lemon/concept/ugraph.h
author deba
Fri, 30 Jun 2006 12:14:36 +0000
changeset 2115 4cd528a30ec1
parent 2021 11455e986b95
child 2120 a907fb95f1e0
permissions -rw-r--r--
Splitted graph files
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 ///\ingroup graph_concepts
    20 ///\file
    21 ///\brief The concept of the undirected graphs.
    22 
    23 
    24 #ifndef LEMON_CONCEPT_UGRAPH_H
    25 #define LEMON_CONCEPT_UGRAPH_H
    26 
    27 #include <lemon/concept/graph_component.h>
    28 #include <lemon/concept/graph.h>
    29 #include <lemon/bits/utility.h>
    30 
    31 namespace lemon {
    32   namespace concept {
    33 
    34     /// \addtogroup graph_concepts
    35     /// @{
    36 
    37 
    38     /// Class describing the concept of Undirected Graphs.
    39 
    40     /// This class describes the common interface of all Undirected
    41     /// Graphs.
    42     ///
    43     /// As all concept describing classes it provides only interface
    44     /// without any sensible implementation. So any algorithm for
    45     /// undirected graph should compile with this class, but it will not
    46     /// run properly, of couse.
    47     ///
    48     /// In LEMON undirected graphs also fulfill the concept of directed
    49     /// graphs (\ref lemon::concept::Graph "Graph Concept"). For
    50     /// explanation of this and more see also the page \ref graphs,
    51     /// a tutorial about graphs.
    52     ///
    53     /// You can assume that all undirected graph can be handled
    54     /// as a directed graph. This way it is fully conform
    55     /// to the Graph concept.
    56 
    57     class UGraph {
    58     public:
    59       ///\e
    60 
    61       ///\todo undocumented
    62       ///
    63       typedef True UndirectedTag;
    64 
    65       /// \brief The base type of node iterators, 
    66       /// or in other words, the trivial node iterator.
    67       ///
    68       /// This is the base type of each node iterator,
    69       /// thus each kind of node iterator converts to this.
    70       /// More precisely each kind of node iterator should be inherited 
    71       /// from the trivial node iterator.
    72       class Node {
    73       public:
    74         /// Default constructor
    75 
    76         /// @warning The default constructor sets the iterator
    77         /// to an undefined value.
    78         Node() { }
    79         /// Copy constructor.
    80 
    81         /// Copy constructor.
    82         ///
    83         Node(const Node&) { }
    84 
    85         /// Invalid constructor \& conversion.
    86 
    87         /// This constructor initializes the iterator to be invalid.
    88         /// \sa Invalid for more details.
    89         Node(Invalid) { }
    90         /// Equality operator
    91 
    92         /// Two iterators are equal if and only if they point to the
    93         /// same object or both are invalid.
    94         bool operator==(Node) const { return true; }
    95 
    96         /// Inequality operator
    97         
    98         /// \sa operator==(Node n)
    99         ///
   100         bool operator!=(Node) const { return true; }
   101 
   102 	/// Artificial ordering operator.
   103 	
   104 	/// To allow the use of graph descriptors as key type in std::map or
   105 	/// similar associative container we require this.
   106 	///
   107 	/// \note This operator only have to define some strict ordering of
   108 	/// the items; this order has nothing to do with the iteration
   109 	/// ordering of the items.
   110 	///
   111 	/// \bug This is a technical requirement. Do we really need this?
   112 	bool operator<(Node) const { return false; }
   113 
   114       };
   115     
   116       /// This iterator goes through each node.
   117 
   118       /// This iterator goes through each node.
   119       /// Its usage is quite simple, for example you can count the number
   120       /// of nodes in graph \c g of type \c Graph like this:
   121       ///\code
   122       /// int count=0;
   123       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
   124       ///\endcode
   125       class NodeIt : public Node {
   126       public:
   127         /// Default constructor
   128 
   129         /// @warning The default constructor sets the iterator
   130         /// to an undefined value.
