Port maximum matching algorithms from svn 3498 (ticket #48)
authorBalazs Dezso <deba@inf.elte.hu>
Mon, 13 Oct 2008 13:56:00 +0200
changeset 33864ad48007fb2
parent 322 6dbd5184c6a9
child 339 91d63b8b1a4c
Port maximum matching algorithms from svn 3498 (ticket #48)
lemon/Makefile.am
lemon/max_matching.h
test/CMakeLists.txt
test/Makefile.am
test/max_matching_test.cc
test/max_weighted_matching_test.cc
     1.1 --- a/lemon/Makefile.am	Sun Oct 12 19:35:48 2008 +0100
     1.2 +++ b/lemon/Makefile.am	Mon Oct 13 13:56:00 2008 +0200
     1.3 @@ -35,6 +35,7 @@
     1.4  	lemon/list_graph.h \
     1.5  	lemon/maps.h \
     1.6  	lemon/math.h \
     1.7 +	lemon/max_matching.h \
     1.8  	lemon/path.h \
     1.9          lemon/random.h \
    1.10  	lemon/smart_graph.h \
     2.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     2.2 +++ b/lemon/max_matching.h	Mon Oct 13 13:56:00 2008 +0200
     2.3 @@ -0,0 +1,3112 @@
     2.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     2.5 + *
     2.6 + * This file is a part of LEMON, a generic C++ optimization library.
     2.7 + *
     2.8 + * Copyright (C) 2003-2008
     2.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    2.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    2.11 + *
    2.12 + * Permission to use, modify and distribute this software is granted
    2.13 + * provided that this copyright notice appears in all copies. For
    2.14 + * precise terms see the accompanying LICENSE file.
    2.15 + *
    2.16 + * This software is provided "AS IS" with no warranty of any kind,
    2.17 + * express or implied, and with no claim as to its suitability for any
    2.18 + * purpose.
    2.19 + *
    2.20 + */
    2.21 +
    2.22 +#ifndef LEMON_MAX_MATCHING_H
    2.23 +#define LEMON_MAX_MATCHING_H
    2.24 +
    2.25 +#include <vector>
    2.26 +#include <queue>
    2.27 +#include <set>
    2.28 +#include <limits>
    2.29 +
    2.30 +#include <lemon/core.h>
    2.31 +#include <lemon/unionfind.h>
    2.32 +#include <lemon/bin_heap.h>
    2.33 +#include <lemon/maps.h>
    2.34 +
    2.35 +///\ingroup matching
    2.36 +///\file
    2.37 +///\brief Maximum matching algorithms in graph.
    2.38 +
    2.39 +namespace lemon {
    2.40 +
    2.41 +  ///\ingroup matching
    2.42 +  ///
    2.43 +  ///\brief Edmonds' alternating forest maximum matching algorithm.
    2.44 +  ///
    2.45 +  ///This class provides Edmonds' alternating forest matching
    2.46 +  ///algorithm. The starting matching (if any) can be passed to the
    2.47 +  ///algorithm using some of init functions.
    2.48 +  ///
    2.49 +  ///The dual side of a matching is a map of the nodes to
    2.50 +  ///MaxMatching::DecompType, having values \c D, \c A and \c C
    2.51 +  ///showing the Gallai-Edmonds decomposition of the digraph. The nodes
    2.52 +  ///in \c D induce a digraph with factor-critical components, the nodes
    2.53 +  ///in \c A form the barrier, and the nodes in \c C induce a digraph
    2.54 +  ///having a perfect matching. This decomposition can be attained by
    2.55 +  ///calling \c decomposition() after running the algorithm.
    2.56 +  ///
    2.57 +  ///\param Digraph The graph type the algorithm runs on.
    2.58 +  template <typename Graph>
    2.59 +  class MaxMatching {
    2.60 +
    2.61 +  protected:
    2.62 +
    2.63 +    TEMPLATE_GRAPH_TYPEDEFS(Graph);
    2.64 +
    2.65 +    typedef typename Graph::template NodeMap<int> UFECrossRef;
    2.66 +    typedef UnionFindEnum<UFECrossRef> UFE;
    2.67 +    typedef std::vector<Node> NV;
    2.68 +
    2.69 +    typedef typename Graph::template NodeMap<int> EFECrossRef;
    2.70 +    typedef ExtendFindEnum<EFECrossRef> EFE;
    2.71 +
    2.72 +  public:
    2.73 +
    2.74 +    ///\brief Indicates the Gallai-Edmonds decomposition of the digraph.
    2.75 +    ///
    2.76 +    ///Indicates the Gallai-Edmonds decomposition of the digraph, which
    2.77 +    ///shows an upper bound on the size of a maximum matching. The
    2.78 +    ///nodes with DecompType \c D induce a digraph with factor-critical
    2.79 +    ///components, the nodes in \c A form the canonical barrier, and the
    2.80 +    ///nodes in \c C induce a digraph having a perfect matching.
    2.81 +    enum DecompType {
    2.82 +      D=0,
    2.83 +      A=1,
    2.84 +      C=2
    2.85 +    };
    2.86 +
    2.87 +  protected:
    2.88 +
    2.89 +    static const int HEUR_density=2;
    2.90 +    const Graph& g;
    2.91 +    typename Graph::template NodeMap<Node> _mate;
    2.92 +    typename Graph::template NodeMap<DecompType> position;
    2.93 +
    2.94 +  public:
    2.95 +
    2.96 +    MaxMatching(const Graph& _g)
    2.97 +      : g(_g), _mate(_g), position(_g) {}
    2.98 +
    2.99 +    ///\brief Sets the actual matching to the empty matching.
   2.100 +    ///
   2.101 +    ///Sets the actual matching to the empty matching.
   2.102 +    ///
   2.103 +    void init() {
   2.104 +      for(NodeIt v(g); v!=INVALID; ++v) {
   2.105 +        _mate.set(v,INVALID);
   2.106 +        position.set(v,C);
   2.107 +      }
   2.108 +    }
   2.109 +
   2.110 +    ///\brief Finds a greedy matching for initial matching.
   2.111 +    ///
   2.112 +    ///For initial matchig it finds a maximal greedy matching.
   2.113 +    void greedyInit() {
   2.114 +      for(NodeIt v(g); v!=INVALID; ++v) {
   2.115 +        _mate.set(v,INVALID);
   2.116 +        position.set(v,C);
   2.117 +      }
   2.118 +      for(NodeIt v(g); v!=INVALID; ++v)
   2.119 +        if ( _mate[v]==INVALID ) {
   2.120 +          for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) {
   2.121 +            Node y=g.runningNode(e);
   2.122 +            if ( _mate[y]==INVALID && y!=v ) {
   2.123 +              _mate.set(v,y);
   2.124 +              _mate.set(y,v);
   2.125 +              break;
   2.126 +            }
   2.127 +          }
   2.128 +        }
   2.129 +    }
   2.130 +
   2.131 +    ///\brief Initialize the matching from each nodes' mate.
   2.132 +    ///
   2.133 +    ///Initialize the matching from a \c Node valued \c Node map. This
   2.134 +    ///map must be \e symmetric, i.e. if \c map[u]==v then \c
   2.135 +    ///map[v]==u must hold, and \c uv will be an arc of the initial
   2.136 +    ///matching.
   2.137 +    template <typename MateMap>
   2.138 +    void mateMapInit(MateMap& map) {
   2.139 +      for(NodeIt v(g); v!=INVALID; ++v) {
   2.140 +        _mate.set(v,map[v]);
   2.141 +        position.set(v,C);
   2.142 +      }
   2.143 +    }
   2.144 +
   2.145 +    ///\brief Initialize the matching from a node map with the
   2.146 +    ///incident matching arcs.
   2.147 +    ///
   2.148 +    ///Initialize the matching from an \c Edge valued \c Node map. \c
   2.149 +    ///map[v] must be an \c Edge incident to \c v. This map must have
   2.150 +    ///the property that if \c g.oppositeNode(u,map[u])==v then \c \c
   2.151 +    ///g.oppositeNode(v,map[v])==u holds, and now some arc joining \c
   2.152 +    ///u to \c v will be an arc of the matching.
   2.153 +    template<typename MatchingMap>
   2.154 +    void matchingMapInit(MatchingMap& map) {
   2.155 +      for(NodeIt v(g); v!=INVALID; ++v) {
   2.156 +        position.set(v,C);
   2.157 +        Edge e=map[v];
   2.158 +        if ( e!=INVALID )
   2.159 +          _mate.set(v,g.oppositeNode(v,e));
   2.160 +        else
   2.161 +          _mate.set(v,INVALID);
   2.162 +      }
   2.163 +    }
   2.164 +
   2.165 +    ///\brief Initialize the matching from the map containing the
   2.166 +    ///undirected matching arcs.
   2.167 +    ///
   2.168 +    ///Initialize the matching from a \c bool valued \c Edge map. This
   2.169 +    ///map must have the property that there are no two incident arcs
   2.170 +    ///\c e, \c f with \c map[e]==map[f]==true. The arcs \c e with \c
   2.171 +    ///map[e]==true form the matching.
   2.172 +    template <typename MatchingMap>
   2.173 +    void matchingInit(MatchingMap& map) {
   2.174 +      for(NodeIt v(g); v!=INVALID; ++v) {
   2.175 +        _mate.set(v,INVALID);
   2.176 +        position.set(v,C);
   2.177 +      }
   2.178 +      for(EdgeIt e(g); e!=INVALID; ++e) {
   2.179 +        if ( map[e] ) {
   2.180 +          Node u=g.u(e);
   2.181 +          Node v=g.v(e);
   2.182 +          _mate.set(u,v);
   2.183 +          _mate.set(v,u);
   2.184 +        }
   2.185 +      }
   2.186 +    }
   2.187 +
   2.188 +
   2.189 +    ///\brief Runs Edmonds' algorithm.
   2.190 +    ///
   2.191 +    ///Runs Edmonds' algorithm for sparse digraphs (number of arcs <
   2.192 +    ///2*number of nodes), and a heuristical Edmonds' algorithm with a
   2.193 +    ///heuristic of postponing shrinks for dense digraphs.
   2.194 +    void run() {
   2.195 +      if (countEdges(g) < HEUR_density * countNodes(g)) {
   2.196 +        greedyInit();
   2.197 +        startSparse();
   2.198 +      } else {
   2.199 +        init();
   2.200 +        startDense();
   2.201 +      }
   2.202 +    }
   2.203 +
   2.204 +
   2.205 +    ///\brief Starts Edmonds' algorithm.
   2.206 +    ///
   2.207 +    ///If runs the original Edmonds' algorithm.
   2.208 +    void startSparse() {
   2.209 +
   2.210 +      typename Graph::template NodeMap<Node> ear(g,INVALID);
   2.211 +      //undefined for the base nodes of the blossoms (i.e. for the
   2.212 +      //representative elements of UFE blossom) and for the nodes in C
   2.213 +
   2.214 +      UFECrossRef blossom_base(g);
   2.215 +      UFE blossom(blossom_base);
   2.216 +      NV rep(countNodes(g));
   2.217 +
   2.218 +      EFECrossRef tree_base(g);
   2.219 +      EFE tree(tree_base);
   2.220 +
   2.221 +      //If these UFE's would be members of the class then also
   2.222 +      //blossom_base and tree_base should be a member.
   2.223 +
   2.224 +      //We build only one tree and the other vertices uncovered by the
   2.225 +      //matching belong to C. (They can be considered as singleton
   2.226 +      //trees.) If this tree can be augmented or no more
   2.227 +      //grow/augmentation/shrink is possible then we return to this
   2.228 +      //"for" cycle.
   2.229 +      for(NodeIt v(g); v!=INVALID; ++v) {
   2.230 +        if (position[v]==C && _mate[v]==INVALID) {
   2.231 +          rep[blossom.insert(v)] = v;
   2.232 +          tree.insert(v);
   2.233 +          position.set(v,D);
   2.234 +          normShrink(v, ear, blossom, rep, tree);
   2.235 +        }
   2.236 +      }
   2.237 +    }
   2.238 +
   2.239 +    ///\brief Starts Edmonds' algorithm.
   2.240 +    ///
   2.241 +    ///It runs Edmonds' algorithm with a heuristic of postponing
   2.242 +    ///shrinks, giving a faster algorithm for dense digraphs.
   2.243 +    void startDense() {
   2.244 +
   2.245 +      typename Graph::template NodeMap<Node> ear(g,INVALID);
   2.246 +      //undefined for the base nodes of the blossoms (i.e. for the
   2.247 +      //representative elements of UFE blossom) and for the nodes in C
   2.248 +
   2.249 +      UFECrossRef blossom_base(g);
   2.250 +      UFE blossom(blossom_base);
   2.251 +      NV rep(countNodes(g));
   2.252 +
   2.253 +      EFECrossRef tree_base(g);
   2.254 +      EFE tree(tree_base);
   2.255 +
   2.256 +      //If these UFE's would be members of the class then also
   2.257 +      //blossom_base and tree_base should be a member.
   2.258 +
   2.259 +      //We build only one tree and the other vertices uncovered by the
   2.260 +      //matching belong to C. (They can be considered as singleton
   2.261 +      //trees.) If this tree can be augmented or no more
   2.262 +      //grow/augmentation/shrink is possible then we return to this
   2.263 +      //"for" cycle.
   2.264 +      for(NodeIt v(g); v!=INVALID; ++v) {
   2.265 +        if ( position[v]==C && _mate[v]==INVALID ) {
   2.266 +          rep[blossom.insert(v)] = v;
   2.267 +          tree.insert(v);
   2.268 +          position.set(v,D);
   2.269 +          lateShrink(v, ear, blossom, rep, tree);
   2.270 +        }
   2.271 +      }
   2.272 +    }
   2.273 +
   2.274 +
   2.275 +
   2.276 +    ///\brief Returns the size of the actual matching stored.
   2.277 +    ///
   2.278 +    ///Returns the size of the actual matching stored. After \ref
   2.279 +    ///run() it returns the size of a maximum matching in the digraph.
   2.280 +    int size() const {
   2.281 +      int s=0;
   2.282 +      for(NodeIt v(g); v!=INVALID; ++v) {
   2.283 +        if ( _mate[v]!=INVALID ) {
   2.284 +          ++s;
   2.285 +        }
   2.286 +      }
   2.287 +      return s/2;
   2.288 +    }
   2.289 +
   2.290 +
   2.291 +    ///\brief Returns the mate of a node in the actual matching.
   2.292 +    ///
   2.293 +    ///Returns the mate of a \c node in the actual matching.
   2.294 +    ///Returns INVALID if the \c node is not covered by the actual matching.
   2.295 +    Node mate(const Node& node) const {
   2.296 +      return _mate[node];
   2.297 +    }
   2.298 +
   2.299 +    ///\brief Returns the matching arc incident to the given node.
   2.300 +    ///
   2.301 +    ///Returns the matching arc of a \c node in the actual matching.
   2.302 +    ///Returns INVALID if the \c node is not covered by the actual matching.
   2.303 +    Edge matchingArc(const Node& node) const {
   2.304 +      if (_mate[node] == INVALID) return INVALID;
   2.305 +      Node n = node < _mate[node] ? node : _mate[node];
   2.306 +      for (IncEdgeIt e(g, n); e != INVALID; ++e) {
   2.307 +        if (g.oppositeNode(n, e) == _mate[n]) {
   2.308 +          return e;
   2.309 +        }
   2.310 +      }
   2.311 +      return INVALID;
   2.312 +    }
   2.313 +
   2.314 +    /// \brief Returns the class of the node in the Edmonds-Gallai
   2.315 +    /// decomposition.
   2.316 +    ///
   2.317 +    /// Returns the class of the node in the Edmonds-Gallai
   2.318 +    /// decomposition.
   2.319 +    DecompType decomposition(const Node& n) {
   2.320 +      return position[n] == A;
   2.321 +    }
   2.322 +
   2.323 +    /// \brief Returns true when the node is in the barrier.
   2.324 +    ///
   2.325 +    /// Returns true when the node is in the barrier.
   2.326 +    bool barrier(const Node& n) {
   2.327 +      return position[n] == A;
   2.328 +    }
   2.329 +
   2.330 +    ///\brief Gives back the matching in a \c Node of mates.
   2.331 +    ///
   2.332 +    ///Writes the stored matching to a \c Node valued \c Node map. The
   2.333 +    ///resulting map will be \e symmetric, i.e. if \c map[u]==v then \c
   2.334 +    ///map[v]==u will hold, and now \c uv is an arc of the matching.
   2.335 +    template <typename MateMap>
   2.336 +    void mateMap(MateMap& map) const {
   2.337 +      for(NodeIt v(g); v!=INVALID; ++v) {
   2.338 +        map.set(v,_mate[v]);
   2.339 +      }
   2.340 +    }
   2.341 +
   2.342 +    ///\brief Gives back the matching in an \c Edge valued \c Node
   2.343 +    ///map.
   2.344 +    ///
   2.345 +    ///Writes the stored matching to an \c Edge valued \c Node
   2.346 +    ///map. \c map[v] will be an \c Edge incident to \c v. This
   2.347 +    ///map will have the property that if \c g.oppositeNode(u,map[u])
   2.348 +    ///== v then \c map[u]==map[v] holds, and now this arc is an arc
   2.349 +    ///of the matching.
   2.350 +    template <typename MatchingMap>
   2.351 +    void matchingMap(MatchingMap& map)  const {
   2.352 +      typename Graph::template NodeMap<bool> todo(g,true);
   2.353 +      for(NodeIt v(g); v!=INVALID; ++v) {
   2.354 +        if (_mate[v]!=INVALID && v < _mate[v]) {
   2.355 +          Node u=_mate[v];
   2.356 +          for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   2.357 +            if ( g.runningNode(e) == u ) {
   2.358 +              map.set(u,e);
   2.359 +              map.set(v,e);
   2.360 +              todo.set(u,false);
   2.361 +              todo.set(v,false);
   2.362 +              break;
   2.363 +            }
   2.364 +          }
   2.365 +        }
   2.366 +      }
   2.367 +    }
   2.368 +
   2.369 +
   2.370 +    ///\brief Gives back the matching in a \c bool valued \c Edge
   2.371 +    ///map.
   2.372 +    ///
   2.373 +    ///Writes the matching stored to a \c bool valued \c Arc
   2.374 +    ///map. This map will have the property that there are no two
   2.375 +    ///incident arcs \c e, \c f with \c map[e]==map[f]==true. The
   2.376 +    ///arcs \c e with \c map[e]==true form the matching.
   2.377 +    template<typename MatchingMap>
   2.378 +    void matching(MatchingMap& map) const {
   2.379 +      for(EdgeIt e(g); e!=INVALID; ++e) map.set(e,false);
   2.380 +
   2.381 +      typename Graph::template NodeMap<bool> todo(g,true);
   2.382 +      for(NodeIt v(g); v!=INVALID; ++v) {
   2.383 +        if ( todo[v] && _mate[v]!=INVALID ) {
   2.384 +          Node u=_mate[v];
   2.385 +          for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   2.386 +            if ( g.runningNode(e) == u ) {
   2.387 +              map.set(e,true);
   2.388 +              todo.set(u,false);
   2.389 +              todo.set(v,false);
   2.390 +              break;
   2.391 +            }
   2.392 +          }
   2.393 +        }
   2.394 +      }
   2.395 +    }
   2.396 +
   2.397 +
   2.398 +    ///\brief Returns the canonical decomposition of the digraph after running
   2.399 +    ///the algorithm.
   2.400 +    ///
   2.401 +    ///After calling any run methods of the class, it writes the
   2.402 +    ///Gallai-Edmonds canonical decomposition of the digraph. \c map
   2.403 +    ///must be a node map of \ref DecompType 's.
   2.404 +    template <typename DecompositionMap>
   2.405 +    void decomposition(DecompositionMap& map) const {
   2.406 +      for(NodeIt v(g); v!=INVALID; ++v) map.set(v,position[v]);
   2.407 +    }
   2.408 +
   2.409 +    ///\brief Returns a barrier on the nodes.
   2.410 +    ///
   2.411 +    ///After calling any run methods of the class, it writes a
   2.412 +    ///canonical barrier on the nodes. The odd component number of the
   2.413 +    ///remaining digraph minus the barrier size is a lower bound for the
   2.414 +    ///uncovered nodes in the digraph. The \c map must be a node map of
   2.415 +    ///bools.
