44 } |
44 } |
45 else |
45 else |
46 { |
46 { |
47 //arrow keeps its position-left button |
47 //arrow keeps its position-left button |
48 |
48 |
|
49 // if(p.size()==2) |
|
50 // { |
|
51 // Gnome::Canvas::Points points; |
|
52 // my_points[0]=p[0]; |
|
53 // my_points[2]=p[1]; |
|
54 // for(int i=0;i<3;i++) |
|
55 // { |
|
56 // points.push_back(my_points[i]); |
|
57 // } |
|
58 // property_points().set_value(points); |
|
59 // } |
|
60 set_arrow=true; |
|
61 |
|
62 ////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
63 /////////// keeps shape-with scalar multiplication - version 2. |
|
64 ////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
65 |
49 if(p.size()==2) |
66 if(p.size()==2) |
50 { |
67 { |
51 Gnome::Canvas::Points points; |
68 //old vector from one to the other node - a |
|
69 xy<double> a_v(my_points[2].get_x()-my_points[0].get_x(),my_points[2].get_y()-my_points[0].get_y()); |
|
70 //new vector from one to the other node - b |
|
71 xy<double> b_v(p[1].get_x()-p[0].get_x(),p[1].get_y()-p[0].get_y()); |
|
72 |
|
73 double absa=sqrt(a_v.normSquare()); |
|
74 double absb=sqrt(b_v.normSquare()); |
|
75 |
|
76 //old vector from one node to the breakpoint - c |
|
77 xy<double> c_v(my_points[1].get_x()-my_points[0].get_x(),my_points[1].get_y()-my_points[0].get_y()); |
|
78 |
|
79 //unit vector with the same direction to a_v |
|
80 xy<double> a_v_u(a_v.x/absa,a_v.y/absa); |
|
81 |
|
82 //normal vector of unit vector with the same direction to a_v |
|
83 xy<double> a_v_u_n(((-1)*a_v_u.y),a_v_u.x); |
|
84 |
|
85 //unit vector with the same direction to b_v |
|
86 xy<double> b_v_u(b_v.x/absb,b_v.y/absb); |
|
87 |
|
88 //normal vector of unit vector with the same direction to b_v |
|
89 xy<double> b_v_u_n(((-1)*b_v_u.y),b_v_u.x); |
|
90 |
|
91 //vector c in a_v_u and a_v_u_n co-ordinate system |
|
92 xy<double> c_a(c_v*a_v_u,c_v*a_v_u_n); |
|
93 |
|
94 //new vector from one node to the breakpoint - d - we have to calculate this one |
|
95 xy<double> d_v=absb/absa*(c_a.x*b_v_u+c_a.y*b_v_u_n); |
|
96 |
|
97 my_points[1]=Gnome::Art::Point(d_v.x+p[0].get_x(),d_v.y+p[0].get_y()); |
|
98 |
52 my_points[0]=p[0]; |
99 my_points[0]=p[0]; |
53 my_points[2]=p[1]; |
100 my_points[2]=p[1]; |
54 for(int i=0;i<3;i++) |
101 |
55 { |
102 Gnome::Canvas::Points points; |
56 points.push_back(my_points[i]); |
103 for(int i=0;i<3;i++) |
57 } |
104 { |
58 property_points().set_value(points); |
105 points.push_back(my_points[i]); |
59 } |
106 } |
60 set_arrow=true; |
107 property_points().set_value(points); |
61 |
108 } |
62 ////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
63 /////////// kepps shape-with angles |
|
64 ////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
65 |
|
66 |
|
67 // //old vector from one to the other node |
|
68 // xy<double> o_p2p(my_points[2].get_x()-my_points[0].get_x(),my_points[2].get_y()-my_points[0].get_y()); |
|
69 // //projection of the old vector to positive x axis |
|
70 // xy<double> o_x_p2p(fabs(o_p2p.x),0); |
|
71 // //length of p2p vector |
|
72 // double o_l_p2p=sqrt( o_p2p.normSquare() ); |
|
73 // if(o_p2p.x<0) |
|
74 // { |
|
75 // o_l_p2p*=-1; |
|
76 // } |
|
77 // //length of projection of p2p vector |
|
78 // double o_l_x_p2p=sqrt( o_x_p2p.normSquare() ); |
|
79 // //old angle of p2p vector to the x axis |
|
80 // double o_a_p2p=acos(o_l_x_p2p/o_l_p2p); |
|
