marci@301
|
1 |
// -*- c++ -*-
|
marci@301
|
2 |
#ifndef HUGO_BFS_ITERATOR_H
|
marci@301
|
3 |
#define HUGO_BFS_ITERATOR_H
|
marci@301
|
4 |
|
marci@301
|
5 |
#include <queue>
|
marci@301
|
6 |
#include <stack>
|
marci@301
|
7 |
#include <utility>
|
marci@301
|
8 |
|
marci@560
|
9 |
#include <hugo/invalid.h>
|
marci@560
|
10 |
|
marci@301
|
11 |
namespace hugo {
|
marci@301
|
12 |
|
marci@597
|
13 |
/// Bfs searches for the nodes wich are not marked in
|
marci@597
|
14 |
/// \c reached_map
|
marci@597
|
15 |
/// Reached have to work as read-write bool Node-map.
|
marci@303
|
16 |
template <typename Graph, /*typename OutEdgeIt,*/
|
marci@303
|
17 |
typename ReachedMap/*=typename Graph::NodeMap<bool>*/ >
|
marci@360
|
18 |
class BfsIterator {
|
marci@303
|
19 |
protected:
|
marci@303
|
20 |
typedef typename Graph::Node Node;
|
marci@303
|
21 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
marci@303
|
22 |
const Graph* graph;
|
marci@301
|
23 |
std::queue<Node> bfs_queue;
|
marci@301
|
24 |
ReachedMap& reached;
|
marci@301
|
25 |
bool b_node_newly_reached;
|
marci@301
|
26 |
OutEdgeIt actual_edge;
|
marci@301
|
27 |
bool own_reached_map;
|
marci@301
|
28 |
public:
|
marci@597
|
29 |
/// In that constructor \c _reached have to be a reference
|
marci@597
|
30 |
/// for a bool Node-map. The algorithm will search in a bfs order for
|
marci@597
|
31 |
/// the nodes which are \c false initially
|
marci@360
|
32 |
BfsIterator(const Graph& _graph, ReachedMap& _reached) :
|
marci@303
|
33 |
graph(&_graph), reached(_reached),
|
marci@301
|
34 |
own_reached_map(false) { }
|
marci@597
|
35 |
/// The same as above, but the map storing the reached nodes
|
marci@597
|
36 |
/// is constructed dynamically to everywhere false.
|
marci@360
|
37 |
BfsIterator(const Graph& _graph) :
|
marci@303
|
38 |
graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))),
|
marci@301
|
39 |
own_reached_map(true) { }
|
marci@597
|
40 |
/// The storing the reached nodes have to be destroyed if
|
marci@597
|
41 |
/// it was constructed dynamically
|
marci@360
|
42 |
~BfsIterator() { if (own_reached_map) delete &reached; }
|
marci@597
|
43 |
/// This method markes \c s reached.
|
marci@597
|
44 |
/// If the queue is empty, then \c s is pushed in the bfs queue
|
marci@597
|
45 |
/// and the first out-edge is processed.
|
marci@597
|
46 |
/// If the queue is not empty, then \c s is simply pushed.
|
marci@301
|
47 |
void pushAndSetReached(Node s) {
|
marci@301
|
48 |
reached.set(s, true);
|
marci@301
|
49 |
if (bfs_queue.empty()) {
|
marci@301
|
50 |
bfs_queue.push(s);
|
marci@303
|
51 |
graph->first(actual_edge, s);
|
marci@303
|
52 |
if (graph->valid(actual_edge)) {
|
marci@303
|
53 |
Node w=graph->bNode(actual_edge);
|
marci@303
|
54 |
if (!reached[w]) {
|
marci@301
|
55 |
bfs_queue.push(w);
|
marci@301
|
56 |
reached.set(w, true);
|
marci@301
|
57 |
b_node_newly_reached=true;
|
marci@301
|
58 |
} else {
|
marci@301
|
59 |
b_node_newly_reached=false;
|
marci@301
|
60 |
}
|
marci@301
|
61 |
}
|
marci@301
|
62 |
} else {
|
marci@301
|
63 |
bfs_queue.push(s);
|
marci@301
|
64 |
}
|
marci@301
|
65 |
}
|
marci@448
|
66 |
/// As \c BfsIterator<Graph, ReachedMap> works as an edge-iterator,
|
marci@448
|
67 |
/// its \c operator++() iterates on the edges in a bfs order.
