src/work/athos/mincostflows.h
changeset 542 69bde1d90c04
parent 527 7550fed0cd91
child 547 50184b822370
equal deleted inserted replaced
1:7a83066bfa8f 2:59c6a4db0bd3
     9 #include <iostream>
     9 #include <iostream>
    10 #include <dijkstra.h>
    10 #include <dijkstra.h>
    11 #include <graph_wrapper.h>
    11 #include <graph_wrapper.h>
    12 #include <maps.h>
    12 #include <maps.h>
    13 #include <vector.h>
    13 #include <vector.h>
    14 
    14 #include <for_each_macros.h>
    15 
    15 
    16 namespace hugo {
    16 namespace hugo {
    17 
    17 
    18 /// \addtogroup galgs
    18 /// \addtogroup galgs
    19 /// @{
    19 /// @{
    32   /// It is not a polinomial time algorithm for counting the minimum cost
    32   /// It is not a polinomial time algorithm for counting the minimum cost
    33   /// maximal flow, since it counts the minimum cost flow for every value 0..M
    33   /// maximal flow, since it counts the minimum cost flow for every value 0..M
    34   /// where \c M is the value of the maximal flow.
    34   /// where \c M is the value of the maximal flow.
    35   ///
    35   ///
    36   ///\author Attila Bernath
    36   ///\author Attila Bernath
    37   template <typename Graph, typename LengthMap>
    37   template <typename Graph, typename LengthMap, typename CapacityMap>
    38   class MinCostFlows {
    38   class MinCostFlows {
    39 
    39 
    40     typedef typename LengthMap::ValueType Length;
    40     typedef typename LengthMap::ValueType Length;
    41 
    41 
    42     typedef typename LengthMap::ValueType Length;
    42     //Warning: this should be integer type
       
    43     typedef typename CapacityMap::ValueType Capacity;
    43     
    44     
    44     typedef typename Graph::Node Node;
    45     typedef typename Graph::Node Node;
    45     typedef typename Graph::NodeIt NodeIt;
    46     typedef typename Graph::NodeIt NodeIt;
    46     typedef typename Graph::Edge Edge;
    47     typedef typename Graph::Edge Edge;
    47     typedef typename Graph::OutEdgeIt OutEdgeIt;
    48     typedef typename Graph::OutEdgeIt OutEdgeIt;
    48     typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    49     typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    49 
    50 
    50     //    typedef ConstMap<Edge,int> ConstMap;
    51     //    typedef ConstMap<Edge,int> ConstMap;
    51 
    52 
    52     typedef ResGraphWrapper<const Graph,int,EdgeIntMap,EdgeIntMap> ResGraphType;
    53     typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType;
    53 
    54     typedef typename ResGraphType::Edge ResGraphEdge;
    54     class ModLengthMap {   
    55     class ModLengthMap {   
    55       typedef typename ResGraphType::template NodeMap<Length> NodeMap;
    56       typedef typename ResGraphType::template NodeMap<Length> NodeMap;
    56       const ResGraphType& G;
    57       const ResGraphType& G;
    57       //      const EdgeIntMap& rev;
    58       //      const EdgeIntMap& rev;
    58       const LengthMap &ol;
    59       const LengthMap &ol;
    66 	  return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    67 	  return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    67 	else
    68 	else
    68 	  return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    69 	  return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    69       }     
    70       }     
    70 	
    71 	
    71       ModLengthMap(const ResGraphType& _G, const EdgeIntMap& _rev, 
    72       ModLengthMap(const ResGraphType& _G,
    72 		   const LengthMap &o,  const NodeMap &p) : 
    73 		   const LengthMap &o,  const NodeMap &p) : 
    73 	G(_G), /*rev(_rev),*/ ol(o), pot(p){}; 
    74 	G(_G), /*rev(_rev),*/ ol(o), pot(p){}; 
    74     };//ModLengthMap
    75     };//ModLengthMap
    75 
    76 
    76 
    77 
    77     
    78     
    78     //Input
    79     //Input
    79     const Graph& G;
    80     const Graph& G;
    80     const LengthMap& length;
    81     const LengthMap& length;
    81     const EdgeIntMap& capacity;
    82     const CapacityMap& capacity;
    82 
    83 
    83     //auxiliary variables
    84     //auxiliary variables
    84 
    85 
    85     //The value is 1 iff the edge is reversed. 
    86     //The value is 1 iff the edge is reversed. 
    86     //If the algorithm has finished, the edges of the seeked paths are 
    87     //If the algorithm has finished, the edges of the seeked paths are 
    96     Length total_length;
    97     Length total_length;
    97 
    98 
    98   public :
    99   public :
    99 
   100 
   100 
   101 
   101     MinLengthPaths(Graph& _G, LengthMap& _length, EdgeIntMap& _cap) : G(_G), 
   102     MinCostFlows(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G), 
   102       length(_length), capacity(_cap), flow(_G)/*, dijkstra_dist(_G)*/{ }
   103       length(_length), capacity(_cap), flow(_G)/*, dijkstra_dist(_G)*/{ }
   103 
   104 
   104     
   105     
   105     ///Runs the algorithm.
   106     ///Runs the algorithm.
   106 
   107 
   107     ///Runs the algorithm.
   108     ///Runs the algorithm.
   108     ///Returns k if there are at least k edge-disjoint paths from s to t.
   109     ///Returns k if there are at least k edge-disjoint paths from s to t.
   109     ///Otherwise it returns the number of found edge-disjoint paths from s to t.
   110     ///Otherwise it returns the number of found edge-disjoint paths from s to t.
   110     int run(Node s, Node t, int k) {
   111     int run(Node s, Node t, int k) {
   111 
   112 
   112 
   113       //Resetting variables from previous runs
       
