lemon/concept/ugraph.h
author deba
Fri, 30 Jun 2006 12:14:36 +0000
changeset 2115 4cd528a30ec1
parent 2021 11455e986b95
child 2120 a907fb95f1e0
permissions -rw-r--r--
Splitted graph files
klao@962
     1
/* -*- C++ -*-
klao@962
     2
 *
alpar@1956
     3
 * This file is a part of LEMON, a generic C++ optimization library
klao@962
     4
 *
alpar@1956
     5
 * Copyright (C) 2003-2006
alpar@1956
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1956
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
klao@962
     8
 *
klao@962
     9
 * Permission to use, modify and distribute this software is granted
klao@962
    10
 * provided that this copyright notice appears in all copies. For
klao@962
    11
 * precise terms see the accompanying LICENSE file.
klao@962
    12
 *
klao@962
    13
 * This software is provided "AS IS" with no warranty of any kind,
klao@962
    14
 * express or implied, and with no claim as to its suitability for any
klao@962
    15
 * purpose.
klao@962
    16
 *
klao@962
    17
 */
klao@962
    18
klao@1030
    19
///\ingroup graph_concepts
klao@962
    20
///\file
deba@2111
    21
///\brief The concept of the undirected graphs.
klao@962
    22
klao@962
    23
deba@1910
    24
#ifndef LEMON_CONCEPT_UGRAPH_H
deba@1910
    25
#define LEMON_CONCEPT_UGRAPH_H
klao@962
    26
klao@962
    27
#include <lemon/concept/graph_component.h>
alpar@1620
    28
#include <lemon/concept/graph.h>
deba@1993
    29
#include <lemon/bits/utility.h>
klao@962
    30
klao@962
    31
namespace lemon {
klao@962
    32
  namespace concept {
klao@962
    33
alpar@1620
    34
    /// \addtogroup graph_concepts
alpar@1620
    35
    /// @{
alpar@1620
    36
alpar@1620
    37
klao@1030
    38
    /// Class describing the concept of Undirected Graphs.
klao@1030
    39
klao@1030
    40
    /// This class describes the common interface of all Undirected
klao@1030
    41
    /// Graphs.
klao@1030
    42
    ///
klao@1030
    43
    /// As all concept describing classes it provides only interface
klao@1030
    44
    /// without any sensible implementation. So any algorithm for
klao@1030
    45
    /// undirected graph should compile with this class, but it will not
klao@1030
    46
    /// run properly, of couse.
klao@1030
    47
    ///
klao@1030
    48
    /// In LEMON undirected graphs also fulfill the concept of directed
deba@2111
    49
    /// graphs (\ref lemon::concept::Graph "Graph Concept"). For
deba@2111
    50
    /// explanation of this and more see also the page \ref graphs,
deba@2111
    51
    /// a tutorial about graphs.
deba@1627
    52
    ///
deba@1627
    53
    /// You can assume that all undirected graph can be handled
deba@2111
    54
    /// as a directed graph. This way it is fully conform
deba@2111
    55
    /// to the Graph concept.
klao@1030
    56
klao@1909
    57
    class UGraph {
klao@1022
    58
    public:
alpar@1448
    59
      ///\e
alpar@1448
    60
alpar@1448
    61
      ///\todo undocumented
alpar@1448
    62
      ///
deba@1979
    63
      typedef True UndirectedTag;
klao@1022
    64
deba@1669
    65
      /// \brief The base type of node iterators, 
deba@1627
    66
      /// or in other words, the trivial node iterator.
deba@1669
    67
      ///
deba@1627
    68
      /// This is the base type of each node iterator,
deba@1627
    69
      /// thus each kind of node iterator converts to this.
deba@1627
    70
      /// More precisely each kind of node iterator should be inherited 
deba@1627
    71
      /// from the trivial node iterator.
deba@1627
    72
      class Node {
deba@1627
    73
      public:
deba@1627
    74
        /// Default constructor
deba@1627
    75
deba@1627
    76
        /// @warning The default constructor sets the iterator
deba@1627
    77
        /// to an undefined value.
deba@1627
    78
        Node() { }
deba@1627
    79
        /// Copy constructor.
deba@1627
    80
deba@1627
    81
        /// Copy constructor.
deba@1627
    82
        ///
deba@1627
    83
        Node(const Node&) { }
deba@1627
    84
deba@1627
    85
        /// Invalid constructor \& conversion.
deba@1627
    86
deba@1627
    87
        /// This constructor initializes the iterator to be invalid.
deba@1627
    88
        /// \sa Invalid for more details.
deba@1627
    89
        Node(Invalid) { }
deba@1627
    90
        /// Equality operator
deba@1627
    91
deba@1627
    92
        /// Two iterators are equal if and only if they point to the
deba@1627
    93
        /// same object or both are invalid.
deba@1627
    94
        bool operator==(Node) const { return true; }
deba@1627
    95
deba@1627
    96
        /// Inequality operator
deba@1627
    97
        