|
marci@360
|
68 |
BfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>&
|
marci@301
|
69 |
operator++() {
|
marci@303
|
70 |
if (graph->valid(actual_edge)) {
|
marci@303
|
71 |
graph->next(actual_edge);
|
marci@303
|
72 |
if (graph->valid(actual_edge)) {
|
marci@303
|
73 |
Node w=graph->bNode(actual_edge);
|
marci@303
|
74 |
if (!reached[w]) {
|
marci@301
|
75 |
bfs_queue.push(w);
|
marci@301
|
76 |
reached.set(w, true);
|
marci@301
|
77 |
b_node_newly_reached=true;
|
marci@301
|
78 |
} else {
|
marci@301
|
79 |
b_node_newly_reached=false;
|
marci@301
|
80 |
}
|
marci@301
|
81 |
}
|
marci@301
|
82 |
} else {
|
marci@301
|
83 |
bfs_queue.pop();
|
marci@301
|
84 |
if (!bfs_queue.empty()) {
|
marci@303
|
85 |
graph->first(actual_edge, bfs_queue.front());
|
marci@303
|
86 |
if (graph->valid(actual_edge)) {
|
marci@303
|
87 |
Node w=graph->bNode(actual_edge);
|
marci@303
|
88 |
if (!reached[w]) {
|
marci@301
|
89 |
bfs_queue.push(w);
|
marci@301
|
90 |
reached.set(w, true);
|
marci@301
|
91 |
b_node_newly_reached=true;
|
marci@301
|
92 |
} else {
|
marci@301
|
93 |
b_node_newly_reached=false;
|
marci@301
|
94 |
}
|
marci@301
|
95 |
}
|
marci@301
|
96 |
}
|
marci@301
|
97 |
}
|
marci@301
|
98 |
return *this;
|
marci@301
|
99 |
}
|
marci@597
|
100 |
///
|
marci@301
|
101 |
bool finished() const { return bfs_queue.empty(); }
|
marci@448
|
102 |
/// The conversion operator makes for converting the bfs-iterator
|
marci@448
|
103 |
/// to an \c out-edge-iterator.
|
marci@597
|
104 |
///\bug Edge have to be in HUGO 0.2
|
marci@409
|
105 |
operator OutEdgeIt() const { return actual_edge; }
|
marci@597
|
106 |
///
|
marci@301
|
107 |
bool isBNodeNewlyReached() const { return b_node_newly_reached; }
|
marci@597
|
108 |
///
|
marci@303
|
109 |
bool isANodeExamined() const { return !(graph->valid(actual_edge)); }
|
marci@597
|
110 |
///
|
marci@301
|
111 |
Node aNode() const { return bfs_queue.front(); }
|
marci@597
|
112 |
///
|
marci@303
|
113 |
Node bNode() const { return graph->bNode(actual_edge); }
|
marci@597
|
114 |
///
|
marci@301
|
115 |
const ReachedMap& getReachedMap() const { return reached; }
|
marci@597
|
116 |
///
|
marci@301
|
117 |
const std::queue<Node>& getBfsQueue() const { return bfs_queue; }
|
marci@301
|
118 |
};
|
marci@301
|
119 |
|
marci@597
|
120 |
/// Bfs searches for the nodes wich are not marked in
|
marci@448
|
121 |
/// \c reached_map
|
marci@597
|
122 |
/// Reached have to work as a read-write bool Node-map,
|
marci@597
|
123 |
/// Pred is a write Edge Node-map and
|
marci@597
|
124 |
/// Dist is a read-write int Node-map, have to be.
|
marci@597
|
125 |
///\todo In fact onsly simple operations requirement are needed for
|
marci@597
|
126 |
/// Dist::Value.
