1.1 --- a/doc/min_cost_flow.dox Mon Jul 16 16:21:40 2018 +0200
1.2 +++ b/doc/min_cost_flow.dox Wed Oct 17 19:14:07 2018 +0200
1.3 @@ -2,7 +2,7 @@
1.4 *
1.5 * This file is a part of LEMON, a generic C++ optimization library.
1.6 *
1.7 - * Copyright (C) 2003-2010
1.8 + * Copyright (C) 2003-2013
1.9 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
1.10 * (Egervary Research Group on Combinatorial Optimization, EGRES).
1.11 *
1.12 @@ -26,7 +26,7 @@
1.13 The \e minimum \e cost \e flow \e problem is to find a feasible flow of
1.14 minimum total cost from a set of supply nodes to a set of demand nodes
1.15 in a network with capacity constraints (lower and upper bounds)
1.16 -and arc costs \ref amo93networkflows.
1.17 +and arc costs \cite amo93networkflows.
1.18
1.19 Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$,
1.20 \f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and
1.21 @@ -101,7 +101,7 @@
1.22 sup(u) \quad \forall u\in V \f]
1.23 \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
1.24
1.25 -However if the sum of the supply values is zero, then these two problems
1.26 +However, if the sum of the supply values is zero, then these two problems
1.27 are equivalent.
1.28 The \ref min_cost_flow_algs "algorithms" in LEMON support the general
1.29 form, so if you need the equality form, you have to ensure this additional