lemon/graph_utils.h
author ladanyi
Wed, 02 Aug 2006 20:15:22 +0000
changeset 2167 7e109b222053
parent 2094 3ae02034be53
child 2186 284a9ad118dd
permissions -rw-r--r--
Fixed the mailinglist link and removed the gui section.
klao@946
     1
/* -*- C++ -*-
klao@946
     2
 *
alpar@1956
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@1956
     4
 *
alpar@1956
     5
 * Copyright (C) 2003-2006
alpar@1956
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
klao@946
     8
 *
klao@946
     9
 * Permission to use, modify and distribute this software is granted
klao@946
    10
 * provided that this copyright notice appears in all copies. For
klao@946
    11
 * precise terms see the accompanying LICENSE file.
klao@946
    12
 *
klao@946
    13
 * This software is provided "AS IS" with no warranty of any kind,
klao@946
    14
 * express or implied, and with no claim as to its suitability for any
klao@946
    15
 * purpose.
klao@946
    16
 *
klao@946
    17
 */
klao@946
    18
klao@946
    19
#ifndef LEMON_GRAPH_UTILS_H
klao@946
    20
#define LEMON_GRAPH_UTILS_H
klao@946
    21
klao@946
    22
#include <iterator>
deba@1419
    23
#include <vector>
alpar@1402
    24
#include <map>
deba@1695
    25
#include <cmath>
klao@946
    26
deba@1993
    27
#include <lemon/bits/invalid.h>
deba@1993
    28
#include <lemon/bits/utility.h>
deba@1413
    29
#include <lemon/maps.h>
deba@1993
    30
#include <lemon/bits/traits.h>
deba@1990
    31
alpar@1459
    32
#include <lemon/bits/alteration_notifier.h>
deba@1990
    33
#include <lemon/bits/default_map.h>
klao@946
    34
alpar@947
    35
///\ingroup gutils
klao@946
    36
///\file
alpar@947
    37
///\brief Graph utilities.
klao@946
    38
///
alpar@964
    39
///
klao@946
    40
klao@946
    41
klao@946
    42
namespace lemon {
klao@946
    43
deba@1267
    44
  /// \addtogroup gutils
deba@1267
    45
  /// @{
alpar@947
    46
alpar@1756
    47
  ///Creates convenience typedefs for the graph types and iterators
alpar@1756
    48
alpar@1756
    49
  ///This \c \#define creates convenience typedefs for the following types
alpar@1756
    50
  ///of \c Graph: \c Node,  \c NodeIt, \c Edge, \c EdgeIt, \c InEdgeIt,
deba@2031
    51
  ///\c OutEdgeIt
alpar@1756
    52
  ///\note If \c G it a template parameter, it should be used in this way.
alpar@1756
    53
  ///\code
alpar@1756
    54
  ///  GRAPH_TYPEDEFS(typename G)
alpar@1756
    55
  ///\endcode
alpar@1756
    56
  ///
alpar@1756
    57
  ///\warning There are no typedefs for the graph maps because of the lack of
alpar@1756
    58
  ///template typedefs in C++.
alpar@1804
    59
#define GRAPH_TYPEDEFS(Graph)				\
alpar@1804
    60
  typedef Graph::     Node      Node;			\
alpar@1804
    61
    typedef Graph::   NodeIt    NodeIt;			\
alpar@1804
    62
    typedef Graph::   Edge      Edge;			\
alpar@1804
    63
    typedef Graph::   EdgeIt    EdgeIt;			\
alpar@1804
    64
    typedef Graph:: InEdgeIt  InEdgeIt;			\
alpar@1811
    65
    typedef Graph::OutEdgeIt OutEdgeIt;			
deba@2031
    66
alpar@1756
    67
  ///Creates convenience typedefs for the undirected graph types and iterators
alpar@1756
    68
alpar@1756
    69
  ///This \c \#define creates the same convenience typedefs as defined by
alpar@1756
    70
  ///\ref GRAPH_TYPEDEFS(Graph) and three more, namely it creates
klao@1909
    71
  ///\c UEdge, \c UEdgeIt, \c IncEdgeIt,
alpar@1756
    72
  ///
alpar@1756
    73
  ///\note If \c G it a template parameter, it should be used in this way.