   114       total_length = 0;
       
   115       FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
       
   116 	flow.set(e,0);
       
   117       }
       
   118 
       
   119       
   113       //We need a residual graph
   120       //We need a residual graph
   114       ResGraphType res_graph(G, capacity, flow);
   121       ResGraphType res_graph(G, capacity, flow);
   115 
   122 
   116       //Initialize the copy of the Dijkstra potential to zero
   123       //Initialize the copy of the Dijkstra potential to zero
   117       typename ResGraphType::template NodeMap<Length> dijkstra_dist(res_graph);
   124       typename ResGraphType::template NodeMap<Length> dijkstra_dist(res_graph);
   136 	}
   143 	}
   137 
   144 
   138 
   145 
   139 	//Augmenting on the sortest path
   146 	//Augmenting on the sortest path
   140 	Node n=t;
   147 	Node n=t;
   141 	Edge e;
   148 	ResGraphEdge e;
   142 	while (n!=s){
   149 	while (n!=s){
   143 	  e = dijkstra.pred(n);
   150 	  e = dijkstra.pred(n);
   144 	  n = dijkstra.predNode(n);
   151 	  n = dijkstra.predNode(n);
   145 	  G.augment(e,1);
   152 	  res_graph.augment(e,1);
       
   153 	  //Let's update the total length
       
   154 	  if (res_graph.forward(e))
       
   155 	    total_length += length[e];
       
   156 	  else 
       
   157 	    total_length -= length[e];	    
   146 	}
   158 	}
   147 
   159 
   148 	  
   160 	  
   149       }
   161       }
   150       
   162       
   151       /*
       
   152 	///\TODO To be implemented later
       
   153 
       
   154       //Let's find the paths
       
   155       //We put the paths into stl vectors (as an inner representation). 
       
   156       //In the meantime we lose the information stored in 'reversed'.
       
   157       //We suppose the lengths to be positive now.
       
   158 
       
   159       //Meanwhile we put the total length of the found paths 
       
   160       //in the member variable total_length
       
   161       paths.clear();
       
   162       total_length=0;
       
   163       paths.resize(k);
       
   164       for (int j=0; j<i; ++j){
       
   165 	Node n=s;
       
   166 	OutEdgeIt e;
       
   167 
       
   168 	while (n!=t){
       
   169 
       
   170 
       
   171 	  G.first(e,n);
       
   172 	  
       
   173 	  while (!reversed[e]){
       
   174 	    G.next(e);
       
   175 	  }
       
   176 	  n = G.head(e);
       
   177 	  paths[j].push_back(e);
       
   178 	  total_length += length[e];
       
   179 	  reversed[e] = 1-reversed[e];
       
   180 	}
       
   181 	
       
   182       }
       
   183       */
       
   184 
   163 
   185       return i;
   164       return i;
   186     }
   165     }
       
   166 
       
   167 
   187 
   168 
   188     ///This function gives back the total length of the found paths.
   169     ///This function gives back the total length of the found paths.
   189     ///Assumes that \c run() has been run and nothing changed since then.
   170     ///Assumes that \c run() has been run and nothing changed since then.
   190     Length totalLength(){
   171     Length totalLength(){
   191       return total_length;
   172       return total_length;
   192     }
   173     }
       
   174 
       
   175     /*
       
   176       ///\todo To be implemented later
   193 
   177 
   194     ///This function gives back the \c j-th path in argument p.
   178     ///This function gives back the \c j-th path in argument p.
   195     ///Assumes that \c run() has been run and nothing changed since then.
   179     ///Assumes that \c run() has been run and nothing changed since then.
   196     /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is greater than the result of previous \c run, then the result here will be an empty path.
   180     /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is greater than the result of previous \c run, then the result here will be an empty path.
   197     template<typename DirPath>
   181     template<typename DirPath>
   204       }
   188       }
   205 
   189 
   206       B.commit();
   190       B.commit();
   207     }
   191     }
   208 
   192 
   209   }; //class MinLengthPaths
   193     */
       
   194 
       
   195   }; //class MinCostFlows
   210 
   196 
   211   ///@}
   197   ///@}
   212 
   198 
   213 } //namespace hugo
   199 } //namespace hugo
   214 
   200