| [1083] | 1 | namespace lemon{ | 
|---|
| [202] | 2 | /*! | 
|---|
|  | 3 |  | 
|---|
| [1043] | 4 | \page maps-page Maps | 
|---|
| [692] | 5 |  | 
|---|
| [1167] | 6 | Maps play a central role in LEMON. As their name suggests, they map a | 
|---|
| [692] | 7 | certain range of \e keys to certain \e values. Each map has two | 
|---|
|  | 8 | <tt>typedef</tt>'s to determine the types of keys and values, like this: | 
|---|
|  | 9 |  | 
|---|
|  | 10 | \code | 
|---|
| [987] | 11 | typedef Edge Key; | 
|---|
|  | 12 | typedef double Value; | 
|---|
| [692] | 13 | \endcode | 
|---|
|  | 14 |  | 
|---|
| [1183] | 15 | A map can be | 
|---|
|  | 16 | \e readable (\ref lemon::concept::ReadMap "ReadMap", for short), | 
|---|
| [1083] | 17 | \e writable (\ref lemon::concept::WriteMap "WriteMap") or both | 
|---|
|  | 18 | (\ref lemon::concept::ReadWriteMap "ReadWriteMap"). | 
|---|
|  | 19 | There also exists a special type of | 
|---|
|  | 20 | ReadWrite map called \ref lemon::concept::ReferenceMap "reference map". | 
|---|
|  | 21 | In addition that you can | 
|---|
| [692] | 22 | read and write the values of a key, a reference map | 
|---|
|  | 23 | can also give you a reference to the | 
|---|
|  | 24 | value belonging to a key, so you have a direct access to the memory address | 
|---|
|  | 25 | where it is stored. | 
|---|
|  | 26 |  | 
|---|
| [921] | 27 | Each graph structure in LEMON provides two standard map templates called | 
|---|
| [692] | 28 | \c EdgeMap and \c NodeMap. Both are reference maps and you can easily | 
|---|
|  | 29 | assign data to the nodes and to the edges of the graph. For example if you | 
|---|
| [1788] | 30 | have a graph \c g defined as | 
|---|
| [692] | 31 | \code | 
|---|
| [1788] | 32 | ListGraph g; | 
|---|
| [692] | 33 | \endcode | 
|---|
| [1083] | 34 | and you want to assign a floating point value to each edge, you can do | 
|---|
| [692] | 35 | it like this. | 
|---|
|  | 36 | \code | 
|---|
| [1788] | 37 | ListGraph::EdgeMap<double> length(g); | 
|---|
| [692] | 38 | \endcode | 
|---|
| [1083] | 39 | Note that you must give the underlying graph to the constructor. | 
|---|
| [692] | 40 |  | 
|---|
|  | 41 | The value of a readable map can be obtained by <tt>operator[]</tt>. | 
|---|
|  | 42 | \code | 
|---|
|  | 43 | d=length[e]; | 
|---|
|  | 44 | \endcode | 
|---|
|  | 45 | where \c e is an instance of \c ListGraph::Edge. | 
|---|
|  | 46 | (Or anything else | 
|---|
|  | 47 | that converts to \c ListGraph::Edge, like  \c ListGraph::EdgeIt or | 
|---|
| [1083] | 48 | \c ListGraph::OutEdgeIt etc.) | 
|---|
| [692] | 49 |  | 
|---|
| [1167] | 50 | There are two ways to assign a new value to a key | 
|---|
| [692] | 51 |  | 
|---|
|  | 52 | - In case of a <em>reference map</em> <tt>operator[]</tt> | 
|---|
|  | 53 | gives you a reference to the | 
|---|
|  | 54 | value, thus you can use this. | 
|---|
|  | 55 | \code | 
|---|
|  | 56 | length[e]=3.5; | 
|---|
|  | 57 | \endcode | 
|---|
|  | 58 | - <em>Writable maps</em> have | 
|---|
| [987] | 59 | a member function \c set(Key,const Value &) | 
|---|
| [692] | 60 | for this purpose. | 
|---|
|  | 61 | \code | 
|---|
|  | 62 | length.set(e,3.5); | 
|---|
|  | 63 | \endcode | 
|---|
|  | 64 |  | 
|---|
|  | 65 | The first case is more comfortable and if you store complex structures in your | 
|---|
|  | 66 | map, it might be more efficient. However, there are writable but | 
|---|
| [1083] | 67 | not reference maps, so if you want to write a generic algorithm, you should | 
