doc/graph_io.dox
author hegyi
Wed, 04 Jan 2006 18:05:55 +0000
changeset 1876 5ad84ad1b68f
parent 1842 8abf74160dc4
child 1901 723b2b81d900
permissions -rw-r--r--
Communication with algorithm window is developed.
alpar@1118
     1
namespace lemon {
deba@1114
     2
/*!
deba@1114
     3
deba@1114
     4
deba@1114
     5
\page graph-io-page Graph Input-Output
deba@1114
     6
athos@1540
     7
The standard graph IO enables one to store graphs and additional maps
athos@1540
     8
(i.e. functions on the nodes or edges) in a flexible and efficient way. 
athos@1540
     9
Before you read this page you should be familiar with LEMON 
athos@1540
    10
\ref graphs "graphs" and \ref maps-page "maps".
deba@1114
    11
deba@1114
    12
\section format The general file format
deba@1114
    13
deba@1532
    14
The file contains sections in the following order:
deba@1114
    15
deba@1114
    16
\li nodeset
deba@1114
    17
\li edgeset
deba@1114
    18
\li nodes
deba@1114
    19
\li edges
deba@1532
    20
\li attributes
deba@1114
    21
athos@1540
    22
Some of these sections can be omitted, but you will basicly need the nodeset
athos@1540
    23
section (unless your graph has no nodes at all) and the edgeset section
athos@1540
    24
(unless your graph has no edges at all). 
athos@1540
    25
athos@1540
    26
The nodeset section describes the nodes of your graph: it identifies the nodes
athos@1540
    27
and gives the maps defined on them, if any. It starts with the
athos@1540
    28
following line:
athos@1522
    29
athos@1522
    30
<tt>\@nodeset</tt>
athos@1522
    31
athos@1522
    32
The next line contains the names of the nodemaps, separated by whitespaces.  Each
athos@1522
    33
following line describes a node in the graph: it contains the values of the
athos@1522
    34
maps in the right order. The map named "id" should contain unique values
athos@1540
    35
because it is regarded as an ID-map. These ids need not be numbers but they
athos@1540
    36
must identify the nodes uniquely for later reference. For example:
deba@1114
    37
deba@1114
    38
\code
deba@1114
    39
@nodeset
deba@1114
    40
id  x-coord  y-coord  color
deba@1114
    41
3   1.0      4.0      blue
deba@1114
    42
5   2.3      5.7      red
deba@1114
    43
12  7.8      2.3      green
deba@1114
    44
\endcode
deba@1114
    45
deba@1114
    46
The edgeset section is very similar to the nodeset section, it has
athos@1522
    47
the same coloumn oriented structure. It starts with the line 
athos@1522
    48
athos@1522
    49
<tt>\@edgeset</tt>
athos@1522
    50
athos@1540
    51
The next line contains the whitespace separated list of names of the edge
athos@1540
    52
maps.  Each of the next lines describes one edge. The first two elements in
athos@1540
    53
the line are the IDs of the source and target (or tail and head) nodes of the
athos@1540
    54
edge as they occur in the ID node map of the nodeset section. You can also
athos@1540
    55
have an optional ID map on the edges for later reference (which has to be
athos@1540
    56
unique in this case).
deba@1114
    57
deba@1114
    58
\code
deba@1114
    59
@edgeset
deba@1114
    60
             id    weight   label
deba@1114
    61
3   5        a     4.3      a-edge
deba@1114
    62
5   12       c     2.6      c-edge
deba@1114
    63
3   12       g     3.4      g-edge
deba@1114
    64
\endcode
deba@1114
    65
athos@1540
    66
The \e nodes section contains <em>labeled (distinguished) nodes</em> 
athos@1540
    67
(i.e. nodes having a special
alpar@1118
    68
label on them). The section starts with
athos@1522
    69
athos@1522
    70
<tt> \@nodes </tt>
athos@1522
    71
athos@1522
    72
Each of the next lines contains a label for a node in the graph 
athos@1540
    73
and then the ID as described in the \e nodeset section.
deba@1114
    74
deba@1114
    75
\code
deba@1114
    76
@nodes 
deba@1114
    77
source 3
deba@1114
    78
target 12
deba@1114
    79
\endcode
deba@1114
    80
athos@1540
    81
The last section describes the <em>labeled (distinguished) edges</em>
deba@1333
    82
(i.e. edges having a special label on them). It starts with \c \@edges
deba@1114
    83
and then each line contains the name of the edge and the ID.