alpar@1756
    74
  ///\code
deba@1992
    75
  ///  UGRAPH_TYPEDEFS(typename G)
alpar@1756
    76
  ///\endcode
alpar@1756
    77
  ///
alpar@1756
    78
  ///\warning There are no typedefs for the graph maps because of the lack of
alpar@1756
    79
  ///template typedefs in C++.
deba@1992
    80
#define UGRAPH_TYPEDEFS(Graph)				\
alpar@1804
    81
  GRAPH_TYPEDEFS(Graph)						\
klao@1909
    82
    typedef Graph:: UEdge   UEdge;			\
klao@1909
    83
    typedef Graph:: UEdgeIt UEdgeIt;			\
alpar@1811
    84
    typedef Graph:: IncEdgeIt   IncEdgeIt;		       
klao@1909
    85
//     typedef Graph::template UEdgeMap<bool> BoolUEdgeMap;	 
klao@1909
    86
//     typedef Graph::template UEdgeMap<int> IntUEdgeMap;
klao@1909
    87
//     typedef Graph::template UEdgeMap<double> DoubleUEdgeMap;
alpar@1756
    88
deba@2031
    89
  ///\brief Creates convenience typedefs for the bipartite undirected graph 
deba@2031
    90
  ///types and iterators
deba@2031
    91
deba@2031
    92
  ///This \c \#define creates the same convenience typedefs as defined by
deba@2031
    93
  ///\ref UGRAPH_TYPEDEFS(Graph) and two more, namely it creates
deba@2031
    94
  ///\c ANodeIt, \c BNodeIt, 
deba@2031
    95
  ///
deba@2031
    96
  ///\note If \c G it a template parameter, it should be used in this way.
deba@2031
    97
  ///\code
deba@2031
    98
  ///  BPUGRAPH_TYPEDEFS(typename G)
deba@2031
    99
  ///\endcode
deba@2031
   100
  ///
deba@2031
   101
  ///\warning There are no typedefs for the graph maps because of the lack of
deba@2031
   102
  ///template typedefs in C++.
deba@2031
   103
#define BPUGRAPH_TYPEDEFS(Graph)            \
deba@2031
   104
  UGRAPH_TYPEDEFS(Graph)                    \
deba@2031
   105
    typedef Graph::ANodeIt ANodeIt;	    \
deba@2031
   106
    typedef Graph::BNodeIt BNodeIt;
alpar@1756
   107
klao@946
   108
  /// \brief Function to count the items in the graph.
klao@946
   109
  ///
athos@1540
   110
  /// This function counts the items (nodes, edges etc) in the graph.
klao@946
   111
  /// The complexity of the function is O(n) because
klao@946
   112
  /// it iterates on all of the items.
klao@946
   113
deba@2020
   114
  template <typename Graph, typename Item>
klao@977
   115
  inline int countItems(const Graph& g) {
deba@2020
   116
    typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
klao@946
   117
    int num = 0;
klao@977
   118
    for (ItemIt it(g); it != INVALID; ++it) {
klao@946
   119
      ++num;
klao@946
   120
    }
klao@946
   121
    return num;
klao@946
   122
  }
klao@946
   123
klao@977
   124
  // Node counting:
klao@977
   125
deba@2020
   126
  namespace _graph_utils_bits {
deba@2020
   127
    
deba@2020
   128
    template <typename Graph, typename Enable = void>
deba@2020
   129
    struct CountNodesSelector {
deba@2020
   130
      static int count(const Graph &g) {
deba@2020
   131
        return countItems<Graph, typename Graph::Node>(g);
deba@2020
   132
      }
deba@2020
   133
    };
klao@977
   134
deba@2020
   135
    template <typename Graph>
deba@2020
   136
    struct CountNodesSelector<
deba@2020
   137
      Graph, typename 
deba@2020
   138
      enable_if<typename Graph::NodeNumTag, void>::type> 
deba@2020
   139
    {
deba@2020
   140
      static int count(const Graph &g) {
deba@2020
   141
        return g.nodeNum();
deba@2020
   142
      }
deba@2020
   143
    };    
klao@977
   144
  }
klao@977
   145
klao@946
   146
  /// \brief Function to count the nodes in the graph.