   2.416 +    template <typename BarrierMap>
   2.417 +    void barrier(BarrierMap& barrier) {
   2.418 +      for(NodeIt v(g); v!=INVALID; ++v) barrier.set(v,position[v] == A);
   2.419 +    }
   2.420 +
   2.421 +  private:
   2.422 +
   2.423 +
   2.424 +    void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,
   2.425 +                    UFE& blossom, NV& rep, EFE& tree) {
   2.426 +      //We have one tree which we grow, and also shrink but only if it
   2.427 +      //cannot be postponed. If we augment then we return to the "for"
   2.428 +      //cycle of runEdmonds().
   2.429 +
   2.430 +      std::queue<Node> Q;   //queue of the totally unscanned nodes
   2.431 +      Q.push(v);
   2.432 +      std::queue<Node> R;
   2.433 +      //queue of the nodes which must be scanned for a possible shrink
   2.434 +
   2.435 +      while ( !Q.empty() ) {
   2.436 +        Node x=Q.front();
   2.437 +        Q.pop();
   2.438 +        for( IncEdgeIt e(g,x); e!= INVALID; ++e ) {
   2.439 +          Node y=g.runningNode(e);
   2.440 +          //growOrAugment grows if y is covered by the matching and
   2.441 +          //augments if not. In this latter case it returns 1.
   2.442 +          if (position[y]==C &&
   2.443 +              growOrAugment(y, x, ear, blossom, rep, tree, Q)) return;
   2.444 +        }
   2.445 +        R.push(x);
   2.446 +      }
   2.447 +
   2.448 +      while ( !R.empty() ) {
   2.449 +        Node x=R.front();
   2.450 +        R.pop();
   2.451 +
   2.452 +        for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) {
   2.453 +          Node y=g.runningNode(e);
   2.454 +
   2.455 +          if ( position[y] == D && blossom.find(x) != blossom.find(y) )
   2.456 +            //Recall that we have only one tree.
   2.457 +            shrink( x, y, ear, blossom, rep, tree, Q);
   2.458 +
   2.459 +          while ( !Q.empty() ) {
   2.460 +            Node z=Q.front();
   2.461 +            Q.pop();
   2.462 +            for( IncEdgeIt f(g,z); f!= INVALID; ++f ) {
   2.463 +              Node w=g.runningNode(f);
   2.464 +              //growOrAugment grows if y is covered by the matching and
   2.465 +              //augments if not. In this latter case it returns 1.
   2.466 +              if (position[w]==C &&
   2.467 +                  growOrAugment(w, z, ear, blossom, rep, tree, Q)) return;
   2.468 +            }
   2.469 +            R.push(z);
   2.470 +          }
   2.471 +        } //for e
   2.472 +      } // while ( !R.empty() )
   2.473 +    }
   2.474 +
   2.475 +    void normShrink(Node v, typename Graph::template NodeMap<Node>& ear,
   2.476 +                    UFE& blossom, NV& rep, EFE& tree) {
   2.477 +      //We have one tree, which we grow and shrink. If we augment then we
   2.478 +      //return to the "for" cycle of runEdmonds().
   2.479 +
   2.480 +      std::queue<Node> Q;   //queue of the unscanned nodes
   2.481 +      Q.push(v);
   2.482 +      while ( !Q.empty() ) {
   2.483 +
   2.484 +        Node x=Q.front();
   2.485 +        Q.pop();
   2.486 +
   2.487 +        for( IncEdgeIt e(g,x); e!=INVALID; ++e ) {
   2.488 +          Node y=g.runningNode(e);
   2.489 +
   2.490 +          switch ( position[y] ) {
   2.491 +          case D:          //x and y must be in the same tree
   2.492 +            if ( blossom.find(x) != blossom.find(y))
   2.493 +              //x and y are in the same tree
   2.494 +              shrink(x, y, ear, blossom, rep, tree, Q);
   2.495 +            break;
   2.496 +          case C:
   2.497 +            //growOrAugment grows if y is covered by the matching and
   2.498 +            //augments if not. In this latter case it returns 1.
   2.499 +            if (growOrAugment(y, x, ear, blossom, rep, tree, Q)) return;
   2.500 +            break;
   2.501 +          default: break;
   2.502 +          }
   2.503 +        }
   2.504 +      }
   2.505 +    }
   2.506 +
   2.507 +    void shrink(Node x,Node y, typename Graph::template NodeMap<Node>& ear,
   2.508 +                UFE& blossom, NV& rep, EFE& tree,std::queue<Node>& Q) {
   2.509 +      //x and y are the two adjacent vertices in two blossoms.
   2.510 +
   2.511 +      typename Graph::template NodeMap<bool> path(g,false);
   2.512 +
   2.513 +      Node b=rep[blossom.find(x)];
   2.514 +      path.set(b,true);
   2.515 +      b=_mate[b];
   2.516 +      while ( b!=INVALID ) {
   2.517 +        b=rep[blossom.find(ear[b])];
   2.518 +        path.set(b,true);
   2.519 +        b=_mate[b];
   2.520 +      } //we go until the root through bases of blossoms and odd vertices
   2.521 +
   2.522 +      Node top=y;
   2.523 +      Node middle=rep[blossom.find(top)];
   2.524 +      Node bottom=x;
   2.525 +      while ( !path[middle] )
   2.526 +        shrinkStep(top, middle, bottom, ear, blossom, rep, tree, Q);
   2.527 +      //Until we arrive to a node on the path, we update blossom, tree
   2.528 +      //and the positions of the odd nodes.
   2.529 +
   2.530 +      Node base=middle;
   2.531 +      top=x;
   2.532 +      middle=rep[blossom.find(top)];
   2.533 +      bottom=y;
   2.534 +      Node blossom_base=rep[blossom.find(base)];
   2.535 +      while ( middle!=blossom_base )
   2.536 +        shrinkStep(top, middle, bottom, ear, blossom, rep, tree, Q);
   2.537 +      //Until we arrive to a node on the path, we update blossom, tree
   2.538 +      //and the positions of the odd nodes.
   2.539 +
   2.540 +      rep[blossom.find(base)] = base;
   2.541 +    }
   2.542 +
   2.543 +    void shrinkStep(Node& top, Node& middle, Node& bottom,
   2.544 +                    typename Graph::template NodeMap<Node>& ear,
   2.545 +                    UFE& blossom, NV& rep, EFE& tree, std::queue<Node>& Q) {
   2.546 +      //We traverse a blossom and update everything.
   2.547 +
   2.548 +      ear.set(top,bottom);
   2.549 +      Node t=top;
   2.550 +      while ( t!=middle ) {
   2.551 +        Node u=_mate[t];
   2.552 +        t=ear[u];
   2.553 +        ear.set(t,u);
   2.554 +      }
   2.555 +      bottom=_mate[middle];
   2.556 +      position.set(bottom,D);
   2.557 +      Q.push(bottom);
   2.558 +      top=ear[bottom];
   2.559 +      Node oldmiddle=middle;
   2.560 +      middle=rep[blossom.find(top)];
   2.561 +      tree.erase(bottom);
   2.562 +      tree.erase(oldmiddle);
   2.563 +      blossom.insert(bottom);
   2.564 +      blossom.join(bottom, oldmiddle);
   2.565 +      blossom.join(top, oldmiddle);
   2.566 +    }
   2.567 +
   2.568 +
   2.569 +
   2.570 +    bool growOrAugment(Node& y, Node& x, typename Graph::template
   2.571 +                       NodeMap<Node>& ear, UFE& blossom, NV& rep, EFE& tree,
   2.572 +                       std::queue<Node>& Q) {
   2.573 +      //x is in a blossom in the tree, y is outside. If y is covered by
   2.574 +      //the matching we grow, otherwise we augment. In this case we
   2.575 +      //return 1.
   2.576 +
   2.577 +      if ( _mate[y]!=INVALID ) {       //grow
   2.578 +        ear.set(y,x);
   2.579 +        Node w=_mate[y];
   2.580 +        rep[blossom.insert(w)] = w;
   2.581 +        position.set(y,A);
   2.582 +        position.set(w,D);
   2.583 +        int t = tree.find(rep[blossom.find(x)]);
   2.584 +        tree.insert(y,t);
   2.585 +        tree.insert(w,t);
   2.586 +        Q.push(w);
   2.587 +      } else {                      //augment
   2.588 +        augment(x, ear, blossom, rep, tree);
   2.589 +        _mate.set(x,y);
   2.590 +        _mate.set(y,x);
   2.591 +        return true;
   2.592 +      }
   2.593 +      return false;
   2.594 +    }
   2.595 +
   2.596 +    void augment(Node x, typename Graph::template NodeMap<Node>& ear,
   2.597 +                 UFE& blossom, NV& rep, EFE& tree) {
   2.598 +      Node v=_mate[x];
   2.599 +      while ( v!=INVALID ) {
   2.600 +
   2.601 +        Node u=ear[v];
   2.602 +        _mate.set(v,u);
   2.603 +        Node tmp=v;
   2.604 +        v=_mate[u];
   2.605 +        _mate.set(u,tmp);
   2.606 +      }
   2.607 +      int y = tree.find(rep[blossom.find(x)]);
   2.608 +      for (typename EFE::ItemIt tit(tree, y); tit != INVALID; ++tit) {
   2.609 +        if ( position[tit] == D ) {
   2.610 +          int b = blossom.find(tit);
   2.611 +          for (typename UFE::ItemIt bit(blossom, b); bit != INVALID; ++bit) {
   2.612 +            position.set(bit, C);
   2.613 +          }
   2.614 +          blossom.eraseClass(b);
   2.615 +        } else position.set(tit, C);
   2.616 +      }
   2.617 +      tree.eraseClass(y);
   2.618 +
   2.619 +    }
   2.620 +
   2.621 +  };
   2.622 +
   2.623 +  /// \ingroup matching
   2.624 +  ///
   2.625 +  /// \brief Weighted matching in general graphs
   2.626 +  ///
   2.627 +  /// This class provides an efficient implementation of Edmond's
   2.628 +  /// maximum weighted matching algorithm. The implementation is based
   2.629 +  /// on extensive use of priority queues and provides
   2.630 +  /// \f$O(nm\log(n))\f$ time complexity.
   2.631 +  ///
   2.632 +  /// The maximum weighted matching problem is to find undirected
   2.633 +  /// arcs in the digraph with maximum overall weight and no two of
   2.634 +  /// them shares their endpoints. The problem can be formulated with
   2.635 +  /// the next linear program:
   2.636 +  /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
   2.637 +  ///\f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} \quad \forall B\in\mathcal{O}\f]
   2.638 +  /// \f[x_e \ge 0\quad \forall e\in E\f]
   2.639 +  /// \f[\max \sum_{e\in E}x_ew_e\f]
   2.640 +  /// where \f$\delta(X)\f$ is the set of arcs incident to a node in
   2.641 +  /// \f$X\f$, \f$\gamma(X)\f$ is the set of arcs with both endpoints in
   2.642 +  /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality subsets of
   2.643 +  /// the nodes.
   2.644 +  ///
   2.645 +  /// The algorithm calculates an optimal matching and a proof of the
   2.646 +  /// optimality. The solution of the dual problem can be used to check
   2.647 +  /// the result of the algorithm. The dual linear problem is the next:
   2.648 +  /// \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge w_{uv} \quad \forall uv\in E\f]
   2.649 +  /// \f[y_u \ge 0 \quad \forall u \in V\f]
   2.650 +  /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
   2.651 +  /// \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}\frac{\vert B \vert - 1}{2}z_B\f]
   2.652 +  ///
   2.653 +  /// The algorithm can be executed with \c run() or the \c init() and
   2.654 +  /// then the \c start() member functions. After it the matching can
   2.655 +  /// be asked with \c matching() or mate() functions. The dual
   2.656 +  /// solution can be get with \c nodeValue(), \c blossomNum() and \c
   2.657 +  /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt
   2.658 +  /// "BlossomIt" nested class which is able to iterate on the nodes
   2.659 +  /// of a blossom. If the value type is integral then the dual
   2.660 +  /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4".
   2.661 +  template <typename _Graph,
   2.662 +            typename _WeightMap = typename _Graph::template EdgeMap<int> >
   2.663 +  class MaxWeightedMatching {
   2.664 +  public:
   2.665 +
   2.666 +    typedef _Graph Graph;
   2.667 +    typedef _WeightMap WeightMap;
   2.668 +    typedef typename WeightMap::Value Value;
   2.669 +
   2.670 +    /// \brief Scaling factor for dual solution
   2.671 +    ///
   2.672 +    /// Scaling factor for dual solution, it is equal to 4 or 1
   2.673 +    /// according to the value type.
   2.674 +    static const int dualScale =
   2.675 +      std::numeric_limits<Value>::is_integer ? 4 : 1;
   2.676 +
   2.677 +    typedef typename Graph::template NodeMap<typename Graph::Arc>
   2.678 +    MatchingMap;
   2.679 +
   2.680 +  private:
   2.681 +
   2.682 +    TEMPLATE_GRAPH_TYPEDEFS(Graph);
   2.683 +
   2.684 +    typedef typename Graph::template NodeMap<Value> NodePotential;
   2.685 +    typedef std::vector<Node> BlossomNodeList;
   2.686 +
   2.687 +    struct BlossomVariable {
   2.688 +      int begin, end;
   2.689 +      Value value;
   2.690 +
   2.691 +      BlossomVariable(int _begin, int _end, Value _value)
   2.692 +        : begin(_begin), end(_end), value(_value) {}
   2.693 +
   2.694 +    };
   2.695 +
   2.696 +    typedef std::vector<BlossomVariable> BlossomPotential;
   2.697 +
   2.698 +    const Graph& _graph;
   2.699 +    const WeightMap& _weight;
   2.700 +
   2.701 +    MatchingMap* _matching;
   2.702 +
   2.703 +    NodePotential* _node_potential;
   2.704 +
   2.705 +    BlossomPotential _blossom_potential;
   2.706 +    BlossomNodeList _blossom_node_list;
   2.707 +
   2.708 +    int _node_num;
   2.709 +    int _blossom_num;
   2.710 +
   2.711 +    typedef typename Graph::template NodeMap<int> NodeIntMap;
   2.712 +    typedef typename Graph::template ArcMap<int> ArcIntMap;
   2.713 +    typedef typename Graph::template EdgeMap<int> EdgeIntMap;
   2.714 +    typedef RangeMap<int> IntIntMap;
   2.715 +
   2.716 +    enum Status {
   2.717 +      EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2
   2.718 +    };
   2.719 +
   2.720 +    typedef HeapUnionFind<Value, NodeIntMap> BlossomSet;
   2.721 +    struct BlossomData {
   2.722 +      int tree;
   2.723 +      Status status;
   2.724 +      Arc pred, next;
   2.725 +      Value pot, offset;
   2.726 +      Node base;
   2.727 +    };
   2.728 +
   2.729 +    NodeIntMap *_blossom_index;
   2.730 +    BlossomSet *_blossom_set;
   2.731 +    RangeMap<BlossomData>* _blossom_data;
   2.732 +
   2.733 +    NodeIntMap *_node_index;
   2.734 +    ArcIntMap *_node_heap_index;
   2.735 +
   2.736 +    struct NodeData {
   2.737 +
   2.738 +      NodeData(ArcIntMap& node_heap_index)
   2.739 +        : heap(node_heap_index) {}
   2.740 +
   2.741 +      int blossom;
   2.742 +      Value pot;
   2.743 +      BinHeap<Value, ArcIntMap> heap;
   2.744 +      std::map<int, Arc> heap_index;
   2.745 +
   2.746 +      int tree;
   2.747 +    };
   2.748 +
   2.749 +    RangeMap<NodeData>* _node_data;
   2.750 +
   2.751 +    typedef ExtendFindEnum<IntIntMap> TreeSet;
   2.752 +
   2.753 +    IntIntMap *_tree_set_index;
   2.754 +    TreeSet *_tree_set;
   2.755 +
   2.756 +    NodeIntMap *_delta1_index;
   2.757 +    BinHeap<Value, NodeIntMap> *_delta1;
   2.758 +
   2.759 +    IntIntMap *_delta2_index;
   2.760 +    BinHeap<Value, IntIntMap> *_delta2;
   2.761 +
   2.762 +    EdgeIntMap *_delta3_index;
   2.763 +    BinHeap<Value, EdgeIntMap> *_delta3;
   2.764 +
   2.765 +    IntIntMap *_delta4_index;
   2.766 +    BinHeap<Value, IntIntMap> *_delta4;
   2.767 +
   2.768 +    Value _delta_sum;
   2.769 +
   2.770 +    void createStructures() {
   2.771 +      _node_num = countNodes(_graph);
   2.772 +      _blossom_num = _node_num * 3 / 2;
   2.773 +
   2.774 +      if (!_matching) {
   2.775 +        _matching = new MatchingMap(_graph);
   2.776 +      }
   2.777 +      if (!_node_potential) {
   2.778 +        _node_potential = new NodePotential(_graph);
   2.779 +      }
   2.780 +      if (!_blossom_set) {
   2.781 +        _blossom_index = new NodeIntMap(_graph);
   2.782 +        _blossom_set = new BlossomSet(*_blossom_index);
   2.783 +        _blossom_data = new RangeMap<BlossomData>(_blossom_num);
   2.784 +      }
   2.785 +
   2.786 +      if (!_node_index) {
   2.787 +        _node_index = new NodeIntMap(_graph);
   2.788 +        _node_heap_index = new ArcIntMap(_graph);
   2.789 +        _node_data = new RangeMap<NodeData>(_node_num,
   2.790 +                                              NodeData(*_node_heap_index));
   2.791 +      }
   2.792 +
   2.793 +      if (!_tree_set) {
   2.794 +        _tree_set_index = new IntIntMap(_blossom_num);
   2.795 +        _tree_set = new TreeSet(*_tree_set_index);
   2.796 +      }
   2.797 +      if (!_delta1) {
   2.798 +        _delta1_index = new NodeIntMap(_graph);
   2.799 +        _delta1 = new BinHeap<Value, NodeIntMap>(*_delta1_index);
   2.800 +      }
   2.801 +      if (!_delta2) {
   2.802 +        _delta2_index = new IntIntMap(_blossom_num);
   2.803 +        _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
   2.804 +      }
   2.805 +      if (!_delta3) {
   2.806 +        _delta3_index = new EdgeIntMap(_graph);
   2.807 +        _delta3 = new BinHeap<Value, EdgeIntMap>(*_delta3_index);
   2.808 +      }
   2.809 +      if (!_delta4) {
   2.810 +        _delta4_index = new IntIntMap(_blossom_num);
   2.811 +        _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
   2.812 +      }
   2.813 +    }
   2.814 +
   2.815 +    void destroyStructures() {
   2.816 +      _node_num = countNodes(_graph);
   2.817 +      _blossom_num = _node_num * 3 / 2;
   2.818 +
   2.819 +      if (_matching) {
   2.820 +        delete _matching;
   2.821 +      }
   2.822 +      if (_node_potential) {
   2.823 +        delete _node_potential;
   2.824 +      }
   2.825 +      if (_blossom_set) {
   2.826 +        delete _blossom_index;
   2.827 +        delete _blossom_set;
   2.828 +        delete _blossom_data;
   2.829 +      }
   2.830 +
   2.831 +      if (_node_index) {
   2.832 +        delete _node_index;
   2.833 +        delete _node_heap_index;
   2.834 +        delete _node_data;
   2.835 +      }
   2.836 +
   2.837 +      if (_tree_set) {
   2.838 +        delete _tree_set_index;
   2.839 +        delete _tree_set;
   2.840 +      }
   2.841 +      if (_delta1) {
   2.842 +        delete _delta1_index;
   2.843 +        delete _delta1;
   2.844 +      }
   2.845 +      if (_delta2) {
   2.846 +        delete _delta2_index;
   2.847 +        delete _delta2;
   2.848 +      }
   2.849 +      if (_delta3) {
   2.850 +        delete _delta3_index;
   2.851 +        delete _delta3;
   2.852 +      }
   2.853 +      if (_delta4) {
   2.854 +        delete _delta4_index;
   2.855 +        delete _delta4;
   2.856 +      }
   2.857 +    }
   2.858 +
   2.859 +    void matchedToEven(int blossom, int tree) {
   2.860 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
   2.861 +        _delta2->erase(blossom);
   2.862 +      }
   2.863 +
   2.864 +      if (!_blossom_set->trivial(blossom)) {
   2.865 +        (*_blossom_data)[blossom].pot -=
   2.866 +          2 * (_delta_sum - (*_blossom_data)[blossom].offset);
   2.867 +      }
   2.868 +
   2.869 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
   2.870 +           n != INVALID; ++n) {
   2.871 +
   2.872 +        _blossom_set->increase(n, std::numeric_limits<Value>::max());
   2.873 +        int ni = (*_node_index)[n];
   2.874 +
   2.875 +        (*_node_data)[ni].heap.clear();
   2.876 +        (*_node_data)[ni].heap_index.clear();
   2.877 +
   2.878 +        (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
   2.879 +
   2.880 +        _delta1->push(n, (*_node_data)[ni].pot);
   2.881 +
   2.882 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
   2.883 +          Node v = _graph.source(e);
   2.884 +          int vb = _blossom_set->find(v);
   2.885 +          int vi = (*_node_index)[v];
   2.886 +
   2.887 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
   2.888 +            dualScale * _weight[e];
   2.889 +
   2.890 +          if ((*_blossom_data)[vb].status == EVEN) {