deba@1114
    84
deba@1114
    85
\code
athos@1540
    86
@edges 
deba@1114
    87
observed c
deba@1114
    88
\endcode
deba@1114
    89
deba@1114
    90
deba@1114
    91
The file may contain empty lines and comment lines. The comment lines
deba@1114
    92
start with an \c # character.
deba@1114
    93
deba@1532
    94
The attributes section can handle some information about the graph. It
athos@1540
    95
contains key-value pairs in each line (a key and the mapped value to key). The
athos@1540
    96
key should be a string without whitespaces, the value can be of various types.
deba@1532
    97
deba@1532
    98
\code
deba@1532
    99
@attributes
deba@1532
   100
title "Four colored plan graph"
deba@1532
   101
author "Balazs DEZSO"
deba@1532
   102
copyright "Lemon Library"
deba@1532
   103
version 12
deba@1532
   104
\endcode
deba@1532
   105
athos@1522
   106
<tt> \@end </tt>
athos@1522
   107
athos@1522
   108
line.
athos@1522
   109
deba@1114
   110
deba@1114
   111
\section use Using graph input-output
athos@1540
   112
athos@1540
   113
athos@1540
   114
The graph input and output is based on <em> reading and writing
athos@1540
   115
commands</em>. The user gives reading and writing commands to the reader or
athos@1540
   116
writer class, then he calls the \c run() method that executes all the given
athos@1540
   117
commands.
deba@1114
   118
deba@1114
   119
\subsection write Writing a graph
deba@1114
   120
alpar@1631
   121
The \ref lemon::GraphWriter "GraphWriter" template class
alpar@1631
   122
provides the graph output. To write a graph
athos@1526
   123
you should first give writing commands to the writer. You can declare
athos@1540
   124
writing command as \c NodeMap or \c EdgeMap writing and labeled Node and
deba@1114
   125
Edge writing.
deba@1114
   126
deba@1114
   127
\code
deba@1333
   128
GraphWriter<ListGraph> writer(std::cout, graph);
deba@1114
   129
\endcode
deba@1114
   130
alpar@1631
   131
The \ref lemon::GraphWriter::writeNodeMap() "writeNodeMap()"
alpar@1631
   132
function declares a \c NodeMap writing command in the
alpar@1631
   133
\ref lemon::GraphWriter "GraphWriter".
alpar@1631
   134
You should give a name to the map and the map
athos@1522
   135
object as parameters. The NodeMap writing command with name "id" should write a 
athos@1540
   136
unique map because it will be regarded as an ID map.
deba@1114
   137
deba@1114
   138
\see IdMap, DescriptorMap  
deba@1114
   139
deba@1114
   140
\code
deba@1114
   141
IdMap<ListGraph, Node> nodeIdMap;
deba@1394
   142
writer.writeNodeMap("id", nodeIdMap);
deba@1114
   143
deba@1394
   144
writer.writeNodeMap("x-coord", xCoordMap);
deba@1394
   145
writer.writeNodeMap("y-coord", yCoordMap);
deba@1394
   146
writer.writeNodeMap("color", colorMap);
deba@1114
   147
\endcode
deba@1114
   148
alpar@1631
   149
With the \ref lemon::GraphWriter::writeEdgeMap() "writeEdgeMap()"
alpar@1631
   150
member function you can give an edge map
deba@1333
   151
writing command similar to the NodeMaps.
deba@1114
   152
deba@1114
   153
\see IdMap, DescriptorMap  
athos@1522
   154
deba@1114
   155
\code
deba@1114
   156
DescriptorMap<ListGraph, Edge, ListGraph::EdgeMap<int> > edgeDescMap(graph);
deba@1394
   157
writer.writeEdgeMap("descriptor", edgeDescMap);
deba@1114
   158
deba@1394
   159
writer.writeEdgeMap("weight", weightMap);
deba@1394
   160
writer.writeEdgeMap("label", labelMap);
deba@1114
   161
\endcode
deba@1114
   162
alpar@1631
   163
With \ref lemon::GraphWriter::writeNode() "writeNode()"
alpar@1631
   164
and \ref lemon::GraphWriter::writeEdge() "writeEdge()"
alpar@1631
   165
functions you can designate Nodes and
athos@1522
   166
Edges in the graph. For example, you can write out the source and target node
athos@1522
   167
of a maximum flow instance.