klao@946
   147
  ///
klao@946
   148
  /// This function counts the nodes in the graph.
klao@946
   149
  /// The complexity of the function is O(n) but for some
athos@1526
   150
  /// graph structures it is specialized to run in O(1).
klao@977
   151
  ///
klao@977
   152
  /// \todo refer how to specialize it
klao@946
   153
klao@946
   154
  template <typename Graph>
klao@977
   155
  inline int countNodes(const Graph& g) {
deba@2020
   156
    return _graph_utils_bits::CountNodesSelector<Graph>::count(g);
klao@977
   157
  }
klao@977
   158
deba@2029
   159
  namespace _graph_utils_bits {
deba@2029
   160
    
deba@2029
   161
    template <typename Graph, typename Enable = void>
deba@2029
   162
    struct CountANodesSelector {
deba@2029
   163
      static int count(const Graph &g) {
deba@2029
   164
        return countItems<Graph, typename Graph::ANode>(g);
deba@2029
   165
      }
deba@2029
   166
    };
deba@2029
   167
deba@2029
   168
    template <typename Graph>
deba@2029
   169
    struct CountANodesSelector<
deba@2029
   170
      Graph, typename 
deba@2029
   171
      enable_if<typename Graph::NodeNumTag, void>::type> 
deba@2029
   172
    {
deba@2029
   173
      static int count(const Graph &g) {
deba@2029
   174
        return g.nodeNum();
deba@2029
   175
      }
deba@2029
   176
    };    
deba@2029
   177
  }
deba@2029
   178
deba@2029
   179
  /// \brief Function to count the anodes in the graph.
deba@2029
   180
  ///
deba@2029
   181
  /// This function counts the anodes in the graph.
deba@2029
   182
  /// The complexity of the function is O(an) but for some
deba@2029
   183
  /// graph structures it is specialized to run in O(1).
deba@2029
   184
  ///
deba@2029
   185
  /// \todo refer how to specialize it
deba@2029
   186
deba@2029
   187
  template <typename Graph>
deba@2029
   188
  inline int countANodes(const Graph& g) {
deba@2029
   189
    return _graph_utils_bits::CountANodesSelector<Graph>::count(g);
deba@2029
   190
  }
deba@2029
   191
deba@2029
   192
  namespace _graph_utils_bits {
deba@2029
   193
    
deba@2029
   194
    template <typename Graph, typename Enable = void>
deba@2029
   195
    struct CountBNodesSelector {
deba@2029
   196
      static int count(const Graph &g) {
deba@2029
   197
        return countItems<Graph, typename Graph::BNode>(g);
deba@2029
   198
      }
deba@2029
   199
    };
deba@2029
   200
deba@2029
   201
    template <typename Graph>
deba@2029
   202
    struct CountBNodesSelector<
deba@2029
   203
      Graph, typename 
deba@2029
   204
      enable_if<typename Graph::NodeNumTag, void>::type> 
deba@2029
   205
    {
deba@2029
   206
      static int count(const Graph &g) {
deba@2029
   207
        return g.nodeNum();
deba@2029
   208
      }
deba@2029
   209
    };    
deba@2029
   210
  }
deba@2029
   211
deba@2029
   212
  /// \brief Function to count the bnodes in the graph.
deba@2029
   213
  ///
deba@2029
   214
  /// This function counts the bnodes in the graph.
deba@2029
   215
  /// The complexity of the function is O(bn) but for some
deba@2029
   216
  /// graph structures it is specialized to run in O(1).