deba@1627
    98
        /// \sa operator==(Node n)
deba@1627
    99
        ///
deba@1627
   100
        bool operator!=(Node) const { return true; }
deba@1627
   101
deba@1627
   102
	/// Artificial ordering operator.
deba@1627
   103
	
deba@1627
   104
	/// To allow the use of graph descriptors as key type in std::map or
deba@1627
   105
	/// similar associative container we require this.
deba@1627
   106
	///
deba@1627
   107
	/// \note This operator only have to define some strict ordering of
deba@1627
   108
	/// the items; this order has nothing to do with the iteration
deba@1627
   109
	/// ordering of the items.
deba@1627
   110
	///
deba@1627
   111
	/// \bug This is a technical requirement. Do we really need this?
deba@1627
   112
	bool operator<(Node) const { return false; }
deba@1627
   113
deba@1627
   114
      };
deba@1627
   115
    
deba@1627
   116
      /// This iterator goes through each node.
deba@1627
   117
deba@1627
   118
      /// This iterator goes through each node.
deba@1627
   119
      /// Its usage is quite simple, for example you can count the number
deba@1627
   120
      /// of nodes in graph \c g of type \c Graph like this:
alpar@1946
   121
      ///\code
deba@1627
   122
      /// int count=0;
deba@1627
   123
      /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
alpar@1946
   124
      ///\endcode
deba@1627
   125
      class NodeIt : public Node {
deba@1627
   126
      public:
deba@1627
   127
        /// Default constructor
deba@1627
   128
deba@1627
   129
        /// @warning The default constructor sets the iterator
deba@1627
   130
        /// to an undefined value.
deba@1627
   131
        NodeIt() { }
deba@1627
   132
        /// Copy constructor.
deba@1627
   133
        
deba@1627
   134
        /// Copy constructor.
deba@1627
   135
        ///
deba@1627
   136
        NodeIt(const NodeIt& n) : Node(n) { }
deba@1627
   137
        /// Invalid constructor \& conversion.
deba@1627
   138
deba@1627
   139
        /// Initialize the iterator to be invalid.
deba@1627
   140
        /// \sa Invalid for more details.
deba@1627
   141
        NodeIt(Invalid) { }
deba@1627
   142
        /// Sets the iterator to the first node.
deba@1627
   143
deba@1627
   144
        /// Sets the iterator to the first node of \c g.
deba@1627
   145
        ///
klao@1909
   146
        NodeIt(const UGraph&) { }
deba@1627
   147
        /// Node -> NodeIt conversion.
deba@1627
   148
deba@1627
   149
        /// Sets the iterator to the node of \c the graph pointed by 
deba@1627
   150
	/// the trivial iterator.
deba@1627
   151
        /// This feature necessitates that each time we 
deba@1627
   152
        /// iterate the edge-set, the iteration order is the same.
klao@1909
   153
        NodeIt(const UGraph&, const Node&) { }
deba@1627
   154
        /// Next node.
deba@1627
   155
deba@1627
   156
        /// Assign the iterator to the next node.
deba@1627
   157
        ///
deba@1627
   158
        NodeIt& operator++() { return *this; }
deba@1627
   159
      };
deba@1627
   160
    