   2.891 +            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
   2.892 +              _delta3->push(e, rw / 2);
   2.893 +            }
   2.894 +          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
   2.895 +            if (_delta3->state(e) != _delta3->IN_HEAP) {
   2.896 +              _delta3->push(e, rw);
   2.897 +            }
   2.898 +          } else {
   2.899 +            typename std::map<int, Arc>::iterator it =
   2.900 +              (*_node_data)[vi].heap_index.find(tree);
   2.901 +
   2.902 +            if (it != (*_node_data)[vi].heap_index.end()) {
   2.903 +              if ((*_node_data)[vi].heap[it->second] > rw) {
   2.904 +                (*_node_data)[vi].heap.replace(it->second, e);
   2.905 +                (*_node_data)[vi].heap.decrease(e, rw);
   2.906 +                it->second = e;
   2.907 +              }
   2.908 +            } else {
   2.909 +              (*_node_data)[vi].heap.push(e, rw);
   2.910 +              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
   2.911 +            }
   2.912 +
   2.913 +            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
   2.914 +              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
   2.915 +
   2.916 +              if ((*_blossom_data)[vb].status == MATCHED) {
   2.917 +                if (_delta2->state(vb) != _delta2->IN_HEAP) {
   2.918 +                  _delta2->push(vb, _blossom_set->classPrio(vb) -
   2.919 +                               (*_blossom_data)[vb].offset);
   2.920 +                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
   2.921 +                           (*_blossom_data)[vb].offset){
   2.922 +                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
   2.923 +                                   (*_blossom_data)[vb].offset);
   2.924 +                }
   2.925 +              }
   2.926 +            }
   2.927 +          }
   2.928 +        }
   2.929 +      }
   2.930 +      (*_blossom_data)[blossom].offset = 0;
   2.931 +    }
   2.932 +
   2.933 +    void matchedToOdd(int blossom) {
   2.934 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
   2.935 +        _delta2->erase(blossom);
   2.936 +      }
   2.937 +      (*_blossom_data)[blossom].offset += _delta_sum;
   2.938 +      if (!_blossom_set->trivial(blossom)) {
   2.939 +        _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
   2.940 +                     (*_blossom_data)[blossom].offset);
   2.941 +      }
   2.942 +    }
   2.943 +
   2.944 +    void evenToMatched(int blossom, int tree) {
   2.945 +      if (!_blossom_set->trivial(blossom)) {
   2.946 +        (*_blossom_data)[blossom].pot += 2 * _delta_sum;
   2.947 +      }
   2.948 +
   2.949 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
   2.950 +           n != INVALID; ++n) {
   2.951 +        int ni = (*_node_index)[n];
   2.952 +        (*_node_data)[ni].pot -= _delta_sum;
   2.953 +
   2.954 +        _delta1->erase(n);
   2.955 +
   2.956 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
   2.957 +          Node v = _graph.source(e);
   2.958 +          int vb = _blossom_set->find(v);
   2.959 +          int vi = (*_node_index)[v];
   2.960 +
   2.961 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
   2.962 +            dualScale * _weight[e];
   2.963 +
   2.964 +          if (vb == blossom) {
   2.965 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
   2.966 +              _delta3->erase(e);
   2.967 +            }
   2.968 +          } else if ((*_blossom_data)[vb].status == EVEN) {
   2.969 +
   2.970 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
   2.971 +              _delta3->erase(e);
   2.972 +            }
   2.973 +
   2.974 +            int vt = _tree_set->find(vb);
   2.975 +
   2.976 +            if (vt != tree) {
   2.977 +
   2.978 +              Arc r = _graph.oppositeArc(e);
   2.979 +
   2.980 +              typename std::map<int, Arc>::iterator it =
   2.981 +                (*_node_data)[ni].heap_index.find(vt);
   2.982 +
   2.983 +              if (it != (*_node_data)[ni].heap_index.end()) {
   2.984 +                if ((*_node_data)[ni].heap[it->second] > rw) {
   2.985 +                  (*_node_data)[ni].heap.replace(it->second, r);
   2.986 +                  (*_node_data)[ni].heap.decrease(r, rw);
   2.987 +                  it->second = r;
   2.988 +                }
   2.989 +              } else {
   2.990 +                (*_node_data)[ni].heap.push(r, rw);
   2.991 +                (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
   2.992 +              }
   2.993 +
   2.994 +              if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
   2.995 +                _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
   2.996 +
   2.997 +                if (_delta2->state(blossom) != _delta2->IN_HEAP) {
   2.998 +                  _delta2->push(blossom, _blossom_set->classPrio(blossom) -
   2.999 +                               (*_blossom_data)[blossom].offset);
  2.1000 +                } else if ((*_delta2)[blossom] >
  2.1001 +                           _blossom_set->classPrio(blossom) -
  2.1002 +                           (*_blossom_data)[blossom].offset){
  2.1003 +                  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
  2.1004 +                                   (*_blossom_data)[blossom].offset);
  2.1005 +                }
  2.1006 +              }
  2.1007 +            }
  2.1008 +
  2.1009 +          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
  2.1010 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
  2.1011 +              _delta3->erase(e);
  2.1012 +            }
  2.1013 +          } else {
  2.1014 +
  2.1015 +            typename std::map<int, Arc>::iterator it =
  2.1016 +              (*_node_data)[vi].heap_index.find(tree);
  2.1017 +
  2.1018 +            if (it != (*_node_data)[vi].heap_index.end()) {
  2.1019 +              (*_node_data)[vi].heap.erase(it->second);
  2.1020 +              (*_node_data)[vi].heap_index.erase(it);
  2.1021 +              if ((*_node_data)[vi].heap.empty()) {
  2.1022 +                _blossom_set->increase(v, std::numeric_limits<Value>::max());
  2.1023 +              } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
  2.1024 +                _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
  2.1025 +              }
  2.1026 +
  2.1027 +              if ((*_blossom_data)[vb].status == MATCHED) {
  2.1028 +                if (_blossom_set->classPrio(vb) ==
  2.1029 +                    std::numeric_limits<Value>::max()) {
  2.1030 +                  _delta2->erase(vb);
  2.1031 +                } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
  2.1032 +                           (*_blossom_data)[vb].offset) {
  2.1033 +                  _delta2->increase(vb, _blossom_set->classPrio(vb) -
  2.1034 +                                   (*_blossom_data)[vb].offset);
  2.1035 +                }
  2.1036 +              }
  2.1037 +            }
  2.1038 +          }
  2.1039 +        }
  2.1040 +      }
  2.1041 +    }
  2.1042 +
  2.1043 +    void oddToMatched(int blossom) {
  2.1044 +      (*_blossom_data)[blossom].offset -= _delta_sum;
  2.1045 +
  2.1046 +      if (_blossom_set->classPrio(blossom) !=
  2.1047 +          std::numeric_limits<Value>::max()) {
  2.1048 +        _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  2.1049 +                       (*_blossom_data)[blossom].offset);
  2.1050 +      }
  2.1051 +
  2.1052 +      if (!_blossom_set->trivial(blossom)) {
  2.1053 +        _delta4->erase(blossom);
  2.1054 +      }
  2.1055 +    }
  2.1056 +
  2.1057 +    void oddToEven(int blossom, int tree) {
  2.1058 +      if (!_blossom_set->trivial(blossom)) {
  2.1059 +        _delta4->erase(blossom);
  2.1060 +        (*_blossom_data)[blossom].pot -=
  2.1061 +          2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
  2.1062 +      }
  2.1063 +
  2.1064 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  2.1065 +           n != INVALID; ++n) {
  2.1066 +        int ni = (*_node_index)[n];
  2.1067 +
  2.1068 +        _blossom_set->increase(n, std::numeric_limits<Value>::max());
  2.1069 +
  2.1070 +        (*_node_data)[ni].heap.clear();
  2.1071 +        (*_node_data)[ni].heap_index.clear();
  2.1072 +        (*_node_data)[ni].pot +=
  2.1073 +          2 * _delta_sum - (*_blossom_data)[blossom].offset;
  2.1074 +
  2.1075 +        _delta1->push(n, (*_node_data)[ni].pot);
  2.1076 +
  2.1077 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  2.1078 +          Node v = _graph.source(e);
  2.1079 +          int vb = _blossom_set->find(v);
  2.1080 +          int vi = (*_node_index)[v];
  2.1081 +
  2.1082 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  2.1083 +            dualScale * _weight[e];
  2.1084 +
  2.1085 +          if ((*_blossom_data)[vb].status == EVEN) {
  2.1086 +            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  2.1087 +              _delta3->push(e, rw / 2);
  2.1088 +            }
  2.1089 +          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
  2.1090 +            if (_delta3->state(e) != _delta3->IN_HEAP) {
  2.1091 +              _delta3->push(e, rw);
  2.1092 +            }
  2.1093 +          } else {
  2.1094 +
  2.1095 +            typename std::map<int, Arc>::iterator it =
  2.1096 +              (*_node_data)[vi].heap_index.find(tree);
  2.1097 +
  2.1098 +            if (it != (*_node_data)[vi].heap_index.end()) {
  2.1099 +              if ((*_node_data)[vi].heap[it->second] > rw) {
  2.1100 +                (*_node_data)[vi].heap.replace(it->second, e);
  2.1101 +                (*_node_data)[vi].heap.decrease(e, rw);
  2.1102 +                it->second = e;
  2.1103 +              }
  2.1104 +            } else {
  2.1105 +              (*_node_data)[vi].heap.push(e, rw);
  2.1106 +              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  2.1107 +            }
  2.1108 +
  2.1109 +            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  2.1110 +              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  2.1111 +
  2.1112 +              if ((*_blossom_data)[vb].status == MATCHED) {
  2.1113 +                if (_delta2->state(vb) != _delta2->IN_HEAP) {
  2.1114 +                  _delta2->push(vb, _blossom_set->classPrio(vb) -
  2.1115 +                               (*_blossom_data)[vb].offset);
  2.1116 +                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
  2.1117 +                           (*_blossom_data)[vb].offset) {
  2.1118 +                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  2.1119 +                                   (*_blossom_data)[vb].offset);
  2.1120 +                }
  2.1121 +              }
  2.1122 +            }
  2.1123 +          }
  2.1124 +        }
  2.1125 +      }
  2.1126 +      (*_blossom_data)[blossom].offset = 0;
  2.1127 +    }
  2.1128 +
  2.1129 +
  2.1130 +    void matchedToUnmatched(int blossom) {
  2.1131 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  2.1132 +        _delta2->erase(blossom);
  2.1133 +      }
  2.1134 +
  2.1135 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  2.1136 +           n != INVALID; ++n) {
  2.1137 +        int ni = (*_node_index)[n];
  2.1138 +
  2.1139 +        _blossom_set->increase(n, std::numeric_limits<Value>::max());
  2.1140 +
  2.1141 +        (*_node_data)[ni].heap.clear();
  2.1142 +        (*_node_data)[ni].heap_index.clear();
  2.1143 +
  2.1144 +        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
  2.1145 +          Node v = _graph.target(e);
  2.1146 +          int vb = _blossom_set->find(v);
  2.1147 +          int vi = (*_node_index)[v];
  2.1148 +
  2.1149 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  2.1150 +            dualScale * _weight[e];
  2.1151 +
  2.1152 +          if ((*_blossom_data)[vb].status == EVEN) {
  2.1153 +            if (_delta3->state(e) != _delta3->IN_HEAP) {
  2.1154 +              _delta3->push(e, rw);
  2.1155 +            }
  2.1156 +          }
  2.1157 +        }
  2.1158 +      }
  2.1159 +    }
  2.1160 +
  2.1161 +    void unmatchedToMatched(int blossom) {
  2.1162 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  2.1163 +           n != INVALID; ++n) {
  2.1164 +        int ni = (*_node_index)[n];
  2.1165 +
  2.1166 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  2.1167 +          Node v = _graph.source(e);
  2.1168 +          int vb = _blossom_set->find(v);
  2.1169 +          int vi = (*_node_index)[v];
  2.1170 +
  2.1171 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  2.1172 +            dualScale * _weight[e];
  2.1173 +
  2.1174 +          if (vb == blossom) {
  2.1175 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
  2.1176 +              _delta3->erase(e);
  2.1177 +            }
  2.1178 +          } else if ((*_blossom_data)[vb].status == EVEN) {
  2.1179 +
  2.1180 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
  2.1181 +              _delta3->erase(e);
  2.1182 +            }
  2.1183 +
  2.1184 +            int vt = _tree_set->find(vb);
  2.1185 +
  2.1186 +            Arc r = _graph.oppositeArc(e);
  2.1187 +
  2.1188 +            typename std::map<int, Arc>::iterator it =
  2.1189 +              (*_node_data)[ni].heap_index.find(vt);
  2.1190 +
  2.1191 +            if (it != (*_node_data)[ni].heap_index.end()) {
  2.1192 +              if ((*_node_data)[ni].heap[it->second] > rw) {
  2.1193 +                (*_node_data)[ni].heap.replace(it->second, r);
  2.1194 +                (*_node_data)[ni].heap.decrease(r, rw);
  2.1195 +                it->second = r;
  2.1196 +              }
  2.1197 +            } else {
  2.1198 +              (*_node_data)[ni].heap.push(r, rw);
  2.1199 +              (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
  2.1200 +            }
  2.1201 +
  2.1202 +            if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
  2.1203 +              _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  2.1204 +
  2.1205 +              if (_delta2->state(blossom) != _delta2->IN_HEAP) {
  2.1206 +                _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  2.1207 +                             (*_blossom_data)[blossom].offset);
  2.1208 +              } else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)-
  2.1209 +                         (*_blossom_data)[blossom].offset){
  2.1210 +                _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
  2.1211 +                                 (*_blossom_data)[blossom].offset);
  2.1212 +              }
  2.1213 +            }
  2.1214 +
  2.1215 +          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
  2.1216 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
  2.1217 +              _delta3->erase(e);
  2.1218 +            }
  2.1219 +          }
  2.1220 +        }
  2.1221 +      }
  2.1222 +    }
  2.1223 +
  2.1224 +    void alternatePath(int even, int tree) {
  2.1225 +      int odd;
  2.1226 +
  2.1227 +      evenToMatched(even, tree);
  2.1228 +      (*_blossom_data)[even].status = MATCHED;
  2.1229 +
  2.1230 +      while ((*_blossom_data)[even].pred != INVALID) {
  2.1231 +        odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
  2.1232 +        (*_blossom_data)[odd].status = MATCHED;
  2.1233 +        oddToMatched(odd);
  2.1234 +        (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
  2.1235 +
  2.1236 +        even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
  2.1237 +        (*_blossom_data)[even].status = MATCHED;
  2.1238 +        evenToMatched(even, tree);
  2.1239 +        (*_blossom_data)[even].next =
  2.1240 +          _graph.oppositeArc((*_blossom_data)[odd].pred);
  2.1241 +      }
  2.1242 +
  2.1243 +    }
  2.1244 +
  2.1245 +    void destroyTree(int tree) {
  2.1246 +      for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
  2.1247 +        if ((*_blossom_data)[b].status == EVEN) {
  2.1248 +          (*_blossom_data)[b].status = MATCHED;
  2.1249 +          evenToMatched(b, tree);
  2.1250 +        } else if ((*_blossom_data)[b].status == ODD) {
  2.1251 +          (*_blossom_data)[b].status = MATCHED;
  2.1252 +          oddToMatched(b);
  2.1253 +        }
  2.1254 +      }
  2.1255 +      _tree_set->eraseClass(tree);
  2.1256 +    }
  2.1257 +
  2.1258 +
  2.1259 +    void unmatchNode(const Node& node) {
  2.1260 +      int blossom = _blossom_set->find(node);
  2.1261 +      int tree = _tree_set->find(blossom);
  2.1262 +
  2.1263 +      alternatePath(blossom, tree);
  2.1264 +      destroyTree(tree);
  2.1265 +
  2.1266 +      (*_blossom_data)[blossom].status = UNMATCHED;
  2.1267 +      (*_blossom_data)[blossom].base = node;
  2.1268 +      matchedToUnmatched(blossom);
  2.1269 +    }
  2.1270 +
  2.1271 +
  2.1272 +    void augmentOnArc(const Edge& arc) {
  2.1273 +
  2.1274 +      int left = _blossom_set->find(_graph.u(arc));
  2.1275 +      int right = _blossom_set->find(_graph.v(arc));
  2.1276 +
  2.1277 +      if ((*_blossom_data)[left].status == EVEN) {
  2.1278 +        int left_tree = _tree_set->find(left);
  2.1279 +        alternatePath(left, left_tree);
  2.1280 +        destroyTree(left_tree);
  2.1281 +      } else {
  2.1282 +        (*_blossom_data)[left].status = MATCHED;
  2.1283 +        unmatchedToMatched(left);
  2.1284 +      }
  2.1285 +
  2.1286 +      if ((*_blossom_data)[right].status == EVEN) {
  2.1287 +        int right_tree = _tree_set->find(right);
  2.1288 +        alternatePath(right, right_tree);
  2.1289 +        destroyTree(right_tree);
  2.1290 +      } else {
  2.1291 +        (*_blossom_data)[right].status = MATCHED;
  2.1292 +        unmatchedToMatched(right);
  2.1293 +      }
  2.1294 +
  2.1295 +      (*_blossom_data)[left].next = _graph.direct(arc, true);
  2.1296 +      (*_blossom_data)[right].next = _graph.direct(arc, false);
  2.1297 +    }
  2.1298 +
  2.1299 +    void extendOnArc(const Arc& arc) {
  2.1300 +      int base = _blossom_set->find(_graph.target(arc));
  2.1301 +      int tree = _tree_set->find(base);
  2.1302 +
  2.1303 +      int odd = _blossom_set->find(_graph.source(arc));
  2.1304 +      _tree_set->insert(odd, tree);
  2.1305 +      (*_blossom_data)[odd].status = ODD;
  2.1306 +      matchedToOdd(odd);
  2.1307 +      (*_blossom_data)[odd].pred = arc;
  2.1308 +
  2.1309 +      int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
  2.1310 +      (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
  2.1311 +      _tree_set->insert(even, tree);
  2.1312 +      (*_blossom_data)[even].status = EVEN;
  2.1313 +      matchedToEven(even, tree);
  2.1314 +    }
  2.1315 +
  2.1316 +    void shrinkOnArc(const Edge& edge, int tree) {
  2.1317 +      int nca = -1;
  2.1318 +      std::vector<int> left_path, right_path;
  2.1319 +
  2.1320 +      {
  2.1321 +        std::set<int> left_set, right_set;
  2.1322 +        int left = _blossom_set->find(_graph.u(edge));
  2.1323 +        left_path.push_back(left);
  2.1324 +        left_set.insert(left);
  2.1325 +
  2.1326 +        int right = _blossom_set->find(_graph.v(edge));
  2.1327 +        right_path.push_back(right);
  2.1328 +        right_set.insert(right);
  2.1329 +
  2.1330 +        while (true) {
  2.1331 +