deba@2029
   217
  ///
deba@2029
   218
  /// \todo refer how to specialize it
deba@2029
   219
deba@2029
   220
  template <typename Graph>
deba@2029
   221
  inline int countBNodes(const Graph& g) {
deba@2029
   222
    return _graph_utils_bits::CountBNodesSelector<Graph>::count(g);
deba@2029
   223
  }
deba@2029
   224
deba@2020
   225
klao@977
   226
  // Edge counting:
klao@977
   227
deba@2020
   228
  namespace _graph_utils_bits {
deba@2020
   229
    
deba@2020
   230
    template <typename Graph, typename Enable = void>
deba@2020
   231
    struct CountEdgesSelector {
deba@2020
   232
      static int count(const Graph &g) {
deba@2020
   233
        return countItems<Graph, typename Graph::Edge>(g);
deba@2020
   234
      }
deba@2020
   235
    };
klao@977
   236
deba@2020
   237
    template <typename Graph>
deba@2020
   238
    struct CountEdgesSelector<
deba@2020
   239
      Graph, 
deba@2020
   240
      typename enable_if<typename Graph::EdgeNumTag, void>::type> 
deba@2020
   241
    {
deba@2020
   242
      static int count(const Graph &g) {
deba@2020
   243
        return g.edgeNum();
deba@2020
   244
      }
deba@2020
   245
    };    
klao@946
   246
  }
klao@946
   247
klao@946
   248
  /// \brief Function to count the edges in the graph.
klao@946
   249
  ///
klao@946
   250
  /// This function counts the edges in the graph.
klao@946
   251
  /// The complexity of the function is O(e) but for some
athos@1526
   252
  /// graph structures it is specialized to run in O(1).
klao@977
   253
klao@946
   254
  template <typename Graph>
klao@977
   255
  inline int countEdges(const Graph& g) {
deba@2020
   256
    return _graph_utils_bits::CountEdgesSelector<Graph>::count(g);
klao@946
   257
  }
klao@946
   258
klao@1053
   259
  // Undirected edge counting:
deba@2020
   260
  namespace _graph_utils_bits {
deba@2020
   261
    
deba@2020
   262
    template <typename Graph, typename Enable = void>
deba@2020
   263
    struct CountUEdgesSelector {
deba@2020
   264
      static int count(const Graph &g) {
deba@2020
   265
        return countItems<Graph, typename Graph::UEdge>(g);
deba@2020
   266
      }
deba@2020
   267
    };
klao@1053
   268
deba@2020
   269
    template <typename Graph>
deba@2020
   270
    struct CountUEdgesSelector<
deba@2020
   271
      Graph, 
deba@2020
   272
      typename enable_if<typename Graph::EdgeNumTag, void>::type> 
deba@2020
   273
    {
deba@2020
   274
      static int count(const Graph &g) {
deba@2020
   275
        return g.uEdgeNum();
deba@2020
   276
      }
deba@2020
   277
    };    
klao@1053
   278
  }
klao@1053
   279
athos@1526
   280
  /// \brief Function to count the undirected edges in the graph.
klao@946
   281
  ///
athos@1526
   282
  /// This function counts the undirected edges in the graph.
klao@946
   283
  /// The complexity of the function is O(e) but for some
athos@1540
   284
  /// graph structures it is specialized to run in O(1).
klao@1053
   285
klao@946
   286
  template <typename Graph>
klao@1909
   287
  inline int countUEdges(const Graph& g) {
deba@2020
   288
    return _graph_utils_bits::CountUEdgesSelector<Graph>::count(g);
deba@2020
   289
klao@946
   290
  }
klao@946
   291
klao@977
   292
klao@946
   293
  template <typename Graph, typename DegIt>
klao@946
   294
  inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
klao@946
   295
    int num = 0;
klao@946
   296
    for (DegIt it(_g, _n); it != INVALID; ++it) {
klao@946
   297
      ++num;
klao@946
   298
    }
klao@946
   299
    return num;
klao@946
   300
  }
alpar@967
   301
deba@1531
   302
  /// \brief Function to count the number of the out-edges from node \c n.
deba@1531
   303
  ///
deba@1531
   304
  /// This function counts the number of the out-edges from node \c n
deba@1531
   305
  /// in the graph.  
