src/work/marci/bfs_iterator.h
author marci
Mon, 10 May 2004 16:32:21 +0000
changeset 598 1faa5bec1717
parent 560 5adcef1d7bcc
permissions -rw-r--r--
complete graphs
     1 // -*- c++ -*-
     2 #ifndef HUGO_BFS_ITERATOR_H
     3 #define HUGO_BFS_ITERATOR_H
     4 
     5 #include <queue>
     6 #include <stack>
     7 #include <utility>
     8 
     9 #include <hugo/invalid.h>
    10 
    11 namespace hugo {
    12 
    13   /// Bfs searches for the nodes wich are not marked in 
    14   /// \c reached_map
    15   /// Reached have to work as read-write bool Node-map.
    16   template <typename Graph, /*typename OutEdgeIt,*/ 
    17 	    typename ReachedMap/*=typename Graph::NodeMap<bool>*/ >
    18   class BfsIterator {
    19   protected:
    20     typedef typename Graph::Node Node;
    21     typedef typename Graph::OutEdgeIt OutEdgeIt;
    22     const Graph* graph;
    23     std::queue<Node> bfs_queue;
    24     ReachedMap& reached;
    25     bool b_node_newly_reached;
    26     OutEdgeIt actual_edge;
    27     bool own_reached_map;
    28   public:
    29     /// In that constructor \c _reached have to be a reference 
    30     /// for a bool Node-map. The algorithm will search in a bfs order for 
    31     /// the nodes which are \c false initially
    32     BfsIterator(const Graph& _graph, ReachedMap& _reached) : 
    33       graph(&_graph), reached(_reached), 
    34       own_reached_map(false) { }
    35     /// The same as above, but the map storing the reached nodes 
    36     /// is constructed dynamically to everywhere false.
    37     BfsIterator(const Graph& _graph) : 
    38       graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), 
    39       own_reached_map(true) { }
    40     /// The storing the reached nodes have to be destroyed if 
    41     /// it was constructed dynamically
    42     ~BfsIterator() { if (own_reached_map) delete &reached; }
    43     /// This method markes \c s reached.
    44     /// If the queue is empty, then \c s is pushed in the bfs queue 
    45     /// and the first out-edge is processed.
    46     /// If the queue is not empty, then \c s is simply pushed.
    47     void pushAndSetReached(Node s) { 
    48       reached.set(s, true);
    49       if (bfs_queue.empty()) {
    50 	bfs_queue.push(s);
    51 	graph->first(actual_edge, s);
    52 	if (graph->valid(actual_edge)) { 
    53 	  Node w=graph->bNode(actual_edge);
    54 	  if (!reached[w]) {
    55 	    bfs_queue.push(w);
    56 	    reached.set(w, true);
    57 	    b_node_newly_reached=true;
    58 	  } else {
    59 	    b_node_newly_reached=false;
    60 	  }
    61 	} 
    62       } else {
    63 	bfs_queue.push(s);
    64       }
    65     }
    66     /// As \c BfsIterator<Graph, ReachedMap> works as an edge-iterator, 
    67     /// its \c operator++() iterates on the edges in a bfs order.
    68     BfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& 
    69     operator++() { 
    70       if (graph->valid(actual_edge)) { 
    71 	graph->next(actual_edge);
    72 	if (graph->valid(actual_edge)) {
    73 	  Node w=graph->bNode(actual_edge);
    74 	  if (!reached[w]) {
    75 	    bfs_queue.push(w);
    76 	    reached.set(w, true);
    77 	    b_node_newly_reached=true;
    78 	  } else {
    79 	    b_node_newly_reached=false;
    80 	  }
    81 	}
    82       } else {
    83 	bfs_queue.pop(); 
    84 	if (!bfs_queue.empty()) {
    85 	  graph->first(actual_edge, bfs_queue.front());
    86 	  if (graph->valid(actual_edge)) {
    87 	    Node w=graph->bNode(actual_edge);
    88 	    if (!reached[w]) {
    89 	      bfs_queue.push(w);
    90 	      reached.set(w, true);
    91 	      b_node_newly_reached=true;
    92 	    } else {
    93 	      b_node_newly_reached=false;
    94 	    }
    95 	  }
    96 	}
    97       }
    98       return *this;
    99     }
   100     ///
   101     bool finished() const { return bfs_queue.empty(); }
   102     /// The conversion operator makes for converting the bfs-iterator 
   103     /// to an \c out-edge-iterator.