  2.1332 +          if ((*_blossom_data)[left].pred == INVALID) break;
  2.1333 +
  2.1334 +          left =
  2.1335 +            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  2.1336 +          left_path.push_back(left);
  2.1337 +          left =
  2.1338 +            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  2.1339 +          left_path.push_back(left);
  2.1340 +
  2.1341 +          left_set.insert(left);
  2.1342 +
  2.1343 +          if (right_set.find(left) != right_set.end()) {
  2.1344 +            nca = left;
  2.1345 +            break;
  2.1346 +          }
  2.1347 +
  2.1348 +          if ((*_blossom_data)[right].pred == INVALID) break;
  2.1349 +
  2.1350 +          right =
  2.1351 +            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  2.1352 +          right_path.push_back(right);
  2.1353 +          right =
  2.1354 +            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  2.1355 +          right_path.push_back(right);
  2.1356 +
  2.1357 +          right_set.insert(right);
  2.1358 +
  2.1359 +          if (left_set.find(right) != left_set.end()) {
  2.1360 +            nca = right;
  2.1361 +            break;
  2.1362 +          }
  2.1363 +
  2.1364 +        }
  2.1365 +
  2.1366 +        if (nca == -1) {
  2.1367 +          if ((*_blossom_data)[left].pred == INVALID) {
  2.1368 +            nca = right;
  2.1369 +            while (left_set.find(nca) == left_set.end()) {
  2.1370 +              nca =
  2.1371 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  2.1372 +              right_path.push_back(nca);
  2.1373 +              nca =
  2.1374 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  2.1375 +              right_path.push_back(nca);
  2.1376 +            }
  2.1377 +          } else {
  2.1378 +            nca = left;
  2.1379 +            while (right_set.find(nca) == right_set.end()) {
  2.1380 +              nca =
  2.1381 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  2.1382 +              left_path.push_back(nca);
  2.1383 +              nca =
  2.1384 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  2.1385 +              left_path.push_back(nca);
  2.1386 +            }
  2.1387 +          }
  2.1388 +        }
  2.1389 +      }
  2.1390 +
  2.1391 +      std::vector<int> subblossoms;
  2.1392 +      Arc prev;
  2.1393 +
  2.1394 +      prev = _graph.direct(edge, true);
  2.1395 +      for (int i = 0; left_path[i] != nca; i += 2) {
  2.1396 +        subblossoms.push_back(left_path[i]);
  2.1397 +        (*_blossom_data)[left_path[i]].next = prev;
  2.1398 +        _tree_set->erase(left_path[i]);
  2.1399 +
  2.1400 +        subblossoms.push_back(left_path[i + 1]);
  2.1401 +        (*_blossom_data)[left_path[i + 1]].status = EVEN;
  2.1402 +        oddToEven(left_path[i + 1], tree);
  2.1403 +        _tree_set->erase(left_path[i + 1]);
  2.1404 +        prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
  2.1405 +      }
  2.1406 +
  2.1407 +      int k = 0;
  2.1408 +      while (right_path[k] != nca) ++k;
  2.1409 +
  2.1410 +      subblossoms.push_back(nca);
  2.1411 +      (*_blossom_data)[nca].next = prev;
  2.1412 +
  2.1413 +      for (int i = k - 2; i >= 0; i -= 2) {
  2.1414 +        subblossoms.push_back(right_path[i + 1]);
  2.1415 +        (*_blossom_data)[right_path[i + 1]].status = EVEN;
  2.1416 +        oddToEven(right_path[i + 1], tree);
  2.1417 +        _tree_set->erase(right_path[i + 1]);
  2.1418 +
  2.1419 +        (*_blossom_data)[right_path[i + 1]].next =
  2.1420 +          (*_blossom_data)[right_path[i + 1]].pred;
  2.1421 +
  2.1422 +        subblossoms.push_back(right_path[i]);
  2.1423 +        _tree_set->erase(right_path[i]);
  2.1424 +      }
  2.1425 +
  2.1426 +      int surface =
  2.1427 +        _blossom_set->join(subblossoms.begin(), subblossoms.end());
  2.1428 +
  2.1429 +      for (int i = 0; i < int(subblossoms.size()); ++i) {
  2.1430 +        if (!_blossom_set->trivial(subblossoms[i])) {
  2.1431 +          (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
  2.1432 +        }
  2.1433 +        (*_blossom_data)[subblossoms[i]].status = MATCHED;
  2.1434 +      }
  2.1435 +
  2.1436 +      (*_blossom_data)[surface].pot = -2 * _delta_sum;
  2.1437 +      (*_blossom_data)[surface].offset = 0;
  2.1438 +      (*_blossom_data)[surface].status = EVEN;
  2.1439 +      (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
  2.1440 +      (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
  2.1441 +
  2.1442 +      _tree_set->insert(surface, tree);
  2.1443 +      _tree_set->erase(nca);
  2.1444 +    }
  2.1445 +
  2.1446 +    void splitBlossom(int blossom) {
  2.1447 +      Arc next = (*_blossom_data)[blossom].next;
  2.1448 +      Arc pred = (*_blossom_data)[blossom].pred;
  2.1449 +
  2.1450 +      int tree = _tree_set->find(blossom);
  2.1451 +
  2.1452 +      (*_blossom_data)[blossom].status = MATCHED;
  2.1453 +      oddToMatched(blossom);
  2.1454 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  2.1455 +        _delta2->erase(blossom);
  2.1456 +      }
  2.1457 +
  2.1458 +      std::vector<int> subblossoms;
  2.1459 +      _blossom_set->split(blossom, std::back_inserter(subblossoms));
  2.1460 +
  2.1461 +      Value offset = (*_blossom_data)[blossom].offset;
  2.1462 +      int b = _blossom_set->find(_graph.source(pred));
  2.1463 +      int d = _blossom_set->find(_graph.source(next));
  2.1464 +
  2.1465 +      int ib = -1, id = -1;
  2.1466 +      for (int i = 0; i < int(subblossoms.size()); ++i) {
  2.1467 +        if (subblossoms[i] == b) ib = i;
  2.1468 +        if (subblossoms[i] == d) id = i;
  2.1469 +
  2.1470 +        (*_blossom_data)[subblossoms[i]].offset = offset;
  2.1471 +        if (!_blossom_set->trivial(subblossoms[i])) {
  2.1472 +          (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
  2.1473 +        }
  2.1474 +        if (_blossom_set->classPrio(subblossoms[i]) !=
  2.1475 +            std::numeric_limits<Value>::max()) {
  2.1476 +          _delta2->push(subblossoms[i],
  2.1477 +                        _blossom_set->classPrio(subblossoms[i]) -
  2.1478 +                        (*_blossom_data)[subblossoms[i]].offset);
  2.1479 +        }
  2.1480 +      }
  2.1481 +
  2.1482 +      if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
  2.1483 +        for (int i = (id + 1) % subblossoms.size();
  2.1484 +             i != ib; i = (i + 2) % subblossoms.size()) {
  2.1485 +          int sb = subblossoms[i];
  2.1486 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  2.1487 +          (*_blossom_data)[sb].next =
  2.1488 +            _graph.oppositeArc((*_blossom_data)[tb].next);
  2.1489 +        }
  2.1490 +
  2.1491 +        for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
  2.1492 +          int sb = subblossoms[i];
  2.1493 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  2.1494 +          int ub = subblossoms[(i + 2) % subblossoms.size()];
  2.1495 +
  2.1496 +          (*_blossom_data)[sb].status = ODD;
  2.1497 +          matchedToOdd(sb);
  2.1498 +          _tree_set->insert(sb, tree);
  2.1499 +          (*_blossom_data)[sb].pred = pred;
  2.1500 +          (*_blossom_data)[sb].next =
  2.1501 +                           _graph.oppositeArc((*_blossom_data)[tb].next);
  2.1502 +
  2.1503 +          pred = (*_blossom_data)[ub].next;
  2.1504 +
  2.1505 +          (*_blossom_data)[tb].status = EVEN;
  2.1506 +          matchedToEven(tb, tree);
  2.1507 +          _tree_set->insert(tb, tree);
  2.1508 +          (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
  2.1509 +        }
  2.1510 +
  2.1511 +        (*_blossom_data)[subblossoms[id]].status = ODD;
  2.1512 +        matchedToOdd(subblossoms[id]);
  2.1513 +        _tree_set->insert(subblossoms[id], tree);
  2.1514 +        (*_blossom_data)[subblossoms[id]].next = next;
  2.1515 +        (*_blossom_data)[subblossoms[id]].pred = pred;
  2.1516 +
  2.1517 +      } else {
  2.1518 +
  2.1519 +        for (int i = (ib + 1) % subblossoms.size();
  2.1520 +             i != id; i = (i + 2) % subblossoms.size()) {
  2.1521 +          int sb = subblossoms[i];
  2.1522 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  2.1523 +          (*_blossom_data)[sb].next =
  2.1524 +            _graph.oppositeArc((*_blossom_data)[tb].next);
  2.1525 +        }
  2.1526 +
  2.1527 +        for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
  2.1528 +          int sb = subblossoms[i];
  2.1529 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  2.1530 +          int ub = subblossoms[(i + 2) % subblossoms.size()];
  2.1531 +
  2.1532 +          (*_blossom_data)[sb].status = ODD;
  2.1533 +          matchedToOdd(sb);
  2.1534 +          _tree_set->insert(sb, tree);
  2.1535 +          (*_blossom_data)[sb].next = next;
  2.1536 +          (*_blossom_data)[sb].pred =
  2.1537 +            _graph.oppositeArc((*_blossom_data)[tb].next);
  2.1538 +
  2.1539 +          (*_blossom_data)[tb].status = EVEN;
  2.1540 +          matchedToEven(tb, tree);
  2.1541 +          _tree_set->insert(tb, tree);
  2.1542 +          (*_blossom_data)[tb].pred =
  2.1543 +            (*_blossom_data)[tb].next =
  2.1544 +            _graph.oppositeArc((*_blossom_data)[ub].next);
  2.1545 +          next = (*_blossom_data)[ub].next;
  2.1546 +        }
  2.1547 +
  2.1548 +        (*_blossom_data)[subblossoms[ib]].status = ODD;
  2.1549 +        matchedToOdd(subblossoms[ib]);
  2.1550 +        _tree_set->insert(subblossoms[ib], tree);
  2.1551 +        (*_blossom_data)[subblossoms[ib]].next = next;
  2.1552 +        (*_blossom_data)[subblossoms[ib]].pred = pred;
  2.1553 +      }
  2.1554 +      _tree_set->erase(blossom);
  2.1555 +    }
  2.1556 +
  2.1557 +    void extractBlossom(int blossom, const Node& base, const Arc& matching) {
  2.1558 +      if (_blossom_set->trivial(blossom)) {
  2.1559 +        int bi = (*_node_index)[base];
  2.1560 +        Value pot = (*_node_data)[bi].pot;
  2.1561 +
  2.1562 +        _matching->set(base, matching);
  2.1563 +        _blossom_node_list.push_back(base);
  2.1564 +        _node_potential->set(base, pot);
  2.1565 +      } else {
  2.1566 +
  2.1567 +        Value pot = (*_blossom_data)[blossom].pot;
  2.1568 +        int bn = _blossom_node_list.size();
  2.1569 +
  2.1570 +        std::vector<int> subblossoms;
  2.1571 +        _blossom_set->split(blossom, std::back_inserter(subblossoms));
  2.1572 +        int b = _blossom_set->find(base);
  2.1573 +        int ib = -1;
  2.1574 +        for (int i = 0; i < int(subblossoms.size()); ++i) {
  2.1575 +          if (subblossoms[i] == b) { ib = i; break; }
  2.1576 +        }
  2.1577 +
  2.1578 +        for (int i = 1; i < int(subblossoms.size()); i += 2) {
  2.1579 +          int sb = subblossoms[(ib + i) % subblossoms.size()];
  2.1580 +          int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
  2.1581 +
  2.1582 +          Arc m = (*_blossom_data)[tb].next;
  2.1583 +          extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
  2.1584 +          extractBlossom(tb, _graph.source(m), m);
  2.1585 +        }
  2.1586 +        extractBlossom(subblossoms[ib], base, matching);
  2.1587 +
  2.1588 +        int en = _blossom_node_list.size();
  2.1589 +
  2.1590 +        _blossom_potential.push_back(BlossomVariable(bn, en, pot));
  2.1591 +      }
  2.1592 +    }
  2.1593 +
  2.1594 +    void extractMatching() {
  2.1595 +      std::vector<int> blossoms;
  2.1596 +      for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
  2.1597 +        blossoms.push_back(c);
  2.1598 +      }
  2.1599 +
  2.1600 +      for (int i = 0; i < int(blossoms.size()); ++i) {
  2.1601 +        if ((*_blossom_data)[blossoms[i]].status == MATCHED) {
  2.1602 +
  2.1603 +          Value offset = (*_blossom_data)[blossoms[i]].offset;
  2.1604 +          (*_blossom_data)[blossoms[i]].pot += 2 * offset;
  2.1605 +          for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
  2.1606 +               n != INVALID; ++n) {
  2.1607 +            (*_node_data)[(*_node_index)[n]].pot -= offset;
  2.1608 +          }
  2.1609 +
  2.1610 +          Arc matching = (*_blossom_data)[blossoms[i]].next;
  2.1611 +          Node base = _graph.source(matching);
  2.1612 +          extractBlossom(blossoms[i], base, matching);
  2.1613 +        } else {
  2.1614 +          Node base = (*_blossom_data)[blossoms[i]].base;
  2.1615 +          extractBlossom(blossoms[i], base, INVALID);
  2.1616 +        }
  2.1617 +      }
  2.1618 +    }
  2.1619 +
  2.1620 +  public:
  2.1621 +
  2.1622 +    /// \brief Constructor
  2.1623 +    ///
  2.1624 +    /// Constructor.
  2.1625 +    MaxWeightedMatching(const Graph& graph, const WeightMap& weight)
  2.1626 +      : _graph(graph), _weight(weight), _matching(0),
  2.1627 +        _node_potential(0), _blossom_potential(), _blossom_node_list(),
  2.1628 +        _node_num(0), _blossom_num(0),
  2.1629 +
  2.1630 +        _blossom_index(0), _blossom_set(0), _blossom_data(0),
  2.1631 +        _node_index(0), _node_heap_index(0), _node_data(0),
  2.1632 +        _tree_set_index(0), _tree_set(0),
  2.1633 +
  2.1634 +        _delta1_index(0), _delta1(0),
  2.1635 +        _delta2_index(0), _delta2(0),
  2.1636 +        _delta3_index(0), _delta3(0),
  2.1637 +        _delta4_index(0), _delta4(0),
  2.1638 +
  2.1639 +        _delta_sum() {}
  2.1640 +
  2.1641 +    ~MaxWeightedMatching() {
  2.1642 +      destroyStructures();
  2.1643 +    }
  2.1644 +
  2.1645 +    /// \name Execution control
  2.1646 +    /// The simplest way to execute the algorithm is to use the member
  2.1647 +    /// \c run() member function.
  2.1648 +
  2.1649 +    ///@{
  2.1650 +
  2.1651 +    /// \brief Initialize the algorithm
  2.1652 +    ///
  2.1653 +    /// Initialize the algorithm
  2.1654 +    void init() {
  2.1655 +      createStructures();
  2.1656 +
  2.1657 +      for (ArcIt e(_graph); e != INVALID; ++e) {
  2.1658 +        _node_heap_index->set(e, BinHeap<Value, ArcIntMap>::PRE_HEAP);
  2.1659 +      }
  2.1660 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  2.1661 +        _delta1_index->set(n, _delta1->PRE_HEAP);
  2.1662 +      }
  2.1663 +      for (EdgeIt e(_graph); e != INVALID; ++e) {
  2.1664 +        _delta3_index->set(e, _delta3->PRE_HEAP);
  2.1665 +      }
  2.1666 +      for (int i = 0; i < _blossom_num; ++i) {
  2.1667 +        _delta2_index->set(i, _delta2->PRE_HEAP);
  2.1668 +        _delta4_index->set(i, _delta4->PRE_HEAP);
  2.1669 +      }
  2.1670 +
  2.1671 +      int index = 0;
  2.1672 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  2.1673 +        Value max = 0;
  2.1674 +        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
  2.1675 +          if (_graph.target(e) == n) continue;
  2.1676 +          if ((dualScale * _weight[e]) / 2 > max) {
  2.1677 +            max = (dualScale * _weight[e]) / 2;
  2.1678 +          }
  2.1679 +        }
  2.1680 +        _node_index->set(n, index);
  2.1681 +        (*_node_data)[index].pot = max;
  2.1682 +        _delta1->push(n, max);
  2.1683 +        int blossom =
  2.1684 +          _blossom_set->insert(n, std::numeric_limits<Value>::max());
  2.1685 +
  2.1686 +        _tree_set->insert(blossom);
  2.1687 +
  2.1688 +        (*_blossom_data)[blossom].status = EVEN;
  2.1689 +        (*_blossom_data)[blossom].pred = INVALID;
  2.1690 +        (*_blossom_data)[blossom].next = INVALID;
  2.1691 +        (*_blossom_data)[blossom].pot = 0;
  2.1692 +        (*_blossom_data)[blossom].offset = 0;
  2.1693 +        ++index;
  2.1694 +      }
  2.1695 +      for (EdgeIt e(_graph); e != INVALID; ++e) {
  2.1696 +        int si = (*_node_index)[_graph.u(e)];
  2.1697 +        int ti = (*_node_index)[_graph.v(e)];
  2.1698 +        if (_graph.u(e) != _graph.v(e)) {
  2.1699 +          _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
  2.1700 +                            dualScale * _weight[e]) / 2);
  2.1701 +        }
  2.1702 +      }
  2.1703 +    }
  2.1704 +
  2.1705 +    /// \brief Starts the algorithm
  2.1706 +    ///
  2.1707 +    /// Starts the algorithm
  2.1708 +    void start() {
  2.1709 +      enum OpType {
  2.1710 +        D1, D2, D3, D4
  2.1711 +      };
  2.1712 +
  2.1713 +      int unmatched = _node_num;
  2.1714 +      while (unmatched > 0) {
  2.1715 +        Value d1 = !_delta1->empty() ?
  2.1716 +          _delta1->prio() : std::numeric_limits<Value>::max();
  2.1717 +
  2.1718 +        Value d2 = !_delta2->empty() ?
  2.1719 +          _delta2->prio() : std::numeric_limits<Value>::max();
  2.1720 +
  2.1721 +        Value d3 = !_delta3->empty() ?
  2.1722 +          _delta3->prio() : std::numeric_limits<Value>::max();
  2.1723 +
  2.1724 +        Value d4 = !_delta4->empty() ?
  2.1725 +          _delta4->prio() : std::numeric_limits<Value>::max();
  2.1726 +
  2.1727 +        _delta_sum = d1; OpType ot = D1;
  2.1728 +        if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
  2.1729 +        if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
  2.1730 +        if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
  2.1731 +
  2.1732 +
  2.1733 +        switch (ot) {
  2.1734 +        case D1:
  2.1735 +          {
  2.1736 +            Node n = _delta1->top();
  2.1737 +            unmatchNode(n);
  2.1738 +            --unmatched;
  2.1739 +          }
  2.1740 +          break;
  2.1741 +        case D2:
  2.1742 +          {
  2.1743 +            int blossom = _delta2->top();
  2.1744 +            Node n = _blossom_set->classTop(blossom);
  2.1745 +            Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
  2.1746 +            extendOnArc(e);
  2.1747 +          }
  2.1748 +          break;
  2.1749 +        case D3:
  2.1750 +          {
  2.1751 +            Edge e = _delta3->top();
  2.1752 +
  2.1753 +            int left_blossom = _blossom_set->find(_graph.u(e));
  2.1754 +            int right_blossom = _blossom_set->find(_graph.v(e));
  2.1755 +
  2.1756 +            if (left_blossom == right_blossom) {
  2.1757 +              _delta3->pop();
  2.1758 +            } else {
  2.1759 +              int left_tree;
  2.1760 +              if ((*_blossom_data)[left_blossom].status == EVEN) {
  2.1761 +                left_tree = _tree_set->find(left_blossom);
  2.1762 +              } else {
  2.1763 +                left_tree = -1;
  2.1764 +                ++unmatched;
  2.1765 +              }
  2.1766 +              int right_tree;
  2.1767 +              if ((*_blossom_data)[right_blossom].status == EVEN) {
  2.1768 +                right_tree = _tree_set->find(right_blossom);
  2.1769 +              } else {
  2.1770 +                right_tree = -1;
  2.1771 +                ++unmatched;
  2.1772 +              }
  2.1773 +
  2.1774 +              if (left_tree == right_tree) {
  2.1775 +                shrinkOnArc(e, left_tree);
  2.1776 +              } else {
  2.1777 +                augmentOnArc(e);
  2.1778 +                unmatched -= 2;
  2.1779 +              }
  2.1780 +            }
  2.1781 +          } break;
  2.1782 +        case D4:
  2.1783 +          splitBlossom(_delta4->top());
  2.1784 +          break;
  2.1785 +        }
  2.1786 +      }
  2.1787 +      extractMatching();
  2.1788 +    }
  2.1789 +
  2.1790 +    /// \brief Runs %MaxWeightedMatching algorithm.