deba@1531
   306
  template <typename Graph>
deba@1531
   307
  inline int countOutEdges(const Graph& _g,  const typename Graph::Node& _n) {
deba@1531
   308
    return countNodeDegree<Graph, typename Graph::OutEdgeIt>(_g, _n);
deba@1531
   309
  }
deba@1531
   310
deba@1531
   311
  /// \brief Function to count the number of the in-edges to node \c n.
deba@1531
   312
  ///
deba@1531
   313
  /// This function counts the number of the in-edges to node \c n
deba@1531
   314
  /// in the graph.  
deba@1531
   315
  template <typename Graph>
deba@1531
   316
  inline int countInEdges(const Graph& _g,  const typename Graph::Node& _n) {
deba@1531
   317
    return countNodeDegree<Graph, typename Graph::InEdgeIt>(_g, _n);
deba@1531
   318
  }
deba@1531
   319
deba@1704
   320
  /// \brief Function to count the number of the inc-edges to node \c n.
deba@1679
   321
  ///
deba@1704
   322
  /// This function counts the number of the inc-edges to node \c n
deba@1679
   323
  /// in the graph.  
deba@1679
   324
  template <typename Graph>
deba@1679
   325
  inline int countIncEdges(const Graph& _g,  const typename Graph::Node& _n) {
deba@1679
   326
    return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n);
deba@1679
   327
  }
deba@1679
   328
deba@2020
   329
  namespace _graph_utils_bits {
deba@2020
   330
    
deba@2020
   331
    template <typename Graph, typename Enable = void>
deba@2020
   332
    struct FindEdgeSelector {
deba@2020
   333
      typedef typename Graph::Node Node;
deba@2020
   334
      typedef typename Graph::Edge Edge;
deba@2020
   335
      static Edge find(const Graph &g, Node u, Node v, Edge e) {
deba@2020
   336
        if (e == INVALID) {
deba@2020
   337
          g.firstOut(e, u);
deba@2020
   338
        } else {
deba@2020
   339
          g.nextOut(e);
deba@2020
   340
        }
deba@2020
   341
        while (e != INVALID && g.target(e) != v) {
deba@2020
   342
          g.nextOut(e);
deba@2020
   343
        }
deba@2020
   344
        return e;
deba@2020
   345
      }
deba@2020
   346
    };
deba@1531
   347
deba@2020
   348
    template <typename Graph>
deba@2020
   349
    struct FindEdgeSelector<
deba@2020
   350
      Graph, 
deba@2020
   351
      typename enable_if<typename Graph::FindEdgeTag, void>::type> 
deba@2020
   352
    {
deba@2020
   353
      typedef typename Graph::Node Node;
deba@2020
   354
      typedef typename Graph::Edge Edge;
deba@2020
   355
      static Edge find(const Graph &g, Node u, Node v, Edge prev) {
deba@2020
   356
        return g.findEdge(u, v, prev);
deba@2020
   357
      }
deba@2020
   358
    };    
deba@1565
   359
  }
deba@1565
   360
deba@1565
   361
  /// \brief Finds an edge between two nodes of a graph.
deba@1565
   362
  ///
alpar@967
   363
  /// Finds an edge from node \c u to node \c v in graph \c g.
alpar@967
   364
  ///
alpar@967
   365
  /// If \c prev is \ref INVALID (this is the default value), then
alpar@967
   366
  /// it finds the first edge from \c u to \c v. Otherwise it looks for
alpar@967
   367
  /// the next edge from \c u to \c v after \c prev.
alpar@967
   368
  /// \return The found edge or \ref INVALID if there is no such an edge.
alpar@967
   369
  ///
alpar@967
   370
  /// Thus you can iterate through each edge from \c u to \c v as it follows.
alpar@1946
   371
  ///\code
alpar@967
   372
  /// for(Edge e=findEdge(g,u,v);e!=INVALID;e=findEdge(g,u,v,e)) {
alpar@967
   373
  ///   ...
