lemon/graph_utils.h
author deba
Wed, 23 Nov 2005 15:42:36 +0000
changeset 1829 183b4cbf9733
parent 1811 597ce92fae73
child 1830 ffd6d50fb155
permissions -rw-r--r--
Correcting alteration notifing
klao@946
     1
/* -*- C++ -*-
ladanyi@1435
     2
 * lemon/graph_utils.h - Part of LEMON, a generic C++ optimization library
klao@946
     3
 *
alpar@1164
     4
 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     5
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
klao@946
     6
 *
klao@946
     7
 * Permission to use, modify and distribute this software is granted
klao@946
     8
 * provided that this copyright notice appears in all copies. For
klao@946
     9
 * precise terms see the accompanying LICENSE file.
klao@946
    10
 *
klao@946
    11
 * This software is provided "AS IS" with no warranty of any kind,
klao@946
    12
 * express or implied, and with no claim as to its suitability for any
klao@946
    13
 * purpose.
klao@946
    14
 *
klao@946
    15
 */
klao@946
    16
klao@946
    17
#ifndef LEMON_GRAPH_UTILS_H
klao@946
    18
#define LEMON_GRAPH_UTILS_H
klao@946
    19
klao@946
    20
#include <iterator>
deba@1419
    21
#include <vector>
alpar@1402
    22
#include <map>
deba@1695
    23
#include <cmath>
klao@946
    24
klao@946
    25
#include <lemon/invalid.h>
klao@977
    26
#include <lemon/utility.h>
deba@1413
    27
#include <lemon/maps.h>
deba@1720
    28
#include <lemon/traits.h>
alpar@1459
    29
#include <lemon/bits/alteration_notifier.h>
klao@946
    30
alpar@947
    31
///\ingroup gutils
klao@946
    32
///\file
alpar@947
    33
///\brief Graph utilities.
klao@946
    34
///
alpar@964
    35
///
klao@946
    36
klao@946
    37
klao@946
    38
namespace lemon {
klao@946
    39
deba@1267
    40
  /// \addtogroup gutils
deba@1267
    41
  /// @{
alpar@947
    42
alpar@1756
    43
  ///Creates convenience typedefs for the graph types and iterators
alpar@1756
    44
alpar@1756
    45
  ///This \c \#define creates convenience typedefs for the following types
alpar@1756
    46
  ///of \c Graph: \c Node,  \c NodeIt, \c Edge, \c EdgeIt, \c InEdgeIt,
alpar@1804
    47
  ///\c OutEdgeIt,  \c BoolNodeMap,  \c IntNodeMap,  \c DoubleNodeMap,
alpar@1804
    48
  ///\c BoolEdgeMap, \c IntEdgeMap,  \c DoubleEdgeMap.  
alpar@1756
    49
  ///\note If \c G it a template parameter, it should be used in this way.
alpar@1756
    50
  ///\code
alpar@1756
    51
  ///  GRAPH_TYPEDEFS(typename G)
alpar@1756
    52
  ///\endcode
alpar@1756
    53
  ///
alpar@1756
    54
  ///\warning There are no typedefs for the graph maps because of the lack of
alpar@1756
    55
  ///template typedefs in C++.
alpar@1804
    56
#define GRAPH_TYPEDEFS(Graph)				\
alpar@1804
    57
  typedef Graph::     Node      Node;			\
alpar@1804
    58
    typedef Graph::   NodeIt    NodeIt;			\
alpar@1804
    59
    typedef Graph::   Edge      Edge;			\
alpar@1804
    60
    typedef Graph::   EdgeIt    EdgeIt;			\
alpar@1804
    61
    typedef Graph:: InEdgeIt  InEdgeIt;			\
alpar@1811
    62
    typedef Graph::OutEdgeIt OutEdgeIt;			
alpar@1811
    63
//     typedef Graph::template NodeMap<bool> BoolNodeMap;	       
alpar@1811
    64
//     typedef Graph::template NodeMap<int> IntNodeMap;	       
alpar@1811
    65
//     typedef Graph::template NodeMap<double> DoubleNodeMap;  
alpar@1811
    66
//     typedef Graph::template EdgeMap<bool> BoolEdgeMap;	       
alpar@1811
    67
//     typedef Graph::template EdgeMap<int> IntEdgeMap;	       
alpar@1811
    68
//     typedef Graph::template EdgeMap<double> DoubleEdgeMap;
alpar@1756
    69
  
alpar@1756
    70
  ///Creates convenience typedefs for the undirected graph types and iterators
alpar@1756
    71
alpar@1756
    72
  ///This \c \#define creates the same convenience typedefs as defined by
alpar@1756
    73
  ///\ref GRAPH_TYPEDEFS(Graph) and three more, namely it creates
alpar@1756
    74
  ///\c UndirEdge, \c UndirEdgeIt, \c IncEdgeIt,
alpar@1804
    75
  ///\c BoolUndirEdgeMap, \c IntUndirEdgeMap,  \c DoubleUndirEdgeMap.  
alpar@1756
    76
  ///
alpar@1756
    77
  ///\note If \c G it a template parameter, it should be used in this way.
alpar@1756
    78
  ///\code
alpar@1756
    79
  ///  UNDIRGRAPH_TYPEDEFS(typename G)
alpar@1756
    80
  ///\endcode
alpar@1756
    81
  ///
alpar@1756
    82
  ///\warning There are no typedefs for the graph maps because of the lack of
alpar@1756
    83
  ///template typedefs in C++.
alpar@1804
    84
#define UNDIRGRAPH_TYPEDEFS(Graph)				\
alpar@1804
    85
  GRAPH_TYPEDEFS(Graph)						\
alpar@1804
    86
    typedef Graph:: UndirEdge   UndirEdge;			\
alpar@1804
    87
    typedef Graph:: UndirEdgeIt UndirEdgeIt;			\
alpar@1811
    88
    typedef Graph:: IncEdgeIt   IncEdgeIt;		       
alpar@1811
    89
//     typedef Graph::template UndirEdgeMap<bool> BoolUndirEdgeMap;	 
alpar@1811
    90
//     typedef Graph::template UndirEdgeMap<int> IntUndirEdgeMap;
alpar@1811
    91
//     typedef Graph::template UndirEdgeMap<double> DoubleUndirEdgeMap;
alpar@1804
    92
  
