1.1 --- a/damecco.tex Wed Nov 23 21:45:11 2016 +0100
1.2 +++ b/damecco.tex Thu Nov 24 22:09:36 2016 +0100
1.3 @@ -402,7 +402,7 @@
1.4 \end{definition}
1.5
1.6 \begin{definition}
1.7 -Mapping M \textbf{covers} a node v, if there exists a pair in M, which
1.8 +Mapping $M$ \textbf{covers} a node v, if there exists a pair in M, which
1.9 contains v.
1.10 \end{definition}
1.11
1.12 @@ -435,42 +435,14 @@
1.13 (Pair(M,u),Pair(M,v))\in E_{large}$.
1.14 \end{center}
1.15
1.16 -\begin{definition}
1.17 -A set of whole mappings is called \textbf{problem type}.
1.18 -\end{definition}
1.19 Throughout the paper, $\mathbf{PT}$ denotes a generic problem type
1.20 -which can be substituted by any problem type.
1.21 -
1.22 -A whole mapping $W\mathbf{\ is\ of\ type\ PT}$, if $W\in PT$. Using
1.23 -this notations, VF2 searches a whole mapping $W$ of type $PT$.
1.24 -
1.25 -For example the problem type of graph isomorphism problem is the
1.26 -following. A whole mapping $W$ is in $\mathbf{ISO}$, iff the
1.27 -bijection represented by $W$ satisfies Definition~\ref{sec:ismorphic}.
1.28 -The subgraph- and induced subgraph matching problems can be formalized
1.29 -in a similar way. Let their problem types be denoted as $\mathbf{SUB}$
1.30 +which can be substituted by any of $\mathbf{ISO}$, $\mathbf{SUB}$
1.31 and $\mathbf{IND}$.
1.32
1.33 \begin{definition}
1.34 -\label{expPT}
1.35 -$PT$ is an \textbf{expanding problem type} if $\ \forall\ W\in
1.36 -PT:\ \forall u_1,u_2\in V_{small}:\ (u_1,u_2)\in E_{small}\Rightarrow
1.37 -(Pair(W,u_1),Pair(W,u_2))\in E_{large}$, that is each edge of
1.38 -$G_{small}$ has to be mapped to an edge of $G_{large}$ for each
1.39 -mapping in $PT$.
1.40 -\end{definition}
1.41 -
1.42 -Note that $ISO$, $SUB$ and $IND$ are expanding problem types.
1.43 -
1.44 -This paper deals with the three problem types mentioned above only,
1.45 -but the following generic definitions make it possible to handle other
1.46 -types as well. Although it may be challenging to find a proper
1.47 -consistency function and an efficient cutting function.
1.48 -
1.49 -\begin{definition}
1.50 Let M be a mapping. A logical function $\mathbf{Cons_{PT}}$ is a
1.51 \textbf{consistency function by } $\mathbf{PT}$, if the following
1.52 -holds. If there exists whole mapping $W$ of type PT for which
1.53 +holds. If there exists whole mapping $W$ of type $PT$ for which
1.54 $M\subseteq W$, then $Cons_{PT}(M)$ is true.
1.55 \end{definition}
1.56
1.57 @@ -478,7 +450,7 @@
1.58 Let M be a mapping. A logical function $\mathbf{Cut_{PT}}$ is a
1.59 \textbf{cutting function by } $\mathbf{PT}$, if the following
1.60 holds. $\mathbf{Cut_{PT}(M)}$ is false if $M$ can be extended to a
1.61 -whole mapping W of type PT.
1.62 +whole mapping $W$ of type $PT$.
1.63 \end{definition}
1.64
1.65 \begin{definition}
1.66 @@ -572,9 +544,7 @@
1.67
1.68 \subsection{The candidate set P(s)}
1.69 \label{candidateComputingVF2}
1.70 -$P(s)$ is the set of the candidate pairs for inclusion in $M(s)$.
1.71 -Suppose that $PT$ is an expanding problem type, see
1.72 -Definition~\ref{expPT}.
1.73 +Let $P(s)$ be the set of the candidate pairs for inclusion in $M(s)$.
1.74
1.75 \begin{notation}
1.76 Let $\mathbf{T_{small}(s)}:=\{u \in V_{small} : u$ is not covered by
1.77 @@ -974,7 +944,7 @@
1.78 Being aware of Claim~\ref{claim:claimCoverFromLeft}, the
1.79 task is not to maintain the candidate set, but to generate the
1.80 candidate nodes in $G_{large}$ for a given node $u\in V_{small}$. In
1.81 -case of an expanding problem type and $M$ mapping, if a node $v\in
1.82 +case of any of the three problem type and a mapping $M$, if a node $v\in
1.83 V_{large}$ is a potential pair of $u\in V_{small}$, then $\forall
1.84 u'\in V_{small} : (u,u')\in
1.85 E_{small}\ and\ u'\ is\ covered\ by\ M\ \Rightarrow (v,Pair(M,u'))\in