alpar@967
   374
  /// }
alpar@1946
   375
  ///\endcode
alpar@2155
   376
  ///
alpar@2155
   377
  ///\sa ConEdgeIt
alpar@967
   378
  template <typename Graph>
deba@1565
   379
  inline typename Graph::Edge findEdge(const Graph &g,
deba@1565
   380
				       typename Graph::Node u, 
deba@1565
   381
				       typename Graph::Node v,
deba@1565
   382
				       typename Graph::Edge prev = INVALID) {
deba@2020
   383
    return _graph_utils_bits::FindEdgeSelector<Graph>::find(g, u, v, prev);
alpar@967
   384
  }
deba@1531
   385
deba@1565
   386
  /// \brief Iterator for iterating on edges connected the same nodes.
deba@1565
   387
  ///
deba@1565
   388
  /// Iterator for iterating on edges connected the same nodes. It is 
deba@1565
   389
  /// higher level interface for the findEdge() function. You can
alpar@1591
   390
  /// use it the following way:
alpar@1946
   391
  ///\code
deba@1565
   392
  /// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
deba@1565
   393
  ///   ...
deba@1565
   394
  /// }
alpar@1946
   395
  ///\endcode
alpar@2155
   396
  /// 
alpar@2155
   397
  ///\sa findEdge()
deba@1565
   398
  ///
deba@1565
   399
  /// \author Balazs Dezso 
deba@1565
   400
  template <typename _Graph>
deba@1565
   401
  class ConEdgeIt : public _Graph::Edge {
deba@1565
   402
  public:
deba@1565
   403
deba@1565
   404
    typedef _Graph Graph;
deba@1565
   405
    typedef typename Graph::Edge Parent;
deba@1565
   406
deba@1565
   407
    typedef typename Graph::Edge Edge;
deba@1565
   408
    typedef typename Graph::Node Node;
deba@1565
   409
deba@1565
   410
    /// \brief Constructor.
deba@1565
   411
    ///
deba@1565
   412
    /// Construct a new ConEdgeIt iterating on the edges which
deba@1565
   413
    /// connects the \c u and \c v node.
deba@1565
   414
    ConEdgeIt(const Graph& g, Node u, Node v) : graph(g) {
deba@1565
   415
      Parent::operator=(findEdge(graph, u, v));
deba@1565
   416
    }
deba@1565
   417
deba@1565
   418
    /// \brief Constructor.
deba@1565
   419
    ///
deba@1565
   420
    /// Construct a new ConEdgeIt which continues the iterating from 
deba@1565
   421
    /// the \c e edge.
deba@1565
   422
    ConEdgeIt(const Graph& g, Edge e) : Parent(e), graph(g) {}
deba@1565
   423
    
deba@1565
   424
    /// \brief Increment operator.
deba@1565
   425
    ///
deba@1565
   426
    /// It increments the iterator and gives back the next edge.
deba@1565
   427
    ConEdgeIt& operator++() {
deba@1565
   428
      Parent::operator=(findEdge(graph, graph.source(*this), 
deba@1565
   429
				 graph.target(*this), *this));
deba@1565
   430
      return *this;
deba@1565
   431
    }
deba@1565
   432
  private:
deba@1565
   433
    const Graph& graph;
deba@1565
   434
  };
deba@1565
   435
deba@2020
   436
  namespace _graph_utils_bits {
deba@2020
   437
    
deba@2020
   438
    template <typename Graph, typename Enable = void>
deba@2020
   439
    struct FindUEdgeSelector {
deba@2020
   440
      typedef typename Graph::Node Node;
deba@2020
   441
      typedef typename Graph::UEdge UEdge;
deba@2020
   442
      static UEdge find(const Graph &g, Node u, Node v, UEdge e) {
deba@2020
   443
        bool b;
deba@2020
   444
        if (u != v) {
deba@2020
   445
          if (e == INVALID) {
deba@2031
   446
            g.firstInc(e, b, u);
deba@2020
   447
          } else {
deba@2020
   448
            b = g.source(e) == u;
deba@2020
   449
            g.nextInc(e, b);
deba@2020
   450
          }
deba@2064
   451
          while (e != INVALID && (b ? g.target(e) : g.source(e)) != v) {
deba@2020
   452
            g.nextInc(e, b);
deba@2020
   453
          }
deba@2020
   454
        } else {
deba@2020
   455
          if (e == INVALID) {
deba@2031
   456