   131         NodeIt() { }
   132         /// Copy constructor.
   133         
   134         /// Copy constructor.
   135         ///
   136         NodeIt(const NodeIt& n) : Node(n) { }
   137         /// Invalid constructor \& conversion.
   138 
   139         /// Initialize the iterator to be invalid.
   140         /// \sa Invalid for more details.
   141         NodeIt(Invalid) { }
   142         /// Sets the iterator to the first node.
   143 
   144         /// Sets the iterator to the first node of \c g.
   145         ///
   146         NodeIt(const UGraph&) { }
   147         /// Node -> NodeIt conversion.
   148 
   149         /// Sets the iterator to the node of \c the graph pointed by 
   150 	/// the trivial iterator.
   151         /// This feature necessitates that each time we 
   152         /// iterate the edge-set, the iteration order is the same.
   153         NodeIt(const UGraph&, const Node&) { }
   154         /// Next node.
   155 
   156         /// Assign the iterator to the next node.
   157         ///
   158         NodeIt& operator++() { return *this; }
   159       };
   160     
   161     
   162       /// The base type of the undirected edge iterators.
   163 
   164       /// The base type of the undirected edge iterators.
   165       ///
   166       class UEdge {
   167       public:
   168         /// Default constructor
   169 
   170         /// @warning The default constructor sets the iterator
   171         /// to an undefined value.
   172         UEdge() { }
   173         /// Copy constructor.
   174 
   175         /// Copy constructor.
   176         ///
   177         UEdge(const UEdge&) { }
   178         /// Initialize the iterator to be invalid.
   179 
   180         /// Initialize the iterator to be invalid.
   181         ///
   182         UEdge(Invalid) { }
   183         /// Equality operator
   184 
   185         /// Two iterators are equal if and only if they point to the
   186         /// same object or both are invalid.
   187         bool operator==(UEdge) const { return true; }
   188         /// Inequality operator
   189 
   190         /// \sa operator==(UEdge n)
   191         ///
   192         bool operator!=(UEdge) const { return true; }
   193 
   194 	/// Artificial ordering operator.
   195 	
   196 	/// To allow the use of graph descriptors as key type in std::map or
   197 	/// similar associative container we require this.
   198 	///
   199 	/// \note This operator only have to define some strict ordering of
   200 	/// the items; this order has nothing to do with the iteration
   201 	/// ordering of the items.
   202 	///
   203 	/// \bug This is a technical requirement. Do we really need this?
   204 	bool operator<(UEdge) const { return false; }
   205       };
   206 
   207       /// This iterator goes through each undirected edge.
   208 
   209       /// This iterator goes through each undirected edge of a graph.
   210       /// Its usage is quite simple, for example you can count the number
   211       /// of undirected edges in a graph \c g of type \c Graph as follows:
   212       ///\code
   213       /// int count=0;
   214       /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
   215       ///\endcode
   216       class UEdgeIt : public UEdge {
   217       public:
   218         /// Default constructor
   219 
   220         /// @warning The default constructor sets the iterator
   221         /// to an undefined value.
   222         UEdgeIt() { }
   223         /// Copy constructor.
   224 
   225         /// Copy constructor.
   226         ///
   227         UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
   228         /// Initialize the iterator to be invalid.
   229 
   230         /// Initialize the iterator to be invalid.
   231         ///
   232         UEdgeIt(Invalid) { }
   233         /// This constructor sets the iterator to the first undirected edge.
   234     
   235         /// This constructor sets the iterator to the first undirected edge.
   236         UEdgeIt(const UGraph&) { }
   237         /// UEdge -> UEdgeIt conversion
   238 
   239         /// Sets the iterator to the value of the trivial iterator.
   240         /// This feature necessitates that each time we
   241         /// iterate the undirected edge-set, the iteration order is the 
   242 	/// same.
