a given node $u\in V_{1}$.  In
Madarasi@20
   806
case of any of the three problem types and a mapping $\mathfrak{m}$, if a node $v\in
Madarasi@19
   807
V_{2}$ is a potential pair of $u\in V_{1}$, then $\forall
Madarasi@20
   808
u'\in \mathfrak{D}(\mathfrak{m}) : (u,u')\in
Madarasi@20
   809
E_{1}\Rightarrow (v,\mathfrak{m}(u'))\in
Madarasi@19
   810
E_{2}$. That is, each covered neighbour of $u$ has to be mapped to
alpar@3
   811
a covered neighbour of $v$.
alpar@2
   812
alpar@3
   813
Having said that, an algorithm running in $\Theta(deg)$ time is
alpar@3
   814
describable if there exists a covered node in the component containing
Madarasi@17
   815
$u$, and a linear one otherwise.
alpar@2
   816
alpar@2
   817
Madarasi@22
   818
\subsection{Determining the node order}
alpar@3
   819
This section describes how the node order preprocessing method of
alpar@3
   820
VF2++ can efficiently be implemented.
alpar@2
   821
alpar@3
   822
For using lookup tables, the node labels are associated with the
alpar@3
   823
numbers $\{0,1,..,|K|-1\}$, where $K$ is the set of the labels. It
Madarasi@9
   824
enables $F_\mathcal{M}$ to be stored in an array. At first, the node order
alpar@3
   825
$\mathcal{M}=\emptyset$, so $F_\mathcal{M}[i]$ is the number of nodes
Madarasi@19
   826
in $V_{1}$ having label $i$, which is easy to compute in
Madarasi@19
   827
$\Theta(|V_{1}|)$ steps.
alpar@2
   828
Madarasi@19
   829
Representing $\mathcal{M}\subseteq V_{1}$ as an array of
Madarasi@19
   830
size $|V_{1}|$, both the computation of the BFS tree, and processing its levels by Algorithm~\ref{alg:VF2PPProcess1} can be done inplace by swapping nodes.
alpar@2
   831
Madarasi@22
   832
\subsection{Cutting rules}
alpar@4
   833
In Section~\ref{VF2PPCuttingRules}, the cutting rules were
Madarasi@19
   834
described using the sets $T_{1}$, $T_{2}$, $\tilde T_{1}$
Madarasi@19
   835
and $\tilde T_{2}$, which are dependent on the all-time mapping
alpar@3
   836
(i.e. on the all-time state). The aim is to check the labeled cutting
alpar@3
   837
rules of VF2++ in $\Theta(deg)$ time.
alpar@2
   838
alpar@3
   839
Firstly, suppose that these four sets are given in such a way, that
alpar@3
   840
checking whether a node is in a certain set takes constant time,
alpar@3
   841
e.g. they are given by their 0-1 characteristic vectors. Let $L$ be an
alpar@3
   842
initially zero integer lookup table of size $|K|$. After incrementing
Madarasi@19
   843
$L[\mathcal{L}(u')]$ for all $u'\in \Gamma_{1}(u) \cap T_{1}(\mathfrak{m})$ and
Madarasi@19
   844
decrementing $L[\mathcal{L}(v')]$ for all $v'\in\Gamma_{2} (v) \cap
Madarasi@19
   845
T_{2}(s)$, the first part of the cutting rules is checkable in
alpar@3
   846
$\Theta(deg)$ time by considering the proper signs of $L$. Setting $L$
alpar@3
   847
to zero takes $\Theta(deg)$ time again, which makes it possible to use
Madarasi@9
   848
the same table through the whole algorithm. The second part of the
alpar@3
   849
cutting rules can be verified using the same method with $\tilde
Madarasi@19
   850
T_{1}$ and $\tilde T_{2}$ instead of $T_{1}$ and
Madarasi@19
   851
$T_{2}$. Thus, the overall complexity is $\Theta(deg)$.
alpar@2
   852
Madarasi@19
   853
Another integer lookup table storing the number of covered neighbours
Madarasi@19
   854
of each node in $G_{2}$ gives all the information about the sets
Madarasi@19
   855
$T_{2}$ and $\tilde T_{2}$, which is maintainable in
alpar@3
   856
$\Theta(deg)$ time when a pair is added or substracted by incrementing
alpar@3
   857
or decrementing the proper indices. A further improvement is that the
Madarasi@19
   858
values of $L[\mathcal{L}(u')]$ in case of checking $u$ are dependent only on
Madarasi@19
   859
$u$, i.e. on the size of the mapping, so for each $u\in V_{1}$ an
alpar@3
   860
array of pairs (label, number of such labels) can be stored to skip
alpar@3
   861
the maintaining operations. Note that these arrays are at most of size
Madarasi@19
   862
$deg$.
alpar@2
   863
Madarasi@19
   864
Using similar techniques, the consistency function can be evaluated in
alpar@3
   865
$\Theta(deg)$ steps, as well.
alpar@2
   866
Madarasi@22
   867
\section{Experimental results}\label{sec:ExpRes}
Madarasi@19
   868
This section compares the performance of VF2++ and VF2 Plus. According to
Madarasi@19
   869
our experience, both algorithms run faster than VF2 with orders of
Madarasi@19
   870
magnitude, thus its inclusion was not reasonable.