deba@1114
   168
deba@1114
   169
\code
deba@1394
   170
writer.writeNode("source", sourceNode);
deba@1394
   171
writer.writeNode("target", targetNode);
deba@1114
   172
deba@1394
   173
writer.writeEdge("observed", edge);
deba@1114
   174
\endcode
deba@1114
   175
alpar@1631
   176
With \ref lemon::GraphWriter::writeAttribute() "writeAttribute()"
alpar@1631
   177
function you can write an attribute to the file.
deba@1532
   178
deba@1532
   179
\code
deba@1532
   180
writer.writeAttribute("author", "Balazs DEZSO");
deba@1532
   181
writer.writeAttribute("version", 12);
deba@1532
   182
\endcode
deba@1532
   183
alpar@1631
   184
After you give all write commands you must call the
alpar@1631
   185
\ref lemon::GraphWriter::run() "run()" member
athos@1522
   186
function, which executes all the writing commands.
deba@1114
   187
deba@1114
   188
\code
deba@1114
   189
writer.run();
deba@1114
   190
\endcode
deba@1114
   191
deba@1114
   192
\subsection reading Reading a graph
deba@1114
   193
athos@1540
   194
The file to be read may contain several maps and labeled nodes or edges.
deba@1114
   195
If you read a graph you need not read all the maps and items just those
alpar@1631
   196
that you need. The interface of the \ref lemon::GraphReader "GraphReader"
alpar@1631
   197
is very similar to
alpar@1631
   198
the \ref lemon::GraphWriter "GraphWriter"
alpar@1631
   199
but the reading method does not depend on the order of the
deba@1114
   200
given commands.
deba@1114
   201
athos@1522
   202
The reader object assumes that each not readed value does not contain 
alpar@1118
   203
whitespaces, therefore it has some extra possibilities to control how
alpar@1118
   204
it should skip the values when the string representation contains spaces.
deba@1114
   205
deba@1114
   206
\code
deba@1333
   207
GraphReader<ListGraph> reader(std::cin, graph);
deba@1114
   208
\endcode
deba@1114
   209
alpar@1631
   210
The \ref lemon::GraphReader::readNodeMap() "readNodeMap()"
alpar@1631
   211
function reads a map from the \c nodeset section.
athos@1522
   212
If there is a map that you do not want to read from the file and there are
athos@1522
   213
whitespaces in the string represenation of the values then you should
alpar@1631
   214
call the \ref lemon::GraphReader::skipNodeMap() "skipNodeMap()"
alpar@1631
   215
template member function with proper parameters.
deba@1114
   216
deba@1114
   217
\see QuotedStringReader
athos@1522
   218
deba@1114
   219
\code
deba@1394
   220
reader.readNodeMap("x-coord", xCoordMap);
deba@1394
   221
reader.readNodeMap("y-coord", yCoordMap);
deba@1114
   222
deba@1394
   223
reader.readNodeMap<QuotedStringReader>("label", labelMap);
deba@1114
   224
reader.skipNodeMap<QuotedStringReader>("description");
deba@1114
   225
deba@1394
   226
reader.readNodeMap("color", colorMap);
deba@1114
   227
\endcode
deba@1114
   228
alpar@1631
   229
With the \ref lemon::GraphReader::readEdgeMap() "readEdgeMap()"
alpar@1631
   230
member function you can give an edge map
deba@1114
   231
reading command similar to the NodeMaps. 
deba@1114
   232
deba@1114
   233
\code
deba@1394
   234
reader.readEdgeMap("weight", weightMap);
deba@1394
   235
reader.readEdgeMap("label", labelMap);
deba@1114
   236
\endcode
deba@1114
   237
alpar@1631
   238
With \ref lemon::GraphReader::readNode() "readNode()"
alpar@1631
   239
and \ref lemon::GraphReader::readEdge() "readEdge()"
alpar@1631
   240
functions you can read labeled Nodes and
deba@1114
   241
Edges.