   243         UEdgeIt(const UGraph&, const UEdge&) { } 
   244         /// Next undirected edge
   245         
   246         /// Assign the iterator to the next undirected edge.
   247         UEdgeIt& operator++() { return *this; }
   248       };
   249 
   250       /// \brief This iterator goes trough the incident undirected 
   251       /// edges of a node.
   252       ///
   253       /// This iterator goes trough the incident undirected edges
   254       /// of a certain node of a graph. You should assume that the 
   255       /// loop edges will be iterated twice.
   256       /// 
   257       /// Its usage is quite simple, for example you can compute the
   258       /// degree (i.e. count the number of incident edges of a node \c n
   259       /// in graph \c g of type \c Graph as follows. 
   260       ///
   261       ///\code
   262       /// int count=0;
   263       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   264       ///\endcode
   265       class IncEdgeIt : public UEdge {
   266       public:
   267         /// Default constructor
   268 
   269         /// @warning The default constructor sets the iterator
   270         /// to an undefined value.
   271         IncEdgeIt() { }
   272         /// Copy constructor.
   273 
   274         /// Copy constructor.
   275         ///
   276         IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
   277         /// Initialize the iterator to be invalid.
   278 
   279         /// Initialize the iterator to be invalid.
   280         ///
   281         IncEdgeIt(Invalid) { }
   282         /// This constructor sets the iterator to first incident edge.
   283     
   284         /// This constructor set the iterator to the first incident edge of
   285         /// the node.
   286         IncEdgeIt(const UGraph&, const Node&) { }
   287         /// UEdge -> IncEdgeIt conversion
   288 
   289         /// Sets the iterator to the value of the trivial iterator \c e.
   290         /// This feature necessitates that each time we 
   291         /// iterate the edge-set, the iteration order is the same.
   292         IncEdgeIt(const UGraph&, const UEdge&) { }
   293         /// Next incident edge
   294 
   295         /// Assign the iterator to the next incident edge
   296 	/// of the corresponding node.
   297         IncEdgeIt& operator++() { return *this; }
   298       };
   299 
   300       /// The directed edge type.
   301 
   302       /// The directed edge type. It can be converted to the
   303       /// undirected edge.
   304       class Edge : public UEdge {
   305       public:
   306         /// Default constructor
   307 
   308         /// @warning The default constructor sets the iterator
   309         /// to an undefined value.
   310         Edge() { }
   311         /// Copy constructor.
   312 
   313         /// Copy constructor.
   314         ///
   315         Edge(const Edge& e) : UEdge(e) { }
   316         /// Initialize the iterator to be invalid.
   317 
   318         /// Initialize the iterator to be invalid.
   319         ///
   320         Edge(Invalid) { }
   321         /// Equality operator
   322 
   323         /// Two iterators are equal if and only if they point to the
   324         /// same object or both are invalid.
   325         bool operator==(Edge) const { return true; }
   326         /// Inequality operator
   327 
   328         /// \sa operator==(Edge n)
   329         ///
   330         bool operator!=(Edge) const { return true; }
   331 
   332 	/// Artificial ordering operator.
   333 	
   334 	/// To allow the use of graph descriptors as key type in std::map or
   335 	/// similar associative container we require this.
   336 	///
   337 	/// \note This operator only have to define some strict ordering of
   338 	/// the items; this order has nothing to do with the iteration
   339 	/// ordering of the items.
   340 	///
   341 	/// \bug This is a technical requirement. Do we really need this?
   342 	bool operator<(Edge) const { return false; }
   343 	
   344       }; 
   345       /// This iterator goes through each directed edge.
   346 
   347       /// This iterator goes through each edge of a graph.
   348       /// Its usage is quite simple, for example you can count the number
   349       /// of edges in a graph \c g of type \c Graph as follows:
   350       ///\code
   351       /// int count=0;
   352       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
   353       ///\endcode
   354       class EdgeIt : public Edge {
   355       public:
   356         /// Default constructor
   357 
   358         /// @warning The default constructor sets the iterator
   359         /// to an undefined value.