deba@1627
   161
    
alpar@1620
   162
      /// The base type of the undirected edge iterators.
deba@1627
   163
alpar@1620
   164
      /// The base type of the undirected edge iterators.
alpar@1620
   165
      ///
klao@1909
   166
      class UEdge {
alpar@1620
   167
      public:
alpar@1620
   168
        /// Default constructor
klao@1030
   169
alpar@1620
   170
        /// @warning The default constructor sets the iterator
alpar@1620
   171
        /// to an undefined value.
klao@1909
   172
        UEdge() { }
alpar@1620
   173
        /// Copy constructor.
klao@1030
   174
alpar@1620
   175
        /// Copy constructor.
alpar@1620
   176
        ///
klao@1909
   177
        UEdge(const UEdge&) { }
alpar@1620
   178
        /// Initialize the iterator to be invalid.
klao@1030
   179
alpar@1620
   180
        /// Initialize the iterator to be invalid.
alpar@1620
   181
        ///
klao@1909
   182
        UEdge(Invalid) { }
alpar@1620
   183
        /// Equality operator
klao@1030
   184
alpar@1620
   185
        /// Two iterators are equal if and only if they point to the
alpar@1620
   186
        /// same object or both are invalid.
klao@1909
   187
        bool operator==(UEdge) const { return true; }
alpar@1620
   188
        /// Inequality operator
klao@1030
   189
klao@1909
   190
        /// \sa operator==(UEdge n)
alpar@1620
   191
        ///
klao@1909
   192
        bool operator!=(UEdge) const { return true; }
klao@1030
   193
deba@1627
   194
	/// Artificial ordering operator.
deba@1627
   195
	
deba@1627
   196
	/// To allow the use of graph descriptors as key type in std::map or
deba@1627
   197
	/// similar associative container we require this.
deba@1627
   198
	///
deba@1627
   199
	/// \note This operator only have to define some strict ordering of
deba@1627
   200
	/// the items; this order has nothing to do with the iteration
deba@1627
   201
	/// ordering of the items.
deba@1627
   202
	///
deba@1627
   203
	/// \bug This is a technical requirement. Do we really need this?
klao@1909
   204
	bool operator<(UEdge) const { return false; }
deba@1627
   205
      };
klao@1030
   206
alpar@1620
   207
      /// This iterator goes through each undirected edge.
klao@1030
   208
alpar@1620
   209
      /// This iterator goes through each undirected edge of a graph.
alpar@1620
   210
      /// Its usage is quite simple, for example you can count the number
deba@1627
   211
      /// of undirected edges in a graph \c g of type \c Graph as follows:
alpar@1946
   212
      ///\code
alpar@1620
   213
      /// int count=0;
klao@1909
   214
      /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
alpar@1946
   215
      ///\endcode
klao@1909
   216
      class UEdgeIt : public UEdge {
alpar@1620
   217
      public:
alpar@1620
   218
        /// Default constructor
deba@1627
   219
alpar@1620
   220
        /// @warning The default constructor sets the iterator
alpar@1620
   221
        /// to an undefined value.
klao@1909
   222
        UEdgeIt() { }
alpar@1620
   223
        /// Copy constructor.
deba@1627
   224
alpar@1620
   225
        /// Copy constructor.
alpar@1620
   226
        ///
klao@1909
   227
        UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
alpar@1620
   228
        /// Initialize the iterator to be invalid.
klao@1030
   229
alpar@1620
   230
        /// Initialize the iterator to be invalid.
alpar@1620
   231
        ///
klao@1909
   232
        UEdgeIt(Invalid) { }
deba@1627
   233
        /// This constructor sets the iterator to the first undirected edge.
alpar@1620
   234
    
deba@1627
   235
        /// This constructor sets the iterator to the first undirected edge.
klao@1909
   236
        UEdgeIt(const UGraph&) { }
klao@1909
   237
        /// UEdge -> UEdgeIt conversion
klao@1030
   238
deba@1627
   239
        /// Sets the iterator to the value of the trivial iterator.
deba@1627
   240
        /// This feature necessitates that each time we
deba@1627
   241
        /// iterate the undirected edge-set, the iteration order is the 
deba@1627
   242
	/// same.
klao@1909
   243
        UEdgeIt(const UGraph&, const UEdge&) { } 
deba@1627
   244
        /// Next undirected edge
alpar@1620
   245
        