alpar@1756
    93
alpar@1756
    94
klao@946
    95
  /// \brief Function to count the items in the graph.
klao@946
    96
  ///
athos@1540
    97
  /// This function counts the items (nodes, edges etc) in the graph.
klao@946
    98
  /// The complexity of the function is O(n) because
klao@946
    99
  /// it iterates on all of the items.
klao@946
   100
klao@946
   101
  template <typename Graph, typename ItemIt>
klao@977
   102
  inline int countItems(const Graph& g) {
klao@946
   103
    int num = 0;
klao@977
   104
    for (ItemIt it(g); it != INVALID; ++it) {
klao@946
   105
      ++num;
klao@946
   106
    }
klao@946
   107
    return num;
klao@946
   108
  }
klao@946
   109
klao@977
   110
  // Node counting:
klao@977
   111
klao@977
   112
  template <typename Graph>
deba@1829
   113
  inline typename enable_if<typename Graph::NodeNumTag, int>::type
klao@977
   114
  _countNodes(const Graph &g) {
klao@977
   115
    return g.nodeNum();
klao@977
   116
  }
klao@977
   117
klao@977
   118
  template <typename Graph>
klao@977
   119
  inline int _countNodes(Wrap<Graph> w) {
klao@977
   120
    return countItems<Graph, typename Graph::NodeIt>(w.value);
klao@977
   121
  }
klao@977
   122
klao@946
   123
  /// \brief Function to count the nodes in the graph.
klao@946
   124
  ///
klao@946
   125
  /// This function counts the nodes in the graph.
klao@946
   126
  /// The complexity of the function is O(n) but for some
athos@1526
   127
  /// graph structures it is specialized to run in O(1).
klao@977
   128
  ///
klao@977
   129
  /// \todo refer how to specialize it
klao@946
   130
klao@946
   131
  template <typename Graph>
klao@977
   132
  inline int countNodes(const Graph& g) {
klao@977
   133
    return _countNodes<Graph>(g);
klao@977
   134
  }
klao@977
   135
klao@977
   136
  // Edge counting:
klao@977
   137
klao@977
   138
  template <typename Graph>
deba@1829
   139
  inline typename enable_if<typename Graph::EdgeNumTag, int>::type
klao@977
   140
  _countEdges(const Graph &g) {
klao@977
   141
    return g.edgeNum();
klao@977
   142
  }
klao@977
   143
klao@977
   144
  template <typename Graph>
klao@977
   145
  inline int _countEdges(Wrap<Graph> w) {
klao@977
   146
    return countItems<Graph, typename Graph::EdgeIt>(w.value);
klao@946
   147
  }
klao@946
   148
klao@946
   149
  /// \brief Function to count the edges in the graph.
klao@946
   150
  ///
klao@946
   151
  /// This function counts the edges in the graph.
klao@946
   152
  /// The complexity of the function is O(e) but for some
athos@1526
   153
  /// graph structures it is specialized to run in O(1).
klao@977
   154
klao@946
   155
  template <typename Graph>
klao@977
   156
  inline int countEdges(const Graph& g) {
klao@977
   157
    return _countEdges<Graph>(g);
klao@946
   158
  }
klao@946
   159
klao@1053
   160
  // Undirected edge counting:
klao@1053
   161
klao@1053
   162
  template <typename Graph>
klao@1053
   163
  inline
klao@1053
   164
  typename enable_if<typename Graph::EdgeNumTag, int>::type
klao@1053
   165
  _countUndirEdges(const Graph &g) {
klao@1053
   166
    return g.undirEdgeNum();
klao@1053
   167
  }
klao@1053
   168
klao@1053
   169
  template <typename Graph>
klao@1053
   170
  inline int _countUndirEdges(Wrap<Graph> w) {
klao@1053
   171
    return countItems<Graph, typename Graph::UndirEdgeIt>(w.value);
klao@1053
   172
  }
klao@1053
   173
athos@1526
   174
  /// \brief Function to count the undirected edges in the graph.
klao@946
   175
  ///
athos@1526
   176
  /// This function counts the undirected edges in the graph.
klao@946
   177
  /// The complexity of the function is O(e) but for some
athos@1540
   178
  /// graph structures it is specialized to run in O(1).
klao@1053
   179
klao@946
   180
  template <typename Graph>
klao@1053
   181
  inline int countUndirEdges(const Graph& g) {
klao@1053
   182
    return _countUndirEdges<Graph>(g);
klao@946
   183
  }
klao@946
   184
klao@977
   185
klao@1053
   186
klao@946
   187
  template <typename Graph, typename DegIt>
klao@946
   188
  inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
klao@946
   189
    int num = 0;
klao@946
   190
    for (DegIt it(_g, _n); it != INVALID; ++it) {
klao@946
   191
      ++num;
klao@946
   192
    }
klao@946
   193
    return num;
klao@946
   194
  }
alpar@967
   195
deba@1531
   196
  /// \brief Function to count the number of the out-edges from node \c n.
deba@1531
   197
  ///
deba@1531
   198
  /// This function counts the number of the out-edges from node \c n
deba@1531
   199
  /// in the graph.  
deba@1531
   200
  template <typename Graph>
deba@1531
   201
  inline int countOutEdges(const Graph& _g,  const typename Graph::Node& _n) {
deba@1531
   202
    return countNodeDegree<Graph, typename Graph::OutEdgeIt>(_g, _n);
deba@1531
   203
  }
deba@1531
   204
deba@1531
   205
  /// \brief Function to count the number of the in-edges to node \c n.
deba@1531
   206
  ///
deba@1531
   207
  /// This function counts the number of the in-edges to node \c n
deba@1531
   208
  /// in the graph.  
deba@1531
   209
  template <typename Graph>
deba@1531
   210
  inline int countInEdges(const Graph& _g,  const typename Graph::Node& _n) {
deba@1531
   211
    return countNodeDegree<Graph, typename Graph::InEdgeIt>(_g, _n);
deba@1531
   212
  }
deba@1531
   213
deba@1704
   214
  /// \brief Function to count the number of the inc-edges to node \c n.
deba@1679
   215
  ///
deba@1704
   216
  /// This function counts the number of the inc-edges to node \c n
deba@1679
   217
  /// in the graph.  
deba@1679
   218
  template <typename Graph>
deba@1679
   219
  inline int countIncEdges(const Graph& _g,  const typename Graph::Node& _n) {
deba@1679
   220
    return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n);
deba@1679
   221
  }
deba@1679
   222
deba@1531
   223
deba@1565
   224
  template <typename Graph>
deba@1565
   225
  inline
deba@1565
   226
  typename enable_if<typename Graph::FindEdgeTag, typename Graph::Edge>::type 
deba@1565
   227
  _findEdge(const Graph &g,
deba@1565
   228
	    typename Graph::Node u, typename Graph::Node v,
deba@1565
   229
	    typename Graph::Edge prev = INVALID) {
deba@1565
   230
    return g.findEdge(u, v, prev);
deba@1565
   231
  }
alpar@967
   232
deba@1565
   233
  template <typename Graph>
deba@1565
   234
  inline typename Graph::Edge 
deba@1565
   235
  _findEdge(Wrap<Graph> w,
deba@1565
   236
	    typename Graph::Node u, 
deba@1565
   237
	    typename Graph::Node v,
deba@1565
   238
	    typename Graph::Edge prev = INVALID) {
deba@1565
   239
    const Graph& g = w.value;
deba@1565
   240
    if (prev == INVALID) {
deba@1565
   241
      typename Graph::OutEdgeIt e(g, u);
deba@1565
   242
      while (e != INVALID && g.target(e) != v) ++e;
deba@1565
   243
      return e;
deba@1565
   244
    } else {
deba@1565
   245
      typename Graph::OutEdgeIt e(g, prev); ++e;
deba@1565
   246
      while (e != INVALID && g.target(e) != v) ++e;
deba@1565
   247
      return e;
deba@1565
   248
    }
deba@1565
   249
  }
deba@1565
   250
deba@1565
   251
  /// \brief Finds an edge between two nodes of a graph.
deba@1565
   252
  ///
alpar@967
   253
  /// Finds an edge from node \c u to node \c v in graph \c g.
alpar@967
   254
  ///
alpar@967
   255
  /// If \c prev is \ref INVALID (this is the default value), then
alpar@967
   256
  /// it finds the first edge from \c u to \c v. Otherwise it looks for
alpar@967
   257
  /// the next edge from \c u to \c v after \c prev.
alpar@967
   258
  /// \return The found edge or \ref INVALID if there is no such an edge.
alpar@967
   259
  ///
alpar@967
   260
  /// Thus you can iterate through each edge from \c u to \c v as it follows.
alpar@967
   261
  /// \code
alpar@967
   262
  /// for(Edge e=findEdge(g,u,v);e!=INVALID;e=findEdge(g,u,v,e)) {
alpar@967
   263
  ///   ...
alpar@967
   264
  /// }
alpar@967
   265
  /// \endcode
deba@1565
   266
  // /// \todo We may want to use the "GraphBase" 
deba@1565
   267
  // /// interface here...
alpar@967
   268
  template <typename Graph>
deba@1565
   269
  inline typename Graph::Edge findEdge(const Graph &g,
deba@1565
   270
				       typename Graph::Node u, 
deba@1565
   271
				       typename Graph::Node v,
deba@1565
   272
				       typename Graph::Edge prev = INVALID) {
deba@1565
   273
    return _findEdge<Graph>(g, u, v, prev);
alpar@967
   274
  }
deba@1531
   275
deba@1565
   276
  /// \brief Iterator for iterating on edges connected the same nodes.
deba@1565
   277
  ///
deba@1565
   278
  /// Iterator for iterating on edges connected the same nodes. It is 
deba@1565
   279
  /// higher level interface for the findEdge() function. You can
alpar@1591
   280
  /// use it the following way:
deba@1565
   281
  /// \code
deba@1565
   282
  /// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
deba@1565
   283
  ///   ...
deba@1565
   284
  /// }
deba@1565
   285
  /// \endcode
deba@1565
   286
  ///
deba@1565
   287
  /// \author Balazs Dezso 
deba@1565
   288
  template <typename _Graph>
deba@1565
   289
  class ConEdgeIt : public _Graph::Edge {
deba@1565
   290
  public:
deba@1565
   291
deba@1565
   292
    typedef _Graph Graph;
deba@1565
   293
    typedef typename Graph::Edge Parent;
deba@1565
   294
deba@1565
   295
    typedef typename Graph::Edge Edge;
deba@1565
   296
    typedef typename Graph::Node Node;
deba@1565
   297
deba@1565
   298
    /// \brief Constructor.
deba@1565
   299
    ///
deba@1565
   300
    /// Construct a new ConEdgeIt iterating on the edges which
deba@1565
   301
    /// connects the \c u and \c v node.
deba@1565
   302
    ConEdgeIt(const Graph& g, Node u, Node v) : graph(g) {
deba@1565
   303
      Parent::operator=(findEdge(graph, u, v));
deba@1565
   304
    }
deba@1565
   305
deba@1565
   306
    /// \brief Constructor.
deba@1565
   307
    ///
deba@1565
   308
    /// Construct a new ConEdgeIt which continues the iterating from 
deba@1565
   309
    /// the \c e edge.
deba@1565
   310
    ConEdgeIt(const Graph& g, Edge e) : Parent(e), graph(g) {}
deba@1565
   311
    
deba@1565
   312
    /// \brief Increment operator.
deba@1565
   313
    ///
deba@1565
   314
    /// It increments the iterator and gives back the next edge.
deba@1565
   315
    ConEdgeIt& operator++() {
deba@1565
   316
      Parent::operator=(findEdge(graph, graph.source(*this), 
deba@1565
   317
				 graph.target(*this), *this));
deba@1565
   318
      return *this;
deba@1565
   319
    }
deba@1565
   320
  private:
deba@1565
   321
    const Graph& graph;
deba@1565
   322
  };
deba@1565
   323
deba@1704
   324
  template <typename Graph>
deba@1704
   325
  inline
deba@1704
   326
  typename enable_if<
deba@1704
   327
    typename Graph::FindEdgeTag, 
deba@1704
   328
    typename Graph::UndirEdge>::type 
deba@1704
   329
  _findUndirEdge(const Graph &g,
deba@1704
   330
	    typename Graph::Node u, typename Graph::Node v,
deba@1704
   331
	    typename Graph::UndirEdge prev = INVALID) {
deba@1704
   332
    return g.findUndirEdge(u, v, prev);
deba@1704
   333
  }
deba@1704
   334
deba@1704
   335
  template <typename Graph>
deba@1704
   336
  inline typename Graph::UndirEdge 
deba@1704
   337
  _findUndirEdge(Wrap<Graph> w,
deba@1704
   338
	    typename Graph::Node u, 
deba@1704
   339
	    typename Graph::Node v,
deba@1704
   340
	    typename Graph::UndirEdge prev = INVALID) {
deba@1704
   341
    const Graph& g = w.value;
deba@1704
   342
    if (prev == INVALID) {
deba@1704
   343
      typename Graph::OutEdgeIt e(g, u);
deba@1704
   344
      while (e != INVALID && g.target(e) != v) ++e;
deba@1704
   345
      return e;
deba@1704
   346
    } else {
deba@1704
   347
      typename Graph::OutEdgeIt e(g, g.direct(prev, u)); ++e;
deba@1704
   348
      while (e != INVALID && g.target(e) != v) ++e;
deba@1704
   349
      return e;
deba@1704
   350
    }
deba@1704
   351
  }
deba@1704
   352
deba@1704
   353
  /// \brief Finds an undir edge between two nodes of a graph.
deba@1704
   354
  ///
deba@1704
   355
  /// Finds an undir edge from node \c u to node \c v in graph \c g.
deba@1704
   356
  ///
deba@1704
   357
  /// If \c prev is \ref INVALID (this is the default value), then
deba@1704
   358
  /// it finds the first edge from \c u to \c v. Otherwise it looks for
deba@1704
   359
  /// the next edge from \c u to \c v after \c prev.
deba@1704
   360
  /// \return The found edge or \ref INVALID if there is no such an edge.
deba@1704
   361
  ///
deba@1704
   362
  /// Thus you can iterate through each edge from \c u to \c v as it follows.
deba@1704
   363
  /// \code
deba@1704
   364
  /// for(UndirEdge e = findUndirEdge(g,u,v); e != INVALID; 
deba@1704
   365
  ///     e = findUndirEdge(g,u,v,e)) {
deba@1704
   366
  ///   ...
deba@1704
   367
  /// }
deba@1704
   368
  /// \endcode
deba@1704
   369
  // /// \todo We may want to use the "GraphBase" 
deba@1704
   370
  // /// interface here...
deba@1704
   371
  template <typename Graph>
deba@1704
   372
  inline typename Graph::UndirEdge 
deba@1704
   373
  findUndirEdge(const Graph &g,
deba@1704
   374
		typename Graph::Node u, 
deba@1704
   375
		typename Graph::Node v,
deba@1704
   376
		typename Graph::UndirEdge prev = INVALID) {
deba@1704
   377
    return _findUndirEdge<Graph>(g, u, v, prev);
deba@1704
   378
  }
deba@1704
   379
deba@1704
   380
  /// \brief Iterator for iterating on undir edges connected the same nodes.
deba@1704
   381
  ///
deba@1704
   382
  /// Iterator for iterating on undir edges connected the same nodes. It is 
deba@1704
   383
  /// higher level interface for the findUndirEdge() function. You can
deba@1704
   384
  /// use it the following way:
deba@1704
   385
  /// \code
deba@1704
   386
  /// for (ConUndirEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
deba@1704
   387
  ///   ...
deba@1704
   388
  /// }
deba@1704
   389
  /// \endcode
deba@1704
   390
  ///
deba@1704
   391
  /// \author Balazs Dezso 
deba@1704
   392
  template <typename _Graph>
deba@1704
   393
  class ConUndirEdgeIt : public _Graph::UndirEdge {
deba@1704
   394
  public:
deba@1704
   395
deba@1704
   396
    typedef _Graph Graph;
deba@1704
   397
    typedef typename Graph::UndirEdge Parent;
deba@1704
   398
deba@1704
   399
    typedef typename Graph::UndirEdge UndirEdge;
deba@1704
   400
    typedef typename Graph::Node Node;
deba@1704
   401
deba@1704
   402
    /// \brief Constructor.
deba@1704
   403
    ///
deba@1704
   404
    /// Construct a new ConUndirEdgeIt iterating on the edges which
deba@1704
   405
    /// connects the \c u and \c v node.
deba@1704
   406
    ConUndirEdgeIt(const Graph& g, Node u, Node v) : graph(g) {
deba@1704
   407
      Parent::operator=(findUndirEdge(graph, u, v));
deba@1704
   408
    }
deba@1704
   409
deba@1704
   410
    /// \brief Constructor.
deba@1704
   411
    ///
deba@1704
   412
    /// Construct a new ConUndirEdgeIt which continues the iterating from 
deba@1704
   413
    /// the \c e edge.
deba@1704
   414
    ConUndirEdgeIt(const Graph& g, UndirEdge e) : Parent(e), graph(g) {}
deba@1704
   415
    