   360         EdgeIt() { }
   361         /// Copy constructor.
   362 
   363         /// Copy constructor.
   364         ///
   365         EdgeIt(const EdgeIt& e) : Edge(e) { }
   366         /// Initialize the iterator to be invalid.
   367 
   368         /// Initialize the iterator to be invalid.
   369         ///
   370         EdgeIt(Invalid) { }
   371         /// This constructor sets the iterator to the first edge.
   372     
   373         /// This constructor sets the iterator to the first edge of \c g.
   374         ///@param g the graph
   375         EdgeIt(const UGraph &g) { ignore_unused_variable_warning(g); }
   376         /// Edge -> EdgeIt conversion
   377 
   378         /// Sets the iterator to the value of the trivial iterator \c e.
   379         /// This feature necessitates that each time we 
   380         /// iterate the edge-set, the iteration order is the same.
   381         EdgeIt(const UGraph&, const Edge&) { } 
   382         ///Next edge
   383         
   384         /// Assign the iterator to the next edge.
   385         EdgeIt& operator++() { return *this; }
   386       };
   387    
   388       /// This iterator goes trough the outgoing directed edges of a node.
   389 
   390       /// This iterator goes trough the \e outgoing edges of a certain node
   391       /// of a graph.
   392       /// Its usage is quite simple, for example you can count the number
   393       /// of outgoing edges of a node \c n
   394       /// in graph \c g of type \c Graph as follows.
   395       ///\code
   396       /// int count=0;
   397       /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   398       ///\endcode
   399     
   400       class OutEdgeIt : public Edge {
   401       public:
   402         /// Default constructor
   403 
   404         /// @warning The default constructor sets the iterator
   405         /// to an undefined value.
   406         OutEdgeIt() { }
   407         /// Copy constructor.
   408 
   409         /// Copy constructor.
   410         ///
   411         OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
   412         /// Initialize the iterator to be invalid.
   413 
   414         /// Initialize the iterator to be invalid.
   415         ///
   416         OutEdgeIt(Invalid) { }
   417         /// This constructor sets the iterator to the first outgoing edge.
   418     
   419         /// This constructor sets the iterator to the first outgoing edge of
   420         /// the node.
   421         ///@param n the node
   422         ///@param g the graph
   423         OutEdgeIt(const UGraph& n, const Node& g) {
   424 	  ignore_unused_variable_warning(n);
   425 	  ignore_unused_variable_warning(g);
   426 	}
   427         /// Edge -> OutEdgeIt conversion
   428 
   429         /// Sets the iterator to the value of the trivial iterator.
   430 	/// This feature necessitates that each time we 
   431         /// iterate the edge-set, the iteration order is the same.
   432         OutEdgeIt(const UGraph&, const Edge&) { }
   433         ///Next outgoing edge
   434         
   435         /// Assign the iterator to the next 
   436         /// outgoing edge of the corresponding node.
   437         OutEdgeIt& operator++() { return *this; }
   438       };
   439 
   440       /// This iterator goes trough the incoming directed edges of a node.
   441 
   442       /// This iterator goes trough the \e incoming edges of a certain node
   443       /// of a graph.
   444       /// Its usage is quite simple, for example you can count the number
   445       /// of outgoing edges of a node \c n
   446       /// in graph \c g of type \c Graph as follows.
   447       ///\code
   448       /// int count=0;
   449       /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   450       ///\endcode
   451 
   452       class InEdgeIt : public Edge {
   453       public:
   454         /// Default constructor
   455 
   456         /// @warning The default constructor sets the iterator
   457         /// to an undefined value.
   458         InEdgeIt() { }
   459         /// Copy constructor.
   460 
   461         /// Copy constructor.
   462         ///
   463         InEdgeIt(const InEdgeIt& e) : Edge(e) { }
   464         /// Initialize the iterator to be invalid.
