athos@610
|
1 |
// -*- c++ -*-
|
athos@633
|
2 |
#ifndef HUGO_MINCOSTFLOW_H
|
athos@633
|
3 |
#define HUGO_MINCOSTFLOW_H
|
athos@610
|
4 |
|
athos@610
|
5 |
///\ingroup galgs
|
athos@610
|
6 |
///\file
|
athos@645
|
7 |
///\brief An algorithm for finding the minimum cost flow of given value in an uncapacitated network
|
athos@611
|
8 |
|
athos@610
|
9 |
#include <hugo/dijkstra.h>
|
athos@610
|
10 |
#include <hugo/graph_wrapper.h>
|
athos@610
|
11 |
#include <hugo/maps.h>
|
athos@610
|
12 |
#include <vector>
|
athos@610
|
13 |
#include <for_each_macros.h>
|
athos@610
|
14 |
|
athos@610
|
15 |
namespace hugo {
|
athos@610
|
16 |
|
athos@610
|
17 |
/// \addtogroup galgs
|
athos@610
|
18 |
/// @{
|
athos@610
|
19 |
|
athos@645
|
20 |
///\brief Implementation of an algorithm for finding the minimum cost flow
|
athos@645
|
21 |
/// of given value in an uncapacitated network
|
athos@610
|
22 |
///
|
athos@610
|
23 |
///
|
athos@633
|
24 |
/// The class \ref hugo::MinCostFlow "MinCostFlow" implements
|
athos@633
|
25 |
/// an algorithm for solving the following general minimum cost flow problem>
|
athos@633
|
26 |
///
|
athos@633
|
27 |
///
|
athos@633
|
28 |
///
|
athos@633
|
29 |
/// \warning It is assumed here that the problem has a feasible solution
|
athos@633
|
30 |
///
|
athos@610
|
31 |
/// The range of the length (weight) function is nonnegative reals but
|
athos@610
|
32 |
/// the range of capacity function is the set of nonnegative integers.
|
athos@610
|
33 |
/// It is not a polinomial time algorithm for counting the minimum cost
|
athos@610
|
34 |
/// maximal flow, since it counts the minimum cost flow for every value 0..M
|
athos@610
|
35 |
/// where \c M is the value of the maximal flow.
|
athos@610
|
36 |
///
|
athos@610
|
37 |
///\author Attila Bernath
|
athos@635
|
38 |
template <typename Graph, typename LengthMap, typename SupplyDemandMap>
|
athos@633
|
39 |
class MinCostFlow {
|
athos@610
|
40 |
|
athos@610
|
41 |
typedef typename LengthMap::ValueType Length;
|
athos@610
|
42 |
|
athos@633
|
43 |
|
athos@635
|
44 |
typedef typename SupplyDemandMap::ValueType SupplyDemand;
|
athos@610
|
45 |
|
athos@610
|
46 |
typedef typename Graph::Node Node;
|
athos@610
|
47 |
typedef typename Graph::NodeIt NodeIt;
|
athos@610
|
48 |
typedef typename Graph::Edge Edge;
|
athos@610
|
49 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
athos@610
|
50 |
typedef typename Graph::template EdgeMap<int> EdgeIntMap;
|
athos@610
|
51 |
|
athos@610
|
52 |
// typedef ConstMap<Edge,int> ConstMap;
|
athos@610
|
53 |
|
athos@610
|
54 |
typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType;
|
athos@610
|
55 |
typedef typename ResGraphType::Edge ResGraphEdge;
|
athos@610
|
56 |
|
athos@610
|
57 |
class ModLengthMap {
|
athos@610
|
58 |
//typedef typename ResGraphType::template NodeMap<Length> NodeMap;
|
athos@610
|
59 |
typedef typename Graph::template NodeMap<Length> NodeMap;
|
athos@610
|
60 |
const ResGraphType& G;
|
athos@610
|
61 |
// const EdgeIntMap& rev;
|
athos@610
|
62 |
const LengthMap &ol;
|
athos@610
|
63 |
const NodeMap &pot;
|
athos@610
|
64 |
public :
|
athos@610
|
65 |
typedef typename LengthMap::KeyType KeyType;
|
athos@610
|
66 |
typedef typename LengthMap::ValueType ValueType;
|
athos@610
|
67 |
|
athos@610
|
68 |
ValueType operator[](typename ResGraphType::Edge e) const {
|
athos@610
|
69 |
if (G.forward(e))
|
athos@610
|
70 |
return ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);
