Uniforming primal scale to 2 (#314)
authorBalazs Dezso <deba@inf.elte.hu>
Thu, 04 Mar 2010 15:20:59 +0100
changeset 95141d7ac528c3a
parent 950 86613aa28a0c
child 953 d8ea85825e02
Uniforming primal scale to 2 (#314)
lemon/fractional_matching.h
test/fractional_matching_test.cc
     1.1 --- a/lemon/fractional_matching.h	Thu Mar 04 10:17:02 2010 +0100
     1.2 +++ b/lemon/fractional_matching.h	Thu Mar 04 15:20:59 2010 +0100
     1.3 @@ -658,10 +658,11 @@
     1.4    /// After it the matching (the primal solution) and the dual solution
     1.5    /// can be obtained using the query functions.
     1.6    ///
     1.7 -  /// If the value type is integer, then the primal and the dual
     1.8 -  /// solutions are multiplied by
     1.9 -  /// \ref MaxWeightedFractionalMatching::primalScale "2" and
    1.10 -  /// \ref MaxWeightedFractionalMatching::dualScale "4" respectively.
    1.11 +  /// The primal solution is multiplied by
    1.12 +  /// \ref MaxWeightedFractionalMatching::primalScale "2".
    1.13 +  /// If the value type is integer, then the dual
    1.14 +  /// solution is scaled by
    1.15 +  /// \ref MaxWeightedFractionalMatching::dualScale "4".
    1.16    ///
    1.17    /// \tparam GR The undirected graph type the algorithm runs on.
    1.18    /// \tparam WM The type edge weight map. The default type is
    1.19 @@ -688,10 +689,8 @@
    1.20  
    1.21      /// \brief Scaling factor for primal solution
    1.22      ///
    1.23 -    /// Scaling factor for primal solution. It is equal to 2 or 1
    1.24 -    /// according to the value type.
    1.25 -    static const int primalScale =
    1.26 -      std::numeric_limits<Value>::is_integer ? 2 : 1;
    1.27 +    /// Scaling factor for primal solution.
    1.28 +    static const int primalScale = 2;
    1.29  
    1.30      /// \brief Scaling factor for dual solution
    1.31      ///
    1.32 @@ -1329,10 +1328,9 @@
    1.33      /// "primal scale".
    1.34      ///
    1.35      /// \pre Either run() or start() must be called before using this function.
    1.36 -    Value matching(const Edge& edge) const {
    1.37 -      return Value(edge == (*_matching)[_graph.u(edge)] ? 1 : 0)
    1.38 -        * primalScale / 2 + Value(edge == (*_matching)[_graph.v(edge)] ? 1 : 0)
    1.39 -        * primalScale / 2;
    1.40 +    int matching(const Edge& edge) const {
    1.41 +      return (edge == (*_matching)[_graph.u(edge)] ? 1 : 0)
    1.42 +        + (edge == (*_matching)[_graph.v(edge)] ? 1 : 0);
    1.43      }
    1.44  
    1.45      /// \brief Return the fractional matching arc (or edge) incident
    1.46 @@ -1423,11 +1421,12 @@
    1.47    /// The algorithm can be executed with the run() function.
    1.48    /// After it the matching (the primal solution) and the dual solution
    1.49    /// can be obtained using the query functions.
    1.50 -
    1.51 -  /// If the value type is integer, then the primal and the dual
    1.52 -  /// solutions are multiplied by
    1.53 -  /// \ref MaxWeightedPerfectFractionalMatching::primalScale "2" and
    1.54 -  /// \ref MaxWeightedPerfectFractionalMatching::dualScale "4" respectively.
    1.55 +  ///
    1.56 +  /// The primal solution is multiplied by
    1.57 +  /// \ref MaxWeightedPerfectFractionalMatching::primalScale "2".
    1.58 +  /// If the value type is integer, then the dual
    1.59 +  /// solution is scaled by
    1.60 +  /// \ref MaxWeightedPerfectFractionalMatching::dualScale "4".
    1.61    ///
    1.62    /// \tparam GR The undirected graph type the algorithm runs on.