   465 
   466         /// Initialize the iterator to be invalid.
   467         ///
   468         InEdgeIt(Invalid) { }
   469         /// This constructor sets the iterator to first incoming edge.
   470     
   471         /// This constructor set the iterator to the first incoming edge of
   472         /// the node.
   473         ///@param n the node
   474         ///@param g the graph
   475         InEdgeIt(const UGraph& g, const Node& n) { 
   476 	  ignore_unused_variable_warning(n);
   477 	  ignore_unused_variable_warning(g);
   478 	}
   479         /// Edge -> InEdgeIt conversion
   480 
   481         /// Sets the iterator to the value of the trivial iterator \c e.
   482         /// This feature necessitates that each time we 
   483         /// iterate the edge-set, the iteration order is the same.
   484         InEdgeIt(const UGraph&, const Edge&) { }
   485         /// Next incoming edge
   486 
   487         /// Assign the iterator to the next inedge of the corresponding node.
   488         ///
   489         InEdgeIt& operator++() { return *this; }
   490       };
   491 
   492       /// \brief Read write map of the nodes to type \c T.
   493       /// 
   494       /// ReadWrite map of the nodes to type \c T.
   495       /// \sa Reference
   496       /// \warning Making maps that can handle bool type (NodeMap<bool>)
   497       /// needs some extra attention!
   498       /// \todo Wrong documentation
   499       template<class T> 
   500       class NodeMap : public ReadWriteMap< Node, T >
   501       {
   502       public:
   503 
   504         ///\e
   505         NodeMap(const UGraph&) { }
   506         ///\e
   507         NodeMap(const UGraph&, T) { }
   508 
   509         ///Copy constructor
   510         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   511         ///Assignment operator
   512         NodeMap& operator=(const NodeMap&) { return *this; }
   513         // \todo fix this concept
   514       };
   515 
   516       /// \brief Read write map of the directed edges to type \c T.
   517       ///
   518       /// Reference map of the directed edges to type \c T.
   519       /// \sa Reference
   520       /// \warning Making maps that can handle bool type (EdgeMap<bool>)
   521       /// needs some extra attention!
   522       /// \todo Wrong documentation
   523       template<class T> 
   524       class EdgeMap : public ReadWriteMap<Edge,T>
   525       {
   526       public:
   527 
   528         ///\e
   529         EdgeMap(const UGraph&) { }
   530         ///\e
   531         EdgeMap(const UGraph&, T) { }
   532         ///Copy constructor
   533         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
   534         ///Assignment operator
   535         EdgeMap& operator=(const EdgeMap&) { return *this; }
   536         // \todo fix this concept    
   537       };
   538 
   539       /// Read write map of the undirected edges to type \c T.
   540 
   541       /// Reference map of the edges to type \c T.
   542       /// \sa Reference
   543       /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
   544       /// needs some extra attention!
   545       /// \todo Wrong documentation
   546       template<class T> 
   547       class UEdgeMap : public ReadWriteMap<UEdge,T>
   548       {
   549       public:
   550 
   551         ///\e
   552         UEdgeMap(const UGraph&) { }
   553         ///\e
   554         UEdgeMap(const UGraph&, T) { }
   555         ///Copy constructor
   556         UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
   557         ///Assignment operator
   558         UEdgeMap &operator=(const UEdgeMap&) { return *this; }
   559         // \todo fix this concept    
   560       };
   561 
   562       /// \brief Direct the given undirected edge.
   563       ///
   564       /// Direct the given undirected edge. The returned edge source
   565       /// will be the given edge.
   566       Edge direct(const UEdge&, const Node&) const {
   567 	return INVALID;
   568       }
   569 
   570       /// \brief Direct the given undirected edge.
   571       ///
   572       /// Direct the given undirected edge. The returned edge source
   573       /// will be the source of the undirected edge if the given bool
   574       /// is true.
   575       Edge direct(const UEdge&, bool) const {
   576 	return INVALID;
   577       }
   578 
   579       /// \brief Returns true if the edge has default orientation.
