Fix documentation issues (#314)
authorBalazs Dezso <deba@inf.elte.hu>
Thu, 04 Mar 2010 10:17:02 +0100
changeset 95086613aa28a0c
parent 949 61120524af27
child 951 41d7ac528c3a
Fix documentation issues (#314)
lemon/fractional_matching.h
     1.1 --- a/lemon/fractional_matching.h	Sat Sep 26 10:17:31 2009 +0200
     1.2 +++ b/lemon/fractional_matching.h	Thu Mar 04 10:17:02 2010 +0100
     1.3 @@ -111,7 +111,7 @@
     1.4    /// solution) can be obtained using the query functions.
     1.5    ///
     1.6    /// The primal solution is multiplied by
     1.7 -  /// \ref MaxWeightedMatching::primalScale "2".
     1.8 +  /// \ref MaxFractionalMatching::primalScale "2".
     1.9    ///
    1.10    /// \tparam GR The undirected graph type the algorithm runs on.
    1.11  #ifdef DOXYGEN
    1.12 @@ -632,9 +632,8 @@
    1.13    /// \brief Weighted fractional matching in general graphs
    1.14    ///
    1.15    /// This class provides an efficient implementation of fractional
    1.16 -  /// matching algorithm. The implementation is based on extensive use
    1.17 -  /// of priority queues and provides \f$O(nm\log n)\f$ time
    1.18 -  /// complexity.
    1.19 +  /// matching algorithm. The implementation uses priority queues and
    1.20 +  /// provides \f$O(nm\log n)\f$ time complexity.
    1.21    ///
    1.22    /// The maximum weighted fractional matching is a relaxation of the
    1.23    /// maximum weighted matching problem where the odd set constraints
    1.24 @@ -653,7 +652,7 @@
    1.25    /// problem is the following.
    1.26    /// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f]
    1.27    /// \f[y_u \ge 0 \quad \forall u \in V\f]
    1.28 -  /// \f[\min \sum_{u \in V}y_u \f] ///
    1.29 +  /// \f[\min \sum_{u \in V}y_u \f]
    1.30    ///
    1.31    /// The algorithm can be executed with the run() function.
    1.32    /// After it the matching (the primal solution) and the dual solution
    1.33 @@ -661,8 +660,8 @@
    1.34    ///
    1.35    /// If the value type is integer, then the primal and the dual
    1.36    /// solutions are multiplied by
    1.37 -  /// \ref MaxWeightedMatching::primalScale "2" and
    1.38 -  /// \ref MaxWeightedMatching::dualScale "4" respectively.
    1.39 +  /// \ref MaxWeightedFractionalMatching::primalScale "2" and
    1.40 +  /// \ref MaxWeightedFractionalMatching::dualScale "4" respectively.
    1.41    ///
    1.42    /// \tparam GR The undirected graph type the algorithm runs on.
    1.43    /// \tparam WM The type edge weight map. The default type is
    1.44 @@ -1270,7 +1269,7 @@
    1.45  
    1.46      /// \brief Run the algorithm.
    1.47      ///
    1.48 -    /// This method runs the \c %MaxWeightedMatching algorithm.
    1.49 +    /// This method runs the \c %MaxWeightedFractionalMatching algorithm.
    1.50      ///
    1.51      /// \note mwfm.run() is just a shortcut of the following code.
    1.52      /// \code
    1.53 @@ -1400,9 +1399,8 @@
    1.54    /// \brief Weighted fractional perfect matching in general graphs
    1.55    ///
    1.56    /// This class provides an efficient implementation of fractional
    1.57 -  /// matching algorithm. The implementation is based on extensive use
    1.58 -  /// of priority queues and provides \f$O(nm\log n)\f$ time
    1.59 -  /// complexity.
    1.60 +  /// matching algorithm. The implementation uses priority queues and
    1.61 +  /// provides \f$O(nm\log n)\f$ time complexity.
    1.62    ///
    1.63    /// The maximum weighted fractional perfect matching is a relaxation
    1.64    /// of the maximum weighted perfect matching problem where the odd
    1.65 @@ -1420,7 +1418,7 @@
    1.66    /// used to check the result of the algorithm. The dual linear
    1.67    /// problem is the following.
    1.68    /// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f]
    1.69 -  /// \f[\min \sum_{u \in V}y_u \f] ///
    1.70 +  /// \f[\min \sum_{u \in V}y_u \f]
    1.71    ///
    1.72    /// The algorithm can be executed with the run() function.
    1.73    /// After it the matching (the primal solution) and the dual solution
    1.74 @@ -1428,8 +1426,8 @@
    1.75  
    1.76    /// If the value type is integer, then the primal and the dual
    1.77    /// solutions are multiplied by
    1.78 -  /// \ref MaxWeightedMatching::primalScale "2" and
    1.79 -  /// \ref MaxWeightedMatching::dualScale "4" respectively.
    1.80 +  /// \ref MaxWeightedPerfectFractionalMatching::primalScale "2" and
    1.81 +  /// \ref MaxWeightedPerfectFractionalMatching::dualScale "4" respectively.
    1.82    ///
    1.83    /// \tparam GR The undirected graph type the algorithm runs on.
    1.84    /// \tparam WM The type edge weight map. The default type is
    1.85 @@ -2005,7 +2003,8 @@
    1.86  
    1.87      /// \brief Run the algorithm.
    1.88      ///
    1.89 -    /// This method runs the \c %MaxWeightedMatching algorithm.
    1.90 +    /// This method runs the \c %MaxWeightedPerfectFractionalMatching 
    1.91 +    /// algorithm.
    1.92      ///
    1.93      /// \note mwfm.run() is just a shortcut of the following code.
    1.94      /// \code