deba@1704
   416
    /// \brief Increment operator.
deba@1704
   417
    ///
deba@1704
   418
    /// It increments the iterator and gives back the next edge.
deba@1704
   419
    ConUndirEdgeIt& operator++() {
deba@1704
   420
      Parent::operator=(findUndirEdge(graph, graph.source(*this), 
deba@1829
   421
				      graph.target(*this), *this));
deba@1704
   422
      return *this;
deba@1704
   423
    }
deba@1704
   424
  private:
deba@1704
   425
    const Graph& graph;
deba@1704
   426
  };
deba@1704
   427
athos@1540
   428
  /// \brief Copy a map.
alpar@964
   429
  ///
alpar@1547
   430
  /// This function copies the \c source map to the \c target map. It uses the
athos@1540
   431
  /// given iterator to iterate on the data structure and it uses the \c ref
athos@1540
   432
  /// mapping to convert the source's keys to the target's keys.
deba@1531
   433
  template <typename Target, typename Source, 
deba@1531
   434
	    typename ItemIt, typename Ref>	    
deba@1531
   435
  void copyMap(Target& target, const Source& source, 
deba@1531
   436
	       ItemIt it, const Ref& ref) {
deba@1531
   437
    for (; it != INVALID; ++it) {
deba@1531
   438
      target[ref[it]] = source[it];
klao@946
   439
    }
klao@946
   440
  }
klao@946
   441
deba@1531
   442
  /// \brief Copy the source map to the target map.
deba@1531
   443
  ///
deba@1531
   444
  /// Copy the \c source map to the \c target map. It uses the given iterator
deba@1531
   445
  /// to iterate on the data structure.
deba@1531
   446
  template <typename Target, typename Source, 
deba@1531
   447
	    typename ItemIt>	    
deba@1531
   448
  void copyMap(Target& target, const Source& source, ItemIt it) {
deba@1531
   449
    for (; it != INVALID; ++it) {
deba@1531
   450
      target[it] = source[it];
klao@946
   451
    }
klao@946
   452
  }
klao@946
   453
athos@1540
   454
  /// \brief Class to copy a graph.
deba@1531
   455
  ///
athos@1540
   456
  /// Class to copy a graph to an other graph (duplicate a graph). The
athos@1540
   457
  /// simplest way of using it is through the \c copyGraph() function.
deba@1531
   458
  template <typename Target, typename Source>
deba@1267
   459
  class GraphCopy {
deba@1531
   460
  public: 
deba@1531
   461
    typedef typename Source::Node Node;
deba@1531
   462
    typedef typename Source::NodeIt NodeIt;
deba@1531
   463
    typedef typename Source::Edge Edge;
deba@1531
   464
    typedef typename Source::EdgeIt EdgeIt;
klao@946
   465
deba@1531
   466
    typedef typename Source::template NodeMap<typename Target::Node>NodeRefMap;
deba@1531
   467
    typedef typename Source::template EdgeMap<typename Target::Edge>EdgeRefMap;
klao@946
   468
deba@1531
   469
    /// \brief Constructor for the GraphCopy.
deba@1531
   470
    ///
deba@1531
   471
    /// It copies the content of the \c _source graph into the
deba@1531
   472
    /// \c _target graph. It creates also two references, one beetween
deba@1531
   473
    /// the two nodeset and one beetween the two edgesets.
deba@1531
   474
    GraphCopy(Target& _target, const Source& _source) 
deba@1531
   475
      : source(_source), target(_target), 
deba@1531
   476
	nodeRefMap(_source), edgeRefMap(_source) {
deba@1531
   477
      for (NodeIt it(source); it != INVALID; ++it) {
deba@1531
   478
	nodeRefMap[it] = target.addNode();
deba@1531
   479
      }
deba@1531
   480
      for (EdgeIt it(source); it != INVALID; ++it) {
deba@1531
   481
	edgeRefMap[it] = target.addEdge(nodeRefMap[source.source(it)], 
deba@1531
   482
					nodeRefMap[source.target(it)]);
deba@1531
   483
      }
deba@1267
   484
    }
klao@946
   485
deba@1531
   486
    /// \brief Copies the node references into the given map.
deba@1531
   487
    ///
deba@1531
   488
    /// Copies the node references into the given map.
deba@1531
   489
    template <typename NodeRef>
deba@1531
   490
    const GraphCopy& nodeRef(NodeRef& map) const {
deba@1531
   491
      for (NodeIt it(source); it != INVALID; ++it) {
deba@1531
   492
	map.set(it, nodeRefMap[it]);
deba@1531
   493
      }
deba@1531
   494
      return *this;
deba@1267
   495
    }
deba@1531
   496
deba@1531
   497
    /// \brief Reverse and copies the node references into the given map.
deba@1531
   498
    ///
deba@1531
   499
    /// Reverse and copies the node references into the given map.
deba@1531
   500
    template <typename NodeRef>
deba@1531
   501
    const GraphCopy& nodeCrossRef(NodeRef& map) const {
deba@1531
   502
      for (NodeIt it(source); it != INVALID; ++it) {
deba@1531
   503
	map.set(nodeRefMap[it], it);
deba@1531
   504
      }
deba@1531
   505
      return *this;
deba@1531
   506
    }
deba@1531
   507
deba@1531
   508
    /// \brief Copies the edge references into the given map.
deba@1531
   509
    ///
deba@1531
   510
    /// Copies the edge references into the given map.
deba@1531
   511
    template <typename EdgeRef>
deba@1531
   512
    const GraphCopy& edgeRef(EdgeRef& map) const {
deba@1531
   513
      for (EdgeIt it(source); it != INVALID; ++it) {
deba@1531
   514
	map.set(it, edgeRefMap[it]);
deba@1531
   515
      }
deba@1531
   516
      return *this;
deba@1531
   517
    }
deba@1531
   518
deba@1531
   519
    /// \brief Reverse and copies the edge references into the given map.
deba@1531
   520
    ///
deba@1531
   521
    /// Reverse and copies the edge references into the given map.
deba@1531
   522
    template <typename EdgeRef>
deba@1531
   523
    const GraphCopy& edgeCrossRef(EdgeRef& map) const {
deba@1531
   524
      for (EdgeIt it(source); it != INVALID; ++it) {
deba@1531
   525
	map.set(edgeRefMap[it], it);
deba@1531
   526
      }
deba@1531
   527
      return *this;
deba@1531
   528
    }
deba@1531
   529
deba@1531
   530
    /// \brief Make copy of the given map.
deba@1531
   531
    ///
deba@1531
   532
    /// Makes copy of the given map for the newly created graph. 
deba@1531
   533
    /// The new map's key type is the target graph's node type,
deba@1531
   534
    /// and the copied map's key type is the source graph's node
deba@1531
   535
    /// type.  
deba@1531
   536
    template <typename TargetMap, typename SourceMap>
deba@1531
   537
    const GraphCopy& nodeMap(TargetMap& tMap, const SourceMap& sMap) const {
deba@1531
   538
      copyMap(tMap, sMap, NodeIt(source), nodeRefMap);
deba@1531
   539
      return *this;
deba@1531
   540
    }
deba@1531
   541
deba@1531
   542
    /// \brief Make copy of the given map.
deba@1531
   543
    ///
deba@1531
   544
    /// Makes copy of the given map for the newly created graph. 
deba@1531
   545
    /// The new map's key type is the target graph's edge type,
deba@1531
   546
    /// and the copied map's key type is the source graph's edge
deba@1531
   547
    /// type.  
deba@1531
   548
    template <typename TargetMap, typename SourceMap>
deba@1531
   549
    const GraphCopy& edgeMap(TargetMap& tMap, const SourceMap& sMap) const {
deba@1531
   550
      copyMap(tMap, sMap, EdgeIt(source), edgeRefMap);
deba@1531
   551
      return *this;
deba@1531
   552
    }
deba@1531
   553
deba@1531
   554
    /// \brief Gives back the stored node references.
deba@1531
   555
    ///
deba@1531
   556
    /// Gives back the stored node references.
deba@1531
   557
    const NodeRefMap& nodeRef() const {
deba@1531
   558
      return nodeRefMap;
deba@1531
   559
    }
deba@1531
   560
deba@1531
   561
    /// \brief Gives back the stored edge references.
deba@1531
   562
    ///
deba@1531
   563
    /// Gives back the stored edge references.
deba@1531
   564
    const EdgeRefMap& edgeRef() const {
deba@1531
   565
      return edgeRefMap;
deba@1531
   566
    }
deba@1531
   567
deba@1720
   568
    void run() {}
deba@1720
   569
deba@1531
   570
  private:
deba@1531
   571
    