|
athos@610
|
71 |
else
|
athos@610
|
72 |
return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);
|
athos@610
|
73 |
}
|
athos@610
|
74 |
|
athos@610
|
75 |
ModLengthMap(const ResGraphType& _G,
|
athos@610
|
76 |
const LengthMap &o, const NodeMap &p) :
|
athos@610
|
77 |
G(_G), /*rev(_rev),*/ ol(o), pot(p){};
|
athos@610
|
78 |
};//ModLengthMap
|
athos@610
|
79 |
|
athos@610
|
80 |
|
athos@610
|
81 |
protected:
|
athos@610
|
82 |
|
athos@610
|
83 |
//Input
|
athos@610
|
84 |
const Graph& G;
|
athos@610
|
85 |
const LengthMap& length;
|
athos@635
|
86 |
const SupplyDemandMap& supply_demand;//supply or demand of nodes
|
athos@610
|
87 |
|
athos@610
|
88 |
|
athos@610
|
89 |
//auxiliary variables
|
athos@610
|
90 |
|
athos@610
|
91 |
//To store the flow
|
athos@610
|
92 |
EdgeIntMap flow;
|
athos@610
|
93 |
//To store the potentila (dual variables)
|
athos@610
|
94 |
typename Graph::template NodeMap<Length> potential;
|
athos@633
|
95 |
//To store excess-deficit values
|
athos@635
|
96 |
SupplyDemandMap excess_deficit;
|
athos@610
|
97 |
|
athos@610
|
98 |
|
athos@610
|
99 |
Length total_length;
|
athos@610
|
100 |
|
athos@610
|
101 |
|
athos@610
|
102 |
public :
|
athos@610
|
103 |
|
athos@610
|
104 |
|
athos@635
|
105 |
MinCostFlow(Graph& _G, LengthMap& _length, SupplyDemandMap& _supply_demand) : G(_G),
|
athos@635
|
106 |
length(_length), supply_demand(_supply_demand), flow(_G), potential(_G){ }
|
athos@610
|
107 |
|
athos@610
|
108 |
|
athos@610
|
109 |
///Runs the algorithm.
|
athos@610
|
110 |
|
athos@610
|
111 |
///Runs the algorithm.
|
athos@635
|
112 |
|
athos@610
|
113 |
///\todo May be it does make sense to be able to start with a nonzero
|
athos@610
|
114 |
/// feasible primal-dual solution pair as well.
|
athos@633
|
115 |
int run() {
|
athos@610
|
116 |
|
athos@610
|
117 |
//Resetting variables from previous runs
|
athos@635
|
118 |
//total_length = 0;
|
athos@635
|
119 |
|
athos@635
|
120 |
typedef typename Graph::template NodeMap<int> HeapMap;
|
athos@635
|
121 |
typedef Heap<Node, SupplyDemand, typename Graph::template NodeMap<int>,
|
athos@635
|
122 |
std::greater<SupplyDemand> > HeapType;
|
athos@635
|
123 |
|
athos@635
|
124 |
//A heap for the excess nodes
|
athos@635
|
125 |
HeapMap excess_nodes_map(G,-1);
|
athos@635
|
126 |
HeapType excess_nodes(excess_nodes_map);
|
athos@635
|
127 |
|
athos@635
|
128 |
//A heap for the deficit nodes
|
athos@635
|
129 |
HeapMap deficit_nodes_map(G,-1);
|
athos@635
|
130 |
HeapType deficit_nodes(deficit_nodes_map);
|
athos@635
|
131 |
|
athos@610
|
132 |
|
athos@610
|
133 |
FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
|
athos@610
|
134 |
flow.set(e,0);
|
athos@610
|
135 |
}
|
athos@633
|
136 |
|
athos@633
|
137 |
//Initial value for delta
|
athos@635
|
138 |
SupplyDemand delta = 0;
|
athos@635
|
139 |
|
athos@610
|
140 |
FOR_EACH_LOC(typename Graph::NodeIt, n, G){
|
athos@635
|
141 |
excess_deficit.set(n,supply_demand[n]);
|
athos@635
|
142 |
//A supply node
|
athos@635
|
143 |
if (excess_deficit[n] > 0){
|
athos@635
|
144 |
excess_nodes.push(n,excess_deficit[n]);
|
athos@633
|
145 |
}
|
athos@635
|
146 |
//A demand node
|
athos@635
|
147 |
if (excess_deficit[n] < 0){
|
athos@635
|
148 |
deficit_nodes.push(n, - excess_deficit[n]);
|
athos@635
|
149 |
}
|
athos@635
|
150 |
//Finding out starting value of delta
|
athos@635
|
151 |
if (delta < abs(excess_deficit[n])){
|
athos@635
|
152 |
