src/work/athos/mincostflow.h
author marci
Wed, 19 May 2004 16:09:38 +0000
changeset 647 19dd325da0e8
parent 635 933f593824c2
child 657 531fc5f575ef
permissions -rw-r--r--
the same
     1 // -*- c++ -*-
     2 #ifndef HUGO_MINCOSTFLOW_H
     3 #define HUGO_MINCOSTFLOW_H
     4 
     5 ///\ingroup galgs
     6 ///\file
     7 ///\brief An algorithm for finding the minimum cost flow of given value in an uncapacitated network
     8 
     9 #include <hugo/dijkstra.h>
    10 #include <hugo/graph_wrapper.h>
    11 #include <hugo/maps.h>
    12 #include <vector>
    13 #include <for_each_macros.h>
    14 
    15 namespace hugo {
    16 
    17 /// \addtogroup galgs
    18 /// @{
    19 
    20   ///\brief Implementation of an algorithm for finding the minimum cost flow 
    21   /// of given value in an uncapacitated network
    22   /// 
    23   ///
    24   /// The class \ref hugo::MinCostFlow "MinCostFlow" implements
    25   /// an algorithm for solving the following general minimum cost flow problem>
    26   /// 
    27   ///
    28   ///
    29   /// \warning It is assumed here that the problem has a feasible solution
    30   ///
    31   /// The range of the length (weight) function is nonnegative reals but 
    32   /// the range of capacity function is the set of nonnegative integers. 
    33   /// It is not a polinomial time algorithm for counting the minimum cost
    34   /// maximal flow, since it counts the minimum cost flow for every value 0..M
    35   /// where \c M is the value of the maximal flow.
    36   ///
    37   ///\author Attila Bernath
    38   template <typename Graph, typename LengthMap, typename SupplyDemandMap>
    39   class MinCostFlow {
    40 
    41     typedef typename LengthMap::ValueType Length;
    42 
    43 
    44     typedef typename SupplyDemandMap::ValueType SupplyDemand;
    45     
    46     typedef typename Graph::Node Node;
    47     typedef typename Graph::NodeIt NodeIt;
    48     typedef typename Graph::Edge Edge;
    49     typedef typename Graph::OutEdgeIt OutEdgeIt;
    50     typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    51 
    52     //    typedef ConstMap<Edge,int> ConstMap;
    53 
    54     typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType;
    55     typedef typename ResGraphType::Edge ResGraphEdge;
    56 
    57     class ModLengthMap {   
    58       //typedef typename ResGraphType::template NodeMap<Length> NodeMap;
    59       typedef typename Graph::template NodeMap<Length> NodeMap;
    60       const ResGraphType& G;
    61       //      const EdgeIntMap& rev;
    62       const LengthMap &ol;
    63       const NodeMap &pot;
    64     public :
    65       typedef typename LengthMap::KeyType KeyType;
    66       typedef typename LengthMap::ValueType ValueType;
    67 	
    68       ValueType operator[](typename ResGraphType::Edge e) const {     
    69 	if (G.forward(e))
    70 	  return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    71 	else
    72 	  return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    73       }     
    74 	
    75       ModLengthMap(const ResGraphType& _G,
    76 		   const LengthMap &o,  const NodeMap &p) : 
    77 	G(_G), /*rev(_rev),*/ ol(o), pot(p){}; 
    78     };//ModLengthMap
    79 
    80 
    81   protected:
    82     
    83     //Input
    84     const Graph& G;
    85     const LengthMap& length;
    86     const SupplyDemandMap& supply_demand;//supply or demand of nodes
    87 
    88 
    89     //auxiliary variables
    90 
    91     //To store the flow
    92     EdgeIntMap flow; 
    93     //To store the potentila (dual variables)
    94     typename Graph::template NodeMap<Length> potential;
    95     //To store excess-deficit values
    96     SupplyDemandMap excess_deficit;
    97     
    98 
    99     Length total_length;
   100 
   101 
   102   public :
   103 
   104 
   105     MinCostFlow(Graph& _G, LengthMap& _length, SupplyDemandMap& _supply_demand) : G(_G), 
   106       length(_length), supply_demand(_supply_demand), flow(_G), potential(_G){ }
   107 
   108     
   109     ///Runs the algorithm.
   110 
   111     ///Runs the algorithm.
   112 
   113     ///\todo May be it does make sense to be able to start with a nonzero 
   114     /// feasible primal-dual solution pair as well.