  2.1791 +    ///
  2.1792 +    /// This method runs the %MaxWeightedMatching algorithm.
  2.1793 +    ///
  2.1794 +    /// \note mwm.run() is just a shortcut of the following code.
  2.1795 +    /// \code
  2.1796 +    ///   mwm.init();
  2.1797 +    ///   mwm.start();
  2.1798 +    /// \endcode
  2.1799 +    void run() {
  2.1800 +      init();
  2.1801 +      start();
  2.1802 +    }
  2.1803 +
  2.1804 +    /// @}
  2.1805 +
  2.1806 +    /// \name Primal solution
  2.1807 +    /// Functions for get the primal solution, ie. the matching.
  2.1808 +
  2.1809 +    /// @{
  2.1810 +
  2.1811 +    /// \brief Returns the matching value.
  2.1812 +    ///
  2.1813 +    /// Returns the matching value.
  2.1814 +    Value matchingValue() const {
  2.1815 +      Value sum = 0;
  2.1816 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  2.1817 +        if ((*_matching)[n] != INVALID) {
  2.1818 +          sum += _weight[(*_matching)[n]];
  2.1819 +        }
  2.1820 +      }
  2.1821 +      return sum /= 2;
  2.1822 +    }
  2.1823 +
  2.1824 +    /// \brief Returns true when the arc is in the matching.
  2.1825 +    ///
  2.1826 +    /// Returns true when the arc is in the matching.
  2.1827 +    bool matching(const Edge& arc) const {
  2.1828 +      return (*_matching)[_graph.u(arc)] == _graph.direct(arc, true);
  2.1829 +    }
  2.1830 +
  2.1831 +    /// \brief Returns the incident matching arc.
  2.1832 +    ///
  2.1833 +    /// Returns the incident matching arc from given node. If the
  2.1834 +    /// node is not matched then it gives back \c INVALID.
  2.1835 +    Arc matching(const Node& node) const {
  2.1836 +      return (*_matching)[node];
  2.1837 +    }
  2.1838 +
  2.1839 +    /// \brief Returns the mate of the node.
  2.1840 +    ///
  2.1841 +    /// Returns the adjancent node in a mathcing arc. If the node is
  2.1842 +    /// not matched then it gives back \c INVALID.
  2.1843 +    Node mate(const Node& node) const {
  2.1844 +      return (*_matching)[node] != INVALID ?
  2.1845 +        _graph.target((*_matching)[node]) : INVALID;
  2.1846 +    }
  2.1847 +
  2.1848 +    /// @}
  2.1849 +
  2.1850 +    /// \name Dual solution
  2.1851 +    /// Functions for get the dual solution.
  2.1852 +
  2.1853 +    /// @{
  2.1854 +
  2.1855 +    /// \brief Returns the value of the dual solution.
  2.1856 +    ///
  2.1857 +    /// Returns the value of the dual solution. It should be equal to
  2.1858 +    /// the primal value scaled by \ref dualScale "dual scale".
  2.1859 +    Value dualValue() const {
  2.1860 +      Value sum = 0;
  2.1861 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  2.1862 +        sum += nodeValue(n);
  2.1863 +      }
  2.1864 +      for (int i = 0; i < blossomNum(); ++i) {
  2.1865 +        sum += blossomValue(i) * (blossomSize(i) / 2);
  2.1866 +      }
  2.1867 +      return sum;
  2.1868 +    }
  2.1869 +
  2.1870 +    /// \brief Returns the value of the node.
  2.1871 +    ///
  2.1872 +    /// Returns the the value of the node.
  2.1873 +    Value nodeValue(const Node& n) const {
  2.1874 +      return (*_node_potential)[n];
  2.1875 +    }
  2.1876 +
  2.1877 +    /// \brief Returns the number of the blossoms in the basis.
  2.1878 +    ///
  2.1879 +    /// Returns the number of the blossoms in the basis.
  2.1880 +    /// \see BlossomIt
  2.1881 +    int blossomNum() const {
  2.1882 +      return _blossom_potential.size();
  2.1883 +    }
  2.1884 +
  2.1885 +
  2.1886 +    /// \brief Returns the number of the nodes in the blossom.
  2.1887 +    ///
  2.1888 +    /// Returns the number of the nodes in the blossom.
  2.1889 +    int blossomSize(int k) const {
  2.1890 +      return _blossom_potential[k].end - _blossom_potential[k].begin;
  2.1891 +    }
  2.1892 +
  2.1893 +    /// \brief Returns the value of the blossom.
  2.1894 +    ///
  2.1895 +    /// Returns the the value of the blossom.
  2.1896 +    /// \see BlossomIt
  2.1897 +    Value blossomValue(int k) const {
  2.1898 +      return _blossom_potential[k].value;
  2.1899 +    }
  2.1900 +
  2.1901 +    /// \brief Lemon iterator for get the items of the blossom.
  2.1902 +    ///
  2.1903 +    /// Lemon iterator for get the nodes of the blossom. This class
  2.1904 +    /// provides a common style lemon iterator which gives back a
  2.1905 +    /// subset of the nodes.
  2.1906 +    class BlossomIt {
  2.1907 +    public:
  2.1908 +
  2.1909 +      /// \brief Constructor.
  2.1910 +      ///
  2.1911 +      /// Constructor for get the nodes of the variable.
  2.1912 +      BlossomIt(const MaxWeightedMatching& algorithm, int variable)
  2.1913 +        : _algorithm(&algorithm)
  2.1914 +      {
  2.1915 +        _index = _algorithm->_blossom_potential[variable].begin;
  2.1916 +        _last = _algorithm->_blossom_potential[variable].end;
  2.1917 +      }
  2.1918 +
  2.1919 +      /// \brief Invalid constructor.
  2.1920 +      ///
  2.1921 +      /// Invalid constructor.
  2.1922 +      BlossomIt(Invalid) : _index(-1) {}
  2.1923 +
  2.1924 +      /// \brief Conversion to node.
  2.1925 +      ///
  2.1926 +      /// Conversion to node.
  2.1927 +      operator Node() const {
  2.1928 +        return _algorithm ? _algorithm->_blossom_node_list[_index] : INVALID;
  2.1929 +      }
  2.1930 +
  2.1931 +      /// \brief Increment operator.
  2.1932 +      ///
  2.1933 +      /// Increment operator.
  2.1934 +      BlossomIt& operator++() {
  2.1935 +        ++_index;
  2.1936 +        if (_index == _last) {
  2.1937 +          _index = -1;
  2.1938 +        }
  2.1939 +        return *this;
  2.1940 +      }
  2.1941 +
  2.1942 +      bool operator==(const BlossomIt& it) const {
  2.1943 +        return _index == it._index;
  2.1944 +      }
  2.1945 +      bool operator!=(const BlossomIt& it) const {
  2.1946 +        return _index != it._index;
  2.1947 +      }
  2.1948 +
  2.1949 +    private:
  2.1950 +      const MaxWeightedMatching* _algorithm;
  2.1951 +      int _last;
  2.1952 +      int _index;
  2.1953 +    };
  2.1954 +
  2.1955 +    /// @}
  2.1956 +
  2.1957 +  };
  2.1958 +
  2.1959 +  /// \ingroup matching
  2.1960 +  ///
  2.1961 +  /// \brief Weighted perfect matching in general graphs
  2.1962 +  ///
  2.1963 +  /// This class provides an efficient implementation of Edmond's
  2.1964 +  /// maximum weighted perfecr matching algorithm. The implementation
  2.1965 +  /// is based on extensive use of priority queues and provides
  2.1966 +  /// \f$O(nm\log(n))\f$ time complexity.
  2.1967 +  ///
  2.1968 +  /// The maximum weighted matching problem is to find undirected
  2.1969 +  /// arcs in the digraph with maximum overall weight and no two of
  2.1970 +  /// them shares their endpoints and covers all nodes. The problem
  2.1971 +  /// can be formulated with the next linear program:
  2.1972 +  /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
  2.1973 +  ///\f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} \quad \forall B\in\mathcal{O}\f]
  2.1974 +  /// \f[x_e \ge 0\quad \forall e\in E\f]
  2.1975 +  /// \f[\max \sum_{e\in E}x_ew_e\f]
  2.1976 +  /// where \f$\delta(X)\f$ is the set of arcs incident to a node in
  2.1977 +  /// \f$X\f$, \f$\gamma(X)\f$ is the set of arcs with both endpoints in
  2.1978 +  /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality subsets of
  2.1979 +  /// the nodes.
  2.1980 +  ///
  2.1981 +  /// The algorithm calculates an optimal matching and a proof of the
  2.1982 +  /// optimality. The solution of the dual problem can be used to check
  2.1983 +  /// the result of the algorithm. The dual linear problem is the next:
  2.1984 +  /// \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge w_{uv} \quad \forall uv\in E\f]
  2.1985 +  /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
  2.1986 +  /// \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}\frac{\vert B \vert - 1}{2}z_B\f]
  2.1987 +  ///
  2.1988 +  /// The algorithm can be executed with \c run() or the \c init() and
  2.1989 +  /// then the \c start() member functions. After it the matching can
  2.1990 +  /// be asked with \c matching() or mate() functions. The dual
  2.1991 +  /// solution can be get with \c nodeValue(), \c blossomNum() and \c
  2.1992 +  /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt
  2.1993 +  /// "BlossomIt" nested class which is able to iterate on the nodes
  2.1994 +  /// of a blossom. If the value type is integral then the dual
  2.1995 +  /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4".
  2.1996 +  template <typename _Graph,
  2.1997 +            typename _WeightMap = typename _Graph::template EdgeMap<int> >
  2.1998 +  class MaxWeightedPerfectMatching {
  2.1999 +  public:
  2.2000 +
  2.2001 +    typedef _Graph Graph;
  2.2002 +    typedef _WeightMap WeightMap;
  2.2003 +    typedef typename WeightMap::Value Value;
  2.2004 +
  2.2005 +    /// \brief Scaling factor for dual solution
  2.2006 +    ///
  2.2007 +    /// Scaling factor for dual solution, it is equal to 4 or 1
  2.2008 +    /// according to the value type.
  2.2009 +    static const int dualScale =
  2.2010 +      std::numeric_limits<Value>::is_integer ? 4 : 1;
  2.2011 +
  2.2012 +    typedef typename Graph::template NodeMap<typename Graph::Arc>
  2.2013 +    MatchingMap;
  2.2014 +
  2.2015 +  private:
  2.2016 +
  2.2017 +    TEMPLATE_GRAPH_TYPEDEFS(Graph);
  2.2018 +
  2.2019 +    typedef typename Graph::template NodeMap<Value> NodePotential;
  2.2020 +    typedef std::vector<Node> BlossomNodeList;
  2.2021 +
  2.2022 +    struct BlossomVariable {
  2.2023 +      int begin, end;
  2.2024 +      Value value;
  2.2025 +
  2.2026 +      BlossomVariable(int _begin, int _end, Value _value)
  2.2027 +        : begin(_begin), end(_end), value(_value) {}
  2.2028 +
  2.2029 +    };
  2.2030 +
  2.2031 +    typedef std::vector<BlossomVariable> BlossomPotential;
  2.2032 +
  2.2033 +    const Graph& _graph;
  2.2034 +    const WeightMap& _weight;
  2.2035 +
  2.2036 +    MatchingMap* _matching;
  2.2037 +
  2.2038 +    NodePotential* _node_potential;
  2.2039 +
  2.2040 +    BlossomPotential _blossom_potential;
  2.2041 +    BlossomNodeList _blossom_node_list;
  2.2042 +
  2.2043 +    int _node_num;
  2.2044 +    int _blossom_num;
  2.2045 +
  2.2046 +    typedef typename Graph::template NodeMap<int> NodeIntMap;
  2.2047 +    typedef typename Graph::template ArcMap<int> ArcIntMap;
  2.2048 +    typedef typename Graph::template EdgeMap<int> EdgeIntMap;
  2.2049 +    typedef RangeMap<int> IntIntMap;
  2.2050 +
  2.2051 +    enum Status {
  2.2052 +      EVEN = -1, MATCHED = 0, ODD = 1
  2.2053 +    };
  2.2054 +
  2.2055 +    typedef HeapUnionFind<Value, NodeIntMap> BlossomSet;
  2.2056 +    struct BlossomData {
  2.2057 +      int tree;
  2.2058 +      Status status;
  2.2059 +      Arc pred, next;
  2.2060 +      Value pot, offset;
  2.2061 +    };
  2.2062 +
  2.2063 +    NodeIntMap *_blossom_index;
  2.2064 +    BlossomSet *_blossom_set;
  2.2065 +    RangeMap<BlossomData>* _blossom_data;
  2.2066 +
  2.2067 +    NodeIntMap *_node_index;
  2.2068 +    ArcIntMap *_node_heap_index;
  2.2069 +
  2.2070 +    struct NodeData {
  2.2071 +
  2.2072 +      NodeData(ArcIntMap& node_heap_index)
  2.2073 +        : heap(node_heap_index) {}
  2.2074 +
  2.2075 +      int blossom;
  2.2076 +      Value pot;
  2.2077 +      BinHeap<Value, ArcIntMap> heap;
  2.2078 +      std::map<int, Arc> heap_index;
  2.2079 +
  2.2080 +      int tree;
  2.2081 +    };
  2.2082 +
  2.2083 +    RangeMap<NodeData>* _node_data;
  2.2084 +
  2.2085 +    typedef ExtendFindEnum<IntIntMap> TreeSet;
  2.2086 +
  2.2087 +    IntIntMap *_tree_set_index;
  2.2088 +    TreeSet *_tree_set;
  2.2089 +
  2.2090 +    IntIntMap *_delta2_index;
  2.2091 +    BinHeap<Value, IntIntMap> *_delta2;
  2.2092 +
  2.2093 +    EdgeIntMap *_delta3_index;
  2.2094 +    BinHeap<Value, EdgeIntMap> *_delta3;
  2.2095 +
  2.2096 +    IntIntMap *_delta4_index;
  2.2097 +    BinHeap<Value, IntIntMap> *_delta4;
  2.2098 +
  2.2099 +    Value _delta_sum;
  2.2100 +
  2.2101 +    void createStructures() {
  2.2102 +      _node_num = countNodes(_graph);
  2.2103 +      _blossom_num = _node_num * 3 / 2;
  2.2104 +
  2.2105 +      if (!_matching) {
  2.2106 +        _matching = new MatchingMap(_graph);
  2.2107 +      }
  2.2108 +      if (!_node_potential) {
  2.2109 +        _node_potential = new NodePotential(_graph);
  2.2110 +      }
  2.2111 +      if (!_blossom_set) {
  2.2112 +        _blossom_index = new NodeIntMap(_graph);
  2.2113 +        _blossom_set = new BlossomSet(*_blossom_index);
  2.2114 +        _blossom_data = new RangeMap<BlossomData>(_blossom_num);
  2.2115 +      }
  2.2116 +
  2.2117 +      if (!_node_index) {
  2.2118 +        _node_index = new NodeIntMap(_graph);
  2.2119 +        _node_heap_index = new ArcIntMap(_graph);
  2.2120 +        _node_data = new RangeMap<NodeData>(_node_num,
  2.2121 +                                              NodeData(*_node_heap_index));
  2.2122 +      }
  2.2123 +
  2.2124 +      if (!_tree_set) {
  2.2125 +        _tree_set_index = new IntIntMap(_blossom_num);
  2.2126 +        _tree_set = new TreeSet(*_tree_set_index);
  2.2127 +      }
  2.2128 +      if (!_delta2) {
  2.2129 +        _delta2_index = new IntIntMap(_blossom_num);
  2.2130 +        _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
  2.2131 +      }
  2.2132 +      if (!_delta3) {
  2.2133 +        _delta3_index = new EdgeIntMap(_graph);
  2.2134 +        _delta3 = new BinHeap<Value, EdgeIntMap>(*_delta3_index);
  2.2135 +      }
  2.2136 +      if (!_delta4) {
  2.2137 +        _delta4_index = new IntIntMap(_blossom_num);
  2.2138 +        _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
  2.2139 +      }
  2.2140 +    }
  2.2141 +
  2.2142 +    void destroyStructures() {
  2.2143 +      _node_num = countNodes(_graph);
  2.2144 +      _blossom_num = _node_num * 3 / 2;
  2.2145 +
  2.2146 +      if (_matching) {
  2.2147 +        delete _matching;
  2.2148 +      }
  2.2149 +      if (_node_potential) {
  2.2150 +        delete _node_potential;
  2.2151 +      }
  2.2152 +      if (_blossom_set) {
  2.2153 +        delete _blossom_index;
  2.2154 +        delete _blossom_set;
  2.2155 +        delete _blossom_data;
  2.2156 +      }
  2.2157 +
  2.2158 +      if (_node_index) {
  2.2159 +        delete _node_index;
  2.2160 +        delete _node_heap_index;
  2.2161 +        delete _node_data;
  2.2162 +      }
  2.2163 +
  2.2164 +      if (_tree_set) {
  2.2165 +        delete _tree_set_index;
  2.2166 +        delete _tree_set;
  2.2167 +      }
  2.2168 +      if (_delta2) {
  2.2169 +        delete _delta2_index;
  2.2170 +        delete _delta2;
  2.2171 +      }
  2.2172 +      if (_delta3) {
  2.2173 +        delete _delta3_index;
  2.2174 +        delete _delta3;
  2.2175 +      }
  2.2176 +      if (_delta4) {
  2.2177 +        delete _delta4_index;
  2.2178 +        delete _delta4;
  2.2179 +      }
  2.2180 +    }
  2.2181 +
  2.2182 +    void matchedToEven(int blossom, int tree) {
  2.2183 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  2.2184 +        _delta2->erase(blossom);
  2.2185 +      }
  2.2186 +
  2.2187 +      if (!_blossom_set->trivial(blossom)) {
  2.2188 +        (*_blossom_data)[blossom].pot -=
  2.2189 +          2 * (_delta_sum - (*_blossom_data)[blossom].offset);
  2.2190 +      }
  2.2191 +
  2.2192 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  2.2193 +           n != INVALID; ++n) {
  2.2194 +
  2.2195 +        _blossom_set->increase(n, std::numeric_limits<Value>::max());
  2.2196 +        int ni = (*_node_index)[n];
  2.2197 +
  2.2198 +        (*_node_data)[ni].heap.clear();
  2.2199 +        (*_node_data)[ni].heap_index.clear();
  2.2200 +
  2.2201 +        (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
  2.2202 +
  2.2203 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  2.2204 +          Node v = _graph.source(e);
  2.2205 +          int vb = _blossom_set->find(v);
  2.2206 +          int vi = (*_node_index)[v];
  2.2207 +
  2.2208 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  2.2209 +            dualScale * _weight[e];
  2.2210 +
  2.2211 +          if ((*_blossom_data)[vb].status == EVEN) {
  2.2212 +            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  2.2213 +              _delta3->push(e, rw / 2);
  2.2214 +            }
  2.2215 +          } else {
  2.2216 +            typename std::map<int, Arc>::iterator it =
  2.2217 +              (*_node_data)[vi].heap_index.find(tree);
  2.2218 +
  2.2219 +            if (it != (*_node_data)[vi].heap_index.end()) {
  2.2220 +              if ((*_node_data)[vi].heap[it->second] > rw) {
  2.2221 +                (*_node_data)[vi].heap.replace(it->second, e);
  2.2222 +                (*_node_data)[vi].heap.decrease(e, rw);
  2.2223 +                it->second = e;
  2.2224 +              }
  2.2225 +            } else {
  2.2226 +              (*_node_data)[vi].heap.push(e, rw);
  2.2227 +              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  2.2228 +            }
  2.2229 +
  2.2230 +            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  2.2231 +              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  2.2232 +
  2.2233 +              if ((*_blossom_data)[vb].status == MATCHED) {
  2.2234 +                if (_delta2->state(vb) != _delta2->IN_HEAP) {
  2.2235 +                  _delta2->push(vb, _blossom_set->classPrio(vb) -
  2.2236 +                               (*_blossom_data)[vb].offset);
  2.2237 +                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
  2.2238 +                           (*_blossom_data)[vb].offset){
  2.2239 +                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  2.2240 +                                   (*_blossom_data)[vb].offset);
  2.2241 +                }
  2.2242 +              }
  2.2243 +            }
  2.2244 +          }
  2.2245 +        }
  2.2246 +      }
  2.2247 +      (*_blossom_data)[blossom].offset = 0;
  2.2248 +    }
  2.2249 +
  2.2250 +    void matchedToOdd(int blossom) {
  2.2251 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  2.2252 +        _delta2->erase(blossom);
  2.2253 +      }
  2.2254 +      (*_blossom_data)[blossom].offset += _delta_sum;
  2.2255 +      if (!_blossom_set->trivial(blossom)) {
  2.2256 +        _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
  2.2257 +                     (*_blossom_data)[blossom].offset);
  2.2258 +      }
  2.2259 +    }
  2.2260 +
  2.2261 +    void evenToMatched(int blossom, int tree) {
  2.2262 +      if (!_blossom_set->trivial(blossom)) {
  2.2263 +        (*_blossom_data)[blossom].pot += 2 * _delta_sum;
  2.2264 +      }
  2.2265 +
  2.2266 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  2.2267 +           n != INVALID; ++n) {
  2.2268 +        int ni = (*_node_index)[n];
  2.2269 +        (*_node_data)[ni].pot -= _delta_sum;
  2.2270 +
  2.2271 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  2.2272 +          Node v = _graph.source(e);
  2.2273 +          int vb = _blossom_set->find(v);
  2.2274 +          int vi = (*_node_index)[v];
  2.2275 +
  2.2276 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  2.2277 +            dualScale * _weight[e];
  2.2278 +
  2.2279 +          if (vb == blossom) {
  2.2280 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
  2.2281 +              _delta3->erase(e);
  2.2282 +            }
  2.2283 +          } else if ((*_blossom_data)[vb].status == EVEN) {
  2.2284 +
  2.2285 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
  2.2286 +              _delta3->erase(e);
  2.2287 +            }
  2.2288 +
  2.2289 +            int vt = _tree_set->find(vb);
  2.2290 +
  2.2291 +            if (vt != tree) {
  2.2292 +
  2.2293 +              Arc r = _graph.oppositeArc(e);
  2.2294 +
  2.2295 +              typename std::map<int, Arc>::iterator it =
  2.2296 +                (*_node_data)[ni].heap_index.find(vt);
  2.2297 +
  2.2298 +              if (it != (*_node_data)[ni].heap_index.end()) {
  2.2299 +                if ((*_node_data)[ni].heap[it->second] > rw) {
  2.2300 +                  (*_node_data)[ni].heap.replace(it->second, r);
  2.2301 +                  (*_node_data)[ni].heap.decrease(r, rw);
  2.2302 +                  it->second = r;
  2.2303 +                }
  2.2304 +              } else {
  2.2305 +                (*_node_data)[ni].heap.push(r, rw);
  2.2306 +                (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
  2.2307 +              }
  2.2308 +
  2.2309 +              if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
  2.2310 +                _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  2.2311 +
  2.2312 +                if (_delta2->state(blossom) != _delta2->IN_HEAP) {
  2.2313 +                  _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  2.2314 +                               (*_blossom_data)[blossom].offset);
  2.2315 +                } else if ((*_delta2)[blossom] >
  2.2316 +                           _blossom_set->classPrio(blossom) -