deba@1531
   572
    const Source& source;
deba@1531
   573
    Target& target;
deba@1531
   574
deba@1531
   575
    NodeRefMap nodeRefMap;
deba@1531
   576
    EdgeRefMap edgeRefMap;
deba@1267
   577
  };
klao@946
   578
deba@1531
   579
  /// \brief Copy a graph to an other graph.
deba@1531
   580
  ///
deba@1531
   581
  /// Copy a graph to an other graph.
deba@1531
   582
  /// The usage of the function:
deba@1531
   583
  /// 
deba@1531
   584
  /// \code
deba@1531
   585
  /// copyGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr);
deba@1531
   586
  /// \endcode
deba@1531
   587
  /// 
deba@1531
   588
  /// After the copy the \c nr map will contain the mapping from the
deba@1531
   589
  /// source graph's nodes to the target graph's nodes and the \c ecr will
athos@1540
   590
  /// contain the mapping from the target graph's edges to the source's
deba@1531
   591
  /// edges.
deba@1531
   592
  template <typename Target, typename Source>
deba@1531
   593
  GraphCopy<Target, Source> copyGraph(Target& target, const Source& source) {
deba@1531
   594
    return GraphCopy<Target, Source>(target, source);
deba@1531
   595
  }
klao@946
   596
deba@1720
   597
  /// \brief Class to copy an undirected graph.
deba@1720
   598
  ///
deba@1720
   599
  /// Class to copy an undirected graph to an other graph (duplicate a graph).
deba@1720
   600
  /// The simplest way of using it is through the \c copyUndirGraph() function.
deba@1720
   601
  template <typename Target, typename Source>
deba@1720
   602
  class UndirGraphCopy {
deba@1720
   603
  public: 
deba@1720
   604
    typedef typename Source::Node Node;
deba@1720
   605
    typedef typename Source::NodeIt NodeIt;
deba@1720
   606
    typedef typename Source::Edge Edge;
deba@1720
   607
    typedef typename Source::EdgeIt EdgeIt;
deba@1720
   608
    typedef typename Source::UndirEdge UndirEdge;
deba@1720
   609
    typedef typename Source::UndirEdgeIt UndirEdgeIt;
deba@1720
   610
deba@1720
   611
    typedef typename Source::
deba@1720
   612
    template NodeMap<typename Target::Node> NodeRefMap;
deba@1720
   613
    
deba@1720
   614
    typedef typename Source::
deba@1720
   615
    template UndirEdgeMap<typename Target::UndirEdge> UndirEdgeRefMap;
deba@1720
   616
deba@1720
   617
  private:
deba@1720
   618
deba@1720
   619
    struct EdgeRefMap {
deba@1720
   620
      EdgeRefMap(UndirGraphCopy& _gc) : gc(_gc) {}
deba@1720
   621
      typedef typename Source::Edge Key;
deba@1720
   622
      typedef typename Target::Edge Value;
deba@1720
   623
deba@1720
   624
      Value operator[](const Key& key) {
deba@1720
   625
	return gc.target.direct(gc.undirEdgeRef[key], 
deba@1720
   626
				gc.target.direction(key));
deba@1720
   627
      }
deba@1720
   628
      
deba@1720
   629
      UndirGraphCopy& gc;
deba@1720
   630
    };
deba@1720
   631
    
deba@1192
   632
  public:
deba@1720
   633
deba@1720
   634
    /// \brief Constructor for the UndirGraphCopy.
deba@1720
   635
    ///
deba@1720
   636
    /// It copies the content of the \c _source graph into the
deba@1720
   637
    /// \c _target graph. It creates also two references, one beetween
deba@1720
   638
    /// the two nodeset and one beetween the two edgesets.
deba@1720
   639
    UndirGraphCopy(Target& _target, const Source& _source) 
deba@1720
   640
      : source(_source), target(_target), 
deba@1720
   641
	nodeRefMap(_source), edgeRefMap(*this), undirEdgeRefMap(_source) {
deba@1720
   642
      for (NodeIt it(source); it != INVALID; ++it) {
deba@1720
   643
	nodeRefMap[it] = target.addNode();
deba@1720
   644
      }
deba@1720
   645
      for (UndirEdgeIt it(source); it != INVALID; ++it) {
deba@1720
   646
	undirEdgeRefMap[it] = target.addEdge(nodeRefMap[source.source(it)], 
deba@1720
   647
					nodeRefMap[source.target(it)]);
deba@1720
   648
      }
deba@1720
   649
    }
deba@1720
   650
deba@1720
   651
    /// \brief Copies the node references into the given map.
deba@1720
   652
    ///
deba@1720
   653
    /// Copies the node references into the given map.
deba@1720
   654
    template <typename NodeRef>
deba@1720
   655
    const UndirGraphCopy& nodeRef(NodeRef& map) const {
deba@1720
   656
      for (NodeIt it(source); it != INVALID; ++it) {
deba@1720
   657
	map.set(it, nodeRefMap[it]);
deba@1720
   658
      }
deba@1720
   659
      return *this;
deba@1720
   660
    }
deba@1720
   661
deba@1720
   662
    /// \brief Reverse and copies the node references into the given map.
deba@1720
   663
    ///
deba@1720
   664
    /// Reverse and copies the node references into the given map.
deba@1720
   665
    template <typename NodeRef>
deba@1720
   666
    const UndirGraphCopy& nodeCrossRef(NodeRef& map) const {
deba@1720
   667
      for (NodeIt it(source); it != INVALID; ++it) {
deba@1720
   668
	map.set(nodeRefMap[it], it);
deba@1720
   669
      }
deba@1720
   670
      return *this;
deba@1720
   671
    }
deba@1720
   672
deba@1720
   673
    /// \brief Copies the edge references into the given map.
deba@1720
   674
    ///
deba@1720
   675
    /// Copies the edge references into the given map.
deba@1720
   676
    template <typename EdgeRef>
deba@1720
   677
    const UndirGraphCopy& edgeRef(EdgeRef& map) const {
deba@1720
   678
      for (EdgeIt it(source); it != INVALID; ++it) {
deba@1720
   679
	map.set(edgeRefMap[it], it);
deba@1720
   680
      }
deba@1720
   681
      return *this;
deba@1720
   682
    }
deba@1720
   683
deba@1720
   684
    /// \brief Reverse and copies the undirected edge references into the 
deba@1720
   685
    /// given map.
deba@1720
   686
    ///
deba@1720
   687
    /// Reverse and copies the undirected edge references into the given map.
deba@1720
   688
    template <typename EdgeRef>
deba@1720
   689
    const UndirGraphCopy& edgeCrossRef(EdgeRef& map) const {
deba@1720
   690
      for (EdgeIt it(source); it != INVALID; ++it) {
deba@1720
   691
	map.set(it, edgeRefMap[it]);
deba@1720
   692
      }
deba@1720
   693
      return *this;
deba@1720
   694
    }
deba@1720
   695
deba@1720
   696
    /// \brief Copies the undirected edge references into the given map.
deba@1720
   697
    ///
deba@1720
   698
    /// Copies the undirected edge references into the given map.
deba@1720
   699
    template <typename EdgeRef>
deba@1720
   700
    const UndirGraphCopy& undirEdgeRef(EdgeRef& map) const {
deba@1720
   701
      for (UndirEdgeIt it(source); it != INVALID; ++it) {
deba@1720
   702
	map.set(it, undirEdgeRefMap[it]);
deba@1720
   703
      }
deba@1720
   704
      return *this;
deba@1720
   705
    }
deba@1720
   706
deba@1720
   707
    /// \brief Reverse and copies the undirected edge references into the 
deba@1720
   708
    /// given map.
deba@1720
   709
    ///
deba@1720
   710
    /// Reverse and copies the undirected edge references into the given map.
deba@1720
   711
    template <typename EdgeRef>
deba@1720
   712
    const UndirGraphCopy& undirEdgeCrossRef(EdgeRef& map) const {
deba@1720
   713
      for (UndirEdgeIt it(source); it != INVALID; ++it) {
deba@1720
   714
	map.set(undirEdgeRefMap[it], it);
deba@1720
   715
      }
deba@1720
   716
      return *this;
deba@1720
   717
    }
deba@1720
   718
deba@1720
   719
    /// \brief Make copy of the given map.
deba@1720
   720
    ///
deba@1720
   721
    /// Makes copy of the given map for the newly created graph. 
deba@1720
   722
    /// The new map's key type is the target graph's node type,
deba@1720
   723
    /// and the copied map's key type is the source graph's node
deba@1720
   724
    /// type.  
deba@1720
   725
    template <typename TargetMap, typename SourceMap>
deba@1720
   726
    const UndirGraphCopy& nodeMap(TargetMap& tMap, 
deba@1720
   727
				  const SourceMap& sMap) const {
deba@1720
   728
      copyMap(tMap, sMap, NodeIt(source), nodeRefMap);
deba@1720
   729
      return *this;
deba@1720
   730
    }
deba@1720
   731
deba@1720
   732
    /// \brief Make copy of the given map.
deba@1720
   733
    ///
deba@1720
   734
    /// Makes copy of the given map for the newly created graph. 
deba@1720
   735
    /// The new map's key type is the target graph's edge type,
deba@1720
   736
    /// and the copied map's key type is the source graph's edge
deba@1720
   737
    /// type.  
deba@1720
   738
    template <typename TargetMap, typename SourceMap>
deba@1720
   739
    const UndirGraphCopy& edgeMap(TargetMap& tMap, 
deba@1720
   740
				  const SourceMap& sMap) const {
deba@1720
   741
      copyMap(tMap, sMap, EdgeIt(source), edgeRefMap);
deba@1720
   742
      return *this;
deba@1720
   743
    }
deba@1720
   744
deba@1720
   745
    /// \brief Make copy of the given map.
deba@1720
   746
    ///
deba@1720
   747
    /// Makes copy of the given map for the newly created graph. 
deba@1720
   748
    /// The new map's key type is the target graph's edge type,
deba@1720
   749
    /// and the copied map's key type is the source graph's edge
deba@1720
   750
    /// type.  
deba@1720
   751
    template <typename TargetMap, typename SourceMap>
deba@1720
   752
    const UndirGraphCopy& undirEdgeMap(TargetMap& tMap, 
deba@1720
   753
				  const SourceMap& sMap) const {
deba@1720
   754
      copyMap(tMap, sMap, UndirEdgeIt(source), undirEdgeRefMap);
deba@1720
   755
      return *this;
deba@1720
   756
    }
deba@1720
   757
deba@1720
   758
    /// \brief Gives back the stored node references.
deba@1720
   759
    ///
deba@1720
   760
    /// Gives back the stored node references.
deba@1720
   761
    const NodeRefMap& nodeRef() const {
deba@1720
   762
      return nodeRefMap;
deba@1720
   763
    }
deba@1720
   764
deba@1720
   765
    /// \brief Gives back the stored edge references.
deba@1720
   766
    ///
deba@1720
   767
    /// Gives back the stored edge references.
deba@1720
   768
    const EdgeRefMap& edgeRef() const {
deba@1720
   769
      return edgeRefMap;
deba@1720
   770
    }
deba@1720
   771
deba@1720
   772
    /// \brief Gives back the stored undir edge references.
deba@1720
   773
    ///
deba@1720
   774
    /// Gives back the stored undir edge references.
deba@1720
   775
    const UndirEdgeRefMap& undirEdgeRef() const {
deba@1720
   776
      return undirEdgeRefMap;
deba@1720
   777
    }
deba@1720
   778
deba@1720
   779
    void run() {}
deba@1720
   780
deba@1720
   781
  private:
deba@1192
   782
    