alpar@2
   871
Madarasi@19
   872
The algorithms were implemented in C++ using the open source
Madarasi@19
   873
LEMON graph and network optimization library\cite{LEMON}. The test were carried out on a linux based system with an Intel i7 X980 3.33 GHz CPU and 6 GB of RAM.
alpar@2
   874
\subsection{Biological graphs}
alpar@3
   875
The tests have been executed on a recent biological dataset created
alpar@3
   876
for the International Contest on Pattern Search in Biological
Madarasi@7
   877
Databases\cite{Content}, which has been constructed of molecule,
Madarasi@7
   878
protein and contact map graphs extracted from the Protein Data
alpar@3
   879
Bank\cite{ProteinDataBank}.
alpar@2
   880
alpar@3
   881
The molecule dataset contains small graphs with less than 100 nodes
alpar@3
   882
and an average degree of less than 3. The protein dataset contains
alpar@3
   883
graphs having 500-10 000 nodes and an average degree of 4, while the
alpar@3
   884
contact map dataset contains graphs with 150-800 nodes and an average
alpar@3
   885
degree of 20.  \\
alpar@2
   886
Madarasi@19
   887
In the following, both the induced subgraph isomorphism and the graph
alpar@3
   888
isomorphism will be examined.
alpar@2
   889
Madarasi@17
   890
This dataset provides graph pairs, between which all the induced subgraph isomorphisms have to be found. For runtime results, please see Figure~\ref{fig:bioIND}.
Madarasi@7
   891
Madarasi@7
   892
In an other experiment, the nodes of each graph in the database had been
Madarasi@7
   893
shuffled, and an isomorphism between the shuffled and the original
Madarasi@7
   894
graph was searched. The solution times are shown on Figure~\ref{fig:bioISO}.
Madarasi@7
   895
Madarasi@7
   896
Madarasi@17
   897
\begin{figure}[H]
Madarasi@17
   898
\vspace*{-2cm}
Madarasi@17
   899
\hspace*{-1.5cm}
Madarasi@17
   900
\begin{subfigure}[b]{0.55\textwidth}
Madarasi@17
   901
\begin{figure}[H]
Madarasi@17
   902
\begin{tikzpicture}[trim axis left, trim axis right]
Madarasi@17
   903
\begin{axis}[title=Molecules IND,xlabel={target size},ylabel={time (ms)},legend entries={VF2 Plus,VF2++},grid
Madarasi@17
   904
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
Madarasi@17
   905
  west},scaled x ticks = false,x tick label style={/pgf/number
Madarasi@17
   906
  format/1000 sep = \thinspace}]
Madarasi@17
   907
%\addplot+[only marks] table {proteinsOrig.txt};
Madarasi@17
   908
\addplot table {Orig/Molecules.32.txt}; \addplot[mark=triangle*,mark
Madarasi@17
   909
  size=1.8pt,color=red] table {VF2PPLabel/Molecules.32.txt};
Madarasi@17
   910
\end{axis}
Madarasi@17
   911
\end{tikzpicture}
Madarasi@17
   912
\caption{In the case of molecules, the algorithms have
Madarasi@17
   913
  similar behaviour, but VF2++ is almost two times faster even on such
Madarasi@17
   914
  small graphs.} \label{fig:INDMolecule}
Madarasi@17
   915
\end{figure}
Madarasi@17
   916
\end{subfigure}
Madarasi@17
   917
\hspace*{1.5cm}
Madarasi@17
   918
\begin{subfigure}[b]{0.55\textwidth}
Madarasi@17
   919
\begin{figure}[H]
Madarasi@17
   920
\begin{tikzpicture}[trim axis left, trim axis right]
Madarasi@17
   921
\begin{axis}[title=Contact maps IND,xlabel={target size},ylabel={time (ms)},legend entries={VF2 Plus,VF2++},grid
Madarasi@17
   922
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
Madarasi@17
   923
  west},scaled x ticks = false,x tick label style={/pgf/number
Madarasi@17
   924
  format/1000 sep = \thinspace}]
Madarasi@17
   925
%\addplot+[only marks] table {proteinsOrig.txt};
Madarasi@17
   926
\addplot table {Orig/ContactMaps.128.txt};
Madarasi@17
   927
\addplot[mark=triangle*,mark size=1.8pt,color=red] table
Madarasi@17
   928
        {VF2PPLabel/ContactMaps.128.txt};
Madarasi@17
   929
\end{axis}
Madarasi@17
   930
\end{tikzpicture}
Madarasi@17
   931
\caption{On contact maps, VF2++ runs almost in constant time, while VF2
Madarasi@17
   932
  Plus has a near linear behaviour.} \label{fig:INDContact}
Madarasi@17
   933
\end{figure}
Madarasi@17
   934
\end{subfigure}
Madarasi@17
   935
Madarasi@17
   936
\begin{center}
Madarasi@17
   937
\vspace*{-0.5cm}
Madarasi@17
   938
\begin{subfigure}[b]{0.55\textwidth}
Madarasi@17
   939
\begin{figure}[H]
Madarasi@17
   940
\begin{tikzpicture}[trim axis left, trim axis right]
Madarasi@17
   941
  \begin{axis}[title=Proteins IND,xlabel={target size},ylabel={time (ms)},legend entries={VF2 Plus,VF2++},grid
Madarasi@17
   942
  =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
Madarasi@17
   943
    west},scaled x ticks = false,x tick label style={/pgf/number
Madarasi@17
   944
    format/1000 sep = \thinspace}] %\addplot+[only marks] table
Madarasi@17
   945
    {proteinsOrig.txt}; \addplot[mark=*,mark size=1.2pt,color=blue]
Madarasi@17
   946