   115     int run() {
   116 
   117       //Resetting variables from previous runs
   118       //total_length = 0;
   119 
   120       typedef typename Graph::template NodeMap<int> HeapMap;
   121       typedef Heap<Node, SupplyDemand, typename Graph::template NodeMap<int>,
   122 	std::greater<SupplyDemand> > 	HeapType;
   123 
   124       //A heap for the excess nodes
   125       HeapMap excess_nodes_map(G,-1);
   126       HeapType excess_nodes(excess_nodes_map);
   127 
   128       //A heap for the deficit nodes
   129       HeapMap deficit_nodes_map(G,-1);
   130       HeapType deficit_nodes(deficit_nodes_map);
   131 
   132       
   133       FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
   134 	flow.set(e,0);
   135       }
   136 
   137       //Initial value for delta
   138       SupplyDemand delta = 0;
   139 
   140       FOR_EACH_LOC(typename Graph::NodeIt, n, G){
   141        	excess_deficit.set(n,supply_demand[n]);
   142 	//A supply node
   143 	if (excess_deficit[n] > 0){
   144 	  excess_nodes.push(n,excess_deficit[n]);
   145 	}
   146 	//A demand node
   147 	if (excess_deficit[n] < 0){
   148 	  deficit_nodes.push(n, - excess_deficit[n]);
   149 	}
   150 	//Finding out starting value of delta
   151 	if (delta < abs(excess_deficit[n])){
   152 	  delta = abs(excess_deficit[n]);
   153 	}
   154 	//Initialize the copy of the Dijkstra potential to zero
   155 	potential.set(n,0);
   156       }
   157 
   158       //It'll be allright as an initial value, though this value 
   159       //can be the maximum deficit here
   160       SupplyDemand max_excess = delta;
   161       
   162       //We need a residual graph which is uncapacitated
   163       ResGraphType res_graph(G, flow);
   164 
   165 
   166       
   167       ModLengthMap mod_length(res_graph, length, potential);
   168 
   169       Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
   170 
   171 
   172       while (max_excess > 0){
   173 
   174 	/*
   175 	 * Beginning of the delta scaling phase 
   176 	*/
   177 	
   178 	//Merge and stuff
   179 
   180 	Node s = excess_nodes.top(); 
   181 	SupplyDemand max_excess = excess_nodes[s];
   182 	Node t = deficit_nodes.top(); 
   183 	if (max_excess < dificit_nodes[t]){
   184 	  max_excess = dificit_nodes[t];
   185 	}
   186 
   187 
   188 	while(max_excess > 0){
   189 
   190 	  
   191 	  //s es t valasztasa
   192 
   193 	  //Dijkstra part	
   194 	  dijkstra.run(s);
   195 
   196 	  /*We know from theory that t can be reached
   197 	  if (!dijkstra.reached(t)){
   198 	    //There are no k paths from s to t
   199 	    break;
   200 	  };
   201 	  */
   202 	  
   203 	  //We have to change the potential
   204 	  FOR_EACH_LOC(typename ResGraphType::NodeIt, n, res_graph){
   205 	    potential[n] += dijkstra.distMap()[n];
   206 	  }
   207 
   208 
   209 	  //Augmenting on the sortest path
   210 	  Node n=t;
   211 	  ResGraphEdge e;
   212 	  while (n!=s){
   213 	    e = dijkstra.pred(n);
   214 	    n = dijkstra.predNode(n);
   215 	    res_graph.augment(e,delta);
   216 	    /*
   217 	    //Let's update the total length
   218 	    if (res_graph.forward(e))
   219 	      total_length += length[e];
   220 	    else 
   221 	      total_length -= length[e];	    
   222 	    */
   223 	  }
   224 
   225 	  //Update the excess_nodes heap
   226 	  if (delta >= excess_nodes[s]){
   227 	    if (delta > excess_nodes[s])
   228 	      deficit_nodes.push(s,delta - excess_nodes[s]);
   229 	    excess_nodes.pop();
   230 	    
   231 	  } 
   232 	  else{
   233 	    excess_nodes[s] -= delta;
   234 	  }
   235 	  //Update the deficit_nodes heap
   236 	  if (delta >= deficit_nodes[t]){
   237 	    if (delta > deficit_nodes[t])
   238 	      excess_nodes.push(t,delta - deficit_nodes[t]);
   239 	    deficit_nodes.pop();
   240 	    
   241 	  } 
   242 	  else{
   243 	    deficit_nodes[t] -= delta;
   244 	  }
   245 	  //Dijkstra part ends here
   246 	}
   247 
   248 	/*
   249 	 * End of the delta scaling phase 
   250 	*/
   251 
   252 	//Whatever this means
   253 	delta = delta / 2;
   254 
   255 	/*This is not necessary here
   256 	//Update the max_excess
   257 	max_excess = 0;
   258 	FOR_EACH_LOC(typename Graph::NodeIt, n, G){
   259 	  if (max_excess < excess_deficit[n]){
   260 	    max_excess = excess_deficit[n];
   261 	  }
   262 	}
   263 	*/
   264 	//Reset delta if still too big
   265 	if (8*number_of_nodes*max_excess <= delta){
   266 	  delta = max_excess;
   267 	  
   268 	}
   269 	  
   270       }//while(max_excess > 0)
   271       
   272 
   273       return i;
   274     }
   275 
   276 
   277 
   278 
   279     ///This function gives back the total length of the found paths.
   280     ///Assumes that \c run() has been run and nothing changed since then.
   281     Length totalLength(){
   282       return total_length;
   283     }
   284 
   285     ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must
   286     ///be called before using this function.
   287     const EdgeIntMap &getFlow() const { return flow;}
   288 
   289   ///Returns a const reference to the NodeMap \c potential (the dual solution).
   290     /// \pre \ref run() must be called before using this function.
   291     const EdgeIntMap &getPotential() const { return potential;}
   292 
   293     ///This function checks, whether the given solution is optimal
   294     ///Running after a \c run() should return with true
   295     ///In this "state of the art" this only check optimality, doesn't bother with feasibility
   296     ///
   297     ///\todo Is this OK here?
   298     bool checkComplementarySlackness(){
   299       Length mod_pot;
   300       Length fl_e;
   301       FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
   302 	//C^{\Pi}_{i,j}
   303 	mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)];
   304 	fl_e = flow[e];
   305 	//	std::cout << fl_e << std::endl;
   306 	if (0<fl_e && fl_e<capacity[e]){
   307 	  if (mod_pot != 0)
   308 	    return false;
   309 	}
   310 	else{
   311 	  if (mod_pot > 0 && fl_e != 0)
   312 	    return false;
   313 	  if (mod_pot < 0 && fl_e != capacity[e])
   314 	    return false;
   315 	}
   316       }
   317       return true;
   318     }
   319     
   320 
   321   }; //class MinCostFlow
   322 
   323   ///@}
   324 
   325 } //namespace hugo
   326 
   327 #endif //HUGO_MINCOSTFLOW_H