81 // if(o_p2p.y>0) |
|
82 // { |
|
83 // o_a_p2p=2*M_PI-o_a_p2p; |
|
84 // } |
|
85 |
|
86 // //old vector from first node to the breakpoint |
|
87 // xy<double> o_1b((my_points[1].get_x()-my_points[0].get_x()),(my_points[1].get_y()-my_points[0].get_y())); |
|
88 // //projection of the old node-breakpoint vector to positive x axis |
|
89 // xy<double> o_x_1b(fabs(o_1b.x),0); |
|
90 // //length of 1b vector |
|
91 // double o_l_1b=sqrt( o_1b.normSquare() ); |
|
92 // if(o_1b.x<0) |
|
93 // { |
|
94 // o_l_1b*=-1; |
|
95 // } |
|
96 // //length of projection of 1b vector |
|
97 // double o_l_x_1b=sqrt( o_x_1b.normSquare() ); |
|
98 // //old angle of 1b vector to the x axis |
|
99 // double o_a_1b=acos(o_l_x_1b/o_l_1b); |
|
100 // if(o_1b.y>0) |
|
101 // { |
|
102 // o_a_1b=2*M_PI-o_a_1b; |
|
103 // } |
|
104 |
|
105 // if(p.size()==2) |
|
106 // { |
|
107 // set_arrow=true; |
|
108 |
|
109 // my_points[0]=p[0]; |
|
110 // my_points[2]=p[1]; |
|
111 |
|
112 // //new vector from one to the other node |
|
113 // xy<double> n_p2p(my_points[2].get_x()-my_points[0].get_x(),my_points[2].get_y()-my_points[0].get_y()); |
|
114 // //projection of the new vector to positive x axis |
|
115 // xy<double> n_x_p2p(fabs(n_p2p.x),0); |
|
116 // //length of p2p vector |
|
117 // double n_l_p2p=sqrt( n_p2p.normSquare() ); |
|
118 // if(n_p2p.x<0) |
|
119 // { |
|
120 // n_l_p2p*=-1; |
|
121 // } |
|
122 // //length of projection of p2p vector |
|
123 // double n_l_x_p2p=sqrt( n_x_p2p.normSquare() ); |
|
124 // //new angle of p2p vector to the x axis |
|
125 // double n_a_p2p=acos(n_l_x_p2p/n_l_p2p); |
|
126 // if(n_p2p.y>0) |
|
127 // { |
|
128 // n_a_p2p=2*M_PI-n_a_p2p; |
|
129 // } |
|
130 |
|
131 // //new angle of 1b vector to the x axis |
|
132 // double n_a_1b=o_a_1b+n_a_p2p-o_a_p2p; |
|
133 |
|
134 // std::cout << " p2p regi: " << o_a_p2p/M_PI*180 << " uj: " << n_a_p2p/M_PI*180-(int)n_a_p2p/M_PI*180 << std::endl; |
|
135 // std::cout << " 1b regi: " << o_a_1b/M_PI*180 << " uj: " << n_a_1b/M_PI*180-(int)n_a_1b/M_PI*180 << std::endl; |
|
136 |
|
137 // // std::cout << o_p2p << " " << n_p2p << std::endl; |
|
138 |
|
139 // if((n_a_1b>M_PI*3/2)||(n_a_1b<M_PI/2)) |
|
140 // { |
|
141 // std::cout << "jobb terfel" << std::endl; |
|
142 // my_points[1]=Gnome::Art::Point(p[0].get_x()+cos(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p,p[0].get_y()-sin(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p); |
|
143 // } |
|
144 // else if((n_a_1b<M_PI*3/2)&&(n_a_1b>M_PI/2)) |
|
145 // { |
|
146 // std::cout << "bal terfel" << std::endl; |
|
147 // my_points[1]=Gnome::Art::Point(p[0].get_x()-cos(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p,p[0].get_y()+sin(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p); |
|
148 // } |
|
149 // else |
|
150 // { |
|
151 // std::cout << "y tengely" << std::endl; |
|
152 // double new_y=my_points[1].get_y(); |
|
153 // my_points[1]=Gnome::Art::Point(p[0].get_x()-cos(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p,new_y); |
|
154 // } |
|
155 |
|
156 // std::cout << "alap: " << p[0] << " eredeti hossz: " << o_l_1b << " nagy uj: " << n_l_p2p << " nagy regi: " << o_l_p2p << " a*b/c " << o_l_1b*n_l_p2p/o_l_p2p << " eredmeny: " << my_points[1] << std::endl; |
|
157 |
|
158 |
|
159 // // if(o_1b.x*o_1b.y>0) |
|
160 // // { |
|
161 // // if(n_p2p.x>0) |
|
162 // // { |
|