   104     ///\bug Edge have to be in HUGO 0.2
   105     operator OutEdgeIt() const { return actual_edge; }
   106     ///
   107     bool isBNodeNewlyReached() const { return b_node_newly_reached; }
   108     ///
   109     bool isANodeExamined() const { return !(graph->valid(actual_edge)); }
   110     ///
   111     Node aNode() const { return bfs_queue.front(); }
   112     ///
   113     Node bNode() const { return graph->bNode(actual_edge); }
   114     ///
   115     const ReachedMap& getReachedMap() const { return reached; }
   116     ///
   117     const std::queue<Node>& getBfsQueue() const { return bfs_queue; }
   118   };  
   119 
   120   /// Bfs searches for the nodes wich are not marked in 
   121   /// \c reached_map
   122   /// Reached have to work as a read-write bool Node-map, 
   123   /// Pred is a write Edge Node-map and
   124   /// Dist is a read-write int Node-map, have to be. 
   125   ///\todo In fact onsly simple operations requirement are needed for 
   126   /// Dist::Value.
   127   template <typename Graph, 
   128 	    typename ReachedMap=typename Graph::template NodeMap<bool>, 
   129 	    typename PredMap
   130 	    =typename Graph::template NodeMap<typename Graph::Edge>, 
   131 	    typename DistMap=typename Graph::template NodeMap<int> > 
   132   class Bfs : public BfsIterator<Graph, ReachedMap> {
   133     typedef BfsIterator<Graph, ReachedMap> Parent;
   134   protected:
   135     typedef typename Parent::Node Node;
   136     PredMap& pred;
   137     DistMap& dist;
   138   public:
   139     /// The algorithm will search in a bfs order for 
   140     /// the nodes which are \c false initially. 
   141     /// The constructor makes no initial changes on the maps.
   142     Bfs<Graph, ReachedMap, PredMap, DistMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred, DistMap& _dist) : BfsIterator<Graph, ReachedMap>(_graph, _reached), pred(&_pred), dist(&_dist) { }
   143     /// \c s is marked to be reached and pushed in the bfs queue.
   144     /// If the queue is empty, then the first out-edge is processed.
   145     /// If \c s was not marked previously, then 
   146     /// in addition its pred is set to be \c INVALID, and dist to \c 0. 
   147     /// if \c s was marked previuosly, then it is simply pushed.
   148     void push(Node s) { 
   149       if (this->reached[s]) {
   150 	Parent::pushAndSetReached(s);
   151       } else {
   152 	Parent::pushAndSetReached(s);
   153 	pred.set(s, INVALID);
   154 	dist.set(s, 0);
   155       }
   156     }
   157     /// A bfs is processed from \c s.
   158     void run(Node s) {
   159       push(s);
   160       while (!this->finished()) this->operator++();
   161     }
   162     /// Beside the bfs iteration, \c pred and \dist are saved in a 
   163     /// newly reached node. 
   164     Bfs<Graph, ReachedMap, PredMap, DistMap> operator++() {
   165       Parent::operator++();
   166       if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached) 
   167       {
   168 	pred.set(this->bNode(), this->actual_edge);
   169 	dist.set(this->bNode(), dist[this->aNode()]);
   170       }
   171       return *this;
   172     }
   173     ///
   174     const PredMap& getPredMap() const { return pred; }
   175     ///
   176     const DistMap& getDistMap() const { return dist; }
   177   };
   178 
   179   /// Dfs searches for the nodes wich are not marked in 
   180   /// \c reached_map
   181   /// Reached have to be a read-write bool Node-map.
   182   template <typename Graph, /*typename OutEdgeIt,*/ 
   183 	    typename ReachedMap/*=typename Graph::NodeMap<bool>*/ >
   184   class DfsIterator {
   185   protected:
   186     typedef typename Graph::Node Node;
   187     typedef typename Graph::OutEdgeIt OutEdgeIt;
   188     const Graph* graph;
   189     std::stack<OutEdgeIt> dfs_stack;
   190     bool b_node_newly_reached;
   191     OutEdgeIt actual_edge;
   192     Node actual_node;
   193     ReachedMap& reached;
   194     bool own_reached_map;
   195   public:
   196     /// In that constructor \c _reached have to be a reference 
   197     /// for a bool Node-map. The algorithm will search in a dfs order for 
   198     /// the nodes which are \c false initially
   199     DfsIterator(const Graph& _graph, ReachedMap& _reached) : 
   200       graph(&_graph), reached(_reached), 
   201       own_reached_map(false) { }
   202     /// The same as above, but the map of reached nodes is 
   203     /// constructed dynamically 
   204     /// to everywhere false.