  2.2317 +                           (*_blossom_data)[blossom].offset){
  2.2318 +                  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
  2.2319 +                                   (*_blossom_data)[blossom].offset);
  2.2320 +                }
  2.2321 +              }
  2.2322 +            }
  2.2323 +          } else {
  2.2324 +
  2.2325 +            typename std::map<int, Arc>::iterator it =
  2.2326 +              (*_node_data)[vi].heap_index.find(tree);
  2.2327 +
  2.2328 +            if (it != (*_node_data)[vi].heap_index.end()) {
  2.2329 +              (*_node_data)[vi].heap.erase(it->second);
  2.2330 +              (*_node_data)[vi].heap_index.erase(it);
  2.2331 +              if ((*_node_data)[vi].heap.empty()) {
  2.2332 +                _blossom_set->increase(v, std::numeric_limits<Value>::max());
  2.2333 +              } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
  2.2334 +                _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
  2.2335 +              }
  2.2336 +
  2.2337 +              if ((*_blossom_data)[vb].status == MATCHED) {
  2.2338 +                if (_blossom_set->classPrio(vb) ==
  2.2339 +                    std::numeric_limits<Value>::max()) {
  2.2340 +                  _delta2->erase(vb);
  2.2341 +                } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
  2.2342 +                           (*_blossom_data)[vb].offset) {
  2.2343 +                  _delta2->increase(vb, _blossom_set->classPrio(vb) -
  2.2344 +                                   (*_blossom_data)[vb].offset);
  2.2345 +                }
  2.2346 +              }
  2.2347 +            }
  2.2348 +          }
  2.2349 +        }
  2.2350 +      }
  2.2351 +    }
  2.2352 +
  2.2353 +    void oddToMatched(int blossom) {
  2.2354 +      (*_blossom_data)[blossom].offset -= _delta_sum;
  2.2355 +
  2.2356 +      if (_blossom_set->classPrio(blossom) !=
  2.2357 +          std::numeric_limits<Value>::max()) {
  2.2358 +        _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  2.2359 +                       (*_blossom_data)[blossom].offset);
  2.2360 +      }
  2.2361 +
  2.2362 +      if (!_blossom_set->trivial(blossom)) {
  2.2363 +        _delta4->erase(blossom);
  2.2364 +      }
  2.2365 +    }
  2.2366 +
  2.2367 +    void oddToEven(int blossom, int tree) {
  2.2368 +      if (!_blossom_set->trivial(blossom)) {
  2.2369 +        _delta4->erase(blossom);
  2.2370 +        (*_blossom_data)[blossom].pot -=
  2.2371 +          2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
  2.2372 +      }
  2.2373 +
  2.2374 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  2.2375 +           n != INVALID; ++n) {
  2.2376 +        int ni = (*_node_index)[n];
  2.2377 +
  2.2378 +        _blossom_set->increase(n, std::numeric_limits<Value>::max());
  2.2379 +
  2.2380 +        (*_node_data)[ni].heap.clear();
  2.2381 +        (*_node_data)[ni].heap_index.clear();
  2.2382 +        (*_node_data)[ni].pot +=
  2.2383 +          2 * _delta_sum - (*_blossom_data)[blossom].offset;
  2.2384 +
  2.2385 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  2.2386 +          Node v = _graph.source(e);
  2.2387 +          int vb = _blossom_set->find(v);
  2.2388 +          int vi = (*_node_index)[v];
  2.2389 +
  2.2390 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  2.2391 +            dualScale * _weight[e];
  2.2392 +
  2.2393 +          if ((*_blossom_data)[vb].status == EVEN) {
  2.2394 +            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  2.2395 +              _delta3->push(e, rw / 2);
  2.2396 +            }
  2.2397 +          } else {
  2.2398 +
  2.2399 +            typename std::map<int, Arc>::iterator it =
  2.2400 +              (*_node_data)[vi].heap_index.find(tree);
  2.2401 +
  2.2402 +            if (it != (*_node_data)[vi].heap_index.end()) {
  2.2403 +              if ((*_node_data)[vi].heap[it->second] > rw) {
  2.2404 +                (*_node_data)[vi].heap.replace(it->second, e);
  2.2405 +                (*_node_data)[vi].heap.decrease(e, rw);
  2.2406 +                it->second = e;
  2.2407 +              }
  2.2408 +            } else {
  2.2409 +              (*_node_data)[vi].heap.push(e, rw);
  2.2410 +              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  2.2411 +            }
  2.2412 +
  2.2413 +            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  2.2414 +              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  2.2415 +
  2.2416 +              if ((*_blossom_data)[vb].status == MATCHED) {
  2.2417 +                if (_delta2->state(vb) != _delta2->IN_HEAP) {
  2.2418 +                  _delta2->push(vb, _blossom_set->classPrio(vb) -
  2.2419 +                               (*_blossom_data)[vb].offset);
  2.2420 +                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
  2.2421 +                           (*_blossom_data)[vb].offset) {
  2.2422 +                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  2.2423 +                                   (*_blossom_data)[vb].offset);
  2.2424 +                }
  2.2425 +              }
  2.2426 +            }
  2.2427 +          }
  2.2428 +        }
  2.2429 +      }
  2.2430 +      (*_blossom_data)[blossom].offset = 0;
  2.2431 +    }
  2.2432 +
  2.2433 +    void alternatePath(int even, int tree) {
  2.2434 +      int odd;
  2.2435 +
  2.2436 +      evenToMatched(even, tree);
  2.2437 +      (*_blossom_data)[even].status = MATCHED;
  2.2438 +
  2.2439 +      while ((*_blossom_data)[even].pred != INVALID) {
  2.2440 +        odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
  2.2441 +        (*_blossom_data)[odd].status = MATCHED;
  2.2442 +        oddToMatched(odd);
  2.2443 +        (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
  2.2444 +
  2.2445 +        even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
  2.2446 +        (*_blossom_data)[even].status = MATCHED;
  2.2447 +        evenToMatched(even, tree);
  2.2448 +        (*_blossom_data)[even].next =
  2.2449 +          _graph.oppositeArc((*_blossom_data)[odd].pred);
  2.2450 +      }
  2.2451 +
  2.2452 +    }
  2.2453 +
  2.2454 +    void destroyTree(int tree) {
  2.2455 +      for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
  2.2456 +        if ((*_blossom_data)[b].status == EVEN) {
  2.2457 +          (*_blossom_data)[b].status = MATCHED;
  2.2458 +          evenToMatched(b, tree);
  2.2459 +        } else if ((*_blossom_data)[b].status == ODD) {
  2.2460 +          (*_blossom_data)[b].status = MATCHED;
  2.2461 +          oddToMatched(b);
  2.2462 +        }
  2.2463 +      }
  2.2464 +      _tree_set->eraseClass(tree);
  2.2465 +    }
  2.2466 +
  2.2467 +    void augmentOnArc(const Edge& arc) {
  2.2468 +
  2.2469 +      int left = _blossom_set->find(_graph.u(arc));
  2.2470 +      int right = _blossom_set->find(_graph.v(arc));
  2.2471 +
  2.2472 +      int left_tree = _tree_set->find(left);
  2.2473 +      alternatePath(left, left_tree);
  2.2474 +      destroyTree(left_tree);
  2.2475 +
  2.2476 +      int right_tree = _tree_set->find(right);
  2.2477 +      alternatePath(right, right_tree);
  2.2478 +      destroyTree(right_tree);
  2.2479 +
  2.2480 +      (*_blossom_data)[left].next = _graph.direct(arc, true);
  2.2481 +      (*_blossom_data)[right].next = _graph.direct(arc, false);
  2.2482 +    }
  2.2483 +
  2.2484 +    void extendOnArc(const Arc& arc) {
  2.2485 +      int base = _blossom_set->find(_graph.target(arc));
  2.2486 +      int tree = _tree_set->find(base);
  2.2487 +
  2.2488 +      int odd = _blossom_set->find(_graph.source(arc));
  2.2489 +      _tree_set->insert(odd, tree);
  2.2490 +      (*_blossom_data)[odd].status = ODD;
  2.2491 +      matchedToOdd(odd);
  2.2492 +      (*_blossom_data)[odd].pred = arc;
  2.2493 +
  2.2494 +      int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
  2.2495 +      (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
  2.2496 +      _tree_set->insert(even, tree);
  2.2497 +      (*_blossom_data)[even].status = EVEN;
  2.2498 +      matchedToEven(even, tree);
  2.2499 +    }
  2.2500 +
  2.2501 +    void shrinkOnArc(const Edge& edge, int tree) {
  2.2502 +      int nca = -1;
  2.2503 +      std::vector<int> left_path, right_path;
  2.2504 +
  2.2505 +      {
  2.2506 +        std::set<int> left_set, right_set;
  2.2507 +        int left = _blossom_set->find(_graph.u(edge));
  2.2508 +        left_path.push_back(left);
  2.2509 +        left_set.insert(left);
  2.2510 +
  2.2511 +        int right = _blossom_set->find(_graph.v(edge));
  2.2512 +        right_path.push_back(right);
  2.2513 +        right_set.insert(right);
  2.2514 +
  2.2515 +        while (true) {
  2.2516 +
  2.2517 +          if ((*_blossom_data)[left].pred == INVALID) break;
  2.2518 +
  2.2519 +          left =
  2.2520 +            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  2.2521 +          left_path.push_back(left);
  2.2522 +          left =
  2.2523 +            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  2.2524 +          left_path.push_back(left);
  2.2525 +
  2.2526 +          left_set.insert(left);
  2.2527 +
  2.2528 +          if (right_set.find(left) != right_set.end()) {
  2.2529 +            nca = left;
  2.2530 +            break;
  2.2531 +          }
  2.2532 +
  2.2533 +          if ((*_blossom_data)[right].pred == INVALID) break;
  2.2534 +
  2.2535 +          right =
  2.2536 +            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  2.2537 +          right_path.push_back(right);
  2.2538 +          right =
  2.2539 +            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  2.2540 +          right_path.push_back(right);
  2.2541 +
  2.2542 +          right_set.insert(right);
  2.2543 +
  2.2544 +          if (left_set.find(right) != left_set.end()) {
  2.2545 +            nca = right;
  2.2546 +            break;
  2.2547 +          }
  2.2548 +
  2.2549 +        }
  2.2550 +
  2.2551 +        if (nca == -1) {
  2.2552 +          if ((*_blossom_data)[left].pred == INVALID) {
  2.2553 +            nca = right;
  2.2554 +            while (left_set.find(nca) == left_set.end()) {
  2.2555 +              nca =
  2.2556 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  2.2557 +              right_path.push_back(nca);
  2.2558 +              nca =
  2.2559 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  2.2560 +              right_path.push_back(nca);
  2.2561 +            }
  2.2562 +          } else {
  2.2563 +            nca = left;
  2.2564 +            while (right_set.find(nca) == right_set.end()) {
  2.2565 +              nca =
  2.2566 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  2.2567 +              left_path.push_back(nca);
  2.2568 +              nca =
  2.2569 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  2.2570 +              left_path.push_back(nca);
  2.2571 +            }
  2.2572 +          }
  2.2573 +        }
  2.2574 +      }
  2.2575 +
  2.2576 +      std::vector<int> subblossoms;
  2.2577 +      Arc prev;
  2.2578 +
  2.2579 +      prev = _graph.direct(edge, true);
  2.2580 +      for (int i = 0; left_path[i] != nca; i += 2) {
  2.2581 +        subblossoms.push_back(left_path[i]);
  2.2582 +        (*_blossom_data)[left_path[i]].next = prev;
  2.2583 +        _tree_set->erase(left_path[i]);
  2.2584 +
  2.2585 +        subblossoms.push_back(left_path[i + 1]);
  2.2586 +        (*_blossom_data)[left_path[i + 1]].status = EVEN;
  2.2587 +        oddToEven(left_path[i + 1], tree);
  2.2588 +        _tree_set->erase(left_path[i + 1]);
  2.2589 +        prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
  2.2590 +      }
  2.2591 +
  2.2592 +      int k = 0;
  2.2593 +      while (right_path[k] != nca) ++k;
  2.2594 +
  2.2595 +      subblossoms.push_back(nca);
  2.2596 +      (*_blossom_data)[nca].next = prev;
  2.2597 +
  2.2598 +      for (int i = k - 2; i >= 0; i -= 2) {
  2.2599 +        subblossoms.push_back(right_path[i + 1]);
  2.2600 +        (*_blossom_data)[right_path[i + 1]].status = EVEN;
  2.2601 +        oddToEven(right_path[i + 1], tree);
  2.2602 +        _tree_set->erase(right_path[i + 1]);
  2.2603 +
  2.2604 +        (*_blossom_data)[right_path[i + 1]].next =
  2.2605 +          (*_blossom_data)[right_path[i + 1]].pred;
  2.2606 +
  2.2607 +        subblossoms.push_back(right_path[i]);
  2.2608 +        _tree_set->erase(right_path[i]);
  2.2609 +      }
  2.2610 +
  2.2611 +      int surface =
  2.2612 +        _blossom_set->join(subblossoms.begin(), subblossoms.end());
  2.2613 +
  2.2614 +      for (int i = 0; i < int(subblossoms.size()); ++i) {
  2.2615 +        if (!_blossom_set->trivial(subblossoms[i])) {
  2.2616 +          (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
  2.2617 +        }
  2.2618 +        (*_blossom_data)[subblossoms[i]].status = MATCHED;
  2.2619 +      }
  2.2620 +
  2.2621 +      (*_blossom_data)[surface].pot = -2 * _delta_sum;
  2.2622 +      (*_blossom_data)[surface].offset = 0;
  2.2623 +      (*_blossom_data)[surface].status = EVEN;
  2.2624 +      (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
  2.2625 +      (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
  2.2626 +
  2.2627 +      _tree_set->insert(surface, tree);
  2.2628 +      _tree_set->erase(nca);
  2.2629 +    }
  2.2630 +
  2.2631 +    void splitBlossom(int blossom) {
  2.2632 +      Arc next = (*_blossom_data)[blossom].next;
  2.2633 +      Arc pred = (*_blossom_data)[blossom].pred;
  2.2634 +
  2.2635 +      int tree = _tree_set->find(blossom);
  2.2636 +
  2.2637 +      (*_blossom_data)[blossom].status = MATCHED;
  2.2638 +      oddToMatched(blossom);
  2.2639 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  2.2640 +        _delta2->erase(blossom);
  2.2641 +      }
  2.2642 +
  2.2643 +      std::vector<int> subblossoms;
  2.2644 +      _blossom_set->split(blossom, std::back_inserter(subblossoms));
  2.2645 +
  2.2646 +      Value offset = (*_blossom_data)[blossom].offset;
  2.2647 +      int b = _blossom_set->find(_graph.source(pred));
  2.2648 +      int d = _blossom_set->find(_graph.source(next));
  2.2649 +
  2.2650 +      int ib = -1, id = -1;
  2.2651 +      for (int i = 0; i < int(subblossoms.size()); ++i) {
  2.2652 +        if (subblossoms[i] == b) ib = i;
  2.2653 +        if (subblossoms[i] == d) id = i;
  2.2654 +
  2.2655 +        (*_blossom_data)[subblossoms[i]].offset = offset;
  2.2656 +        if (!_blossom_set->trivial(subblossoms[i])) {
  2.2657 +          (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
  2.2658 +        }
  2.2659 +        if (_blossom_set->classPrio(subblossoms[i]) !=
  2.2660 +            std::numeric_limits<Value>::max()) {
  2.2661 +          _delta2->push(subblossoms[i],
  2.2662 +                        _blossom_set->classPrio(subblossoms[i]) -
  2.2663 +                        (*_blossom_data)[subblossoms[i]].offset);
  2.2664 +        }
  2.2665 +      }
  2.2666 +
  2.2667 +      if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
  2.2668 +        for (int i = (id + 1) % subblossoms.size();
  2.2669 +             i != ib; i = (i + 2) % subblossoms.size()) {
  2.2670 +          int sb = subblossoms[i];
  2.2671 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  2.2672 +          (*_blossom_data)[sb].next =
  2.2673 +            _graph.oppositeArc((*_blossom_data)[tb].next);
  2.2674 +        }
  2.2675 +
  2.2676 +        for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
  2.2677 +          int sb = subblossoms[i];
  2.2678 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  2.2679 +          int ub = subblossoms[(i + 2) % subblossoms.size()];
  2.2680 +
  2.2681 +          (*_blossom_data)[sb].status = ODD;
  2.2682 +          matchedToOdd(sb);
  2.2683 +          _tree_set->insert(sb, tree);
  2.2684 +          (*_blossom_data)[sb].pred = pred;
  2.2685 +          (*_blossom_data)[sb].next =
  2.2686 +                           _graph.oppositeArc((*_blossom_data)[tb].next);
  2.2687 +
  2.2688 +          pred = (*_blossom_data)[ub].next;
  2.2689 +
  2.2690 +          (*_blossom_data)[tb].status = EVEN;
  2.2691 +          matchedToEven(tb, tree);
  2.2692 +          _tree_set->insert(tb, tree);
  2.2693 +          (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
  2.2694 +        }
  2.2695 +
  2.2696 +        (*_blossom_data)[subblossoms[id]].status = ODD;
  2.2697 +        matchedToOdd(subblossoms[id]);
  2.2698 +        _tree_set->insert(subblossoms[id], tree);
  2.2699 +        (*_blossom_data)[subblossoms[id]].next = next;
  2.2700 +        (*_blossom_data)[subblossoms[id]].pred = pred;
  2.2701 +
  2.2702 +      } else {
  2.2703 +
  2.2704 +        for (int i = (ib + 1) % subblossoms.size();
  2.2705 +             i != id; i = (i + 2) % subblossoms.size()) {
  2.2706 +          int sb = subblossoms[i];
  2.2707 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  2.2708 +          (*_blossom_data)[sb].next =
  2.2709 +            _graph.oppositeArc((*_blossom_data)[tb].next);
  2.2710 +        }
  2.2711 +
  2.2712 +        for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
  2.2713 +          int sb = subblossoms[i];
  2.2714 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  2.2715 +          int ub = subblossoms[(i + 2) % subblossoms.size()];
  2.2716 +
  2.2717 +          (*_blossom_data)[sb].status = ODD;
  2.2718 +          matchedToOdd(sb);
  2.2719 +          _tree_set->insert(sb, tree);
  2.2720 +          (*_blossom_data)[sb].next = next;
  2.2721 +          (*_blossom_data)[sb].pred =
  2.2722 +            _graph.oppositeArc((*_blossom_data)[tb].next);
  2.2723 +
  2.2724 +          (*_blossom_data)[tb].status = EVEN;
  2.2725 +          matchedToEven(tb, tree);
  2.2726 +          _tree_set->insert(tb, tree);
  2.2727 +          (*_blossom_data)[tb].pred =
  2.2728 +            (*_blossom_data)[tb].next =
  2.2729 +            _graph.oppositeArc((*_blossom_data)[ub].next);
  2.2730 +          next = (*_blossom_data)[ub].next;
  2.2731 +        }
  2.2732 +
  2.2733 +        (*_blossom_data)[subblossoms[ib]].status = ODD;
  2.2734 +        matchedToOdd(subblossoms[ib]);
  2.2735 +        _tree_set->insert(subblossoms[ib], tree);
  2.2736 +        (*_blossom_data)[subblossoms[ib]].next = next;
  2.2737 +        (*_blossom_data)[subblossoms[ib]].pred = pred;
  2.2738 +      }
  2.2739 +      _tree_set->erase(blossom);
  2.2740 +    }
  2.2741 +
  2.2742 +    void extractBlossom(int blossom, const Node& base, const Arc& matching) {
  2.2743 +      if (_blossom_set->trivial(blossom)) {
  2.2744 +        int bi = (*_node_index)[base];
  2.2745 +        Value pot = (*_node_data)[bi].pot;
  2.2746 +
  2.2747 +        _matching->set(base, matching);
  2.2748 +        _blossom_node_list.push_back(base);
  2.2749 +        _node_potential->set(base, pot);
  2.2750 +      } else {
  2.2751 +
  2.2752 +        Value pot = (*_blossom_data)[blossom].pot;
  2.2753 +        int bn = _blossom_node_list.size();
  2.2754 +
  2.2755 +        std::vector<int> subblossoms;
  2.2756 +        _blossom_set->split(blossom, std::back_inserter(subblossoms));
  2.2757 +        int b = _blossom_set->find(base);
  2.2758 +        int ib = -1;
  2.2759 +        for (int i = 0; i < int(subblossoms.size()); ++i) {
  2.2760 +          if (subblossoms[i] == b) { ib = i; break; }
  2.2761 +        }
  2.2762 +
  2.2763 +        for (int i = 1; i < int(subblossoms.size()); i += 2) {
  2.2764 +          int sb = subblossoms[(ib + i) % subblossoms.size()];
  2.2765 +          int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
  2.2766 +
  2.2767 +          Arc m = (*_blossom_data)[tb].next;
  2.2768 +          extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
  2.2769 +          extractBlossom(tb, _graph.source(m), m);
  2.2770 +        }
  2.2771 +        extractBlossom(subblossoms[ib], base, matching);
  2.2772 +
  2.2773 +        int en = _blossom_node_list.size();
  2.2774 +
  2.2775 +        _blossom_potential.push_back(BlossomVariable(bn, en, pot));
  2.2776 +      }
  2.2777 +    }
  2.2778 +
  2.2779 +    void extractMatching() {
  2.2780 +      std::vector<int> blossoms;
  2.2781 +      for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
  2.2782 +        blossoms.push_back(c);
  2.2783 +      }
  2.2784 +
  2.2785 +      for (int i = 0; i < int(blossoms.size()); ++i) {
  2.2786 +
  2.2787 +        Value offset = (*_blossom_data)[blossoms[i]].offset;
  2.2788 +        (*_blossom_data)[blossoms[i]].pot += 2 * offset;
  2.2789 +        for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
  2.2790 +             n != INVALID; ++n) {
  2.2791 +          (*_node_data)[(*_node_index)[n]].pot -= offset;
  2.2792 +        }
  2.2793 +
  2.2794 +        Arc matching = (*_blossom_data)[blossoms[i]].next;
  2.2795 +        Node base = _graph.source(matching);
  2.2796 +        extractBlossom(blossoms[i], base, matching);
  2.2797 +      }
  2.2798 +    }
  2.2799 +
  2.2800 +  public:
  2.2801 +
  2.2802 +    /// \brief Constructor
  2.2803 +    ///
  2.2804 +    /// Constructor.
