src/work/athos/mincostflows.h
author ladanyi
Thu, 06 May 2004 13:48:04 +0000
changeset 542 69bde1d90c04
parent 527 7550fed0cd91
child 547 50184b822370
permissions -rw-r--r--
Set up automake environment.
athos@276
     1
// -*- c++ -*-
athos@523
     2
#ifndef HUGO_MINCOSTFLOWS_H
athos@523
     3
#define HUGO_MINCOSTFLOWS_H
athos@276
     4
klao@491
     5
///\ingroup galgs
alpar@294
     6
///\file
athos@523
     7
///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost 
alpar@294
     8
athos@276
     9
#include <iostream>
athos@276
    10
#include <dijkstra.h>
athos@276
    11
#include <graph_wrapper.h>
athos@306
    12
#include <maps.h>
athos@511
    13
#include <vector.h>
athos@530
    14
#include <for_each_macros.h>
athos@306
    15
athos@276
    16
namespace hugo {
athos@276
    17
alpar@430
    18
/// \addtogroup galgs
alpar@430
    19
/// @{
athos@322
    20
athos@523
    21
  ///\brief Implementation of an algorithm for finding a flow of value \c k 
athos@523
    22
  ///(for small values of \c k) having minimal total cost between 2 nodes 
athos@523
    23
  /// 
klao@310
    24
  ///
athos@523
    25
  /// The class \ref hugo::MinCostFlows "MinCostFlows" implements
athos@523
    26
  /// an algorithm for finding a flow of value \c k 
athos@523
    27
  ///(for small values of \c k) having minimal total cost  
klao@310
    28
  /// from a given source node to a given target node in an
athos@523
    29
  /// edge-weighted directed graph having nonnegative integer capacities.
athos@523
    30
  /// The range of the length (weight) function is nonnegative reals but 
athos@523
    31
  /// the range of capacity function is the set of nonnegative integers. 
athos@523
    32
  /// It is not a polinomial time algorithm for counting the minimum cost
athos@523
    33
  /// maximal flow, since it counts the minimum cost flow for every value 0..M
athos@523
    34
  /// where \c M is the value of the maximal flow.
alpar@456
    35
  ///
alpar@456
    36
  ///\author Attila Bernath
athos@530
    37
  template <typename Graph, typename LengthMap, typename CapacityMap>
athos@523
    38
  class MinCostFlows {
athos@276
    39
klao@310
    40
    typedef typename LengthMap::ValueType Length;
athos@527
    41
athos@530
    42
    //Warning: this should be integer type
athos@530
    43
    typedef typename CapacityMap::ValueType Capacity;
athos@511
    44
    
athos@276
    45
    typedef typename Graph::Node Node;
athos@276
    46
    typedef typename Graph::NodeIt NodeIt;
athos@276
    47
    typedef typename Graph::Edge Edge;
athos@276
    48
    typedef typename Graph::OutEdgeIt OutEdgeIt;
athos@511
    49
    typedef typename Graph::template EdgeMap<int> EdgeIntMap;
athos@306
    50
athos@527
    51
    //    typedef ConstMap<Edge,int> ConstMap;
athos@306
    52
athos@530
    53
    typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType;
athos@530
    54
    typedef typename ResGraphType::Edge ResGraphEdge;
athos@306
    55
    class ModLengthMap {   
athos@511
    56
      typedef typename ResGraphType::template NodeMap<Length> NodeMap;
athos@306
    57
      const ResGraphType& G;
athos@527
    58
      //      const EdgeIntMap& rev;
klao@310
    59
      const LengthMap &ol;
klao@310
    60
      const NodeMap &pot;
athos@306
    61
    public :
athos@306
    62
      typedef typename LengthMap::KeyType KeyType;
athos@306
    63
      typedef typename LengthMap::ValueType ValueType;
athos@511
    64
	
athos@306
    65
      ValueType operator[](typename ResGraphType::Edge e) const {     
athos@527
    66
	if (G.forward(e))
athos@527
    67
	  return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
athos@527
    68
	else
athos@527
    69
	  return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
athos@306
    70
      }     
athos@511
    71
	
athos@530
    72
      ModLengthMap(const ResGraphType& _G,
klao@310
    73
		   const LengthMap &o,  const NodeMap &p) : 
athos@527
    74
	G(_G), /*rev(_rev),*/ ol(o), pot(p){}; 
athos@511
    75
    };//ModLengthMap
athos@511
    76
athos@511
    77
athos@306
    78
    
athos@527
    79
    //Input
athos@276
    80
    const Graph& G;
athos@276
    81
    const LengthMap& length;
athos@530
    82
    const CapacityMap& capacity;
athos@276
    83
alpar@328
    84
    //auxiliary variables
athos@322
    85
athos@314
    86
    //The value is 1 iff the edge is reversed. 
athos@314
    87
    //If the algorithm has finished, the edges of the seeked paths are 
athos@314
    88
    //exactly those that are reversed 
athos@527
    89
    EdgeIntMap flow; 
athos@276
    90
    