deba@1720
   783
    const Source& source;
deba@1720
   784
    Target& target;
alpar@947
   785
deba@1720
   786
    NodeRefMap nodeRefMap;
deba@1720
   787
    EdgeRefMap edgeRefMap;
deba@1720
   788
    UndirEdgeRefMap undirEdgeRefMap;
deba@1192
   789
  };
deba@1192
   790
deba@1720
   791
  /// \brief Copy a graph to an other graph.
deba@1720
   792
  ///
deba@1720
   793
  /// Copy a graph to an other graph.
deba@1720
   794
  /// The usage of the function:
deba@1720
   795
  /// 
deba@1720
   796
  /// \code
deba@1720
   797
  /// copyGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr);
deba@1720
   798
  /// \endcode
deba@1720
   799
  /// 
deba@1720
   800
  /// After the copy the \c nr map will contain the mapping from the
deba@1720
   801
  /// source graph's nodes to the target graph's nodes and the \c ecr will
deba@1720
   802
  /// contain the mapping from the target graph's edges to the source's
deba@1720
   803
  /// edges.
deba@1720
   804
  template <typename Target, typename Source>
deba@1720
   805
  UndirGraphCopy<Target, Source> 
deba@1720
   806
  copyUndirGraph(Target& target, const Source& source) {
deba@1720
   807
    return UndirGraphCopy<Target, Source>(target, source);
deba@1720
   808
  }
deba@1192
   809
deba@1192
   810
deba@1192
   811
  /// @}
alpar@1402
   812
alpar@1402
   813
  /// \addtogroup graph_maps
alpar@1402
   814
  /// @{
alpar@1402
   815
deba@1413
   816
  /// Provides an immutable and unique id for each item in the graph.
deba@1413
   817
athos@1540
   818
  /// The IdMap class provides a unique and immutable id for each item of the
athos@1540
   819
  /// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
athos@1540
   820
  /// different items (nodes) get different ids <li>\b immutable: the id of an
athos@1540
   821
  /// item (node) does not change (even if you delete other nodes).  </ul>
athos@1540
   822
  /// Through this map you get access (i.e. can read) the inner id values of
athos@1540
   823
  /// the items stored in the graph. This map can be inverted with its member
athos@1540
   824
  /// class \c InverseMap.
deba@1413
   825
  ///
deba@1413
   826
  template <typename _Graph, typename _Item>
deba@1413
   827
  class IdMap {
deba@1413
   828
  public:
deba@1413
   829
    typedef _Graph Graph;
deba@1413
   830
    typedef int Value;
deba@1413
   831
    typedef _Item Item;
deba@1413
   832
    typedef _Item Key;
deba@1413
   833
deba@1413
   834
    /// \brief Constructor.
deba@1413
   835
    ///
deba@1413
   836
    /// Constructor for creating id map.
deba@1413
   837
    IdMap(const Graph& _graph) : graph(&_graph) {}
deba@1413
   838
deba@1413
   839
    /// \brief Gives back the \e id of the item.
deba@1413
   840
    ///
deba@1413
   841
    /// Gives back the immutable and unique \e id of the map.
deba@1413
   842
    int operator[](const Item& item) const { return graph->id(item);}
deba@1413
   843
deba@1413
   844
deba@1413
   845
  private:
deba@1413
   846
    const Graph* graph;
deba@1413
   847
deba@1413
   848
  public:
deba@1413
   849
athos@1540
   850
    /// \brief The class represents the inverse of its owner (IdMap).
deba@1413
   851
    ///
athos@1540
   852
    /// The class represents the inverse of its owner (IdMap).
deba@1413
   853
    /// \see inverse()
deba@1413
   854
    class InverseMap {
deba@1413
   855
    public:
deba@1419
   856
deba@1413
   857
      /// \brief Constructor.
deba@1413
   858
      ///
deba@1413
   859
      /// Constructor for creating an id-to-item map.
deba@1413
   860
      InverseMap(const Graph& _graph) : graph(&_graph) {}
deba@1413
   861
deba@1413
   862
      /// \brief Constructor.
deba@1413
   863
      ///
deba@1413
   864
      /// Constructor for creating an id-to-item map.
deba@1413
   865
      InverseMap(const IdMap& idMap) : graph(idMap.graph) {}
deba@1413
   866
deba@1413
   867
      /// \brief Gives back the given item from its id.
deba@1413
   868
      ///
deba@1413
   869
      /// Gives back the given item from its id.
deba@1413
   870
      /// 
deba@1413
   871
      Item operator[](int id) const { return graph->fromId(id, Item());}
deba@1413
   872
    private:
deba@1413
   873
      const Graph* graph;
deba@1413
   874
    };
deba@1413
   875
deba@1413
   876
    /// \brief Gives back the inverse of the map.
deba@1413
   877
    ///
athos@1540
   878
    /// Gives back the inverse of the IdMap.
deba@1413
   879
    InverseMap inverse() const { return InverseMap(*graph);} 
deba@1413
   880
deba@1413
   881
  };
deba@1413
   882
deba@1413
   883
  
athos@1526
   884
  /// \brief General invertable graph-map type.
alpar@1402
   885
athos@1540
   886
  /// This type provides simple invertable graph-maps. 
athos@1526
   887
  /// The InvertableMap wraps an arbitrary ReadWriteMap 
athos@1526
   888
  /// and if a key is set to a new value then store it
alpar@1402
   889
  /// in the inverse map.
alpar@1402
   890
  /// \param _Graph The graph type.
athos@1526
   891
  /// \param _Map The map to extend with invertable functionality. 
alpar@1402
   892
  template <
alpar@1402
   893
    typename _Graph,
alpar@1402
   894
    typename _Item, 
alpar@1402
   895
    typename _Value,
alpar@1402
   896
    typename _Map 
deba@1413
   897
    = typename ItemSetTraits<_Graph, _Item>::template Map<_Value>::Parent 
alpar@1402
   898
  >
deba@1413
   899
  class InvertableMap : protected _Map {
alpar@1402
   900
alpar@1402
   901
  public:
alpar@1402
   902
 
alpar@1402
   903
    typedef _Map Map;
alpar@1402
   904
    typedef _Graph Graph;
deba@1413
   905
deba@1413
   906
    /// The key type of InvertableMap (Node, Edge, UndirEdge).
alpar@1402
   907
    typedef typename _Map::Key Key;
deba@1413
   908
    /// The value type of the InvertableMap.
alpar@1402
   909
    typedef typename _Map::Value Value;
alpar@1402
   910
alpar@1402
   911
    /// \brief Constructor.
alpar@1402
   912
    ///
deba@1413
   913
    /// Construct a new InvertableMap for the graph.
alpar@1402
   914
    ///
deba@1413
   915
    InvertableMap(const Graph& graph) : Map(graph) {} 
alpar@1402
   916
    
alpar@1402
   917
    /// \brief The setter function of the map.
alpar@1402
   918
    ///
deba@1413
   919
    /// Sets the mapped value.
alpar@1402
   920
    void set(const Key& key, const Value& val) {
alpar@1402
   921
      Value oldval = Map::operator[](key);
deba@1413
   922
      typename Container::iterator it = invMap.find(oldval);
alpar@1402
   923
      if (it != invMap.end() && it->second == key) {
alpar@1402
   924
	invMap.erase(it);
alpar@1402
   925
      }      
alpar@1402
   926
      invMap.insert(make_pair(val, key));
alpar@1402
   927
      Map::set(key, val);
alpar@1402
   928
    }
alpar@1402
   929
alpar@1402
   930
    /// \brief The getter function of the map.
alpar@1402
   931
    ///
alpar@1402
   932
    /// It gives back the value associated with the key.
deba@1720
   933
    Value operator[](const Key& key) const {
alpar@1402
   934
      return Map::operator[](key);
alpar@1402
   935
    }
alpar@1402
   936
deba@1515
   937
  protected:
deba@1515
   938
alpar@1402
   939
    /// \brief Erase the key from the map.
alpar@1402
   940
    ///
alpar@1402
   941
    /// Erase the key to the map. It is called by the
alpar@1402
   942
    /// \c AlterationNotifier.
alpar@1402
   943
    virtual void erase(const Key& key) {
alpar@1402
   944
      Value val = Map::operator[](key);
deba@1413
   945
      typename Container::iterator it = invMap.find(val);
alpar@1402
   946
      if (it != invMap.end() && it->second == key) {
alpar@1402
   947
	invMap.erase(it);
alpar@1402
   948
      }
alpar@1402
   949
      Map::erase(key);
alpar@1402
   950
    }
alpar@1402
   951
deba@1829
   952
    /// \brief Erase more keys from the map.
deba@1829
   953
    ///
deba@1829
   954
    /// Erase more keys from the map. It is called by the
deba@1829
   955
    /// \c AlterationNotifier.
deba@1829
   956
    virtual void erase(const std::vector<Key>& keys) {
deba@1829
   957
      for (int i = 0; i < (int)keys.size(); ++i) {
deba@1829
   958
	Value val = Map::operator[](keys[i]);
deba@1829
   959
	typename Container::iterator it = invMap.find(val);
deba@1829
   960
	if (it != invMap.end() && it->second == keys[i]) {
deba@1829
   961
	  invMap.erase(it);
deba@1829
   962
	}
deba@1829
   963
      }
deba@1829
   964
      Map::erase(keys);
deba@1829
   965
    }
deba@1829
   966
alpar@1402
   967
    /// \brief Clear the keys from the map and inverse map.
alpar@1402
   968
    ///
alpar@1402
   969
    /// Clear the keys from the map and inverse map. It is called by the
alpar@1402
   970
    /// \c AlterationNotifier.
alpar@1402
   971
    virtual void clear() {
alpar@1402
   972
      invMap.clear();
alpar@1402
   973
      Map::clear();
alpar@1402
   974
    }
alpar@1402
   975
deba@1413
   976
  private:
deba@1413
   977
    
deba@1413
   978
    typedef std::map<Value, Key> Container;
deba@1413
   979
    Container invMap;    
deba@1413
   980
deba@1413
   981
  public:
deba@1413
   982
deba@1413
   983
    /// \brief The inverse map type.
deba@1413
   984
    ///
deba@1413
   985
    /// The inverse of this map. The subscript operator of the map
deba@1413
   986
    /// gives back always the item what was last assigned to the value. 
deba@1413
   987
    class InverseMap {
deba@1413
   988
    public:
deba@1413
   989
      /// \brief Constructor of the InverseMap.
deba@1413
   990
      ///
deba@1413
   991
      /// Constructor of the InverseMap.
deba@1413
   992
      InverseMap(const InvertableMap& _inverted) : inverted(_inverted) {}
deba@1413
   993
deba@1413
   994
      /// The value type of the InverseMap.
deba@1413
   995
      typedef typename InvertableMap::Key Value;
deba@1413
   996
      /// The key type of the InverseMap.
deba@1413
   997
      typedef typename InvertableMap::Value Key; 
deba@1413
   998
deba@1413
   999
      /// \brief Subscript operator. 
deba@1413
  1000
      ///
deba@1413
  1001
      /// Subscript operator. It gives back always the item 
deba@1413
  1002
      /// what was last assigned to the value.
deba@1413
  1003
      Value operator[](const Key& key) const {
deba@1413
  1004
	typename Container::const_iterator it = inverted.invMap.find(key);
deba@1413
  1005
	return it->second;
deba@1413
  1006
      }
deba@1413
  1007
      