|
marci@409
|
127 |
template <typename Graph,
|
marci@409
|
128 |
typename ReachedMap=typename Graph::template NodeMap<bool>,
|
marci@409
|
129 |
typename PredMap
|
marci@409
|
130 |
=typename Graph::template NodeMap<typename Graph::Edge>,
|
marci@409
|
131 |
typename DistMap=typename Graph::template NodeMap<int> >
|
marci@409
|
132 |
class Bfs : public BfsIterator<Graph, ReachedMap> {
|
marci@409
|
133 |
typedef BfsIterator<Graph, ReachedMap> Parent;
|
marci@409
|
134 |
protected:
|
marci@409
|
135 |
typedef typename Parent::Node Node;
|
marci@409
|
136 |
PredMap& pred;
|
marci@409
|
137 |
DistMap& dist;
|
marci@409
|
138 |
public:
|
marci@597
|
139 |
/// The algorithm will search in a bfs order for
|
marci@597
|
140 |
/// the nodes which are \c false initially.
|
marci@597
|
141 |
/// The constructor makes no initial changes on the maps.
|
marci@409
|
142 |
Bfs<Graph, ReachedMap, PredMap, DistMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred, DistMap& _dist) : BfsIterator<Graph, ReachedMap>(_graph, _reached), pred(&_pred), dist(&_dist) { }
|
marci@597
|
143 |
/// \c s is marked to be reached and pushed in the bfs queue.
|
marci@448
|
144 |
/// If the queue is empty, then the first out-edge is processed.
|
marci@597
|
145 |
/// If \c s was not marked previously, then
|
marci@597
|
146 |
/// in addition its pred is set to be \c INVALID, and dist to \c 0.
|
marci@597
|
147 |
/// if \c s was marked previuosly, then it is simply pushed.
|
marci@409
|
148 |
void push(Node s) {
|
marci@409
|
149 |
if (this->reached[s]) {
|
marci@409
|
150 |
Parent::pushAndSetReached(s);
|
marci@409
|
151 |
} else {
|
marci@409
|
152 |
Parent::pushAndSetReached(s);
|
marci@409
|
153 |
pred.set(s, INVALID);
|
marci@409
|
154 |
dist.set(s, 0);
|
marci@409
|
155 |
}
|
marci@409
|
156 |
}
|
marci@597
|
157 |
/// A bfs is processed from \c s.
|
marci@409
|
158 |
void run(Node s) {
|
marci@409
|
159 |
push(s);
|
marci@409
|
160 |
while (!this->finished()) this->operator++();
|
marci@409
|
161 |
}
|
marci@597
|
162 |
/// Beside the bfs iteration, \c pred and \dist are saved in a
|
marci@597
|
163 |
/// newly reached node.
|
marci@409
|
164 |
Bfs<Graph, ReachedMap, PredMap, DistMap> operator++() {
|
marci@409
|
165 |
Parent::operator++();
|
marci@415
|
166 |
if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached)
|
marci@415
|
167 |
{
|
marci@415
|
168 |
pred.set(this->bNode(), this->actual_edge);
|
marci@415
|
169 |
dist.set(this->bNode(), dist[this->aNode()]);
|
marci@409
|
170 |
}
|
marci@409
|
171 |
return *this;
|
marci@409
|
172 |
}
|
marci@597
|
173 |
///
|
marci@409
|
174 |
const PredMap& getPredMap() const { return pred; }
|
marci@597
|
175 |
///
|
marci@409
|
176 |
const DistMap& getDistMap() const { return dist; }
|
marci@409
|
177 |
};
|
marci@409
|
178 |
|
marci@597
|
179 |
/// Dfs searches for the nodes wich are not marked in
|
marci@597
|
180 |
/// \c reached_map
|
marci@597
|
181 |
/// Reached have to be a read-write bool Node-map.