deba@1627
   246
        /// Assign the iterator to the next undirected edge.
klao@1909
   247
        UEdgeIt& operator++() { return *this; }
alpar@1620
   248
      };
klao@1030
   249
deba@1627
   250
      /// \brief This iterator goes trough the incident undirected 
deba@1627
   251
      /// edges of a node.
deba@1627
   252
      ///
alpar@1620
   253
      /// This iterator goes trough the incident undirected edges
deba@2021
   254
      /// of a certain node of a graph. You should assume that the 
deba@2021
   255
      /// loop edges will be iterated twice.
deba@2021
   256
      /// 
alpar@1620
   257
      /// Its usage is quite simple, for example you can compute the
deba@2021
   258
      /// degree (i.e. count the number of incident edges of a node \c n
deba@2021
   259
      /// in graph \c g of type \c Graph as follows. 
deba@2021
   260
      ///
alpar@1946
   261
      ///\code
alpar@1620
   262
      /// int count=0;
alpar@1620
   263
      /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
alpar@1946
   264
      ///\endcode
klao@1909
   265
      class IncEdgeIt : public UEdge {
alpar@1620
   266
      public:
alpar@1620
   267
        /// Default constructor
klao@1030
   268
alpar@1620
   269
        /// @warning The default constructor sets the iterator
alpar@1620
   270
        /// to an undefined value.
alpar@1620
   271
        IncEdgeIt() { }
alpar@1620
   272
        /// Copy constructor.
alpar@1620
   273
alpar@1620
   274
        /// Copy constructor.
alpar@1620
   275
        ///
klao@1909
   276
        IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
alpar@1620
   277
        /// Initialize the iterator to be invalid.
alpar@1620
   278
alpar@1620
   279
        /// Initialize the iterator to be invalid.
alpar@1620
   280
        ///
alpar@1620
   281
        IncEdgeIt(Invalid) { }
alpar@1620
   282
        /// This constructor sets the iterator to first incident edge.
alpar@1620
   283
    
alpar@1620
   284
        /// This constructor set the iterator to the first incident edge of
alpar@1620
   285
        /// the node.
klao@1909
   286
        IncEdgeIt(const UGraph&, const Node&) { }
klao@1909
   287
        /// UEdge -> IncEdgeIt conversion
alpar@1620
   288
alpar@1620
   289
        /// Sets the iterator to the value of the trivial iterator \c e.
alpar@1620
   290
        /// This feature necessitates that each time we 
alpar@1620
   291
        /// iterate the edge-set, the iteration order is the same.
klao@1909
   292
        IncEdgeIt(const UGraph&, const UEdge&) { }
alpar@1620
   293
        /// Next incident edge
alpar@1620
   294
alpar@1620
   295
        /// Assign the iterator to the next incident edge
alpar@1620
   296
	/// of the corresponding node.
alpar@1620
   297
        IncEdgeIt& operator++() { return *this; }
alpar@1620
   298
      };
alpar@1620
   299
deba@1627
   300
      /// The directed edge type.
deba@1627
   301
deba@1627
   302
      /// The directed edge type. It can be converted to the
deba@1627
   303
      /// undirected edge.
klao@1909
   304
      class Edge : public UEdge {
deba@1627
   305
      public:
deba@1627
   306
        /// Default constructor
deba@1627
   307
deba@1627
   308
        /// @warning The default constructor sets the iterator
deba@1627
   309
        /// to an undefined value.
deba@1627
   310
        Edge() { }
deba@1627
   311
        /// Copy constructor.
deba@1627
   312
deba@1627
   313
        /// Copy constructor.
deba@1627
   314
        ///
klao@1909
   315
        Edge(const Edge& e) : UEdge(e) { }
deba@1627
   316
        /// Initialize the iterator to be invalid.
deba@1627
   317
deba@1627
   318
        /// Initialize the iterator to be invalid.
deba@1627
   319
        ///
deba@1627
   320
        Edge(Invalid) { }
deba@1627
   321
        /// Equality operator
deba@1627
   322
deba@1627
   323
        /// Two iterators are equal if and only if they point to the
deba@1627
   324
        /// same object or both are invalid.
deba@1627
   325
        bool operator==(Edge) const { return true; }
deba@1627
   326
        /// Inequality operator
deba@1627
   327
deba@1627
   328
        /// \sa operator==(Edge n)
deba@1627
   329
        ///
deba@1627
   330
        bool operator!=(Edge) const { return true; }
deba@1627
   331
deba@1627
   332
	/// Artificial ordering operator.
deba@1627
   333
	
deba@1627
   334
	/// To allow the use of graph descriptors as key type in std::map or
deba@1627
   335
	/// similar associative container we require this.
deba@1627
   336
	///
deba@1627
   337
	/// \note This operator only have to define some strict ordering of
deba@1627
   338
	/// the items; this order has nothing to do with the iteration
deba@1627
   339
	/// ordering of the items.
deba@1627
   340
	///
deba@1627
   341
	/// \bug This is a technical requirement. Do we really need this?
deba@1627
   342
	bool operator<(Edge) const { return false; }
deba@1627
   343
	