deba@1413
  1008
    private:
deba@1413
  1009
      const InvertableMap& inverted;
deba@1413
  1010
    };
deba@1413
  1011
alpar@1402
  1012
    /// \brief It gives back the just readeable inverse map.
alpar@1402
  1013
    ///
alpar@1402
  1014
    /// It gives back the just readeable inverse map.
deba@1413
  1015
    InverseMap inverse() const {
deba@1413
  1016
      return InverseMap(*this);
alpar@1402
  1017
    } 
alpar@1402
  1018
alpar@1402
  1019
deba@1413
  1020
    
alpar@1402
  1021
  };
alpar@1402
  1022
alpar@1402
  1023
  /// \brief Provides a mutable, continuous and unique descriptor for each 
alpar@1402
  1024
  /// item in the graph.
alpar@1402
  1025
  ///
athos@1540
  1026
  /// The DescriptorMap class provides a unique and continuous (but mutable)
athos@1540
  1027
  /// descriptor (id) for each item of the same type (e.g. node) in the
athos@1540
  1028
  /// graph. This id is <ul><li>\b unique: different items (nodes) get
athos@1540
  1029
  /// different ids <li>\b continuous: the range of the ids is the set of
athos@1540
  1030
  /// integers between 0 and \c n-1, where \c n is the number of the items of
athos@1540
  1031
  /// this type (e.g. nodes) (so the id of a node can change if you delete an
athos@1540
  1032
  /// other node, i.e. this id is mutable).  </ul> This map can be inverted
athos@1540
  1033
  /// with its member class \c InverseMap.
alpar@1402
  1034
  ///
alpar@1402
  1035
  /// \param _Graph The graph class the \c DescriptorMap belongs to.
alpar@1402
  1036
  /// \param _Item The Item is the Key of the Map. It may be Node, Edge or 
alpar@1402
  1037
  /// UndirEdge.
alpar@1402
  1038
  /// \param _Map A ReadWriteMap mapping from the item type to integer.
alpar@1402
  1039
  template <
alpar@1402
  1040
    typename _Graph,   
alpar@1402
  1041
    typename _Item,
deba@1413
  1042
    typename _Map 
deba@1413
  1043
    = typename ItemSetTraits<_Graph, _Item>::template Map<int>::Parent
alpar@1402
  1044
  >
alpar@1402
  1045
  class DescriptorMap : protected _Map {
alpar@1402
  1046
alpar@1402
  1047
    typedef _Item Item;
alpar@1402
  1048
    typedef _Map Map;
alpar@1402
  1049
alpar@1402
  1050
  public:
alpar@1402
  1051
    /// The graph class of DescriptorMap.
alpar@1402
  1052
    typedef _Graph Graph;
alpar@1402
  1053
alpar@1402
  1054
    /// The key type of DescriptorMap (Node, Edge, UndirEdge).
alpar@1402
  1055
    typedef typename _Map::Key Key;
alpar@1402
  1056
    /// The value type of DescriptorMap.
alpar@1402
  1057
    typedef typename _Map::Value Value;
alpar@1402
  1058
alpar@1402
  1059
    /// \brief Constructor.
alpar@1402
  1060
    ///
deba@1413
  1061
    /// Constructor for descriptor map.
alpar@1402
  1062
    DescriptorMap(const Graph& _graph) : Map(_graph) {
alpar@1402
  1063
      build();
alpar@1402
  1064
    }
alpar@1402
  1065
deba@1515
  1066
  protected:
deba@1515
  1067
alpar@1402
  1068
    /// \brief Add a new key to the map.
alpar@1402
  1069
    ///
alpar@1402
  1070
    /// Add a new key to the map. It is called by the
alpar@1402
  1071
    /// \c AlterationNotifier.
alpar@1402
  1072
    virtual void add(const Item& item) {
alpar@1402
  1073
      Map::add(item);
alpar@1402
  1074
      Map::set(item, invMap.size());
alpar@1402
  1075
      invMap.push_back(item);
alpar@1402
  1076
    }
alpar@1402
  1077
deba@1829
  1078
    /// \brief Add more new keys to the map.
deba@1829
  1079
    ///
deba@1829
  1080
    /// Add more new keys to the map. It is called by the
deba@1829
  1081
    /// \c AlterationNotifier.
deba@1829
  1082
    virtual void add(const std::vector<Item>& items) {
deba@1829
  1083
      Map::add(items);
deba@1829
  1084
      for (int i = 0; i < (int)items.size(); ++i) {
deba@1829
  1085
	Map::set(items[i], invMap.size());
deba@1829
  1086
	invMap.push_back(items[i]);
deba@1829
  1087
      }
deba@1829
  1088
    }
deba@1829
  1089
alpar@1402
  1090
    /// \brief Erase the key from the map.
alpar@1402
  1091
    ///
deba@1829
  1092
    /// Erase the key from the map. It is called by the
alpar@1402
  1093
    /// \c AlterationNotifier.
alpar@1402
  1094
    virtual void erase(const Item& item) {
alpar@1402
  1095
      Map::set(invMap.back(), Map::operator[](item));
alpar@1402
  1096
      invMap[Map::operator[](item)] = invMap.back();
deba@1413
  1097
      invMap.pop_back();
alpar@1402
  1098
      Map::erase(item);
alpar@1402
  1099
    }
alpar@1402
  1100
deba@1829
  1101
    /// \brief Erase more keys from the map.
deba@1829
  1102
    ///
deba@1829
  1103
    /// Erase more keys from the map. It is called by the
deba@1829
  1104
    /// \c AlterationNotifier.
deba@1829
  1105
    virtual void erase(const std::vector<Item>& items) {
deba@1829
  1106
      for (int i = 0; i < (int)items.size(); ++i) {
deba@1829
  1107
	Map::set(invMap.back(), Map::operator[](items[i]));
deba@1829
  1108
	invMap[Map::operator[](items[i])] = invMap.back();
deba@1829
  1109
	invMap.pop_back();
deba@1829
  1110
      }
deba@1829
  1111
      Map::erase(items);
deba@1829
  1112
    }
deba@1829
  1113
alpar@1402
  1114
    /// \brief Build the unique map.
alpar@1402
  1115
    ///
alpar@1402
  1116
    /// Build the unique map. It is called by the
alpar@1402
  1117
    /// \c AlterationNotifier.
alpar@1402
  1118
    virtual void build() {
alpar@1402
  1119
      Map::build();
alpar@1402
  1120
      Item it;
alpar@1402
  1121
      const typename Map::Graph* graph = Map::getGraph(); 
alpar@1402
  1122
      for (graph->first(it); it != INVALID; graph->next(it)) {
alpar@1402
  1123
	Map::set(it, invMap.size());
alpar@1402
  1124
	invMap.push_back(it);	
alpar@1402
  1125
      }      
alpar@1402
  1126
    }
alpar@1402
  1127
    
alpar@1402
  1128
    /// \brief Clear the keys from the map.
alpar@1402
  1129
    ///
alpar@1402
  1130
    /// Clear the keys from the map. It is called by the
alpar@1402
  1131
    /// \c AlterationNotifier.
alpar@1402
  1132
    virtual void clear() {
alpar@1402
  1133
      invMap.clear();
alpar@1402
  1134
      Map::clear();
alpar@1402
  1135
    }
alpar@1402
  1136
deba@1538
  1137
  public:
deba@1538
  1138
deba@1552
  1139
    /// \brief Swaps the position of the two items in the map.
deba@1552
  1140
    ///
deba@1552
  1141
    /// Swaps the position of the two items in the map.
deba@1552
  1142
    void swap(const Item& p, const Item& q) {
deba@1552
  1143
      int pi = Map::operator[](p);
deba@1552
  1144
      int qi = Map::operator[](q);
deba@1552
  1145
      Map::set(p, qi);
deba@1552
  1146
      invMap[qi] = p;
deba@1552
  1147
      Map::set(q, pi);
deba@1552
  1148
      invMap[pi] = q;
deba@1552
  1149
    }
deba@1552
  1150
alpar@1402
  1151
    /// \brief Gives back the \e descriptor of the item.
alpar@1402
  1152
    ///
alpar@1402
  1153
    /// Gives back the mutable and unique \e descriptor of the map.
alpar@1402
  1154
    int operator[](const Item& item) const {
alpar@1402
  1155
      return Map::operator[](item);
alpar@1402
  1156
    }
alpar@1402
  1157
    
deba@1413
  1158
  private:
deba@1413
  1159
deba@1413
  1160
    typedef std::vector<Item> Container;
deba@1413
  1161
    Container invMap;
deba@1413
  1162
deba@1413
  1163
  public:
athos@1540
  1164
    /// \brief The inverse map type of DescriptorMap.
deba@1413
  1165
    ///
athos@1540
  1166
    /// The inverse map type of DescriptorMap.
deba@1413
  1167
    class InverseMap {
deba@1413
  1168
    public:
deba@1413
  1169
      /// \brief Constructor of the InverseMap.
deba@1413
  1170
      ///
deba@1413
  1171
      /// Constructor of the InverseMap.
deba@1413
  1172
      InverseMap(const DescriptorMap& _inverted) 
deba@1413
  1173
	: inverted(_inverted) {}
deba@1413
  1174
deba@1413
  1175
deba@1413
  1176
      /// The value type of the InverseMap.
deba@1413
  1177
      typedef typename DescriptorMap::Key Value;
deba@1413
  1178
      /// The key type of the InverseMap.
deba@1413
  1179
      typedef typename DescriptorMap::Value Key; 
deba@1413
  1180
deba@1413
  1181
      /// \brief Subscript operator. 
deba@1413
  1182
      ///
deba@1413
  1183
      /// Subscript operator. It gives back the item 
deba@1413
  1184
      /// that the descriptor belongs to currently.
deba@1413
  1185
      Value operator[](const Key& key) const {
deba@1413
  1186
	return inverted.invMap[key];
deba@1413
  1187
      }
deba@1470
  1188
deba@1470
  1189
      /// \brief Size of the map.
deba@1470
  1190
      ///
deba@1470
  1191
      /// Returns the size of the map.
deba@1552
  1192
      int size() const {
deba@1470
  1193
	return inverted.invMap.size();
deba@1470
  1194
      }
deba@1413
  1195
      