   205     DfsIterator(const Graph& _graph) : 
   206       graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), 
   207       own_reached_map(true) { }
   208     ~DfsIterator() { if (own_reached_map) delete &reached; }
   209     /// This method markes s reached and first out-edge is processed.
   210     void pushAndSetReached(Node s) { 
   211       actual_node=s;
   212       reached.set(s, true);
   213       OutEdgeIt e;
   214       graph->first(e, s);
   215       dfs_stack.push(e); 
   216     }
   217     /// As \c DfsIterator<Graph, ReachedMap> works as an edge-iterator, 
   218     /// its \c operator++() iterates on the edges in a dfs order.
   219     DfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& 
   220     operator++() { 
   221       actual_edge=dfs_stack.top();
   222       //actual_node=G.aNode(actual_edge);
   223       if (graph->valid(actual_edge)/*.valid()*/) { 
   224 	Node w=graph->bNode(actual_edge);
   225 	actual_node=w;
   226 	if (!reached[w]) {
   227 	  OutEdgeIt e;
   228 	  graph->first(e, w);
   229 	  dfs_stack.push(e);
   230 	  reached.set(w, true);
   231 	  b_node_newly_reached=true;
   232 	} else {
   233 	  actual_node=graph->aNode(actual_edge);
   234 	  graph->next(dfs_stack.top());
   235 	  b_node_newly_reached=false;
   236 	}
   237       } else {
   238 	//actual_node=G.aNode(dfs_stack.top());
   239 	dfs_stack.pop();
   240       }
   241       return *this;
   242     }
   243     ///
   244     bool finished() const { return dfs_stack.empty(); }
   245     ///
   246     operator OutEdgeIt() const { return actual_edge; }
   247     ///
   248     bool isBNodeNewlyReached() const { return b_node_newly_reached; }
   249     ///
   250     bool isANodeExamined() const { return !(graph->valid(actual_edge)); }
   251     ///
   252     Node aNode() const { return actual_node; /*FIXME*/}
   253     ///
   254     Node bNode() const { return graph->bNode(actual_edge); }
   255     ///
   256     const ReachedMap& getReachedMap() const { return reached; }
   257     ///
   258     const std::stack<OutEdgeIt>& getDfsStack() const { return dfs_stack; }
   259   };
   260 
   261   /// Dfs searches for the nodes wich are not marked in 
   262   /// \c reached_map
   263   /// Reached is a read-write bool Node-map, 
   264   /// Pred is a write Node-map, have to be.
   265   template <typename Graph, 
   266 	    typename ReachedMap=typename Graph::template NodeMap<bool>, 
   267 	    typename PredMap
   268 	    =typename Graph::template NodeMap<typename Graph::Edge> > 
   269   class Dfs : public DfsIterator<Graph, ReachedMap> {
   270     typedef DfsIterator<Graph, ReachedMap> Parent;
   271   protected:
   272     typedef typename Parent::Node Node;
   273     PredMap& pred;
   274   public:
   275     /// The algorithm will search in a dfs order for 
   276     /// the nodes which are \c false initially. 
   277     /// The constructor makes no initial changes on the maps.
   278     Dfs<Graph, ReachedMap, PredMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred) : DfsIterator<Graph, ReachedMap>(_graph, _reached), pred(&_pred) { }
   279     /// \c s is marked to be reached and pushed in the bfs queue.
   280     /// If the queue is empty, then the first out-edge is processed.
   281     /// If \c s was not marked previously, then 
   282     /// in addition its pred is set to be \c INVALID. 
   283     /// if \c s was marked previuosly, then it is simply pushed.
   284     void push(Node s) { 
   285       if (this->reached[s]) {
   286 	Parent::pushAndSetReached(s);
   287       } else {
   288 	Parent::pushAndSetReached(s);
   289 	pred.set(s, INVALID);
   290       }
   291     }
   292     /// A bfs is processed from \c s.
   293     void run(Node s) {
   294       push(s);
   295       while (!this->finished()) this->operator++();
   296     }
   297     /// Beside the dfs iteration, \c pred is saved in a 
   298     /// newly reached node. 
   299     Dfs<Graph, ReachedMap, PredMap> operator++() {
   300       Parent::operator++();
   301       if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached) 
   302       {
   303 	pred.set(this->bNode(), this->actual_edge);
   304       }
   305       return *this;
   306     }
   307     ///
   308     const PredMap& getPredMap() const { return pred; }
   309   };
   310 
   311 
   312 } // namespace hugo
   313 
   314 #endif //HUGO_BFS_ITERATOR_H