    table {Orig/Proteins.256.txt}; \addplot[mark=triangle*,mark
Madarasi@17
   947
      size=1.8pt,color=red] table {VF2PPLabel/Proteins.256.txt};
Madarasi@17
   948
  \end{axis}
Madarasi@17
   949
  \end{tikzpicture}
Madarasi@17
   950
\caption{Both the algorithms have linear behaviour on protein
Madarasi@17
   951
  graphs. VF2++ is more than 10 times faster than VF2
Madarasi@17
   952
  Plus.} \label{fig:INDProt}
Madarasi@17
   953
\end{figure}
Madarasi@17
   954
\end{subfigure}
Madarasi@17
   955
\end{center}
Madarasi@17
   956
\vspace*{-0.5cm}
Madarasi@17
   957
\caption{\normalsize{Induced subgraph isomorphism on biological graphs}}\label{fig:bioIND}
Madarasi@17
   958
\end{figure}
Madarasi@17
   959
alpar@2
   960
alpar@2
   961
\begin{figure}[H]
Madarasi@7
   962
\vspace*{-2cm}
Madarasi@7
   963
\hspace*{-1.5cm}
Madarasi@7
   964
\begin{subfigure}[b]{0.55\textwidth}
Madarasi@7
   965
\begin{figure}[H]
Madarasi@7
   966
\begin{tikzpicture}[trim axis left, trim axis right]
Madarasi@7
   967
\begin{axis}[title=Molecules ISO,xlabel={target size},ylabel={time (ms)},legend entries={VF2 Plus,VF2++},grid
Madarasi@7
   968
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
Madarasi@7
   969
  west},scaled x ticks = false,x tick label style={/pgf/number
Madarasi@7
   970
  format/1000 sep = \thinspace}]
Madarasi@7
   971
%\addplot+[only marks] table {proteinsOrig.txt};
Madarasi@7
   972
\addplot table {Orig/moleculesIso.txt}; \addplot[mark=triangle*,mark
Madarasi@7
   973
  size=1.8pt,color=red] table {VF2PPLabel/moleculesIso.txt};
Madarasi@7
   974
\end{axis}
Madarasi@7
   975
\end{tikzpicture}
Madarasi@7
   976
\caption{In the case of molecules, there is not such a significant
Madarasi@7
   977
  difference, but VF2++ seems to be faster as the number of nodes
Madarasi@7
   978
  increases.}\label{fig:ISOMolecule}
Madarasi@7
   979
\end{figure}
Madarasi@7
   980
\end{subfigure}
Madarasi@7
   981
\hspace*{1.5cm}
Madarasi@7
   982
\begin{subfigure}[b]{0.55\textwidth}
Madarasi@7
   983
\begin{figure}[H]
Madarasi@7
   984
\begin{tikzpicture}[trim axis left, trim axis right]
Madarasi@7
   985
\begin{axis}[title=Contact maps ISO,xlabel={target size},ylabel={time (ms)},legend entries={VF2 Plus,VF2++},grid
Madarasi@7
   986
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
Madarasi@7
   987
  west},scaled x ticks = false,x tick label style={/pgf/number
Madarasi@7
   988
  format/1000 sep = \thinspace}]
Madarasi@7
   989
%\addplot+[only marks] table {proteinsOrig.txt};
Madarasi@7
   990
\addplot table {Orig/contactMapsIso.txt}; \addplot[mark=triangle*,mark
Madarasi@7
   991
  size=1.8pt,color=red] table {VF2PPLabel/contactMapsIso.txt};
Madarasi@7
   992
\end{axis}
Madarasi@7
   993
\end{tikzpicture}
Madarasi@7
   994
\caption{The results are closer to each other on contact maps, but
Madarasi@7
   995
  VF2++ still performs consistently better.}\label{fig:ISOContact}
Madarasi@7
   996
\end{figure}
Madarasi@7
   997
\end{subfigure}
Madarasi@7
   998
alpar@2
   999
\begin{center}
Madarasi@7
  1000
\vspace*{-0.5cm}
Madarasi@7
  1001
\begin{subfigure}[b]{0.55\textwidth}
Madarasi@7
  1002
\begin{figure}[H]
Madarasi@7
  1003
\begin{tikzpicture}[trim axis left, trim axis right]
Madarasi@7
  1004
\begin{axis}[title=Proteins ISO,xlabel={target size},ylabel={time (ms)},legend entries={VF2 Plus,VF2++},grid
Madarasi@7
  1005
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
Madarasi@7
  1006
  west},scaled x ticks = false,x tick label style={/pgf/number
Madarasi@7
  1007
  format/1000 sep = \thinspace}]
Madarasi@7
  1008
%\addplot+[only marks] table {proteinsOrig.txt};
Madarasi@7
  1009
\addplot table {Orig/proteinsIso.txt}; \addplot[mark=triangle*,mark
Madarasi@7
  1010
  size=1.8pt,color=red] table {VF2PPLabel/proteinsIso.txt};
Madarasi@7
  1011
\end{axis}
Madarasi@7
  1012
\end{tikzpicture}
Madarasi@7
  1013
\caption{On protein graphs, VF2 Plus has a super linear time
Madarasi@7
  1014
  complexity, while VF2++ runs in near constant time. The difference
Madarasi@7
  1015
  is about two order of magnitude on large graphs.}\label{fig:ISOProt}
Madarasi@7
  1016
\end{figure}
Madarasi@7
  1017
\end{subfigure}
Madarasi@7
  1018
\end{center}
Madarasi@7
  1019
\vspace*{-0.6cm}
Madarasi@17
  1020
\caption{\normalsize{Graph isomorphism on biological graphs}}\label{fig:bioISO}
Madarasi@7
  1021
\end{figure}
Madarasi@7
  1022
Madarasi@7
  1023
alpar@2
  1024
alpar@2
  1025
alpar@2
  1026
\subsection{Random graphs}
alpar@3
  1027
This section compares VF2++ with VF2 Plus on random graphs of a large
alpar@3
  1028
size. The node labels are uniformly distributed.  Let $\delta$ denote
alpar@3
  1029
the average degree.  For the parameters of problems solved in the
alpar@3
  1030
experiments, please see the top of each chart.