deba@1413
  1196
    private:
deba@1413
  1197
      const DescriptorMap& inverted;
deba@1413
  1198
    };
deba@1413
  1199
alpar@1402
  1200
    /// \brief Gives back the inverse of the map.
alpar@1402
  1201
    ///
alpar@1402
  1202
    /// Gives back the inverse of the map.
alpar@1402
  1203
    const InverseMap inverse() const {
deba@1413
  1204
      return InverseMap(*this);
alpar@1402
  1205
    }
alpar@1402
  1206
  };
alpar@1402
  1207
alpar@1402
  1208
  /// \brief Returns the source of the given edge.
alpar@1402
  1209
  ///
alpar@1402
  1210
  /// The SourceMap gives back the source Node of the given edge. 
alpar@1402
  1211
  /// \author Balazs Dezso
alpar@1402
  1212
  template <typename Graph>
alpar@1402
  1213
  class SourceMap {
alpar@1402
  1214
  public:
deba@1419
  1215
alpar@1402
  1216
    typedef typename Graph::Node Value;
alpar@1402
  1217
    typedef typename Graph::Edge Key;
alpar@1402
  1218
alpar@1402
  1219
    /// \brief Constructor
alpar@1402
  1220
    ///
alpar@1402
  1221
    /// Constructor
alpar@1402
  1222
    /// \param _graph The graph that the map belongs to.
alpar@1402
  1223
    SourceMap(const Graph& _graph) : graph(_graph) {}
alpar@1402
  1224
alpar@1402
  1225
    /// \brief The subscript operator.
alpar@1402
  1226
    ///
alpar@1402
  1227
    /// The subscript operator.
alpar@1402
  1228
    /// \param edge The edge 
alpar@1402
  1229
    /// \return The source of the edge 
deba@1679
  1230
    Value operator[](const Key& edge) const {
alpar@1402
  1231
      return graph.source(edge);
alpar@1402
  1232
    }
alpar@1402
  1233
alpar@1402
  1234
  private:
alpar@1402
  1235
    const Graph& graph;
alpar@1402
  1236
  };
alpar@1402
  1237
alpar@1402
  1238
  /// \brief Returns a \ref SourceMap class
alpar@1402
  1239
  ///
alpar@1402
  1240
  /// This function just returns an \ref SourceMap class.
alpar@1402
  1241
  /// \relates SourceMap
alpar@1402
  1242
  template <typename Graph>
alpar@1402
  1243
  inline SourceMap<Graph> sourceMap(const Graph& graph) {
alpar@1402
  1244
    return SourceMap<Graph>(graph);
alpar@1402
  1245
  } 
alpar@1402
  1246
alpar@1402
  1247
  /// \brief Returns the target of the given edge.
alpar@1402
  1248
  ///
alpar@1402
  1249
  /// The TargetMap gives back the target Node of the given edge. 
alpar@1402
  1250
  /// \author Balazs Dezso
alpar@1402
  1251
  template <typename Graph>
alpar@1402
  1252
  class TargetMap {
alpar@1402
  1253
  public:
deba@1419
  1254
alpar@1402
  1255
    typedef typename Graph::Node Value;
alpar@1402
  1256
    typedef typename Graph::Edge Key;
alpar@1402
  1257
alpar@1402
  1258
    /// \brief Constructor
alpar@1402
  1259
    ///
alpar@1402
  1260
    /// Constructor
alpar@1402
  1261
    /// \param _graph The graph that the map belongs to.
alpar@1402
  1262
    TargetMap(const Graph& _graph) : graph(_graph) {}
alpar@1402
  1263
alpar@1402
  1264
    /// \brief The subscript operator.
alpar@1402
  1265
    ///
alpar@1402
  1266
    /// The subscript operator.
alpar@1536
  1267
    /// \param e The edge 
alpar@1402
  1268
    /// \return The target of the edge 
deba@1679
  1269
    Value operator[](const Key& e) const {
alpar@1536
  1270
      return graph.target(e);
alpar@1402
  1271
    }
alpar@1402
  1272
alpar@1402
  1273
  private:
alpar@1402
  1274
    const Graph& graph;
alpar@1402
  1275
  };
alpar@1402
  1276
alpar@1402
  1277
  /// \brief Returns a \ref TargetMap class
deba@1515
  1278
  ///
athos@1540
  1279
  /// This function just returns a \ref TargetMap class.
alpar@1402
  1280
  /// \relates TargetMap
alpar@1402
  1281
  template <typename Graph>
alpar@1402
  1282
  inline TargetMap<Graph> targetMap(const Graph& graph) {
alpar@1402
  1283
    return TargetMap<Graph>(graph);
alpar@1402
  1284
  }
alpar@1402
  1285
athos@1540
  1286
  /// \brief Returns the "forward" directed edge view of an undirected edge.
deba@1419
  1287
  ///
athos@1540
  1288
  /// Returns the "forward" directed edge view of an undirected edge.
deba@1419
  1289
  /// \author Balazs Dezso
deba@1419
  1290
  template <typename Graph>
deba@1419
  1291
  class ForwardMap {
deba@1419
  1292
  public:
deba@1419
  1293
deba@1419
  1294
    typedef typename Graph::Edge Value;
deba@1419
  1295
    typedef typename Graph::UndirEdge Key;
deba@1419
  1296
deba@1419
  1297
    /// \brief Constructor
deba@1419
  1298
    ///
deba@1419
  1299
    /// Constructor
deba@1419
  1300
    /// \param _graph The graph that the map belongs to.
deba@1419
  1301
    ForwardMap(const Graph& _graph) : graph(_graph) {}
deba@1419
  1302
deba@1419
  1303
    /// \brief The subscript operator.
deba@1419
  1304
    ///
deba@1419
  1305
    /// The subscript operator.
deba@1419
  1306
    /// \param key An undirected edge 
deba@1419
  1307
    /// \return The "forward" directed edge view of undirected edge 
deba@1419
  1308
    Value operator[](const Key& key) const {
deba@1627
  1309
      return graph.direct(key, true);
deba@1419
  1310
    }
deba@1419
  1311
deba@1419
  1312
  private:
deba@1419
  1313
    const Graph& graph;
deba@1419
  1314
  };
deba@1419
  1315
deba@1419
  1316
  /// \brief Returns a \ref ForwardMap class
deba@1515
  1317
  ///
deba@1419
  1318
  /// This function just returns an \ref ForwardMap class.
deba@1419
  1319
  /// \relates ForwardMap
deba@1419
  1320
  template <typename Graph>
deba@1419
  1321
  inline ForwardMap<Graph> forwardMap(const Graph& graph) {
deba@1419
  1322
    return ForwardMap<Graph>(graph);
deba@1419
  1323
  }
deba@1419
  1324
athos@1540
  1325
  /// \brief Returns the "backward" directed edge view of an undirected edge.
deba@1419
  1326
  ///
athos@1540
  1327
  /// Returns the "backward" directed edge view of an undirected edge.
deba@1419
  1328
  /// \author Balazs Dezso
deba@1419
  1329
  template <typename Graph>
deba@1419
  1330
  class BackwardMap {
deba@1419
  1331
  public:
deba@1419
  1332
deba@1419
  1333
    typedef typename Graph::Edge Value;
deba@1419
  1334
    typedef typename Graph::UndirEdge Key;
deba@1419
  1335
deba@1419
  1336
    /// \brief Constructor
deba@1419
  1337
    ///
deba@1419
  1338
    /// Constructor
deba@1419
  1339
    /// \param _graph The graph that the map belongs to.
deba@1419
  1340
    BackwardMap(const Graph& _graph) : graph(_graph) {}
deba@1419
  1341
deba@1419
  1342
    /// \brief The subscript operator.
deba@1419
  1343
    ///
deba@1419
  1344
    /// The subscript operator.
deba@1419
  1345
    /// \param key An undirected edge 
deba@1419
  1346
    /// \return The "backward" directed edge view of undirected edge 
deba@1419
  1347
    Value operator[](const Key& key) const {
deba@1627
  1348
      return graph.direct(key, false);
deba@1419
  1349
    }
deba@1419
  1350
deba@1419
  1351
  private:
deba@1419
  1352
    const Graph& graph;
deba@1419
  1353
  };
deba@1419
  1354
deba@1419
  1355
  /// \brief Returns a \ref BackwardMap class
deba@1419
  1356
athos@1540
  1357
  /// This function just returns a \ref BackwardMap class.
deba@1419
  1358
  /// \relates BackwardMap
deba@1419
  1359
  template <typename Graph>
deba@1419
  1360
  inline BackwardMap<Graph> backwardMap(const Graph& graph) {
deba@1419
  1361
    return BackwardMap<Graph>(graph);
deba@1419
  1362
  }
deba@1419
  1363
deba@1695
  1364
  /// \brief Potential difference map
deba@1695
  1365
  ///
deba@1695
  1366
  /// If there is an potential map on the nodes then we
deba@1695
  1367
  /// can get an edge map as we get the substraction of the
deba@1695
  1368
  /// values of the target and source.
deba@1695
  1369
  template <typename Graph, typename NodeMap>
deba@1695
  1370
  class PotentialDifferenceMap {
deba@1515
  1371
  public:
deba@1695
  1372
    typedef typename Graph::Edge Key;
deba@1695
  1373
    typedef typename NodeMap::Value Value;
deba@1695
  1374
deba@1695
  1375
    /// \brief Constructor
deba@1695
  1376
    ///
deba@1695
  1377
    /// Contructor of the map
deba@1695
  1378
    PotentialDifferenceMap(const Graph& _graph, const NodeMap& _potential) 
deba@1695
  1379
      : graph(_graph), potential(_potential) {}
deba@1695
  1380
deba@1695
  1381
    /// \brief Const subscription operator
deba@1695
  1382
    ///
deba@1695
  1383
    /// Const subscription operator
deba@1695
  1384
    Value operator[](const Key& edge) const {
deba@1695
  1385
      return potential[graph.target(edge)] - potential[graph.source(edge)];
deba@1695
  1386
    }
deba@1695
  1387
deba@1695
  1388
  private:
deba@1695
  1389
    const Graph& graph;
deba@1695
  1390
    const NodeMap& potential;
deba@1695
  1391
  };
deba@1695
  1392
deba@1695
  1393
  /// \brief Just returns a PotentialDifferenceMap
deba@1695
  1394
  ///
deba@1695
  1395
  /// Just returns a PotentialDifferenceMap
deba@1695
  1396
  /// \relates PotentialDifferenceMap
deba@1695
  1397
  template <typename Graph, typename NodeMap>
deba@1695
  1398
  PotentialDifferenceMap<Graph, NodeMap> 
deba@1695
  1399
  potentialDifferenceMap(const Graph& graph, const NodeMap& potential) {
deba@1695
  1400
    return PotentialDifferenceMap<Graph, NodeMap>(graph, potential);
deba@1695
  1401
  }
deba@1695
  1402
deba@1515
  1403
  /// \brief Map of the node in-degrees.
alpar@1453
  1404
  ///
athos@1540
  1405
  /// This map returns the in-degree of a node. Once it is constructed,
deba@1515
  1406
  /// the degrees are stored in a standard NodeMap, so each query is done
athos@1540
  1407
  /// in constant time. On the other hand, the values are updated automatically
deba@1515
  1408
  /// whenever the graph changes.
deba@1515
  1409
  ///
deba@1729
  1410
  /// \warning Besides addNode() and addEdge(), a graph structure may provide
deba@1730
  1411
  /// alternative ways to modify the graph. The correct behavior of InDegMap
deba@1829
  1412
  /// is not guarantied if these additional features are used. For example
deba@1829
  1413
  /// the functions \ref ListGraph::changeSource() "changeSource()",
deba@1729
  1414
  /// \ref ListGraph::changeTarget() "changeTarget()" and
deba@1729
  1415
  /// \ref ListGraph::reverseEdge() "reverseEdge()"
deba@1729
  1416
  /// of \ref ListGraph will \e not update the degree values correctly.
deba@1729
  1417
  ///
deba@1515
  1418
  /// \sa OutDegMap
deba@1515
  1419
alpar@1453
  1420
  template <typename _Graph>
deba@1515
  1421
  class InDegMap  
deba@1515
  1422
    : protected AlterationNotifier<typename _Graph::Edge>::ObserverBase {
deba@1515
  1423
alpar@1453
  1424
  public:
deba@1515
  1425
    