deba@1627
   344
      }; 
deba@1627
   345
      /// This iterator goes through each directed edge.
deba@1627
   346
deba@1627
   347
      /// This iterator goes through each edge of a graph.
deba@1627
   348
      /// Its usage is quite simple, for example you can count the number
deba@1627
   349
      /// of edges in a graph \c g of type \c Graph as follows:
alpar@1946
   350
      ///\code
deba@1627
   351
      /// int count=0;
deba@1627
   352
      /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
alpar@1946
   353
      ///\endcode
deba@1627
   354
      class EdgeIt : public Edge {
deba@1627
   355
      public:
deba@1627
   356
        /// Default constructor
deba@1627
   357
deba@1627
   358
        /// @warning The default constructor sets the iterator
deba@1627
   359
        /// to an undefined value.
deba@1627
   360
        EdgeIt() { }
deba@1627
   361
        /// Copy constructor.
deba@1627
   362
deba@1627
   363
        /// Copy constructor.
deba@1627
   364
        ///
deba@1627
   365
        EdgeIt(const EdgeIt& e) : Edge(e) { }
deba@1627
   366
        /// Initialize the iterator to be invalid.
deba@1627
   367
deba@1627
   368
        /// Initialize the iterator to be invalid.
deba@1627
   369
        ///
deba@1627
   370
        EdgeIt(Invalid) { }
deba@1627
   371
        /// This constructor sets the iterator to the first edge.
deba@1627
   372
    
deba@1627
   373
        /// This constructor sets the iterator to the first edge of \c g.
deba@1627
   374
        ///@param g the graph
klao@1909
   375
        EdgeIt(const UGraph &g) { ignore_unused_variable_warning(g); }
deba@1627
   376
        /// Edge -> EdgeIt conversion
deba@1627
   377
deba@1627
   378
        /// Sets the iterator to the value of the trivial iterator \c e.
deba@1627
   379
        /// This feature necessitates that each time we 
deba@1627
   380
        /// iterate the edge-set, the iteration order is the same.
klao@1909
   381
        EdgeIt(const UGraph&, const Edge&) { } 
deba@1627
   382
        ///Next edge
deba@1627
   383
        
deba@1627
   384
        /// Assign the iterator to the next edge.
deba@1627
   385
        EdgeIt& operator++() { return *this; }
deba@1627
   386
      };
deba@1627
   387
   
deba@1627
   388
      /// This iterator goes trough the outgoing directed edges of a node.
deba@1627
   389
deba@1627
   390
      /// This iterator goes trough the \e outgoing edges of a certain node
deba@1627
   391
      /// of a graph.
deba@1627
   392
      /// Its usage is quite simple, for example you can count the number
deba@1627
   393
      /// of outgoing edges of a node \c n
deba@1627
   394
      /// in graph \c g of type \c Graph as follows.
alpar@1946
   395
      ///\code
deba@1627
   396
      /// int count=0;
deba@1627
   397
      /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
alpar@1946
   398
      ///\endcode
deba@1627
   399
    
deba@1627
   400
      class OutEdgeIt : public Edge {
deba@1627
   401
      public:
deba@1627
   402
        /// Default constructor
deba@1627
   403
deba@1627
   404
        /// @warning The default constructor sets the iterator
deba@1627
   405
        /// to an undefined value.
deba@1627
   406
        OutEdgeIt() { }
deba@1627
   407
        /// Copy constructor.
deba@1627
   408
deba@1627
   409
        /// Copy constructor.
deba@1627
   410
        ///
deba@1627
   411
        OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
deba@1627
   412
        /// Initialize the iterator to be invalid.
deba@1627
   413
deba@1627
   414
        /// Initialize the iterator to be invalid.
deba@1627
   415
        ///
deba@1627
   416
        OutEdgeIt(Invalid) { }
deba@1627
   417
        /// This constructor sets the iterator to the first outgoing edge.
deba@1627
   418
    
deba@1627
   419
        /// This constructor sets the iterator to the first outgoing edge of
deba@1627
   420
        /// the node.
deba@1627
   421
        ///@param n the node
deba@1627
   422
        ///@param g the graph
klao@1909
   423
        OutEdgeIt(const UGraph& n, const Node& g) {
alpar@1643
   424
	  ignore_unused_variable_warning(n);
alpar@1643
   425
	  ignore_unused_variable_warning(g);
alpar@1643
   426
	}
deba@1627
   427
        /// Edge -> OutEdgeIt conversion
deba@1627
   428
deba@1627
   429
        /// Sets the iterator to the value of the trivial iterator.
deba@1627
   430
	/// This feature necessitates that each time we 
deba@1627
   431
        /// iterate the edge-set, the iteration order is the same.
klao@1909
   432
        OutEdgeIt(const UGraph&, const Edge&) { }
deba@1627
   433
        ///Next outgoing edge
deba@1627
   434
        