alpar@2
  1031
\subsubsection{Graph isomorphism}
alpar@3
  1032
To evaluate the efficiency of the algorithms in the case of graph
Madarasi@17
  1033
isomorphism, random connected graphs of less than 20 000 nodes have been
alpar@3
  1034
considered. Generating a random graph and shuffling its nodes, an
Madarasi@7
  1035
isomorphism had to be found. Figure \ref{fig:randISO} shows the runtime results
alpar@4
  1036
on graph sets of various density.
alpar@2
  1037
Madarasi@7
  1038
Madarasi@7
  1039
Madarasi@7
  1040
Madarasi@12
  1041
\begin{figure}
Madarasi@7
  1042
\vspace*{-1.5cm}
Madarasi@7
  1043
\hspace*{-1.5cm}
Madarasi@7
  1044
\begin{subfigure}[b]{0.55\textwidth}
alpar@2
  1045
\begin{center}
alpar@2
  1046
\begin{tikzpicture}
Madarasi@7
  1047
\begin{axis}[title={Random ISO, $\delta = 5$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
alpar@3
  1048
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
alpar@3
  1049
  west},scaled x ticks = false,x tick label style={/pgf/number
Madarasi@7
  1050
  format/1000 sep = \space}]
alpar@2
  1051
%\addplot+[only marks] table {proteinsOrig.txt};
alpar@2
  1052
\addplot table {randGraph/iso/vf2pIso5_1.txt};
alpar@3
  1053
\addplot[mark=triangle*,mark size=1.8pt,color=red] table
alpar@3
  1054
        {randGraph/iso/vf2ppIso5_1.txt};
alpar@2
  1055
\end{axis}
alpar@2
  1056
\end{tikzpicture}
alpar@2
  1057
\end{center}
Madarasi@7
  1058
\end{subfigure}
Madarasi@7
  1059
%\hspace{1cm}
Madarasi@7
  1060
\begin{subfigure}[b]{0.55\textwidth}
alpar@2
  1061
\begin{center}
alpar@2
  1062
\begin{tikzpicture}
Madarasi@7
  1063
\begin{axis}[title={Random ISO, $\delta = 10$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
alpar@3
  1064
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
alpar@3
  1065
  west},scaled x ticks = false,x tick label style={/pgf/number
Madarasi@7
  1066
  format/1000 sep = \space}]
alpar@2
  1067
%\addplot+[only marks] table {proteinsOrig.txt};
alpar@2
  1068
\addplot table {randGraph/iso/vf2pIso10_1.txt};
alpar@3
  1069
\addplot[mark=triangle*,mark size=1.8pt,color=red] table
alpar@3
  1070
        {randGraph/iso/vf2ppIso10_1.txt};
alpar@2
  1071
\end{axis}
alpar@2
  1072
\end{tikzpicture}
alpar@2
  1073
\end{center}
Madarasi@7
  1074
\end{subfigure}
Madarasi@7
  1075
%%\hspace{1cm}
Madarasi@7
  1076
\hspace*{-1.5cm}
Madarasi@7
  1077
\begin{subfigure}[b]{0.55\textwidth}
alpar@2
  1078
\begin{center}
alpar@2
  1079
\begin{tikzpicture}
Madarasi@7
  1080
\begin{axis}[title={Random ISO, $\delta = 15$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
alpar@3
  1081
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
alpar@3
  1082
  west},scaled x ticks = false,x tick label style={/pgf/number
Madarasi@7
  1083
  format/1000 sep = \space}]
alpar@2
  1084
%\addplot+[only marks] table {proteinsOrig.txt};
alpar@2
  1085
\addplot table {randGraph/iso/vf2pIso15_1.txt};
alpar@3
  1086
\addplot[mark=triangle*,mark size=1.8pt,color=red] table
alpar@3
  1087
        {randGraph/iso/vf2ppIso15_1.txt};
alpar@2
  1088
\end{axis}
alpar@2
  1089
\end{tikzpicture}
alpar@2
  1090
\end{center}
Madarasi@7
  1091
     \end{subfigure}
Madarasi@7
  1092
     \begin{subfigure}[b]{0.55\textwidth}
alpar@2
  1093
\begin{center}
alpar@2
  1094
\begin{tikzpicture}
Madarasi@7
  1095
\begin{axis}[title={Random ISO, $\delta = 100$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
alpar@3
  1096
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
alpar@3
  1097
  west},scaled x ticks = false,x tick label style={/pgf/number
alpar@3
  1098
  format/1000 sep = \thinspace}]
alpar@2
  1099
%\addplot+[only marks] table {proteinsOrig.txt};
alpar@2
  1100
\addplot table {randGraph/iso/vf2pIso100_1.txt};
alpar@3
  1101
\addplot[mark=triangle*,mark size=1.8pt,color=red] table
alpar@3
  1102
        {randGraph/iso/vf2ppIso100_1.txt};
alpar@2
  1103
\end{axis}
alpar@2
  1104
\end{tikzpicture}
Madarasi@23
  1105
\end{center}
Madarasi@7
  1106
\end{subfigure}
alpar@2
  1107
\vspace*{-0.8cm}
Madarasi@23
  1108
\caption{ISO on random graphs.