deba@1515
  1426
    typedef _Graph Graph;
alpar@1453
  1427
    typedef int Value;
deba@1515
  1428
    typedef typename Graph::Node Key;
deba@1515
  1429
deba@1515
  1430
  private:
deba@1515
  1431
deba@1515
  1432
    class AutoNodeMap : public Graph::template NodeMap<int> {
deba@1515
  1433
    public:
deba@1515
  1434
deba@1515
  1435
      typedef typename Graph::template NodeMap<int> Parent;
deba@1515
  1436
deba@1515
  1437
      typedef typename Parent::Key Key;
deba@1515
  1438
      typedef typename Parent::Value Value;
deba@1515
  1439
      
deba@1515
  1440
      AutoNodeMap(const Graph& graph) : Parent(graph, 0) {}
deba@1515
  1441
      
deba@1829
  1442
      virtual void add(const Key& key) {
deba@1515
  1443
	Parent::add(key);
deba@1515
  1444
	Parent::set(key, 0);
deba@1515
  1445
      }
deba@1829
  1446
      virtual void add(const std::vector<Key>& keys) {
deba@1829
  1447
	Parent::add(keys);
deba@1829
  1448
	for (int i = 0; i < (int)keys.size(); ++i) {
deba@1829
  1449
	  Parent::set(keys[i], 0);
deba@1829
  1450
	}
deba@1829
  1451
      }
deba@1515
  1452
    };
deba@1515
  1453
deba@1515
  1454
  public:
alpar@1453
  1455
alpar@1453
  1456
    /// \brief Constructor.
alpar@1453
  1457
    ///
alpar@1453
  1458
    /// Constructor for creating in-degree map.
deba@1515
  1459
    InDegMap(const Graph& _graph) : graph(_graph), deg(_graph) {
alpar@1459
  1460
      AlterationNotifier<typename _Graph::Edge>
alpar@1459
  1461
	::ObserverBase::attach(graph.getNotifier(typename _Graph::Edge()));
deba@1515
  1462
      
deba@1515
  1463
      for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
deba@1515
  1464
	deg[it] = countInEdges(graph, it);
deba@1515
  1465
      }
alpar@1453
  1466
    }
alpar@1453
  1467
deba@1515
  1468
    virtual ~InDegMap() {
alpar@1459
  1469
      AlterationNotifier<typename _Graph::Edge>::
alpar@1453
  1470
	ObserverBase::detach();
alpar@1453
  1471
    }
alpar@1453
  1472
    
alpar@1459
  1473
    /// Gives back the in-degree of a Node.
deba@1515
  1474
    int operator[](const Key& key) const {
deba@1515
  1475
      return deg[key];
alpar@1459
  1476
    }
alpar@1453
  1477
alpar@1453
  1478
  protected:
deba@1515
  1479
    
deba@1515
  1480
    typedef typename Graph::Edge Edge;
deba@1515
  1481
deba@1515
  1482
    virtual void add(const Edge& edge) {
deba@1515
  1483
      ++deg[graph.target(edge)];
alpar@1453
  1484
    }
alpar@1453
  1485
deba@1515
  1486
    virtual void erase(const Edge& edge) {
deba@1515
  1487
      --deg[graph.target(edge)];
deba@1515
  1488
    }
deba@1515
  1489
deba@1515
  1490
    virtual void build() {
deba@1515
  1491
      for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
deba@1515
  1492
	deg[it] = countInEdges(graph, it);
deba@1515
  1493
      }      
deba@1515
  1494
    }
deba@1515
  1495
deba@1515
  1496
    virtual void clear() {
deba@1515
  1497
      for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
deba@1515
  1498
	deg[it] = 0;
deba@1515
  1499
      }
deba@1515
  1500
    }
deba@1515
  1501
  private:
alpar@1506
  1502
    
deba@1515
  1503
    const _Graph& graph;
deba@1515
  1504
    AutoNodeMap deg;
alpar@1459
  1505
  };
alpar@1459
  1506
deba@1515
  1507
  /// \brief Map of the node out-degrees.
deba@1515
  1508
  ///
athos@1540
  1509
  /// This map returns the out-degree of a node. Once it is constructed,
deba@1515
  1510
  /// the degrees are stored in a standard NodeMap, so each query is done
athos@1540
  1511
  /// in constant time. On the other hand, the values are updated automatically
deba@1515
  1512
  /// whenever the graph changes.
deba@1515
  1513
  ///
deba@1729
  1514
  /// \warning Besides addNode() and addEdge(), a graph structure may provide
deba@1730
  1515
  /// alternative ways to modify the graph. The correct behavior of OutDegMap
deba@1829
  1516
  /// is not guarantied if these additional features are used. For example
deba@1829
  1517
  /// the functions \ref ListGraph::changeSource() "changeSource()",
deba@1729
  1518
  /// \ref ListGraph::changeTarget() "changeTarget()" and
deba@1729
  1519
  /// \ref ListGraph::reverseEdge() "reverseEdge()"
deba@1729
  1520
  /// of \ref ListGraph will \e not update the degree values correctly.
deba@1729
  1521
  ///
alpar@1555
  1522
  /// \sa InDegMap
alpar@1459
  1523
alpar@1459
  1524
  template <typename _Graph>
deba@1515
  1525
  class OutDegMap  
deba@1515
  1526
    : protected AlterationNotifier<typename _Graph::Edge>::ObserverBase {
deba@1515
  1527
alpar@1459
  1528
  public:
deba@1515
  1529
    
deba@1515
  1530
    typedef _Graph Graph;
alpar@1459
  1531
    typedef int Value;
deba@1515
  1532
    typedef typename Graph::Node Key;
deba@1515
  1533
deba@1515
  1534
  private:
deba@1515
  1535
deba@1515
  1536
    class AutoNodeMap : public Graph::template NodeMap<int> {
deba@1515
  1537
    public:
deba@1515
  1538
deba@1515
  1539
      typedef typename Graph::template NodeMap<int> Parent;
deba@1515
  1540
deba@1515
  1541
      typedef typename Parent::Key Key;
deba@1515
  1542
      typedef typename Parent::Value Value;
deba@1515
  1543
      
deba@1515
  1544
      AutoNodeMap(const Graph& graph) : Parent(graph, 0) {}
deba@1515
  1545
      
deba@1829
  1546
      virtual void add(const Key& key) {
deba@1515
  1547
	Parent::add(key);
deba@1515
  1548
	Parent::set(key, 0);
deba@1515
  1549
      }
deba@1829
  1550
      virtual void add(const std::vector<Key>& keys) {
deba@1829
  1551
	Parent::add(keys);
deba@1829
  1552
	for (int i = 0; i < (int)keys.size(); ++i) {
deba@1829
  1553
	  Parent::set(keys[i], 0);
deba@1829
  1554
	}
deba@1829
  1555
      }
deba@1515
  1556
    };
deba@1515
  1557
deba@1515
  1558
  public:
alpar@1459
  1559
alpar@1459
  1560
    /// \brief Constructor.
alpar@1459
  1561
    ///
alpar@1459
  1562
    /// Constructor for creating out-degree map.
deba@1515
  1563
    OutDegMap(const Graph& _graph) : graph(_graph), deg(_graph) {
alpar@1459
  1564
      AlterationNotifier<typename _Graph::Edge>
alpar@1459
  1565
	::ObserverBase::attach(graph.getNotifier(typename _Graph::Edge()));
deba@1515
  1566
      
deba@1515
  1567
      for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
deba@1515
  1568
	deg[it] = countOutEdges(graph, it);
deba@1515
  1569
      }
alpar@1459
  1570
    }
alpar@1459
  1571
deba@1515
  1572
    virtual ~OutDegMap() {
alpar@1459
  1573
      AlterationNotifier<typename _Graph::Edge>::
alpar@1459
  1574
	ObserverBase::detach();
alpar@1459
  1575
    }
alpar@1459
  1576
    
alpar@1459
  1577
    /// Gives back the in-degree of a Node.
deba@1515
  1578
    int operator[](const Key& key) const {
deba@1515
  1579
      return deg[key];
alpar@1459
  1580
    }
alpar@1459
  1581
alpar@1459
  1582
  protected:
deba@1515
  1583
    
deba@1515
  1584
    typedef typename Graph::Edge Edge;
deba@1515
  1585
deba@1515
  1586
    virtual void add(const Edge& edge) {
deba@1515
  1587
      ++deg[graph.source(edge)];
alpar@1459
  1588
    }
alpar@1459
  1589
deba@1515
  1590
    virtual void erase(const Edge& edge) {
deba@1515
  1591
      --deg[graph.source(edge)];
deba@1515
  1592
    }
deba@1515
  1593
deba@1515
  1594
    virtual void build() {
deba@1515
  1595
      for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
deba@1515
  1596
	deg[it] = countOutEdges(graph, it);
deba@1515
  1597
      }      
deba@1515
  1598
    }
deba@1515
  1599
deba@1515
  1600
    virtual void clear() {
deba@1515
  1601
      for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
deba@1515
  1602
	deg[it] = 0;
deba@1515
  1603
      }
deba@1515
  1604
    }
deba@1515
  1605
  private:
alpar@1506
  1606
    
deba@1515
  1607
    const _Graph& graph;
deba@1515
  1608
    AutoNodeMap deg;
alpar@1453
  1609
  };
alpar@1453
  1610
deba@1695
  1611
alpar@1402
  1612
  /// @}
alpar@1402
  1613
alpar@947
  1614
} //END OF NAMESPACE LEMON
klao@946
  1615
klao@946
  1616
#endif