|
marci@303
|
182 |
template <typename Graph, /*typename OutEdgeIt,*/
|
marci@303
|
183 |
typename ReachedMap/*=typename Graph::NodeMap<bool>*/ >
|
marci@360
|
184 |
class DfsIterator {
|
marci@303
|
185 |
protected:
|
marci@303
|
186 |
typedef typename Graph::Node Node;
|
marci@303
|
187 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
marci@303
|
188 |
const Graph* graph;
|
marci@301
|
189 |
std::stack<OutEdgeIt> dfs_stack;
|
marci@301
|
190 |
bool b_node_newly_reached;
|
marci@301
|
191 |
OutEdgeIt actual_edge;
|
marci@301
|
192 |
Node actual_node;
|
marci@301
|
193 |
ReachedMap& reached;
|
marci@301
|
194 |
bool own_reached_map;
|
marci@301
|
195 |
public:
|
marci@597
|
196 |
/// In that constructor \c _reached have to be a reference
|
marci@597
|
197 |
/// for a bool Node-map. The algorithm will search in a dfs order for
|
marci@597
|
198 |
/// the nodes which are \c false initially
|
marci@360
|
199 |
DfsIterator(const Graph& _graph, ReachedMap& _reached) :
|
marci@303
|
200 |
graph(&_graph), reached(_reached),
|
marci@301
|
201 |
own_reached_map(false) { }
|
marci@597
|
202 |
/// The same as above, but the map of reached nodes is
|
marci@597
|
203 |
/// constructed dynamically
|
marci@597
|
204 |
/// to everywhere false.
|
marci@360
|
205 |
DfsIterator(const Graph& _graph) :
|
marci@303
|
206 |
graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))),
|
marci@301
|
207 |
own_reached_map(true) { }
|
marci@360
|
208 |
~DfsIterator() { if (own_reached_map) delete &reached; }
|
marci@597
|
209 |
/// This method markes s reached and first out-edge is processed.
|
marci@301
|
210 |
void pushAndSetReached(Node s) {
|
marci@301
|
211 |
actual_node=s;
|
marci@301
|
212 |
reached.set(s, true);
|
marci@301
|
213 |
OutEdgeIt e;
|
marci@303
|
214 |
graph->first(e, s);
|
marci@301
|
215 |
dfs_stack.push(e);
|
marci@301
|
216 |
}
|
marci@597
|
217 |
/// As \c DfsIterator<Graph, ReachedMap> works as an edge-iterator,
|
marci@597
|
218 |
/// its \c operator++() iterates on the edges in a dfs order.
|
marci@360
|
219 |
DfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>&
|
marci@301
|
220 |
operator++() {
|
marci@301
|
221 |
actual_edge=dfs_stack.top();
|
marci@301
|
222 |
//actual_node=G.aNode(actual_edge);
|
marci@303
|
223 |
if (graph->valid(actual_edge)/*.valid()*/) {
|
marci@303
|
224 |
Node w=graph->bNode(actual_edge);
|
marci@301
|
225 |
actual_node=w;
|
marci@303
|
226 |
if (!reached[w]) {
|
marci@301
|
227 |
OutEdgeIt e;
|
marci@303
|
228 |
graph->first(e, w);
|
marci@301
|
229 |
dfs_stack.push(e);
|
marci@301
|
230 |
reached.set(w, true);
|
marci@301
|
231 |
b_node_newly_reached=true;
|
marci@301
|
232 |
} else {
|
marci@303
|
233 |
actual_node=graph->aNode(actual_edge);
|
marci@303
|
234 |
graph->next(dfs_stack.top());
|
marci@301
|
235 |
b_node_newly_reached=false;
|
marci@301
|
236 |
}
|
marci@301
|
237 |
} else {
|
marci@301
|
238 |
//actual_node=G.aNode(dfs_stack.top());
|
marci@301
|
239 |
dfs_stack.pop();
|
marci@301
|
240 |
}
|
marci@301
|
241 |
return *this;
|
marci@301
|
242 |
}
|
marci@597
|
243 |
///
|
marci@301
|
244 |
bool finished() const { return dfs_stack.empty(); }
|
marci@597
|
245 |
///
|
marci@409
|
246 |
operator OutEdgeIt() const { return actual_edge; }
|
marci@597
|
247 |
///
|
marci@301
|
248 |
bool isBNodeNewlyReached() const { return b_node_newly_reached; }
|
marci@597
|
249 |
///
|
marci@303
|
250 |
bool isANodeExamined() const { return !(graph->valid(actual_edge)); }
|
marci@597
|
251 |
///
|
marci@301
|
252 |
Node aNode() const { return actual_node; /*FIXME*/}
|
marci@597
|
253 |
///
|
marci@389
|
254 |
Node bNode() const { return graph->bNode(actual_edge); }
|
marci@597
|
255 |
///
|
marci@301
|
256 |
const ReachedMap& getReachedMap() const { return reached; }
|
marci@597
|
257 |
///
|
marci@301
|
258 |
const std::stack<OutEdgeIt>& getDfsStack() const { return dfs_stack; }
|
marci@301
|
259 |
};
|
marci@301
|
260 |
|
marci@597
|
261 |
/// Dfs searches for the nodes wich are not marked in
|
marci@448
|
262 |
/// \c reached_map
|
marci@597
|
263 |
/// Reached is a read-write bool Node-map,
|
marci@597
|
264 |
/// Pred is a write Node-map, have to be.