Madarasi@23
  1109
}\label{fig:randISO}
alpar@2
  1110
\end{figure}
alpar@2
  1111
alpar@2
  1112
alpar@2
  1113
\subsubsection{Induced subgraph isomorphism}
Madarasi@17
  1114
This section presents a comparison of VF2++ and VF2 Plus in the case
alpar@3
  1115
of induced subgraph isomorphism. In addition to the size of the large
alpar@3
  1116
graph, that of the small graph dramatically influences the hardness of
alpar@3
  1117
a given problem too, so the overall picture is provided by examining
alpar@3
  1118
small graphs of various size.
alpar@2
  1119
Madarasi@17
  1120
For each chart, a number $0<\rho< 1$ has been fixed, and the following
Madarasi@19
  1121
has been executed 150 times. Generating a large graph $G_{2}$ of an average degree of $\delta$,
Madarasi@19
  1122
choose 10 of its induced subgraphs having $\rho\ |V_{2}|$ nodes,
alpar@3
  1123
and for all the 10 subgraphs find a mapping by using both the graph
alpar@3
  1124
matching algorithms.  The $\delta = 5, 10, 35$ and $\rho = 0.05, 0.1,
Madarasi@23
  1125
0.3, 0.8$ cases have been examined, see
alpar@4
  1126
Figure~\ref{fig:randIND5}, \ref{fig:randIND10} and
Madarasi@10
  1127
\ref{fig:randIND35}.
alpar@2
  1128
alpar@2
  1129
alpar@2
  1130
alpar@2
  1131
alpar@2
  1132
Madarasi@12
  1133
\begin{figure}
Madarasi@7
  1134
\vspace*{-1.5cm}
Madarasi@7
  1135
\hspace*{-1.5cm}
alpar@2
  1136
\begin{subfigure}[b]{0.55\textwidth}
alpar@2
  1137
\begin{center}
alpar@2
  1138
\begin{tikzpicture}
alpar@2
  1139
\begin{axis}[title={Random IND, $\delta = 5$, $\rho = 0.05$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
alpar@3
  1140
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
alpar@3
  1141
  west},scaled x ticks = false,x tick label style={/pgf/number
alpar@3
  1142
  format/1000 sep = \space}]
alpar@2
  1143
%\addplot+[only marks] table {proteinsOrig.txt};
alpar@2
  1144
\addplot table {randGraph/ind/vf2pInd5_0.05.txt};
alpar@3
  1145
\addplot[mark=triangle*,mark size=1.8pt,color=red] table
alpar@3
  1146
        {randGraph/ind/vf2ppInd5_0.05.txt};
alpar@2
  1147
\end{axis}
alpar@2
  1148
\end{tikzpicture}
alpar@2
  1149
\end{center}
alpar@2
  1150
     \end{subfigure}
alpar@2
  1151
     \begin{subfigure}[b]{0.55\textwidth}
alpar@2
  1152
\begin{center}
alpar@2
  1153
\begin{tikzpicture}
alpar@2
  1154
\begin{axis}[title={Random IND, $\delta = 5$, $\rho = 0.1$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
alpar@3
  1155
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
alpar@3
  1156
  west},scaled x ticks = false,x tick label style={/pgf/number
alpar@3
  1157
  format/1000 sep = \space}]
alpar@2
  1158
%\addplot+[only marks] table {proteinsOrig.txt};
alpar@2
  1159
\addplot table {randGraph/ind/vf2pInd5_0.1.txt};
alpar@3
  1160
\addplot[mark=triangle*,mark size=1.8pt,color=red] table
alpar@3
  1161
        {randGraph/ind/vf2ppInd5_0.1.txt};
alpar@2
  1162
\end{axis}
alpar@2
  1163
\end{tikzpicture}
alpar@2
  1164
\end{center}
alpar@2
  1165
\end{subfigure}
Madarasi@7
  1166
\hspace*{-1.5cm}
alpar@2
  1167
\begin{subfigure}[b]{0.55\textwidth}
alpar@2
  1168
\begin{center}
alpar@2
  1169
\begin{tikzpicture}
alpar@2
  1170
\begin{axis}[title={Random IND, $\delta = 5$, $\rho = 0.3$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
alpar@3
  1171
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
alpar@3
  1172
  west},scaled x ticks = false,x tick label style={/pgf/number
alpar@3
  1173
  format/1000 sep = \space}]
alpar@2
  1174
%\addplot+[only marks] table {proteinsOrig.txt};
alpar@2
  1175
\addplot table {randGraph/ind/vf2pInd5_0.3.txt};
alpar@3
  1176
\addplot[mark=triangle*,mark size=1.8pt,color=red] table
alpar@3
  1177
        {randGraph/ind/vf2ppInd5_0.3.txt};
alpar@2
  1178
\end{axis}
alpar@2
  1179
\end{tikzpicture}
alpar@2
  1180
\end{center}
alpar@2
  1181
     \end{subfigure}
alpar@2
  1182
     \begin{subfigure}[b]{0.55\textwidth}
alpar@2
  1183
\begin{center}
alpar@2
  1184
\begin{tikzpicture}
alpar@2
  1185
\begin{axis}[title={Random IND, $\delta = 5$, $\rho = 0.8$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
alpar@3
  1186
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
alpar@3
  1187
  west},scaled x ticks = false,x tick label style={/pgf/number
alpar@3