athos@322
    91
    //Container to store found paths
athos@322
    92
    std::vector< std::vector<Edge> > paths;
athos@511
    93
    //typedef DirPath<Graph> DPath;
athos@511
    94
    //DPath paths;
athos@511
    95
athos@511
    96
athos@511
    97
    Length total_length;
athos@322
    98
athos@276
    99
  public :
klao@310
   100
athos@276
   101
athos@530
   102
    MinCostFlows(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G), 
athos@527
   103
      length(_length), capacity(_cap), flow(_G)/*, dijkstra_dist(_G)*/{ }
athos@276
   104
alpar@294
   105
    
alpar@329
   106
    ///Runs the algorithm.
alpar@329
   107
alpar@329
   108
    ///Runs the algorithm.
athos@306
   109
    ///Returns k if there are at least k edge-disjoint paths from s to t.
alpar@329
   110
    ///Otherwise it returns the number of found edge-disjoint paths from s to t.
athos@306
   111
    int run(Node s, Node t, int k) {
athos@276
   112
athos@530
   113
      //Resetting variables from previous runs
athos@530
   114
      total_length = 0;
athos@530
   115
      FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
athos@530
   116
	flow.set(e,0);
athos@530
   117
      }
athos@511
   118
athos@530
   119
      
athos@527
   120
      //We need a residual graph
athos@527
   121
      ResGraphType res_graph(G, capacity, flow);
athos@306
   122
athos@306
   123
      //Initialize the copy of the Dijkstra potential to zero
athos@511
   124
      typename ResGraphType::template NodeMap<Length> dijkstra_dist(res_graph);
athos@527
   125
      ModLengthMap mod_length(res_graph, length, dijkstra_dist);
athos@306
   126
athos@306
   127
      Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
athos@322
   128
athos@322
   129
      int i;
athos@322
   130
      for (i=0; i<k; ++i){
athos@276
   131
	dijkstra.run(s);
athos@276
   132
	if (!dijkstra.reached(t)){
athos@314
   133
	  //There are no k paths from s to t
athos@322
   134
	  break;
athos@276
   135
	};
athos@306
   136
	
athos@306
   137
	{
athos@306
   138
	  //We have to copy the potential
athos@306
   139
	  typename ResGraphType::NodeIt n;
athos@306
   140
	  for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) {
athos@306
   141
	      dijkstra_dist[n] += dijkstra.distMap()[n];
athos@306
   142
	  }
athos@306
   143
	}
athos@306
   144
athos@306
   145
athos@527
   146
	//Augmenting on the sortest path
athos@276
   147
	Node n=t;
athos@530
   148
	ResGraphEdge e;
athos@276
   149
	while (n!=s){
athos@291
   150
	  e = dijkstra.pred(n);
athos@291
   151
	  n = dijkstra.predNode(n);
athos@530
   152
	  res_graph.augment(e,1);
athos@530
   153
	  //Let's update the total length
athos@530
   154
	  if (res_graph.forward(e))
athos@530
   155
	    total_length += length[e];
athos@530
   156
	  else 
athos@530
   157
	    total_length -= length[e];	    
athos@276
   158
	}
athos@276
   159
athos@276
   160
	  
athos@276
   161
      }
athos@322
   162
      
athos@322
   163
athos@322
   164
      return i;
athos@276
   165
    }
athos@276
   166
athos@530
   167
athos@530
   168
athos@511
   169
    ///This function gives back the total length of the found paths.
athos@511
   170
    ///Assumes that \c run() has been run and nothing changed since then.
athos@511
   171
    Length totalLength(){
athos@511
   172
      return total_length;
athos@511
   173
    }
athos@511
   174
athos@530
   175
    /*
athos@530
   176
      ///\todo To be implemented later
athos@530
   177
athos@511
   178
    ///This function gives back the \c j-th path in argument p.
athos@511
   179
    ///Assumes that \c run() has been run and nothing changed since then.
athos@519
   180
    /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is greater than the result of previous \c run, then the result here will be an empty path.
athos@511
   181
    template<typename DirPath>
athos@511
   182
    void getPath(DirPath& p, int j){
athos@511
   183
      p.clear();
athos@511
   184
      typename DirPath::Builder B(p);
athos@511
   185
      for(typename std::vector<Edge>::iterator i=paths[j].begin(); 
athos@511
   186
	  i!=paths[j].end(); ++i ){
athos@520
   187
	B.pushBack(*i);
athos@511
   188
      }
athos@511
   189
athos@511
   190
      B.commit();
athos@511
   191
    }
athos@276
   192
athos@530
   193
    */
athos@530
   194
athos@530
   195
  }; //class MinCostFlows
athos@276
   196
alpar@430
   197
  ///@}
athos@276
   198
athos@276
   199
} //namespace hugo
athos@276
   200
athos@527
   201
#endif //HUGO_MINCOSTFLOW_H