deba@1627
   435
        /// Assign the iterator to the next 
deba@1627
   436
        /// outgoing edge of the corresponding node.
deba@1627
   437
        OutEdgeIt& operator++() { return *this; }
deba@1627
   438
      };
deba@1627
   439
deba@1627
   440
      /// This iterator goes trough the incoming directed edges of a node.
deba@1627
   441
deba@1627
   442
      /// This iterator goes trough the \e incoming edges of a certain node
deba@1627
   443
      /// of a graph.
deba@1627
   444
      /// Its usage is quite simple, for example you can count the number
deba@1627
   445
      /// of outgoing edges of a node \c n
deba@1627
   446
      /// in graph \c g of type \c Graph as follows.
alpar@1946
   447
      ///\code
deba@1627
   448
      /// int count=0;
deba@1627
   449
      /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
alpar@1946
   450
      ///\endcode
deba@1627
   451
deba@1627
   452
      class InEdgeIt : public Edge {
deba@1627
   453
      public:
deba@1627
   454
        /// Default constructor
deba@1627
   455
deba@1627
   456
        /// @warning The default constructor sets the iterator
deba@1627
   457
        /// to an undefined value.
deba@1627
   458
        InEdgeIt() { }
deba@1627
   459
        /// Copy constructor.
deba@1627
   460
deba@1627
   461
        /// Copy constructor.
deba@1627
   462
        ///
deba@1627
   463
        InEdgeIt(const InEdgeIt& e) : Edge(e) { }
deba@1627
   464
        /// Initialize the iterator to be invalid.
deba@1627
   465
deba@1627
   466
        /// Initialize the iterator to be invalid.
deba@1627
   467
        ///
deba@1627
   468
        InEdgeIt(Invalid) { }
deba@1627
   469
        /// This constructor sets the iterator to first incoming edge.
deba@1627
   470
    