deba@1114
   242
deba@1114
   243
\code
deba@1394
   244
reader.readNode("source", sourceNode);
deba@1394
   245
reader.readNode("target", targetNode);
deba@1114
   246
deba@1394
   247
reader.readEdge("observed", edge);
deba@1114
   248
\endcode
deba@1114
   249
alpar@1631
   250
With \ref lemon::GraphReader::readAttribute() "readAttribute()"
alpar@1631
   251
function you can read an attribute from the file.
deba@1532
   252
deba@1532
   253
\code
deba@1532
   254
std::string author;
deba@1532
   255
writer.readAttribute("author", author);
deba@1532
   256
int version;
deba@1532
   257
writer.writeAttribute("version", version);
deba@1532
   258
\endcode
deba@1532
   259
alpar@1631
   260
After you give all read commands you must call the
alpar@1631
   261
\ref lemon::GraphReader::run() "run()" member
athos@1522
   262
function, which executes all the commands.
deba@1114
   263
deba@1114
   264
\code
deba@1114
   265
reader.run();
deba@1114
   266
\endcode
deba@1114
   267
athos@1540
   268
\anchor rwbackground
athos@1527
   269
\section types Background of Reading and Writing
athos@1540
   270
athos@1540
   271
athos@1527
   272
To read a map (on the nodes or edges)
alpar@1631
   273
the \ref lemon::GraphReader "GraphReader"
alpar@1631
   274
should know how to read a Value from the given map.
deba@1114
   275
By the default implementation the input operator reads a value from
deba@1114
   276
the stream and the type of the readed value is the value type of the given map.
deba@1114
   277
When the reader should skip a value in the stream, because you do not
athos@1527
   278
want to store it in a map, the reader skips a character sequence without 
athos@1540
   279
whitespaces. 
deba@1114
   280
deba@1114
   281
If you want to change the functionality of the reader, you can use
deba@1114
   282
template parameters to specialize it. When you give a reading
deba@1114
   283
command for a map you can give a Reader type as template parameter.
deba@1333
   284
With this template parameter you can control how the Reader reads
deba@1114
   285
a value from the stream.
deba@1114
   286
deba@1114
   287
The reader has the next structure: 
deba@1114
   288
\code
deba@1114
   289
struct TypeReader {
deba@1114
   290
  typedef TypeName Value;
deba@1114
   291
deba@1114
   292
  void read(std::istream& is, Value& value);
deba@1114
   293
};
deba@1114
   294
\endcode
deba@1114
   295
athos@1527
   296
For example, the \c "strings" nodemap contains strings and you do not need
athos@1540
   297
the value of the string just the length. Then you can implement an own Reader
deba@1114
   298
struct.
deba@1114
   299
deba@1114
   300
\code
deba@1114
   301
struct LengthReader {
deba@1114
   302
  typedef int Value;
deba@1114
   303
deba@1114
   304
  void read(std::istream& is, Value& value) {
deba@1114
   305
    std::string tmp;
deba@1114
   306
    is >> tmp;
deba@1114
   307
    value = tmp.length();
deba@1114
   308
  }
deba@1114
   309
};
deba@1114
   310
...
deba@1394
   311
reader.readNodeMap<LengthReader>("strings", lengthMap);
deba@1114
   312
\endcode  
deba@1114
   313
deba@1114
   314
The global functionality of the reader class can be changed by giving a
athos@1526
   315
special template parameter to the GraphReader class. By default, the
alpar@1118
   316
template parameter is \c DefaultReaderTraits. A reader traits class 
athos@1540
   317
should provide an inner template class Reader for each type, and a 
deba@1114
   318
DefaultReader for skipping a value.
deba@1114
   319
athos@1540
   320
The specialization of  writing is very similar to that of reading.
deba@1114
   321
athos@1540
   322
\section undir Undirected graphs
deba@1532
   323
athos@1540
   324
In a file describing an undirected graph (undir graph, for short) you find an
athos@1540
   325
\c undiredgeset section instead of the \c edgeset section. The first line of
athos@1540
   326
the section describes the names of the maps on the undirected egdes and all
athos@1540
   327
next lines describe one undirected edge with the the incident nodes and the
athos@1540
   328
values of the map.
deba@1532
   329
athos@1540
   330
The format handles directed edge maps as a syntactical sugar???, if there
athos@1540
   331
are two maps with names being the same with a \c '+' and a \c '-' prefix
athos@1540
   332
then this will be read as a directed map.