            g.firstInc(e, b, u);
deba@2020
   457
          } else {
deba@2020
   458
            b = true;
deba@2020
   459
            g.nextInc(e, b);
deba@2020
   460
          }
deba@2020
   461
          while (e != INVALID && (!b || g.target(e) != v)) {
deba@2020
   462
            g.nextInc(e, b);
deba@2020
   463
          }
deba@2020
   464
        }
deba@2020
   465
        return e;
deba@2020
   466
      }
deba@2020
   467
    };
deba@1704
   468
deba@2020
   469
    template <typename Graph>
deba@2020
   470
    struct FindUEdgeSelector<
deba@2020
   471
      Graph, 
deba@2020
   472
      typename enable_if<typename Graph::FindEdgeTag, void>::type> 
deba@2020
   473
    {
deba@2020
   474
      typedef typename Graph::Node Node;
deba@2020
   475
      typedef typename Graph::UEdge UEdge;
deba@2020
   476
      static UEdge find(const Graph &g, Node u, Node v, UEdge prev) {
deba@2020
   477
        return g.findUEdge(u, v, prev);
deba@2020
   478
      }
deba@2020
   479
    };    
deba@1704
   480
  }
deba@1704
   481
klao@1909
   482
  /// \brief Finds an uedge between two nodes of a graph.
deba@1704
   483
  ///
klao@1909
   484
  /// Finds an uedge from node \c u to node \c v in graph \c g.
deba@2020
   485
  /// If the node \c u and node \c v is equal then each loop edge
deba@2020
   486
  /// will be enumerated.
deba@1704
   487
  ///
deba@1704
   488
  /// If \c prev is \ref INVALID (this is the default value), then
deba@1704
   489
  /// it finds the first edge from \c u to \c v. Otherwise it looks for
deba@1704
   490
  /// the next edge from \c u to \c v after \c prev.
deba@1704
   491
  /// \return The found edge or \ref INVALID if there is no such an edge.
deba@1704
   492
  ///
deba@1704
   493
  /// Thus you can iterate through each edge from \c u to \c v as it follows.
alpar@1946
   494
  ///\code
klao@1909
   495
  /// for(UEdge e = findUEdge(g,u,v); e != INVALID; 
klao@1909
   496
  ///     e = findUEdge(g,u,v,e)) {
deba@1704
   497
  ///   ...
deba@1704
   498
  /// }
alpar@1946
   499
  ///\endcode
alpar@2155
   500
  ///
alpar@2155
   501
  ///\sa ConEdgeIt
alpar@2155
   502
deba@1704
   503
  template <typename Graph>
deba@2031
   504
  inline typename Graph::UEdge findUEdge(const Graph &g,
deba@2031
   505
                                         typename Graph::Node u, 
deba@2031
   506
                                         typename Graph::Node v,
deba@2031
   507
                                         typename Graph::UEdge p = INVALID) {
deba@2031
   508
    return _graph_utils_bits::FindUEdgeSelector<Graph>::find(g, u, v, p);
deba@1704
   509
  }
deba@1704
   510
klao@1909
   511
  /// \brief Iterator for iterating on uedges connected the same nodes.
deba@1704
   512
  ///
klao@1909
   513
  /// Iterator for iterating on uedges connected the same nodes. It is 
klao@1909
   514
  /// higher level interface for the findUEdge() function. You can
deba@1704
   515
  /// use it the following way:
alpar@1946
   516
  ///\code
klao@1909
   517
  /// for (ConUEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
deba@1704
   518
  ///   ...
deba@1704
   519
  /// }
alpar@1946
   520
  ///\endcode
deba@1704
   521
  ///
alpar@2155
   522
  ///\sa findUEdge()
alpar@2155
   523
  ///
deba@1704
   524
  /// \author Balazs Dezso 
deba@1704
   525
  template <typename _Graph>
klao@1909
   526
  class ConUEdgeIt : public _Graph::UEdge {
deba@1704
   527
  public:
deba@1704
   528
deba@1704
   529
    typedef _Graph Graph;
klao@1909
   530
    typedef typename Graph::UEdge Parent;
deba@1704
   531
klao@1909
   532
    typedef typename Graph::UEdge UEdge;
deba@1704
   533
    typedef typename Graph::Node Node;
deba@1704
   534
deba@1704
   535
    /// \brief Constructor.