    1.63    /// \tparam WM The type edge weight map. The default type is
    1.64 @@ -1454,10 +1453,8 @@
    1.65  
    1.66      /// \brief Scaling factor for primal solution
    1.67      ///
    1.68 -    /// Scaling factor for primal solution. It is equal to 2 or 1
    1.69 -    /// according to the value type.
    1.70 -    static const int primalScale =
    1.71 -      std::numeric_limits<Value>::is_integer ? 2 : 1;
    1.72 +    /// Scaling factor for primal solution.
    1.73 +    static const int primalScale = 2;
    1.74  
    1.75      /// \brief Scaling factor for dual solution
    1.76      ///
    1.77 @@ -2064,10 +2061,9 @@
    1.78      /// "primal scale".
    1.79      ///
    1.80      /// \pre Either run() or start() must be called before using this function.
    1.81 -    Value matching(const Edge& edge) const {
    1.82 -      return Value(edge == (*_matching)[_graph.u(edge)] ? 1 : 0)
    1.83 -        * primalScale / 2 + Value(edge == (*_matching)[_graph.v(edge)] ? 1 : 0)
    1.84 -        * primalScale / 2;
    1.85 +    int matching(const Edge& edge) const {
    1.86 +      return (edge == (*_matching)[_graph.u(edge)] ? 1 : 0)
    1.87 +        + (edge == (*_matching)[_graph.v(edge)] ? 1 : 0);
    1.88      }
    1.89  
    1.90      /// \brief Return the fractional matching arc (or edge) incident
     2.1 --- a/test/fractional_matching_test.cc	Thu Mar 04 10:17:02 2010 +0100
     2.2 +++ b/test/fractional_matching_test.cc	Thu Mar 04 15:20:59 2010 +0100
     2.3 @@ -236,6 +236,12 @@
     2.4    }
     2.5    check(pv == mfm.matchingSize(), "Wrong matching size");
     2.6  
     2.7 +  for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
     2.8 +    check((e == mfm.matching(graph.u(e)) ? 1 : 0) +
     2.9 +          (e == mfm.matching(graph.v(e)) ? 1 : 0) == 
    2.10 +          mfm.matching(e), "Invalid matching");
    2.11 +  }
    2.12 +
    2.13    SmartGraph::NodeMap<bool> processed(graph, false);
    2.14    for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
    2.15      if (processed[n]) continue;
    2.16 @@ -284,6 +290,11 @@
    2.17        check(mfm.matching(n) != INVALID, "Invalid matching");
    2.18        check(indeg == 1, "Invalid matching");
    2.19      }
    2.20 +    for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
    2.21 +      check((e == mfm.matching(graph.u(e)) ? 1 : 0) +
    2.22 +            (e == mfm.matching(graph.v(e)) ? 1 : 0) == 
    2.23 +            mfm.matching(e), "Invalid matching");
    2.24 +    }
    2.25    } else {
    2.26      int anum = 0, bnum = 0;
    2.27      SmartGraph::NodeMap<bool> neighbours(graph, false);
    2.28 @@ -337,6 +348,12 @@
    2.29      }
    2.30    }
    2.31  
    2.32 +  for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
    2.33 +    check((e == mwfm.matching(graph.u(e)) ? 1 : 0) +
    2.34 +          (e == mwfm.matching(graph.v(e)) ? 1 : 0) == 
    2.35 +          mwfm.matching(e), "Invalid matching");
    2.36 +  }
    2.37 +
    2.38    int dv = 0;
    2.39    for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
    2.40      dv += mwfm.nodeValue(n);
    2.41 @@ -391,6 +408,12 @@
    2.42      SmartGraph::Node o = graph.target(mwpfm.matching(n));
    2.43    }
    2.44  
    2.45 +  for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
    2.46 +    check((e == mwpfm.matching(graph.u(e)) ? 1 : 0) +
    2.47 +          (e == mwpfm.matching(graph.v(e)) ? 1 : 0) == 
    2.48 +          mwpfm.matching(e), "Invalid matching");
    2.49 +  }
    2.50 +
    2.51    int dv = 0;
    2.52    for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
    2.53      dv += mwpfm.nodeValue(n);