deba@1532
   333
deba@1532
   334
\code
deba@1532
   335
@undiredgeset
deba@1532
   336
             id    capacity +flow -flow
deba@1532
   337
32   2       1     4.3      2.0	  0.0
deba@1532
   338
21   21      5     2.6      0.0   2.6
deba@1532
   339
21   12      8     3.4      0.0   0.0
deba@1532
   340
\endcode
deba@1532
   341
athos@1540
   342
The \c edges section is changed to \c undiredges section. This section
deba@1532
   343
describes labeled edges and undirected edges. The directed edge label
athos@1540
   344
should start with a \c '+' or a \c '-' prefix to decide the direction
deba@1532
   345
of the edge. 
deba@1532
   346
deba@1532
   347
\code
deba@1532
   348
@undiredges
deba@1532
   349
undiredge 1
deba@1532
   350
+edge 5
deba@1532
   351
-back 5
deba@1532
   352
\endcode
deba@1532
   353
alpar@1631
   354
There are similar classes to the \ref lemon::GraphReader "GraphReader" and
alpar@1631
   355
\ref lemon::GraphWriter "GraphWriter" which
alpar@1631
   356
handle the undirected graphs. These classes are
alpar@1631
   357
the \ref lemon::UndirGraphReader "UndirGraphReader"
alpar@1631
   358
and \ref lemon::UndirGraphWriter "UndirGraphWriter".
deba@1532
   359
deba@1788
   360
The \ref lemon::UndirGraphReader::readUndirEdgeMap() "readUndirEdgeMap()"
alpar@1631
   361
function reads an undirected map and the
alpar@1631
   362
\ref lemon::UndirGraphReader::readUndirEdge() "readUndirEdge()"
alpar@1631
   363
reads an undirected edge from the file, 
deba@1532
   364
deba@1532
   365
\code
deba@1532
   366
reader.readUndirEdgeMap("capacity", capacityMap);
deba@1532
   367
reader.readEdgeMap("flow", flowMap);
deba@1532
   368
...
deba@1532
   369
reader.readUndirEdge("undir_edge", undir_edge);
deba@1532
   370
reader.readEdge("edge", edge);
deba@1532
   371
\endcode
deba@1532
   372
deba@1532
   373
\section advanced Advanced features
deba@1532
   374
athos@1540
   375
The graph reader and writer classes give an easy way to read and write
athos@1540
   376
graphs. But sometimes we want more advanced features. In this case we can
athos@1540
   377
use the more general <tt>lemon reader and writer</tt> interface.
deba@1532
   378
athos@1540
   379
The LEMON file format is a section oriented file format. It contains one or
athos@1540
   380
more sections, each starting with a line identifying its type 
athos@1540
   381
(the word starting with the \c \@  character).
deba@1532
   382
The content of the section this way cannot contain line with \c \@ first
deba@1532
   383
character. The file may contains comment lines with \c # first character.
deba@1532
   384
alpar@1631
   385
The \ref lemon::LemonReader "LemonReader"
alpar@1631
   386
and \ref lemon::LemonWriter "LemonWriter"
alpar@1631
   387
gives a framework to read and
deba@1532
   388
write sections. There are various section reader and section writer
alpar@1631
   389
classes which can be attached to a \ref lemon::LemonReader "LemonReader"
alpar@1631
   390
or a \ref lemon::LemonWriter "LemonWriter".
deba@1532
   391
deba@1532
   392
There are default section readers and writers for reading and writing
athos@1540
   393
item sets, and labeled items in the graph. These read and write
deba@1532
   394
the format described above. Other type of data can be handled with own
deba@1532
   395
section reader and writer classes which are inherited from the
alpar@1631
   396
\c LemonReader::SectionReader or the
alpar@1631
   397
\ref lemon::LemonWriter::SectionWriter "LemonWriter::SectionWriter"
alpar@1631
   398
classes.