  1188
  format/1000 sep = \space}]
alpar@2
  1189
%\addplot+[only marks] table {proteinsOrig.txt};
alpar@2
  1190
\addplot table {randGraph/ind/vf2pInd5_0.8.txt};
alpar@3
  1191
\addplot[mark=triangle*,mark size=1.8pt,color=red] table
alpar@3
  1192
        {randGraph/ind/vf2ppInd5_0.8.txt};
alpar@2
  1193
\end{axis}
alpar@2
  1194
\end{tikzpicture}
Madarasi@23
  1195
\end{center}
alpar@2
  1196
\end{subfigure}
alpar@2
  1197
\vspace*{-0.8cm}
alpar@3
  1198
\caption{IND on graphs having an average degree of
alpar@3
  1199
  5.}\label{fig:randIND5}
alpar@2
  1200
\end{figure}
alpar@2
  1201
alpar@2
  1202
Madarasi@23
  1203
\begin{figure}
Madarasi@7
  1204
\vspace*{-1.5cm}
Madarasi@7
  1205
\hspace*{-1.5cm}
alpar@2
  1206
\begin{subfigure}[b]{0.55\textwidth}
alpar@2
  1207
\begin{center}
Madarasi@7
  1208
\hspace*{-0.5cm}
alpar@2
  1209
\begin{tikzpicture}
alpar@2
  1210
\begin{axis}[title={Random IND, $\delta = 10$, $\rho = 0.05$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
alpar@3
  1211
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
alpar@3
  1212
  west},scaled x ticks = false,x tick label style={/pgf/number
alpar@3
  1213
  format/1000 sep = \space}]
alpar@2
  1214
%\addplot+[only marks] table {proteinsOrig.txt};
alpar@2
  1215
\addplot table {randGraph/ind/vf2pInd10_0.05.txt};
alpar@3
  1216
\addplot[mark=triangle*,mark size=1.8pt,color=red] table
alpar@3
  1217
        {randGraph/ind/vf2ppInd10_0.05.txt};
alpar@2
  1218
\end{axis}
alpar@2
  1219
\end{tikzpicture}
alpar@2
  1220
\end{center}
alpar@2
  1221
     \end{subfigure}
alpar@2
  1222
     \begin{subfigure}[b]{0.55\textwidth}
alpar@2
  1223
\begin{center}
Madarasi@7
  1224
     \hspace*{-0.5cm}
alpar@2
  1225
\begin{tikzpicture}
alpar@2
  1226
\begin{axis}[title={Random IND, $\delta = 10$, $\rho = 0.1$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
alpar@3
  1227
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
alpar@3
  1228
  west},scaled x ticks = false,x tick label style={/pgf/number
alpar@3
  1229
  format/1000 sep = \space}]
alpar@2
  1230
%\addplot+[only marks] table {proteinsOrig.txt};
alpar@2
  1231
\addplot table {randGraph/ind/vf2pInd10_0.1.txt};
alpar@3
  1232
\addplot[mark=triangle*,mark size=1.8pt,color=red] table
alpar@3
  1233
        {randGraph/ind/vf2ppInd10_0.1.txt};
alpar@2
  1234
\end{axis}
alpar@2
  1235
\end{tikzpicture}
alpar@2
  1236
\end{center}
alpar@2
  1237
\end{subfigure}
Madarasi@7
  1238
\hspace*{-1.5cm}
alpar@2
  1239
\begin{subfigure}[b]{0.55\textwidth}
alpar@2
  1240
\begin{center}
alpar@2
  1241
\begin{tikzpicture}
alpar@2
  1242
\begin{axis}[title={Random IND, $\delta = 10$, $\rho = 0.3$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
alpar@3
  1243
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
alpar@3
  1244
  west},scaled x ticks = false,x tick label style={/pgf/number
alpar@3
  1245
  format/1000 sep = \space}]
alpar@2
  1246
%\addplot+[only marks] table {proteinsOrig.txt};
alpar@2
  1247
\addplot table {randGraph/ind/vf2pInd10_0.3.txt};
alpar@3
  1248
\addplot[mark=triangle*,mark size=1.8pt,color=red] table
alpar@3
  1249
        {randGraph/ind/vf2ppInd10_0.3.txt};
alpar@2
  1250
\end{axis}
alpar@2
  1251
\end{tikzpicture}
alpar@2
  1252
\end{center}
alpar@2
  1253
     \end{subfigure}
alpar@2
  1254
     \begin{subfigure}[b]{0.55\textwidth}
alpar@2
  1255
\begin{center}
alpar@2
  1256
\begin{tikzpicture}
alpar@2
  1257
\begin{axis}[title={Random IND, $\delta = 10$, $\rho = 0.8$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
alpar@3
  1258
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
alpar@3
  1259
  west},scaled x ticks = false,x tick label style={/pgf/number
alpar@3
  1260
  format/1000 sep = \space}]
alpar@2
  1261
%\addplot+[only marks] table {proteinsOrig.txt};
alpar@2
  1262
\addplot table {randGraph/ind/vf2pInd10_0.8.txt};
alpar@3
  1263
\addplot[mark=triangle*,mark size=1.8pt,color=red] table
alpar@3
  1264
        {randGraph/ind/vf2ppInd10_0.8.txt};
alpar@2
  1265
\end{axis}
alpar@2
  1266
\end{tikzpicture}
Madarasi@23
  1267
\end{center}
alpar@2
  1268
\end{subfigure}
alpar@2
  1269
\vspace*{-0.8cm}
alpar@3
  1270
\caption{IND on graphs having an average degree of
alpar@3
  1271
  10.}\label{fig:randIND10}
alpar@2