|
marci@448
|
265 |
template <typename Graph,
|
marci@448
|
266 |
typename ReachedMap=typename Graph::template NodeMap<bool>,
|
marci@448
|
267 |
typename PredMap
|
marci@448
|
268 |
=typename Graph::template NodeMap<typename Graph::Edge> >
|
marci@448
|
269 |
class Dfs : public DfsIterator<Graph, ReachedMap> {
|
marci@448
|
270 |
typedef DfsIterator<Graph, ReachedMap> Parent;
|
marci@448
|
271 |
protected:
|
marci@448
|
272 |
typedef typename Parent::Node Node;
|
marci@448
|
273 |
PredMap& pred;
|
marci@448
|
274 |
public:
|
marci@597
|
275 |
/// The algorithm will search in a dfs order for
|
marci@597
|
276 |
/// the nodes which are \c false initially.
|
marci@597
|
277 |
/// The constructor makes no initial changes on the maps.
|
marci@448
|
278 |
Dfs<Graph, ReachedMap, PredMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred) : DfsIterator<Graph, ReachedMap>(_graph, _reached), pred(&_pred) { }
|
marci@597
|
279 |
/// \c s is marked to be reached and pushed in the bfs queue.
|
marci@448
|
280 |
/// If the queue is empty, then the first out-edge is processed.
|
marci@597
|
281 |
/// If \c s was not marked previously, then
|
marci@597
|
282 |
/// in addition its pred is set to be \c INVALID.
|
marci@597
|
283 |
/// if \c s was marked previuosly, then it is simply pushed.
|
marci@448
|
284 |
void push(Node s) {
|
marci@448
|
285 |
if (this->reached[s]) {
|
marci@448
|
286 |
Parent::pushAndSetReached(s);
|
marci@448
|
287 |
} else {
|
marci@448
|
288 |
Parent::pushAndSetReached(s);
|
marci@448
|
289 |
pred.set(s, INVALID);
|
marci@448
|
290 |
}
|
marci@448
|
291 |
}
|
marci@597
|
292 |
/// A bfs is processed from \c s.
|
marci@448
|
293 |
void run(Node s) {
|
marci@448
|
294 |
push(s);
|
marci@448
|
295 |
while (!this->finished()) this->operator++();
|
marci@448
|
296 |
}
|
marci@597
|
297 |
/// Beside the dfs iteration, \c pred is saved in a
|
marci@597
|
298 |
/// newly reached node.
|
marci@448
|
299 |
Dfs<Graph, ReachedMap, PredMap> operator++() {
|
marci@448
|
300 |
Parent::operator++();
|
marci@448
|
301 |
if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached)
|
marci@448
|
302 |
{
|
marci@448
|
303 |
pred.set(this->bNode(), this->actual_edge);
|
marci@448
|
304 |
}
|
marci@448
|
305 |
return *this;
|
marci@448
|
306 |
}
|
marci@597
|
307 |
///
|
marci@448
|
308 |
const PredMap& getPredMap() const { return pred; }
|
marci@448
|
309 |
};
|
marci@448
|
310 |
|
marci@448
|
311 |
|
marci@301
|
312 |
} // namespace hugo
|
marci@301
|
313 |
|
marci@301
|
314 |
#endif //HUGO_BFS_ITERATOR_H
|