  2.2805 +    MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight)
  2.2806 +      : _graph(graph), _weight(weight), _matching(0),
  2.2807 +        _node_potential(0), _blossom_potential(), _blossom_node_list(),
  2.2808 +        _node_num(0), _blossom_num(0),
  2.2809 +
  2.2810 +        _blossom_index(0), _blossom_set(0), _blossom_data(0),
  2.2811 +        _node_index(0), _node_heap_index(0), _node_data(0),
  2.2812 +        _tree_set_index(0), _tree_set(0),
  2.2813 +
  2.2814 +        _delta2_index(0), _delta2(0),
  2.2815 +        _delta3_index(0), _delta3(0),
  2.2816 +        _delta4_index(0), _delta4(0),
  2.2817 +
  2.2818 +        _delta_sum() {}
  2.2819 +
  2.2820 +    ~MaxWeightedPerfectMatching() {
  2.2821 +      destroyStructures();
  2.2822 +    }
  2.2823 +
  2.2824 +    /// \name Execution control
  2.2825 +    /// The simplest way to execute the algorithm is to use the member
  2.2826 +    /// \c run() member function.
  2.2827 +
  2.2828 +    ///@{
  2.2829 +
  2.2830 +    /// \brief Initialize the algorithm
  2.2831 +    ///
  2.2832 +    /// Initialize the algorithm
  2.2833 +    void init() {
  2.2834 +      createStructures();
  2.2835 +
  2.2836 +      for (ArcIt e(_graph); e != INVALID; ++e) {
  2.2837 +        _node_heap_index->set(e, BinHeap<Value, ArcIntMap>::PRE_HEAP);
  2.2838 +      }
  2.2839 +      for (EdgeIt e(_graph); e != INVALID; ++e) {
  2.2840 +        _delta3_index->set(e, _delta3->PRE_HEAP);
  2.2841 +      }
  2.2842 +      for (int i = 0; i < _blossom_num; ++i) {
  2.2843 +        _delta2_index->set(i, _delta2->PRE_HEAP);
  2.2844 +        _delta4_index->set(i, _delta4->PRE_HEAP);
  2.2845 +      }
  2.2846 +
  2.2847 +      int index = 0;
  2.2848 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  2.2849 +        Value max = - std::numeric_limits<Value>::max();
  2.2850 +        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
  2.2851 +          if (_graph.target(e) == n) continue;
  2.2852 +          if ((dualScale * _weight[e]) / 2 > max) {
  2.2853 +            max = (dualScale * _weight[e]) / 2;
  2.2854 +          }
  2.2855 +        }
  2.2856 +        _node_index->set(n, index);
  2.2857 +        (*_node_data)[index].pot = max;
  2.2858 +        int blossom =
  2.2859 +          _blossom_set->insert(n, std::numeric_limits<Value>::max());
  2.2860 +
  2.2861 +        _tree_set->insert(blossom);
  2.2862 +
  2.2863 +        (*_blossom_data)[blossom].status = EVEN;
  2.2864 +        (*_blossom_data)[blossom].pred = INVALID;
  2.2865 +        (*_blossom_data)[blossom].next = INVALID;
  2.2866 +        (*_blossom_data)[blossom].pot = 0;
  2.2867 +        (*_blossom_data)[blossom].offset = 0;
  2.2868 +        ++index;
  2.2869 +      }
  2.2870 +      for (EdgeIt e(_graph); e != INVALID; ++e) {
  2.2871 +        int si = (*_node_index)[_graph.u(e)];
  2.2872 +        int ti = (*_node_index)[_graph.v(e)];
  2.2873 +        if (_graph.u(e) != _graph.v(e)) {
  2.2874 +          _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
  2.2875 +                            dualScale * _weight[e]) / 2);
  2.2876 +        }
  2.2877 +      }
  2.2878 +    }
  2.2879 +
  2.2880 +    /// \brief Starts the algorithm
  2.2881 +    ///
  2.2882 +    /// Starts the algorithm
  2.2883 +    bool start() {
  2.2884 +      enum OpType {
  2.2885 +        D2, D3, D4
  2.2886 +      };
  2.2887 +
  2.2888 +      int unmatched = _node_num;
  2.2889 +      while (unmatched > 0) {
  2.2890 +        Value d2 = !_delta2->empty() ?
  2.2891 +          _delta2->prio() : std::numeric_limits<Value>::max();
  2.2892 +
  2.2893 +        Value d3 = !_delta3->empty() ?
  2.2894 +          _delta3->prio() : std::numeric_limits<Value>::max();
  2.2895 +
  2.2896 +        Value d4 = !_delta4->empty() ?
  2.2897 +          _delta4->prio() : std::numeric_limits<Value>::max();
  2.2898 +
  2.2899 +        _delta_sum = d2; OpType ot = D2;
  2.2900 +        if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
  2.2901 +        if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
  2.2902 +
  2.2903 +        if (_delta_sum == std::numeric_limits<Value>::max()) {
  2.2904 +          return false;
  2.2905 +        }
  2.2906 +
  2.2907 +        switch (ot) {
  2.2908 +        case D2:
  2.2909 +          {
  2.2910 +            int blossom = _delta2->top();
  2.2911 +            Node n = _blossom_set->classTop(blossom);
  2.2912 +            Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
  2.2913 +            extendOnArc(e);
  2.2914 +          }
  2.2915 +          break;
  2.2916 +        case D3:
  2.2917 +          {
  2.2918 +            Edge e = _delta3->top();
  2.2919 +
  2.2920 +            int left_blossom = _blossom_set->find(_graph.u(e));
  2.2921 +            int right_blossom = _blossom_set->find(_graph.v(e));
  2.2922 +
  2.2923 +            if (left_blossom == right_blossom) {
  2.2924 +              _delta3->pop();
  2.2925 +            } else {
  2.2926 +              int left_tree = _tree_set->find(left_blossom);
  2.2927 +              int right_tree = _tree_set->find(right_blossom);
  2.2928 +
  2.2929 +              if (left_tree == right_tree) {
  2.2930 +                shrinkOnArc(e, left_tree);
  2.2931 +              } else {
  2.2932 +                augmentOnArc(e);
  2.2933 +                unmatched -= 2;
  2.2934 +              }
  2.2935 +            }
  2.2936 +          } break;
  2.2937 +        case D4:
  2.2938 +          splitBlossom(_delta4->top());
  2.2939 +          break;
  2.2940 +        }
  2.2941 +      }
  2.2942 +      extractMatching();
  2.2943 +      return true;
  2.2944 +    }
  2.2945 +
  2.2946 +    /// \brief Runs %MaxWeightedPerfectMatching algorithm.
  2.2947 +    ///
  2.2948 +    /// This method runs the %MaxWeightedPerfectMatching algorithm.
  2.2949 +    ///
  2.2950 +    /// \note mwm.run() is just a shortcut of the following code.
  2.2951 +    /// \code
  2.2952 +    ///   mwm.init();
  2.2953 +    ///   mwm.start();
  2.2954 +    /// \endcode
  2.2955 +    bool run() {
  2.2956 +      init();
  2.2957 +      return start();
  2.2958 +    }
  2.2959 +
  2.2960 +    /// @}
  2.2961 +
  2.2962 +    /// \name Primal solution
  2.2963 +    /// Functions for get the primal solution, ie. the matching.
  2.2964 +
  2.2965 +    /// @{
  2.2966 +
  2.2967 +    /// \brief Returns the matching value.
  2.2968 +    ///
  2.2969 +    /// Returns the matching value.
  2.2970 +    Value matchingValue() const {
  2.2971 +      Value sum = 0;
  2.2972 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  2.2973 +        if ((*_matching)[n] != INVALID) {
  2.2974 +          sum += _weight[(*_matching)[n]];
  2.2975 +        }
  2.2976 +      }
  2.2977 +      return sum /= 2;
  2.2978 +    }
  2.2979 +
  2.2980 +    /// \brief Returns true when the arc is in the matching.
  2.2981 +    ///
  2.2982 +    /// Returns true when the arc is in the matching.
  2.2983 +    bool matching(const Edge& arc) const {
  2.2984 +      return (*_matching)[_graph.u(arc)] == _graph.direct(arc, true);
  2.2985 +    }
  2.2986 +
  2.2987 +    /// \brief Returns the incident matching arc.
  2.2988 +    ///
  2.2989 +    /// Returns the incident matching arc from given node.
  2.2990 +    Arc matching(const Node& node) const {
  2.2991 +      return (*_matching)[node];
  2.2992 +    }
  2.2993 +
  2.2994 +    /// \brief Returns the mate of the node.
  2.2995 +    ///
  2.2996 +    /// Returns the adjancent node in a mathcing arc.
  2.2997 +    Node mate(const Node& node) const {
  2.2998 +      return _graph.target((*_matching)[node]);
  2.2999 +    }
  2.3000 +
  2.3001 +    /// @}
  2.3002 +
  2.3003 +    /// \name Dual solution
  2.3004 +    /// Functions for get the dual solution.
  2.3005 +
  2.3006 +    /// @{
  2.3007 +
  2.3008 +    /// \brief Returns the value of the dual solution.
  2.3009 +    ///
  2.3010 +    /// Returns the value of the dual solution. It should be equal to
  2.3011 +    /// the primal value scaled by \ref dualScale "dual scale".
  2.3012 +    Value dualValue() const {
  2.3013 +      Value sum = 0;
  2.3014 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  2.3015 +        sum += nodeValue(n);
  2.3016 +      }
  2.3017 +      for (int i = 0; i < blossomNum(); ++i) {
  2.3018 +        sum += blossomValue(i) * (blossomSize(i) / 2);
  2.3019 +      }
  2.3020 +      return sum;
  2.3021 +    }
  2.3022 +
  2.3023 +    /// \brief Returns the value of the node.
  2.3024 +    ///
  2.3025 +    /// Returns the the value of the node.
  2.3026 +    Value nodeValue(const Node& n) const {
  2.3027 +      return (*_node_potential)[n];
  2.3028 +    }
  2.3029 +
  2.3030 +    /// \brief Returns the number of the blossoms in the basis.
  2.3031 +    ///
  2.3032 +    /// Returns the number of the blossoms in the basis.
  2.3033 +    /// \see BlossomIt
  2.3034 +    int blossomNum() const {
  2.3035 +      return _blossom_potential.size();
  2.3036 +    }
  2.3037 +
  2.3038 +
  2.3039 +    /// \brief Returns the number of the nodes in the blossom.
  2.3040 +    ///
  2.3041 +    /// Returns the number of the nodes in the blossom.
  2.3042 +    int blossomSize(int k) const {
  2.3043 +      return _blossom_potential[k].end - _blossom_potential[k].begin;
  2.3044 +    }
  2.3045 +
  2.3046 +    /// \brief Returns the value of the blossom.
  2.3047 +    ///
  2.3048 +    /// Returns the the value of the blossom.
  2.3049 +    /// \see BlossomIt
  2.3050 +    Value blossomValue(int k) const {
  2.3051 +      return _blossom_potential[k].value;
  2.3052 +    }
  2.3053 +
  2.3054 +    /// \brief Lemon iterator for get the items of the blossom.
  2.3055 +    ///
  2.3056 +    /// Lemon iterator for get the nodes of the blossom. This class
  2.3057 +    /// provides a common style lemon iterator which gives back a
  2.3058 +    /// subset of the nodes.
  2.3059 +    class BlossomIt {
  2.3060 +    public:
  2.3061 +
  2.3062 +      /// \brief Constructor.
  2.3063 +      ///
  2.3064 +      /// Constructor for get the nodes of the variable.
  2.3065 +      BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable)
  2.3066 +        : _algorithm(&algorithm)
  2.3067 +      {
  2.3068 +        _index = _algorithm->_blossom_potential[variable].begin;
  2.3069 +        _last = _algorithm->_blossom_potential[variable].end;
  2.3070 +      }
  2.3071 +
  2.3072 +      /// \brief Invalid constructor.
  2.3073 +      ///
  2.3074 +      /// Invalid constructor.
  2.3075 +      BlossomIt(Invalid) : _index(-1) {}
  2.3076 +
  2.3077 +      /// \brief Conversion to node.
  2.3078 +      ///
  2.3079 +      /// Conversion to node.
  2.3080 +      operator Node() const {
  2.3081 +        return _algorithm ? _algorithm->_blossom_node_list[_index] : INVALID;
  2.3082 +      }
  2.3083 +
  2.3084 +      /// \brief Increment operator.
  2.3085 +      ///
  2.3086 +      /// Increment operator.
  2.3087 +      BlossomIt& operator++() {
  2.3088 +        ++_index;
  2.3089 +        if (_index == _last) {
  2.3090 +          _index = -1;
  2.3091 +        }
  2.3092 +        return *this;
  2.3093 +      }
  2.3094 +
  2.3095 +      bool operator==(const BlossomIt& it) const {
  2.3096 +        return _index == it._index;
  2.3097 +      }
  2.3098 +      bool operator!=(const BlossomIt& it) const {
  2.3099 +        return _index != it._index;
  2.3100 +      }
  2.3101 +
  2.3102 +    private:
  2.3103 +      const MaxWeightedPerfectMatching* _algorithm;
  2.3104 +      int _last;
  2.3105 +      int _index;
  2.3106 +    };
  2.3107 +
  2.3108 +    /// @}
  2.3109 +
  2.3110 +  };
  2.3111 +
  2.3112 +
  2.3113 +} //END OF NAMESPACE LEMON
  2.3114 +
  2.3115 +#endif //LEMON_MAX_MATCHING_H
     3.1 --- a/test/CMakeLists.txt	Sun Oct 12 19:35:48 2008 +0100
     3.2 +++ b/test/CMakeLists.txt	Mon Oct 13 13:56:00 2008 +0200
     3.3 @@ -16,6 +16,8 @@
     3.4    heap_test
     3.5    kruskal_test
     3.6    maps_test
     3.7 +  max_matching_test
     3.8 +  max_weighted_matching_test
     3.9    random_test
    3.10    path_test
    3.11    time_measure_test
     4.1 --- a/test/Makefile.am	Sun Oct 12 19:35:48 2008 +0100
     4.2 +++ b/test/Makefile.am	Mon Oct 13 13:56:00 2008 +0200
     4.3 @@ -19,6 +19,8 @@
     4.4  	test/heap_test \
     4.5  	test/kruskal_test \
     4.6          test/maps_test \
     4.7 +	test/max_matching_test \
     4.8 +	test/max_weighted_matching_test \
     4.9          test/random_test \
    4.10          test/path_test \
    4.11          test/test_tools_fail \
    4.12 @@ -42,6 +44,8 @@
    4.13  test_heap_test_SOURCES = test/heap_test.cc
    4.14  test_kruskal_test_SOURCES = test/kruskal_test.cc
    4.15  test_maps_test_SOURCES = test/maps_test.cc
    4.16 +test_max_matching_test_SOURCES = test/max_matching_test.cc
    4.17 +test_max_weighted_matching_test_SOURCES = test/max_weighted_matching_test.cc
    4.18  test_path_test_SOURCES = test/path_test.cc
    4.19  test_random_test_SOURCES = test/random_test.cc
    4.20  test_test_tools_fail_SOURCES = test/test_tools_fail.cc
     5.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     5.2 +++ b/test/max_matching_test.cc	Mon Oct 13 13:56:00 2008 +0200
     5.3 @@ -0,0 +1,181 @@
     5.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     5.5 + *
     5.6 + * This file is a part of LEMON, a generic C++ optimization library.