deba@1627
   471
        /// This constructor set the iterator to the first incoming edge of
deba@1627
   472
        /// the node.
deba@1627
   473
        ///@param n the node
deba@1627
   474
        ///@param g the graph
klao@1909
   475
        InEdgeIt(const UGraph& g, const Node& n) { 
alpar@1643
   476
	  ignore_unused_variable_warning(n);
alpar@1643
   477
	  ignore_unused_variable_warning(g);
alpar@1643
   478
	}
deba@1627
   479
        /// Edge -> InEdgeIt conversion
deba@1627
   480
deba@1627
   481
        /// Sets the iterator to the value of the trivial iterator \c e.
deba@1627
   482
        /// This feature necessitates that each time we 
deba@1627
   483
        /// iterate the edge-set, the iteration order is the same.
klao@1909
   484
        InEdgeIt(const UGraph&, const Edge&) { }
deba@1627
   485
        /// Next incoming edge
deba@1627
   486
deba@1627
   487
        /// Assign the iterator to the next inedge of the corresponding node.
deba@1627
   488
        ///
deba@1627
   489
        InEdgeIt& operator++() { return *this; }
deba@1627
   490
      };
deba@1627
   491
deba@1627
   492
      /// \brief Read write map of the nodes to type \c T.
deba@1627
   493
      /// 
deba@1627
   494
      /// ReadWrite map of the nodes to type \c T.
deba@1627
   495
      /// \sa Reference
deba@1627
   496
      /// \warning Making maps that can handle bool type (NodeMap<bool>)
deba@1627
   497
      /// needs some extra attention!
alpar@1630
   498
      /// \todo Wrong documentation
deba@1627
   499
      template<class T> 
deba@1627
   500
      class NodeMap : public ReadWriteMap< Node, T >
deba@1627
   501
      {
deba@1627
   502
      public:
deba@1627
   503
deba@1627
   504
        ///\e
klao@1909
   505
        NodeMap(const UGraph&) { }
deba@1627
   506
        ///\e
klao@1909
   507
        NodeMap(const UGraph&, T) { }
deba@1627
   508
deba@1627
   509
        ///Copy constructor
deba@1627
   510
        NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
deba@1627
   511
        ///Assignment operator
deba@1627
   512
        NodeMap& operator=(const NodeMap&) { return *this; }
deba@1627
   513
        // \todo fix this concept
deba@1627
   514
      };
deba@1627
   515
deba@1627
   516
      /// \brief Read write map of the directed edges to type \c T.
deba@1627
   517
      ///
deba@1627
   518
      /// Reference map of the directed edges to type \c T.
deba@1627
   519
      /// \sa Reference
deba@1627
   520
      /// \warning Making maps that can handle bool type (EdgeMap<bool>)
deba@1627
   521
      /// needs some extra attention!
alpar@1630
   522
      /// \todo Wrong documentation
deba@1627
   523
      template<class T> 
deba@1627
   524
      class EdgeMap : public ReadWriteMap<Edge,T>
deba@1627
   525
      {
deba@1627
   526
      public:
deba@1627
   527
deba@1627
   528
        ///\e
klao@1909
   529
        EdgeMap(const UGraph&) { }
deba@1627
   530
        ///\e
klao@1909
   531
        EdgeMap(const UGraph&, T) { }
deba@1627
   532
        ///Copy constructor
deba@1627
   533
        EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
deba@1627
   534
        ///Assignment operator
deba@1627
   535
        EdgeMap& operator=(const EdgeMap&) { return *this; }
deba@1627
   536
        // \todo fix this concept    
deba@1627
   537
      };
deba@1627
   538
alpar@1620
   539
      /// Read write map of the undirected edges to type \c T.
alpar@1620
   540
alpar@1620
   541
      /// Reference map of the edges to type \c T.
alpar@1620
   542
      /// \sa Reference
klao@1909
   543
      /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
alpar@1620
   544
      /// needs some extra attention!
alpar@1630
   545
      /// \todo Wrong documentation
alpar@1620
   546
      template<class T> 
klao@1909
   547
      class UEdgeMap : public ReadWriteMap<UEdge,T>
alpar@1620
   548
      {
klao@1030
   549
      public:
klao@1030
   550
alpar@1620
   551
        ///\e
klao@1909
   552
        UEdgeMap(const UGraph&) { }
alpar@1620
   553
        ///\e
klao@1909
   554
        UEdgeMap(const UGraph&, T) { }
alpar@1620
   555
        ///Copy constructor
klao@1909
   556
        UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
alpar@1620
   557
        ///Assignment operator
klao@1909
   558
        UEdgeMap &operator=(const UEdgeMap&) { return *this; }
alpar@1620
   559
        // \todo fix this concept    
klao@1030
   560
      };
klao@1030
   561
deba@1627
   562
      /// \brief Direct the given undirected edge.
deba@1627
   563
      ///
deba@1627
   564
      /// Direct the given undirected edge. The returned edge source
deba@1627
   565
      /// will be the given edge.
klao@1909
   566
      Edge direct(const UEdge&, const Node&) const {
deba@1627
   567
	return INVALID;
deba@1627
   568
      }
klao@1030
   569
deba@1627
   570
      /// \brief Direct the given undirected edge.
deba@1627
   571
      ///
deba@1627
   572
      /// Direct the given undirected edge. The returned edge source
deba@1627
   573
      /// will be the source of the undirected edge if the given bool
deba@1627
   574
      /// is true.
klao@1909
   575
      Edge direct(const UEdge&, bool) const {
deba@1627
   576
	return INVALID;
deba@1627
   577
      }
deba@1627
   578
deba@1627
   579
