All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
Bibliographic References
[1]

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Inc., February 1993.

[2]

Ursula Bünnagel, Bernhard Korte, and Jens Vygen. Efficient implementation of the Goldberg-Tarjan minimum-cost flow algorithm. Optimization Methods and Software, 10:157–174, 1998.

[3]

Cbc – Coin-Or Branch and Cut.

[4]

Clp – Coin-Or Linear Programming.

[5]

COIN-OR – Computational Infrastructure for Operations Research.

[6]

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. The MIT Press, 2nd edition, 2001.

[7]

ILOG CPLEX.

[8]

George B. Dantzig. Linear Programming and Extensions. Princeton University Press, 1963.

[9]

Ali Dasdan and Rajesh K. Gupta. Faster maximum and minimum mean cycle alogrithms for system performance analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 17(10):889–899, 1998.

[10]

Ali Dasdan. Experimental analysis of the fastest optimum cycle ratio and mean algorithms. ACM Trans. Des. Autom. Electron. Syst., 9:385–418, 2004.

[11]

B. Dezs H o, A. Jüttner, and P. Kovács. LEMON – an open source C++ graph template library. Electronic Notes in Theoretical Computer Science, 264:23–45, 2011. Proc. 2nd Workshop on Generative Technologies.

[12]

Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM, 19(2):248–264, 1972.

[13]

EGRES – Egerváry Research Group on Combinatorial Optimization.

[14]

GLPK – GNU Linear Programming Kit.

[15]

Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum flow problem. Journal of the ACM, 35(4):921–940, 1988.

[16]

Andrew V. Goldberg and Robert E. Tarjan. Finding minimum-cost circulations by canceling negative cycles. Journal of the ACM, 36(4):873–886, 1989.

[17]

Andrew V. Goldberg and Robert E. Tarjan. Finding minimum-cost circulations by successive approximation. Mathematics of Operations Research, 15(3):430–466, 1990.

[18]

Andrew V. Goldberg. An efficient implementation of a scaling minimum-cost flow algorithm. Journal of Algorithms, 22(1):1–29, 1997.

[19]

Andrea Grosso, Marco Locatelli, and Wayne Pullan. Simple ingredients leading to very efficient heuristics for the maximum clique problem. Journal of Heuristics, 14(6):587–612, 2008.

[20]

Mark Hartmann and James B. Orlin. Finding minimum cost to time ratio cycles with small integral transit times. Networks, 23:567–574, 1993.

[21]

Richard M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete Math., 23:309–311, 1978.

[22]

Damian J. Kelly and Garrett M. O'Neill. The minimum cost flow problem and the network simplex method. Master's thesis, University College, Dublin, Ireland, September 1991.

[23]

Z. Király and P. Kovács. Efficient implementations of minimum-cost flow algorithms. Acta Universitatis Sapientiae, Informatica, 4:67–118, 2012.

[24]

Morton Klein. A primal method for minimal cost flows with applications to the assignment and transportation problems. Management Science, 14:205–220, 1967.

[25]

SoPlex – The Sequential Object-Oriented Simplex.