|---|
|  | 68 | insist on the second way. | 
|---|
| [692] | 69 |  | 
|---|
| [697] | 70 | \section how-to-write-your-own-map How to Write Your Own Maps | 
|---|
| [692] | 71 |  | 
|---|
|  | 72 | \subsection read-maps Readable Maps | 
|---|
| [202] | 73 |  | 
|---|
| [1167] | 74 | Readable maps are very frequently used as the input of an | 
|---|
|  | 75 | algorithm.  For this purpose the most straightforward way is the use of the | 
|---|
| [921] | 76 | default maps provided by LEMON's graph structures. | 
|---|
| [692] | 77 | Very often however, it is more | 
|---|
| [289] | 78 | convenient and/or more efficient to write your own readable map. | 
|---|
| [202] | 79 |  | 
|---|
| [692] | 80 | You can find some examples below. In these examples \c Graph is the | 
|---|
|  | 81 | type of the particular graph structure you use. | 
|---|
|  | 82 |  | 
|---|
| [202] | 83 |  | 
|---|
| [204] | 84 | This simple map assigns \f$\pi\f$ to each edge. | 
|---|
|  | 85 |  | 
|---|
| [202] | 86 | \code | 
|---|
| [273] | 87 | struct MyMap | 
|---|
| [202] | 88 | { | 
|---|
| [987] | 89 | typedef double Value; | 
|---|
|  | 90 | typedef Graph::Edge Key; | 
|---|
|  | 91 | double operator[](Key e) const { return M_PI;} | 
|---|
| [204] | 92 | }; | 
|---|
|  | 93 | \endcode | 
|---|
|  | 94 |  | 
|---|
| [692] | 95 | An alternative way to define maps is to use \c MapBase | 
|---|
|  | 96 |  | 
|---|
| [289] | 97 | \code | 
|---|
| [692] | 98 | struct MyMap : public MapBase<Graph::Edge,double> | 
|---|
| [289] | 99 | { | 
|---|
| [987] | 100 | Value operator[](Key e) const { return M_PI;} | 
|---|
| [289] | 101 | }; | 
|---|
|  | 102 | \endcode | 
|---|
|  | 103 |  | 
|---|
| [692] | 104 | Here is a bit more complex example. | 
|---|
| [1083] | 105 | It provides a length function obtained | 
|---|
| [692] | 106 | from a base length function shifted by a potential difference. | 
|---|
| [202] | 107 |  | 
|---|
|  | 108 | \code | 
|---|
| [1083] | 109 | class ReducedLengthMap  : public MapBase<Graph::Edge,double> | 
|---|
| [202] | 110 | { | 
|---|
| [1083] | 111 | const Graph &g; | 
|---|
| [692] | 112 | const Graph::EdgeMap<double> &orig_len; | 
|---|
|  | 113 | const Graph::NodeMap<double> &pot; | 
|---|
| [202] | 114 |  | 
|---|
| [273] | 115 | public: | 
|---|
| [987] | 116 | Value operator[](Key e) const { | 
|---|
| [1788] | 117 | return orig_len[e]-(pot[g.target(e)]-pot[g.source(e)]); | 
|---|
| [210] | 118 | } | 
|---|
| [202] | 119 |  | 
|---|
| [1083] | 120 | ReducedLengthMap(const Graph &_g, | 
|---|
| [1788] | 121 | const Graph::EdgeMap &_o, | 
|---|
|  | 122 | const Graph::NodeMap &_p) | 
|---|
|  | 123 | : g(_g), orig_len(_o), pot(_p) {}; | 
|---|
| [202] | 124 | }; | 
|---|
|  | 125 | \endcode | 
|---|
|  | 126 |  | 
|---|
| [1083] | 127 | Then, you can call e.g. Dijkstra algoritm on this map like this: | 
|---|
|  | 128 | \code | 
|---|
|  | 129 | ... | 
|---|
|  | 130 | ReducedLengthMap rm(g,len,pot); | 
|---|
|  | 131 | Dijkstra<Graph,ReducedLengthMap> dij(g,rm); | 
|---|
|  | 132 | dij.run(s); | 
|---|
|  | 133 | ... | 
|---|
|  | 134 | \endcode | 
|---|
|  | 135 |  | 
|---|
| [692] | 136 |  | 
|---|
|  | 137 | \subsection write-maps Writable Maps | 
|---|
|  | 138 |  | 
|---|
|  | 139 | To be written... | 
|---|
|  | 140 |  | 
|---|
|  | 141 | \subsection side-effect-maps Maps with Side Effect | 
|---|
|  | 142 |  | 
|---|
|  | 143 | To be written... | 
|---|
|  | 144 |  | 
|---|
| [202] | 145 | */ | 
|---|
| [1183] | 146 | } | 
|---|