      /// \brief Returns true if the edge has default orientation.
deba@1627
   580
      ///
klao@1030
   581
      /// Returns whether the given directed edge is same orientation as
klao@1030
   582
      /// the corresponding undirected edge.
deba@1627
   583
      bool direction(Edge) const { return true; }
deba@1627
   584
deba@1627
   585
      /// \brief Returns the opposite directed edge.
klao@1030
   586
      ///
deba@1627
   587
      /// Returns the opposite directed edge.
deba@1627
   588
      Edge oppositeEdge(Edge) const { return INVALID; }
klao@1030
   589
deba@1627
   590
      /// \brief Opposite node on an edge
deba@1627
   591
      ///
klao@1030
   592
      /// \return the opposite of the given Node on the given Edge
klao@1909
   593
      Node oppositeNode(Node, UEdge) const { return INVALID; }
klao@1030
   594
deba@1627
   595
      /// \brief First node of the undirected edge.
deba@1627
   596
      ///
klao@1909
   597
      /// \return the first node of the given UEdge.
klao@1030
   598
      ///
klao@1909
   599
      /// Naturally uectected edges don't have direction and thus
klao@1030
   600
      /// don't have source and target node. But we use these two methods
klao@1030
   601
      /// to query the two endnodes of the edge. The direction of the edge
klao@1030
   602
      /// which arises this way is called the inherent direction of the
deba@1627
   603
      /// undirected edge, and is used to define the "default" direction
klao@1030
   604
      /// of the directed versions of the edges.
deba@1627
   605
      /// \sa direction
klao@1909
   606
      Node source(UEdge) const { return INVALID; }
klao@1030
   607
deba@1627
   608
      /// \brief Second node of the undirected edge.
klao@1909
   609
      Node target(UEdge) const { return INVALID; }
klao@1030
   610
deba@1627
   611
      /// \brief Source node of the directed edge.
klao@1030
   612
      Node source(Edge) const { return INVALID; }
klao@1030
   613
deba@1627
   614
      /// \brief Target node of the directed edge.
klao@1030
   615
      Node target(Edge) const { return INVALID; }
klao@1030
   616
klao@1030
   617
      void first(Node&) const {}
klao@1030
   618
      void next(Node&) const {}
klao@1030
   619
klao@1909
   620
      void first(UEdge&) const {}
klao@1909
   621
      void next(UEdge&) const {}
klao@1030
   622
klao@1030
   623
      void first(Edge&) const {}
klao@1030
   624
      void next(Edge&) const {}
klao@1030
   625
klao@1030
   626
      void firstOut(Edge&, Node) const {}
klao@1030
   627
      void nextOut(Edge&) const {}
klao@1030
   628
klao@1030
   629
      void firstIn(Edge&, Node) const {}
klao@1030
   630
      void nextIn(Edge&) const {}
klao@1030
   631
klao@1030
   632
deba@1980
   633
      void firstInc(UEdge &, bool &, const Node &) const {}
deba@1980
   634
      void nextInc(UEdge &, bool &) const {}
deba@1980
   635
deba@1627
   636
      /// \brief Base node of the iterator
klao@1158
   637
      ///
klao@1158
   638
      /// Returns the base node (the source in this case) of the iterator
klao@1158
   639
      Node baseNode(OutEdgeIt e) const {
klao@1158
   640
	return source(e);
klao@1158
   641
      }
deba@1627
   642
      /// \brief Running node of the iterator
klao@1158
   643
      ///
klao@1158
   644
      /// Returns the running node (the target in this case) of the
klao@1158
   645
      /// iterator
klao@1158
   646
      Node runningNode(OutEdgeIt e) const {
klao@1158
   647
	return target(e);
klao@1158
   648
      }
klao@1158
   649
deba@1627
   650
      /// \brief Base node of the iterator
klao@1158
   651
      ///
klao@1158
   652
      /// Returns the base node (the target in this case) of the iterator
klao@1158
   653
      Node baseNode(InEdgeIt e) const {
klao@1158
   654
	return target(e);
klao@1158
   655
      }
deba@1627
   656
      /// \brief Running node of the iterator
klao@1158
   657
      ///
klao@1158
   658
      /// Returns the running node (the source in this case) of the
klao@1158
   659
      /// iterator
klao@1158
   660
      Node runningNode(InEdgeIt e) const {
klao@1158
   661
	return source(e);
klao@1158
   662
      }
klao@1158
   663
deba@1627
   664
      /// \brief Base node of the iterator
klao@1158
   665
      ///
klao@1158
   666
      /// Returns the base node of the iterator
alpar@1367
   667
      Node baseNode(IncEdgeIt) const {
klao@1158
   668
	return INVALID;
klao@1158
   669
      }
deba@1627
   670
      
deba@1627
   671
      /// \brief Running node of the iterator
klao@1158
   672
      ///
klao@1158
   673
      /// Returns the running node of the iterator
alpar@1367
   674
      Node runningNode(IncEdgeIt) const {
klao@1158
   675
	return INVALID;
klao@1158
   676
      }
klao@1158
   677
klao@1022
   678
      template <typename Graph>
klao@1022
   679
      struct Constraints {
klao@1022
   680
	void constraints() {
klao@1909
   681
	  checkConcept<BaseIterableUGraphConcept, Graph>();
klao@1909
   682
	  checkConcept<IterableUGraphConcept, Graph>();
klao@1909
   683
	  checkConcept<MappableUGraphConcept, Graph>();
klao@1022
   684
	}
klao@1022
   685
      };
klao@1022
   686
klao@1022
   687
    };
klao@1022
   688
klao@1030
   689
    /// @}
klao@1030
   690
klao@962
   691
  }
klao@962
   692
klao@962
   693
}
klao@962
   694
klao@962
   695
#endif