deba@1532
   399
deba@1532
   400
The next example defines a special section reader which reads the
deba@1532
   401
\c \@description sections into a string:
deba@1532
   402
deba@1532
   403
\code 
deba@1532
   404
class DescriptionReader : LemonReader::SectionReader {
deba@1532
   405
protected:
deba@1532
   406
  virtual bool header(const std::string& line) {
deba@1532
   407
    std::istringstream ls(line);
deba@1532
   408
    std::string head;
deba@1532
   409
    ls >> head;
deba@1532
   410
    return head == "@description";
deba@1532
   411
  }
deba@1532
   412
deba@1532
   413
  virtual void read(std::istream& is) {
deba@1532
   414
    std::string line;
deba@1532
   415
    while (getline(is, line)) {
deba@1532
   416
      desc += line;
deba@1532
   417
    }
deba@1532
   418
  }
deba@1532
   419
public:
deba@1532
   420
deba@1532
   421
  typedef LemonReader::SectionReader Parent;
deba@1532
   422
  
deba@1532
   423
  DescriptionReader(LemonReader& reader) : Parent(reader) {}
deba@1532
   424
deba@1532
   425
  const std::string& description() const {
deba@1532
   426
    return description;
deba@1532
   427
  }
deba@1532
   428
deba@1532
   429
private:
deba@1532
   430
  std::string desc;
deba@1532
   431
};
deba@1532
   432
\endcode
deba@1532
   433
deba@1532
   434
The other advanced stuff of the generalized file format is that 
deba@1532
   435
multiple edgesets can be stored to the same nodeset. It can be used 
athos@1540
   436
for example as a network traffic matrix.
deba@1532
   437
athos@1540
   438
In our example there is a network with symmetric links and there are assymetric
deba@1532
   439
traffic request on the network. This construction can be stored in an
deba@1842
   440
undirected graph and in a directed \c ListEdgeSet class. The example
alpar@1631
   441
shows the input with the \ref lemon::LemonReader "LemonReader" class:
deba@1532
   442
deba@1532
   443
\code
deba@1532
   444
UndirListGraph network;
deba@1839
   445
UndirListGraph::UndirEdgeMap<double> capacity;
deba@1842
   446
ListEdgeSet<UndirListGraph> traffic(network);
deba@1842
   447
ListEdgeSet<UndirListGraph>::EdgeMap<double> request(network);
deba@1532
   448
deba@1532
   449
LemonReader reader(std::cin);
deba@1839
   450
NodeSetReader<UndirListGraph> nodesetReader(reader, network);
deba@1839
   451
UndirEdgeSetReader<UndirListGraph> 
deba@1839
   452
  undirEdgesetReader(reader, network, nodesetReader);
deba@1532
   453
undirEdgesetReader.readEdgeMap("capacity", capacity);
deba@1842
   454
EdgeSetReader<ListEdgeSet<UndirListGraph> > 
deba@1848
   455
  edgesetReader(reader, traffic, nodesetReader, "traffic");
deba@1532
   456
edgesetReader.readEdgeMap("request", request);
deba@1532
   457
deba@1532
   458
reader.run();
deba@1532
   459
\endcode
deba@1532
   460
alpar@1631
   461
Because both the \ref lemon::GraphReader "GraphReader"
alpar@1631
   462
and the \ref lemon::UndirGraphReader "UndirGraphReader" can be converted
alpar@1631
   463
to \ref lemon::LemonReader "LemonReader"
alpar@1631
   464
and it can resolve the ID's of the items, the previous
alpar@1631
   465
result can be achived with the \ref lemon::UndirGraphReader "UndirGraphReader"
alpar@1631
   466
class, too.
deba@1532
   467
deba@1532
   468
deba@1532
   469
\code
deba@1532
   470
UndirListGraph network;
deba@1532
   471
UndirListGraph::UndirEdgeSet<double> capacity;
deba@1842
   472
ListEdgeSet<UndirListGraph> traffic(network);
deba@1842
   473
ListEdgeSet<UndirListGraph>::EdgeMap<double> request(network);
deba@1532
   474
deba@1842
   475
UndirGraphReader<UndirListGraph> reader(std::cin, network);
deba@1532
   476
reader.readEdgeMap("capacity", capacity);
deba@1842
   477
EdgeSetReader<ListEdgeSet<UndirListGraph> > 
deba@1848
   478
  edgesetReader(reader, traffic, reader, "traffic");
deba@1532
   479
edgesetReader.readEdgeMap("request", request);
deba@1532
   480
deba@1532
   481
reader.run();
deba@1532
   482
\endcode
deba@1532
   483
deba@1333
   484
\author Balazs Dezso
deba@1114
   485
*/
alpar@1631
   486
}