delta = abs(excess_deficit[n]);
|
athos@635
|
153 |
}
|
athos@633
|
154 |
//Initialize the copy of the Dijkstra potential to zero
|
athos@610
|
155 |
potential.set(n,0);
|
athos@610
|
156 |
}
|
athos@610
|
157 |
|
athos@635
|
158 |
//It'll be allright as an initial value, though this value
|
athos@635
|
159 |
//can be the maximum deficit here
|
athos@635
|
160 |
SupplyDemand max_excess = delta;
|
athos@610
|
161 |
|
athos@633
|
162 |
//We need a residual graph which is uncapacitated
|
athos@633
|
163 |
ResGraphType res_graph(G, flow);
|
athos@610
|
164 |
|
athos@633
|
165 |
|
athos@610
|
166 |
|
athos@610
|
167 |
ModLengthMap mod_length(res_graph, length, potential);
|
athos@610
|
168 |
|
athos@610
|
169 |
Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
|
athos@610
|
170 |
|
athos@633
|
171 |
|
athos@635
|
172 |
while (max_excess > 0){
|
athos@635
|
173 |
|
athos@645
|
174 |
/*
|
athos@645
|
175 |
* Beginning of the delta scaling phase
|
athos@645
|
176 |
*/
|
athos@610
|
177 |
|
athos@635
|
178 |
//Merge and stuff
|
athos@635
|
179 |
|
athos@635
|
180 |
Node s = excess_nodes.top();
|
athos@635
|
181 |
SupplyDemand max_excess = excess_nodes[s];
|
athos@635
|
182 |
Node t = deficit_nodes.top();
|
athos@635
|
183 |
if (max_excess < dificit_nodes[t]){
|
athos@635
|
184 |
max_excess = dificit_nodes[t];
|
athos@635
|
185 |
}
|
athos@635
|
186 |
|
athos@635
|
187 |
|
athos@645
|
188 |
while(max_excess > 0){
|
athos@635
|
189 |
|
athos@635
|
190 |
|
athos@635
|
191 |
//s es t valasztasa
|
athos@635
|
192 |
|
athos@635
|
193 |
//Dijkstra part
|
athos@635
|
194 |
dijkstra.run(s);
|
athos@635
|
195 |
|
athos@635
|
196 |
/*We know from theory that t can be reached
|
athos@635
|
197 |
if (!dijkstra.reached(t)){
|
athos@635
|
198 |
//There are no k paths from s to t
|
athos@635
|
199 |
break;
|
athos@635
|
200 |
};
|
athos@635
|
201 |
*/
|
athos@635
|
202 |
|
athos@635
|
203 |
//We have to change the potential
|
athos@635
|
204 |
FOR_EACH_LOC(typename ResGraphType::NodeIt, n, res_graph){
|
athos@635
|
205 |
potential[n] += dijkstra.distMap()[n];
|
athos@635
|
206 |
}
|
athos@635
|
207 |
|
athos@635
|
208 |
|
athos@635
|
209 |
//Augmenting on the sortest path
|
athos@635
|
210 |
Node n=t;
|
athos@635
|
211 |
ResGraphEdge e;
|
athos@635
|
212 |
while (n!=s){
|
athos@635
|
213 |
e = dijkstra.pred(n);
|
athos@635
|
214 |
n = dijkstra.predNode(n);
|
athos@635
|
215 |
res_graph.augment(e,delta);
|
athos@635
|
216 |
/*
|
athos@635
|
217 |
//Let's update the total length
|
athos@635
|
218 |
if (res_graph.forward(e))
|
athos@635
|
219 |
total_length += length[e];
|
athos@635
|
220 |
else
|
athos@635
|
221 |
total_length -= length[e];
|
athos@635
|
222 |
*/
|
athos@635
|
223 |
}
|
athos@635
|
224 |
|
athos@635
|
225 |
//Update the excess_nodes heap
|
athos@635
|
226 |
if (delta >= excess_nodes[s]){
|
athos@635
|
227 |
if (delta > excess_nodes[s])
|
athos@635
|
228 |
deficit_nodes.push(s,delta - excess_nodes[s]);
|
athos@635
|
229 |
excess_nodes.pop();
|
athos@635
|
230 |
|
athos@635
|
231 |
}
|
athos@635
|
232 |
else{
|
athos@635
|
233 |
excess_nodes[s] -= delta;
|
athos@635
|
234 |
}
|
athos@635
|
235 |
//Update the deficit_nodes heap
|
athos@635
|
236 |
if (delta >= deficit_nodes[t]){
|
athos@635
|
237 |
if (delta > deficit_nodes[t])
|
athos@635
|
238 |
excess_nodes.push(t,delta - deficit_nodes[t]);
|
athos@635
|
239 |
deficit_nodes.pop();
|
athos@635
|
240 |
|
athos@635
|
241 |
}
|
athos@635
|
242 |