     5.7 + *
     5.8 + * Copyright (C) 2003-2008
     5.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    5.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    5.11 + *
    5.12 + * Permission to use, modify and distribute this software is granted
    5.13 + * provided that this copyright notice appears in all copies. For
    5.14 + * precise terms see the accompanying LICENSE file.
    5.15 + *
    5.16 + * This software is provided "AS IS" with no warranty of any kind,
    5.17 + * express or implied, and with no claim as to its suitability for any
    5.18 + * purpose.
    5.19 + *
    5.20 + */
    5.21 +
    5.22 +#include <iostream>
    5.23 +#include <vector>
    5.24 +#include <queue>
    5.25 +#include <lemon/math.h>
    5.26 +#include <cstdlib>
    5.27 +
    5.28 +#include "test_tools.h"
    5.29 +#include <lemon/list_graph.h>
    5.30 +#include <lemon/max_matching.h>
    5.31 +
    5.32 +using namespace std;
    5.33 +using namespace lemon;
    5.34 +
    5.35 +int main() {
    5.36 +
    5.37 +  typedef ListGraph Graph;
    5.38 +
    5.39 +  GRAPH_TYPEDEFS(Graph);
    5.40 +
    5.41 +  Graph g;
    5.42 +  g.clear();
    5.43 +
    5.44 +  std::vector<Graph::Node> nodes;
    5.45 +  for (int i=0; i<13; ++i)
    5.46 +      nodes.push_back(g.addNode());
    5.47 +
    5.48 +  g.addEdge(nodes[0], nodes[0]);
    5.49 +  g.addEdge(nodes[6], nodes[10]);
    5.50 +  g.addEdge(nodes[5], nodes[10]);
    5.51 +  g.addEdge(nodes[4], nodes[10]);
    5.52 +  g.addEdge(nodes[3], nodes[11]);
    5.53 +  g.addEdge(nodes[1], nodes[6]);
    5.54 +  g.addEdge(nodes[4], nodes[7]);
    5.55 +  g.addEdge(nodes[1], nodes[8]);
    5.56 +  g.addEdge(nodes[0], nodes[8]);
    5.57 +  g.addEdge(nodes[3], nodes[12]);
    5.58 +  g.addEdge(nodes[6], nodes[9]);
    5.59 +  g.addEdge(nodes[9], nodes[11]);
    5.60 +  g.addEdge(nodes[2], nodes[10]);
    5.61 +  g.addEdge(nodes[10], nodes[8]);
    5.62 +  g.addEdge(nodes[5], nodes[8]);
    5.63 +  g.addEdge(nodes[6], nodes[3]);
    5.64 +  g.addEdge(nodes[0], nodes[5]);
    5.65 +  g.addEdge(nodes[6], nodes[12]);
    5.66 +
    5.67 +  MaxMatching<Graph> max_matching(g);
    5.68 +  max_matching.init();
    5.69 +  max_matching.startDense();
    5.70 +
    5.71 +  int s=0;
    5.72 +  Graph::NodeMap<Node> mate(g,INVALID);
    5.73 +  max_matching.mateMap(mate);
    5.74 +  for(NodeIt v(g); v!=INVALID; ++v) {
    5.75 +    if ( mate[v]!=INVALID ) ++s;
    5.76 +  }
    5.77 +  int size=int(s/2);  //size will be used as the size of a maxmatching
    5.78 +
    5.79 +  for(NodeIt v(g); v!=INVALID; ++v) {
    5.80 +    max_matching.mate(v);
    5.81 +  }
    5.82 +
    5.83 +  check ( size == max_matching.size(), "mate() returns a different size matching than max_matching.size()" );
    5.84 +
    5.85 +  Graph::NodeMap<MaxMatching<Graph>::DecompType> pos0(g);
    5.86 +  max_matching.decomposition(pos0);
    5.87 +
    5.88 +  max_matching.init();
    5.89 +  max_matching.startSparse();
    5.90 +  s=0;
    5.91 +  max_matching.mateMap(mate);
    5.92 +  for(NodeIt v(g); v!=INVALID; ++v) {
    5.93 +    if ( mate[v]!=INVALID ) ++s;
    5.94 +  }
    5.95 +  check ( int(s/2) == size, "The size does not equal!" );
    5.96 +
    5.97 +  Graph::NodeMap<MaxMatching<Graph>::DecompType> pos1(g);
    5.98 +  max_matching.decomposition(pos1);
    5.99 +
   5.100 +  max_matching.run();
   5.101 +  s=0;
   5.102 +  max_matching.mateMap(mate);
   5.103 +  for(NodeIt v(g); v!=INVALID; ++v) {
   5.104 +    if ( mate[v]!=INVALID ) ++s;
   5.105 +  }
   5.106 +  check ( int(s/2) == size, "The size does not equal!" );
   5.107 +
   5.108 +  Graph::NodeMap<MaxMatching<Graph>::DecompType> pos2(g);
   5.109 +  max_matching.decomposition(pos2);
   5.110 +
   5.111 +  max_matching.run();
   5.112 +  s=0;
   5.113 +  max_matching.mateMap(mate);
   5.114 +  for(NodeIt v(g); v!=INVALID; ++v) {
   5.115 +    if ( mate[v]!=INVALID ) ++s;
   5.116 +  }
   5.117 +  check ( int(s/2) == size, "The size does not equal!" );
   5.118 +
   5.119 +  Graph::NodeMap<MaxMatching<Graph>::DecompType> pos(g);
   5.120 +  max_matching.decomposition(pos);
   5.121 +
   5.122 +  bool ismatching=true;
   5.123 +  for(NodeIt v(g); v!=INVALID; ++v) {
   5.124 +    if ( mate[v]!=INVALID ) {
   5.125 +      Node u=mate[v];
   5.126 +      if (mate[u]!=v) ismatching=false;
   5.127 +    }
   5.128 +  }
   5.129 +  check ( ismatching, "It is not a matching!" );
   5.130 +
   5.131 +  bool coincide=true;
   5.132 +  for(NodeIt v(g); v!=INVALID; ++v) {
   5.133 +   if ( pos0[v] != pos1[v] || pos1[v]!=pos2[v] || pos2[v]!=pos[v] ) {
   5.134 +     coincide=false;
   5.135 +    }
   5.136 +  }
   5.137 +  check ( coincide, "The decompositions do not coincide! " );
   5.138 +
   5.139 +  bool noarc=true;
   5.140 +  for(EdgeIt e(g); e!=INVALID; ++e) {
   5.141 +   if ( (pos[g.v(e)]==max_matching.C &&
   5.142 +         pos[g.u(e)]==max_matching.D) ||
   5.143 +         (pos[g.v(e)]==max_matching.D &&
   5.144 +          pos[g.u(e)]==max_matching.C) )
   5.145 +      noarc=false;
   5.146 +  }
   5.147 +  check ( noarc, "There are arcs between D and C!" );
   5.148 +
   5.149 +  bool oddcomp=true;
   5.150 +  Graph::NodeMap<bool> todo(g,true);
   5.151 +  int num_comp=0;
   5.152 +  for(NodeIt v(g); v!=INVALID; ++v) {
   5.153 +   if ( pos[v]==max_matching.D && todo[v] ) {
   5.154 +      int comp_size=1;
   5.155 +      ++num_comp;
   5.156 +      std::queue<Node> Q;
   5.157 +      Q.push(v);
   5.158 +      todo.set(v,false);
   5.159 +      while (!Q.empty()) {
   5.160 +        Node w=Q.front();
   5.161 +        Q.pop();
   5.162 +        for(IncEdgeIt e(g,w); e!=INVALID; ++e) {
   5.163 +          Node u=g.runningNode(e);
   5.164 +          if ( pos[u]==max_matching.D && todo[u] ) {
   5.165 +            ++comp_size;
   5.166 +            Q.push(u);
   5.167 +            todo.set(u,false);
   5.168 +          }
   5.169 +        }
   5.170 +      }
   5.171 +      if ( !(comp_size % 2) ) oddcomp=false;
   5.172 +    }
   5.173 +  }
   5.174 +  check ( oddcomp, "A component of g[D] is not odd." );
   5.175 +
   5.176 +  int barrier=0;
   5.177 +  for(NodeIt v(g); v!=INVALID; ++v) {
   5.178 +    if ( pos[v]==max_matching.A ) ++barrier;
   5.179 +  }
   5.180 +  int expected_size=int( countNodes(g)-num_comp+barrier)/2;
   5.181 +  check ( size==expected_size, "The size of the matching is wrong." );
   5.182 +
   5.183 +  return 0;
   5.184 +}
     6.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     6.2 +++ b/test/max_weighted_matching_test.cc	Mon Oct 13 13:56:00 2008 +0200
     6.3 @@ -0,0 +1,250 @@
     6.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     6.5 + *
     6.6 + * This file is a part of LEMON, a generic C++ optimization library.
     6.7 + *
     6.8 + * Copyright (C) 2003-2008
     6.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    6.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    6.11 + *
    6.12 + * Permission to use, modify and distribute this software is granted
    6.13 + * provided that this copyright notice appears in all copies. For
    6.14 + * precise terms see the accompanying LICENSE file.
    6.15 + *
    6.16 + * This software is provided "AS IS" with no warranty of any kind,
    6.17 + * express or implied, and with no claim as to its suitability for any
    6.18 + * purpose.
    6.19 + *
    6.20 + */
    6.21 +
    6.22 +#include <iostream>
    6.23 +#include <sstream>
    6.24 +#include <vector>
    6.25 +#include <queue>
    6.26 +#include <lemon/math.h>
    6.27 +#include <cstdlib>
    6.28 +
    6.29 +#include "test_tools.h"
    6.30 +#include <lemon/smart_graph.h>
    6.31 +#include <lemon/max_matching.h>
    6.32 +#include <lemon/lgf_reader.h>
    6.33 +
    6.34 +using namespace std;
    6.35 +using namespace lemon;
    6.36 +
    6.37 +GRAPH_TYPEDEFS(SmartGraph);
    6.38 +
    6.39 +const int lgfn = 3;
    6.40 +const std::string lgf[lgfn] = {
    6.41 +  "@nodes\n"
    6.42 +  "label\n"
    6.43 +  "0\n"
    6.44 +  "1\n"
    6.45 +  "2\n"
    6.46 +  "3\n"
    6.47 +  "4\n"
    6.48 +  "5\n"
    6.49 +  "6\n"
    6.50 +  "7\n"
    6.51 +  "@edges\n"
    6.52 +  "label        weight\n"
    6.53 +  "7    4       0       984\n"
    6.54 +  "0    7       1       73\n"
    6.55 +  "7    1       2       204\n"
    6.56 +  "2    3       3       583\n"
    6.57 +  "2    7       4       565\n"
    6.58 +  "2    1       5       582\n"
    6.59 +  "0    4       6       551\n"
    6.60 +  "2    5       7       385\n"
    6.61 +  "1    5       8       561\n"
    6.62 +  "5    3       9       484\n"
    6.63 +  "7    5       10      904\n"
    6.64 +  "3    6       11      47\n"
    6.65 +  "7    6       12      888\n"
    6.66 +  "3    0       13      747\n"
    6.67 +  "6    1       14      310\n",
    6.68 +
    6.69 +  "@nodes\n"
    6.70 +  "label\n"
    6.71 +  "0\n"
    6.72 +  "1\n"
    6.73 +  "2\n"
    6.74 +  "3\n"
    6.75 +  "4\n"
    6.76 +  "5\n"
    6.77 +  "6\n"
    6.78 +  "7\n"
    6.79 +  "@edges\n"
    6.80 +  "label        weight\n"
    6.81 +  "2    5       0       710\n"
    6.82 +  "0    5       1       241\n"
    6.83 +  "2    4       2       856\n"
    6.84 +  "2    6       3       762\n"
    6.85 +  "4    1       4       747\n"
    6.86 +  "6    1       5       962\n"
    6.87 +  "4    7       6       723\n"
    6.88 +  "1    7       7       661\n"
    6.89 +  "2    3       8       376\n"
    6.90 +  "1    0       9       416\n"
    6.91 +  "6    7       10      391\n",
    6.92 +
    6.93 +  "@nodes\n"
    6.94 +  "label\n"
    6.95 +  "0\n"
    6.96 +  "1\n"
    6.97 +  "2\n"
    6.98 +  "3\n"
    6.99 +  "4\n"
   6.100 +  "5\n"
   6.101 +  "6\n"
   6.102 +  "7\n"
   6.103 +  "@edges\n"
   6.104 +  "label        weight\n"
   6.105 +  "6    2       0       553\n"
   6.106 +  "0    7       1       653\n"
   6.107 +  "6    3       2       22\n"
   6.108 +  "4    7       3       846\n"
   6.109 +  "7    2       4       981\n"
   6.110 +  "7    6       5       250\n"
   6.111 +  "5    2       6       539\n"
   6.112 +};
   6.113 +
   6.114 +void checkMatching(const SmartGraph& graph,
   6.115 +                   const SmartGraph::EdgeMap<int>& weight,
   6.116 +                   const MaxWeightedMatching<SmartGraph>& mwm) {
   6.117 +  for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
   6.118 +    if (graph.u(e) == graph.v(e)) continue;
   6.119 +    int rw =
   6.120 +      mwm.nodeValue(graph.u(e)) + mwm.nodeValue(graph.v(e));
   6.121 +
   6.122 +    for (int i = 0; i < mwm.blossomNum(); ++i) {
   6.123 +      bool s = false, t = false;
   6.124 +      for (MaxWeightedMatching<SmartGraph>::BlossomIt n(mwm, i);
   6.125 +           n != INVALID; ++n) {
   6.126 +        if (graph.u(e) == n) s = true;
   6.127 +        if (graph.v(e) == n) t = true;
   6.128 +      }
   6.129 +      if (s == true && t == true) {
   6.130 +        rw += mwm.blossomValue(i);
   6.131 +      }
   6.132 +    }
   6.133 +    rw -= weight[e] * mwm.dualScale;
   6.134 +
   6.135 +    check(rw >= 0, "Negative reduced weight");
   6.136 +    check(rw == 0 || !mwm.matching(e),
   6.137 +          "Non-zero reduced weight on matching arc");
   6.138 +  }
   6.139 +
   6.140 +  int pv = 0;
   6.141 +  for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
   6.142 +    if (mwm.matching(n) != INVALID) {
   6.143 +      check(mwm.nodeValue(n) >= 0, "Invalid node value");
   6.144 +      pv += weight[mwm.matching(n)];
   6.145 +      SmartGraph::Node o = graph.target(mwm.matching(n));
   6.146 +      check(mwm.mate(n) == o, "Invalid matching");
   6.147 +      check(mwm.matching(n) == graph.oppositeArc(mwm.matching(o)),
   6.148 +            "Invalid matching");
   6.149 +    } else {
   6.150 +      check(mwm.mate(n) == INVALID, "Invalid matching");
   6.151 +      check(mwm.nodeValue(n) == 0, "Invalid matching");
   6.152 +    }
   6.153 +  }
   6.154 +
   6.155 +  int dv = 0;
   6.156 +  for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
   6.157 +    dv += mwm.nodeValue(n);
   6.158 +  }
   6.159 +
   6.160 +  for (int i = 0; i < mwm.blossomNum(); ++i) {
   6.161 +    check(mwm.blossomValue(i) >= 0, "Invalid blossom value");
   6.162 +    check(mwm.blossomSize(i) % 2 == 1, "Even blossom size");
   6.163 +    dv += mwm.blossomValue(i) * ((mwm.blossomSize(i) - 1) / 2);
   6.164 +  }
   6.165 +
   6.166 +  check(pv * mwm.dualScale == dv * 2, "Wrong duality");
   6.167 +
   6.168 +  return;
   6.169 +}
   6.170 +
   6.171 +void checkPerfectMatching(const SmartGraph& graph,
   6.172 +                          const SmartGraph::EdgeMap<int>& weight,
   6.173 +                          const MaxWeightedPerfectMatching<SmartGraph>& mwpm) {
   6.174 +  for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
   6.175 +    if (graph.u(e) == graph.v(e)) continue;
   6.176 +    int rw =
   6.177 +      mwpm.nodeValue(graph.u(e)) + mwpm.nodeValue(graph.v(e));
   6.178 +
   6.179 +    for (int i = 0; i < mwpm.blossomNum(); ++i) {
   6.180 +      bool s = false, t = false;
   6.181 +      for (MaxWeightedPerfectMatching<SmartGraph>::BlossomIt n(mwpm, i);
   6.182 +           n != INVALID; ++n) {
   6.183 +        if (graph.u(e) == n) s = true;
   6.184 +        if (graph.v(e) == n) t = true;
   6.185 +      }
   6.186 +      if (s == true && t == true) {
   6.187 +        rw += mwpm.blossomValue(i);
   6.188 +      }
   6.189 +    }
   6.190 +    rw -= weight[e] * mwpm.dualScale;
   6.191 +
   6.192 +    check(rw >= 0, "Negative reduced weight");
   6.193 +    check(rw == 0 || !mwpm.matching(e),
   6.194 +          "Non-zero reduced weight on matching arc");
   6.195 +  }
   6.196 +
   6.197 +  int pv = 0;
   6.198 +  for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
   6.199 +    check(mwpm.matching(n) != INVALID, "Non perfect");
   6.200 +    pv += weight[mwpm.matching(n)];
   6.201 +    SmartGraph::Node o = graph.target(mwpm.matching(n));
   6.202 +    check(mwpm.mate(n) == o, "Invalid matching");
   6.203 +    check(mwpm.matching(n) == graph.oppositeArc(mwpm.matching(o)),
   6.204 +          "Invalid matching");
   6.205 +  }
   6.206 +
   6.207 +  int dv = 0;
   6.208 +  for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
   6.209 +    dv += mwpm.nodeValue(n);
   6.210 +  }
   6.211 +
   6.212 +  for (int i = 0; i < mwpm.blossomNum(); ++i) {
   6.213 +    check(mwpm.blossomValue(i) >= 0, "Invalid blossom value");
   6.214 +    check(mwpm.blossomSize(i) % 2 == 1, "Even blossom size");
   6.215 +    dv += mwpm.blossomValue(i) * ((mwpm.blossomSize(i) - 1) / 2);
   6.216 +  }
   6.217 +
   6.218 +  check(pv * mwpm.dualScale == dv * 2, "Wrong duality");
   6.219 +
   6.220 +  return;
   6.221 +}
   6.222 +
   6.223 +
   6.224 +int main() {
   6.225 +
   6.226 +  for (int i = 0; i < lgfn; ++i) {
   6.227 +    SmartGraph graph;
   6.228 +    SmartGraph::EdgeMap<int> weight(graph);
   6.229 +
   6.230 +    istringstream lgfs(lgf[i]);
   6.231 +    graphReader(graph, lgfs).
   6.232 +      edgeMap("weight", weight).run();
   6.233 +
   6.234 +    MaxWeightedMatching<SmartGraph> mwm(graph, weight);
   6.235 +    mwm.run();
   6.236 +    checkMatching(graph, weight, mwm);
   6.237 +
   6.238 +    MaxMatching<SmartGraph> mm(graph);
   6.239 +    mm.run();
   6.240 +
   6.241 +    MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight);
   6.242 +    bool perfect = mwpm.run();
   6.243 +
   6.244 +    check(perfect == (mm.size() * 2 == countNodes(graph)),
   6.245 +          "Perfect matching found");
   6.246 +
   6.247 +    if (perfect) {
   6.248 +      checkPerfectMatching(graph, weight, mwpm);
   6.249 +    }
   6.250 +  }
   6.251 +
   6.252 +  return 0;
   6.253 +}