   580       ///
   581       /// Returns whether the given directed edge is same orientation as
   582       /// the corresponding undirected edge.
   583       bool direction(Edge) const { return true; }
   584 
   585       /// \brief Returns the opposite directed edge.
   586       ///
   587       /// Returns the opposite directed edge.
   588       Edge oppositeEdge(Edge) const { return INVALID; }
   589 
   590       /// \brief Opposite node on an edge
   591       ///
   592       /// \return the opposite of the given Node on the given Edge
   593       Node oppositeNode(Node, UEdge) const { return INVALID; }
   594 
   595       /// \brief First node of the undirected edge.
   596       ///
   597       /// \return the first node of the given UEdge.
   598       ///
   599       /// Naturally uectected edges don't have direction and thus
   600       /// don't have source and target node. But we use these two methods
   601       /// to query the two endnodes of the edge. The direction of the edge
   602       /// which arises this way is called the inherent direction of the
   603       /// undirected edge, and is used to define the "default" direction
   604       /// of the directed versions of the edges.
   605       /// \sa direction
   606       Node source(UEdge) const { return INVALID; }
   607 
   608       /// \brief Second node of the undirected edge.
   609       Node target(UEdge) const { return INVALID; }
   610 
   611       /// \brief Source node of the directed edge.
   612       Node source(Edge) const { return INVALID; }
   613 
   614       /// \brief Target node of the directed edge.
   615       Node target(Edge) const { return INVALID; }
   616 
   617       void first(Node&) const {}
   618       void next(Node&) const {}
   619 
   620       void first(UEdge&) const {}
   621       void next(UEdge&) const {}
   622 
   623       void first(Edge&) const {}
   624       void next(Edge&) const {}
   625 
   626       void firstOut(Edge&, Node) const {}
   627       void nextOut(Edge&) const {}
   628 
   629       void firstIn(Edge&, Node) const {}
   630       void nextIn(Edge&) const {}
   631 
   632 
   633       void firstInc(UEdge &, bool &, const Node &) const {}
   634       void nextInc(UEdge &, bool &) const {}
   635 
   636       /// \brief Base node of the iterator
   637       ///
   638       /// Returns the base node (the source in this case) of the iterator
   639       Node baseNode(OutEdgeIt e) const {
   640 	return source(e);
   641       }
   642       /// \brief Running node of the iterator
   643       ///
   644       /// Returns the running node (the target in this case) of the
   645       /// iterator
   646       Node runningNode(OutEdgeIt e) const {
   647 	return target(e);
   648       }
   649 
   650       /// \brief Base node of the iterator
   651       ///
   652       /// Returns the base node (the target in this case) of the iterator
   653       Node baseNode(InEdgeIt e) const {
   654 	return target(e);
   655       }
   656       /// \brief Running node of the iterator
   657       ///
   658       /// Returns the running node (the source in this case) of the
   659       /// iterator
   660       Node runningNode(InEdgeIt e) const {
   661 	return source(e);
   662       }
   663 
   664       /// \brief Base node of the iterator
   665       ///
   666       /// Returns the base node of the iterator
   667       Node baseNode(IncEdgeIt) const {
   668 	return INVALID;
   669       }
   670       
   671       /// \brief Running node of the iterator
   672       ///
   673       /// Returns the running node of the iterator
   674       Node runningNode(IncEdgeIt) const {
   675 	return INVALID;
   676       }
   677 
   678       template <typename Graph>
   679       struct Constraints {
   680 	void constraints() {
   681 	  checkConcept<BaseIterableUGraphConcept, Graph>();
   682 	  checkConcept<IterableUGraphConcept, Graph>();
   683 	  checkConcept<MappableUGraphConcept, Graph>();
   684 	}
   685       };
   686 
   687     };
   688 
   689     /// @}
   690 
   691   }
   692 
   693 }
   694 
   695 #endif