else{
|
athos@635
|
243 |
deficit_nodes[t] -= delta;
|
athos@635
|
244 |
}
|
athos@635
|
245 |
//Dijkstra part ends here
|
athos@633
|
246 |
}
|
athos@633
|
247 |
|
athos@633
|
248 |
/*
|
athos@635
|
249 |
* End of the delta scaling phase
|
athos@635
|
250 |
*/
|
athos@633
|
251 |
|
athos@635
|
252 |
//Whatever this means
|
athos@635
|
253 |
delta = delta / 2;
|
athos@635
|
254 |
|
athos@635
|
255 |
/*This is not necessary here
|
athos@635
|
256 |
//Update the max_excess
|
athos@635
|
257 |
max_excess = 0;
|
athos@635
|
258 |
FOR_EACH_LOC(typename Graph::NodeIt, n, G){
|
athos@635
|
259 |
if (max_excess < excess_deficit[n]){
|
athos@635
|
260 |
max_excess = excess_deficit[n];
|
athos@610
|
261 |
}
|
athos@610
|
262 |
}
|
athos@633
|
263 |
*/
|
athos@635
|
264 |
//Reset delta if still too big
|
athos@635
|
265 |
if (8*number_of_nodes*max_excess <= delta){
|
athos@635
|
266 |
delta = max_excess;
|
athos@635
|
267 |
|
athos@610
|
268 |
}
|
athos@610
|
269 |
|
athos@635
|
270 |
}//while(max_excess > 0)
|
athos@610
|
271 |
|
athos@610
|
272 |
|
athos@610
|
273 |
return i;
|
athos@610
|
274 |
}
|
athos@610
|
275 |
|
athos@610
|
276 |
|
athos@610
|
277 |
|
athos@610
|
278 |
|
athos@610
|
279 |
///This function gives back the total length of the found paths.
|
athos@610
|
280 |
///Assumes that \c run() has been run and nothing changed since then.
|
athos@610
|
281 |
Length totalLength(){
|
athos@610
|
282 |
return total_length;
|
athos@610
|
283 |
}
|
athos@610
|
284 |
|
athos@610
|
285 |
///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must
|
athos@610
|
286 |
///be called before using this function.
|
athos@610
|
287 |
const EdgeIntMap &getFlow() const { return flow;}
|
athos@610
|
288 |
|
athos@610
|
289 |
///Returns a const reference to the NodeMap \c potential (the dual solution).
|
athos@610
|
290 |
/// \pre \ref run() must be called before using this function.
|
athos@610
|
291 |
const EdgeIntMap &getPotential() const { return potential;}
|
athos@610
|
292 |
|
athos@610
|
293 |
///This function checks, whether the given solution is optimal
|
athos@610
|
294 |
///Running after a \c run() should return with true
|
athos@610
|
295 |
///In this "state of the art" this only check optimality, doesn't bother with feasibility
|
athos@610
|
296 |
///
|
athos@610
|
297 |
///\todo Is this OK here?
|
athos@610
|
298 |
bool checkComplementarySlackness(){
|
athos@610
|
299 |
Length mod_pot;
|
athos@610
|
300 |
Length fl_e;
|
athos@610
|
301 |
FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
|
athos@610
|
302 |
//C^{\Pi}_{i,j}
|
athos@610
|
303 |
mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)];
|
athos@610
|
304 |
fl_e = flow[e];
|
athos@610
|
305 |
// std::cout << fl_e << std::endl;
|
athos@610
|
306 |
if (0<fl_e && fl_e<capacity[e]){
|
athos@610
|
307 |
if (mod_pot != 0)
|
athos@610
|
308 |
return false;
|
athos@610
|
309 |
}
|
athos@610
|
310 |
else{
|
athos@610
|
311 |
if (mod_pot > 0 && fl_e != 0)
|
athos@610
|
312 |
return false;
|
athos@610
|
313 |
if (mod_pot < 0 && fl_e != capacity[e])
|
athos@610
|
314 |
return false;
|
athos@610
|
315 |
}
|
athos@610
|
316 |
}
|
athos@610
|
317 |
return true;
|
athos@610
|
318 |
}
|
athos@610
|
319 |
|
athos@610
|
320 |
|
athos@633
|
321 |
}; //class MinCostFlow
|
athos@610
|
322 |
|
athos@610
|
323 |
///@}
|
athos@610
|
324 |
|
athos@610
|
325 |
} //namespace hugo
|
athos@610
|
326 |
|
athos@610
|
327 |
#endif //HUGO_MINCOSTFLOW_H
|