  1272
\end{figure}
alpar@2
  1273
alpar@2
  1274
alpar@2
  1275
Madarasi@23
  1276
\begin{figure}
Madarasi@7
  1277
\vspace*{-1.5cm}
Madarasi@7
  1278
\hspace*{-1.5cm}
alpar@2
  1279
\begin{subfigure}[b]{0.55\textwidth}
alpar@2
  1280
\begin{center}
alpar@2
  1281
\begin{tikzpicture}
alpar@2
  1282
\begin{axis}[title={Random IND, $\delta = 35$, $\rho = 0.05$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
alpar@3
  1283
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
alpar@3
  1284
  west},scaled x ticks = false,x tick label style={/pgf/number
alpar@3
  1285
  format/1000 sep = \space}]
alpar@2
  1286
%\addplot+[only marks] table {proteinsOrig.txt};
alpar@2
  1287
\addplot table {randGraph/ind/vf2pInd35_0.05.txt};
alpar@3
  1288
\addplot[mark=triangle*,mark size=1.8pt,color=red] table
alpar@3
  1289
        {randGraph/ind/vf2ppInd35_0.05.txt};
alpar@2
  1290
\end{axis}
alpar@2
  1291
\end{tikzpicture}
alpar@2
  1292
\end{center}
alpar@2
  1293
     \end{subfigure}
alpar@2
  1294
     \begin{subfigure}[b]{0.55\textwidth}
alpar@2
  1295
\begin{center}
alpar@2
  1296
\begin{tikzpicture}
alpar@2
  1297
\begin{axis}[title={Random IND, $\delta = 35$, $\rho = 0.1$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
alpar@3
  1298
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
alpar@3
  1299
  west},scaled x ticks = false,x tick label style={/pgf/number
alpar@3
  1300
  format/1000 sep = \space}]
alpar@2
  1301
%\addplot+[only marks] table {proteinsOrig.txt};
alpar@2
  1302
\addplot table {randGraph/ind/vf2pInd35_0.1.txt};
alpar@3
  1303
\addplot[mark=triangle*,mark size=1.8pt,color=red] table
alpar@3
  1304
        {randGraph/ind/vf2ppInd35_0.1.txt};
alpar@2
  1305
\end{axis}
alpar@2
  1306
\end{tikzpicture}
alpar@2
  1307
\end{center}
alpar@2
  1308
\end{subfigure}
Madarasi@7
  1309
\hspace*{-1.5cm}
alpar@2
  1310
\begin{subfigure}[b]{0.55\textwidth}
alpar@2
  1311
\begin{center}
alpar@2
  1312
\begin{tikzpicture}
alpar@2
  1313
\begin{axis}[title={Random IND, $\delta = 35$, $\rho = 0.3$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
alpar@3
  1314
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
alpar@3
  1315
  west},scaled x ticks = false,x tick label style={/pgf/number
alpar@3
  1316
  format/1000 sep = \space}]
alpar@2
  1317
%\addplot+[only marks] table {proteinsOrig.txt};
alpar@2
  1318
\addplot table {randGraph/ind/vf2pInd35_0.3.txt};
alpar@3
  1319
\addplot[mark=triangle*,mark size=1.8pt,color=red] table
alpar@3
  1320
        {randGraph/ind/vf2ppInd35_0.3.txt};
alpar@2
  1321
\end{axis}
alpar@2
  1322
\end{tikzpicture}
alpar@2
  1323
\end{center}
alpar@2
  1324
     \end{subfigure}
alpar@2
  1325
     \begin{subfigure}[b]{0.55\textwidth}
alpar@2
  1326
\begin{center}
alpar@2
  1327
\begin{tikzpicture}
alpar@2
  1328
\begin{axis}[title={Random IND, $\delta = 35$, $\rho = 0.8$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
alpar@3
  1329
=major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
alpar@3
  1330
  west},scaled x ticks = false,x tick label style={/pgf/number
alpar@3
  1331
  format/1000 sep = \space}]
alpar@2
  1332
%\addplot+[only marks] table {proteinsOrig.txt};
alpar@2
  1333
\addplot table {randGraph/ind/vf2pInd35_0.8.txt};
alpar@3
  1334
\addplot[mark=triangle*,mark size=1.8pt,color=red] table
alpar@3
  1335
        {randGraph/ind/vf2ppInd35_0.8.txt};
alpar@2
  1336
\end{axis}
alpar@2
  1337
\end{tikzpicture}
Madarasi@23
  1338
\end{center}
alpar@2
  1339
\end{subfigure}
alpar@2
  1340
\vspace*{-0.8cm}
alpar@3
  1341
\caption{IND on graphs having an average degree of
alpar@3
  1342
  35.}\label{fig:randIND35}
alpar@2
  1343
\end{figure}
alpar@2
  1344
alpar@2
  1345
alpar@3
  1346
Based on these experiments, VF2++ is faster than VF2 Plus and able to
alpar@3
  1347
handle really large graphs in milliseconds. Note that when $IND$ was
alpar@3
  1348
considered and the small graphs had proportionally few nodes ($\rho =
alpar@3
  1349
0.05$, or $\rho = 0.1$), then VF2 Plus produced some inefficient node
alpar@4
  1350
orders (e.g. see the $\delta=10$ case on
Madarasi@17
  1351
Figure~\ref{fig:randIND10}). If these instances had been excluded, the
alpar@3
  1352
charts would have seemed to be similar to the other ones.