163 // // my_points[1]=Gnome::Art::Point(p[0].get_x()+cos(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p,p[0].get_y()+sin(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p); |
|
164 // // } |
|
165 // // else |
|
166 // // { |
|
167 // // my_points[1]=Gnome::Art::Point(p[0].get_x()-cos(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p,p[0].get_y()-sin(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p); |
|
168 // // } |
|
169 // // } |
|
170 // // else if(o_1b.x*o_1b.y<0) |
|
171 // // { |
|
172 // // if(n_p2p.x>0) |
|
173 // // { |
|
174 // // my_points[1]=Gnome::Art::Point(p[0].get_x()+cos(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p,p[0].get_y()-sin(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p); |
|
175 // // } |
|
176 // // else |
|
177 // // { |
|
178 // // my_points[1]=Gnome::Art::Point(p[0].get_x()-cos(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p,p[0].get_y()+sin(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p); |
|
179 // // } |
|
180 // // } |
|
181 // // else |
|
182 // // { |
|
183 // // } |
|
184 |
|
185 ////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
186 /////////// kepps shape-with scalar multiplication |
|
187 ////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
188 |
|
189 // if(p.size()==2) |
|
190 // { |
|
191 // //old vector from one to the other node - a |
|
192 // xy<double> a_v(my_points[2].get_x()-my_points[0].get_x(),my_points[2].get_y()-my_points[0].get_y()); |
|
193 // //new vector from one to the other node - b |
|
194 // xy<double> b_v(p[1].get_x()-p[0].get_x(),p[1].get_y()-p[0].get_y()); |
|
195 |
|
196 // //old vector from one node to the breakpoint - c |
|
197 // xy<double> c_v(my_points[1].get_x()-my_points[0].get_x(),my_points[1].get_y()-my_points[0].get_y()); |
|
198 |
|
199 // //new vector from one node to the breakpoint - d - we have to calculate this one |
|
200 // xy<double> d_v; |
|
201 |
|
202 // //scalar product of a and b (old and new vector from first point to the other) |
|
203 // double sab=a_v*b_v; |
|
204 // //scalar product of c and d (old and new vector from first point to breakpoint) |
|
205 // double scd=sab*c_v.normSquare()/a_v.normSquare(); |
|
206 |
|
207 // std::cout<<" a " << a_v<<" b " <<b_v<<" c " <<c_v<<" sab " <<sab<<" scd "<<scd<<std::endl; |
|
208 |
|
209 // double a=c_v.normSquare(); |
|
210 // double b=2*scd*c_v.y; |
|
211 // double c=scd*scd-b_v.normSquare()/a_v.normSquare()*c_v.normSquare()*c_v.x*c_v.x; |
|
212 |
|
213 // std::cout<<" a " << a<<" b " <<b<<" c " <<c<<std::endl; |
|
214 |
|
215 // d_v.y=(-b-sqrt(b*b-4*a*c))/2/a; |
|
216 |
|
217 // if(c_v.x!=0) |
|
218 // { |
|
219 // d_v.x=(scd-c_v.y*d_v.y)/c_v.x; |
|
220 // } |
|
221 // else |
|
222 // { |
|
223 // d_v.x=my_points[1].get_x(); |
|
224 // } |
|
225 |
|
226 // std::cout<<" d " << d_v<<std::endl; |
|
227 |
|
228 // my_points[1]=Gnome::Art::Point(d_v.x+p[0].get_x(),d_v.y+p[0].get_y()); |
|
229 |
|
230 // Gnome::Canvas::Points points; |
|
231 // for(int i=0;i<3;i++) |
|
232 // { |
|
233 // points.push_back(my_points[i]); |
|
234 // } |
|
235 // property_points().set_value(points); |
|
236 // } |
|
237 } |
109 } |
238 if(set_arrow) |
110 if(set_arrow) |
239 { |
111 { |
240 //calculating coordinates of the direction indicator arrow |
112 //calculating coordinates of the direction indicator arrow |
241 |
113 |