alpar@3
  1353
Unsurprisingly, as denser graphs are considered, both VF2++ and VF2
alpar@3
  1354
Plus slow slightly down, but remain practically usable even on graphs
alpar@3
  1355
having 10 000 nodes.
alpar@2
  1356
alpar@2
  1357
alpar@2
  1358
alpar@2
  1359
alpar@3
  1360
alpar@2
  1361
\section{Conclusion}
Madarasi@19
  1362
This paper presented VF2++, a new graph matching algorithm based on VF2, called VF2++, and analyzed it from a practical viewpoint.
alpar@2
  1363
alpar@3
  1364
Recognizing the importance of the node order and determining an
alpar@3
  1365
efficient one, VF2++ is able to match graphs of thousands of nodes in
alpar@3
  1366
near practically linear time including preprocessing. In addition to
alpar@3
  1367
the proper order, VF2++ uses more efficient consistency and cutting
alpar@3
  1368
rules which are easy to compute and make the algorithm able to prune
alpar@3
  1369
most of the unfruitful branches without going astray.
alpar@2
  1370
alpar@3
  1371
In order to show the efficiency of the new method, it has been
Madarasi@19
  1372
compared to VF2 Plus\cite{VF2Plus}, which is the best contemporary algorithm.
Madarasi@19
  1373
.
alpar@2
  1374
alpar@3
  1375
The experiments show that VF2++ consistently outperforms VF2 Plus on
alpar@3
  1376
biological graphs. It seems to be asymptotically faster on protein and
alpar@3
  1377
on contact map graphs in the case of induced subgraph isomorphism,
alpar@3
  1378
while in the case of graph isomorphism, it has definitely better
alpar@3
  1379
asymptotic behaviour on protein graphs.
alpar@2
  1380
alpar@3
  1381
Regarding random sparse graphs, not only has VF2++ proved itself to be
Madarasi@19
  1382
faster than VF2 Plus, but it also has a practically linear behaviour both
Madarasi@19
  1383
in the case of induced subgraph- and graph isomorphism.
alpar@2
  1384
alpar@25
  1385
%%%%%%%%%%%%%%%%
alpar@25
  1386
\section*{Acknowledgement} \label{sec:ack}
alpar@25
  1387
%%%%%%%%%%%%%%%%
alpar@25
  1388
This research project was initiated and sponsored by QuantumBio
alpar@25
  1389
Inc.\cite{QUANTUMBIO}.
alpar@25
  1390
alpar@25
  1391
The authors were supported by the Hungarian Scientific Research Fund -
alpar@25
  1392
OTKA, K109240 and by the J\'anos Bolyai Research Fellowship program of
alpar@25
  1393
the Hungarian Academy of Sciences.
alpar@2
  1394
alpar@0
  1395
alpar@0
  1396
%% The Appendices part is started with the command \appendix;
alpar@0
  1397
%% appendix sections are then done as normal sections
alpar@0
  1398
%% \appendix
alpar@0
  1399
alpar@0
  1400
%% \section{}
alpar@0
  1401
%% \label{}
alpar@0
  1402
alpar@0
  1403
%% If you have bibdatabase file and want bibtex to generate the
alpar@0
  1404
%% bibitems, please use
alpar@0
  1405
%%
alpar@3
  1406
\bibliographystyle{elsarticle-num} \bibliography{bibliography}
alpar@0
  1407
alpar@0
  1408
%% else use the following coding to input the bibitems directly in the
alpar@0
  1409
%% TeX file.
alpar@0
  1410
alpar@2
  1411
%% \begin{thebibliography}{00}
alpar@0
  1412
alpar@2
  1413
%% %% \bibitem{label}
alpar@2
  1414
%% %% Text of bibliographic item
alpar@0
  1415
alpar@2
  1416
%% \bibitem{}
alpar@0
  1417
alpar@2
  1418
%% \end{thebibliography}
alpar@2
  1419
alpar@0
  1420
\end{document}
alpar@0
  1421
\endinput
alpar@0
  1422
%%
alpar@0
  1423
%% End of file `elsarticle-template-num.tex'.