deba@1704
   536
    ///
klao@1909
   537
    /// Construct a new ConUEdgeIt iterating on the edges which
deba@1704
   538
    /// connects the \c u and \c v node.
klao@1909
   539
    ConUEdgeIt(const Graph& g, Node u, Node v) : graph(g) {
klao@1909
   540
      Parent::operator=(findUEdge(graph, u, v));
deba@1704
   541
    }
deba@1704
   542
deba@1704
   543
    /// \brief Constructor.
deba@1704
   544
    ///
klao@1909
   545
    /// Construct a new ConUEdgeIt which continues the iterating from 
deba@1704
   546
    /// the \c e edge.
klao@1909
   547
    ConUEdgeIt(const Graph& g, UEdge e) : Parent(e), graph(g) {}
deba@1704
   548
    
deba@1704
   549
    /// \brief Increment operator.
deba@1704
   550
    ///
deba@1704
   551
    /// It increments the iterator and gives back the next edge.
klao@1909
   552
    ConUEdgeIt& operator++() {
klao@1909
   553
      Parent::operator=(findUEdge(graph, graph.source(*this), 
deba@1829
   554
				      graph.target(*this), *this));
deba@1704
   555
      return *this;
deba@1704
   556
    }
deba@1704
   557
  private:
deba@1704
   558
    const Graph& graph;
deba@1704
   559
  };
deba@1704
   560
athos@1540
   561
  /// \brief Copy a map.
alpar@964
   562
  ///
alpar@1547
   563
  /// This function copies the \c source map to the \c target map. It uses the
athos@1540
   564
  /// given iterator to iterate on the data structure and it uses the \c ref
athos@1540
   565
  /// mapping to convert the source's keys to the target's keys.
deba@1531
   566
  template <typename Target, typename Source, 
deba@1531
   567
	    typename ItemIt, typename Ref>	    
deba@1531
   568
  void copyMap(Target& target, const Source& source, 
deba@1531
   569
	       ItemIt it, const Ref& ref) {
deba@1531
   570
    for (; it != INVALID; ++it) {
deba@1531
   571
      target[ref[it]] = source[it];
klao@946
   572
    }
klao@946
   573
  }
klao@946
   574
deba@1531
   575
  /// \brief Copy the source map to the target map.
deba@1531
   576
  ///
deba@1531
   577
  /// Copy the \c source map to the \c target map. It uses the given iterator
deba@1531
   578
  /// to iterate on the data structure.
deba@1830
   579
  template <typename Target, typename Source, typename ItemIt>	    
deba@1531
   580
  void copyMap(Target& target, const Source& source, ItemIt it) {
deba@1531
   581
    for (; it != INVALID; ++it) {
deba@1531
   582
      target[it] = source[it];
klao@946
   583
    }
klao@946
   584
  }
klao@946
   585
athos@1540
   586
  /// \brief Class to copy a graph.
deba@1531
   587
  ///
alpar@2006
   588
  /// Class to copy a graph to another graph (duplicate a graph). The
athos@1540
   589
  /// simplest way of using it is through the \c copyGraph() function.
deba@1531
   590
  template <typename Target, typename Source>
deba@1267
   591
  class GraphCopy {
deba@1531
   592
  public: 
deba@1531
   593
    typedef typename Source::Node Node;
deba@1531
   594
    typedef typename Source::NodeIt NodeIt;
deba@1531
   595
    typedef typename Source::Edge Edge;
deba@1531
   596
    typedef typename Source::EdgeIt EdgeIt;
klao@946
   597
deba@1531
   598
    typedef typename Source::template NodeMap<typename Target::Node>NodeRefMap;
deba@1531
   599
    typedef typename Source::template EdgeMap<typename Target::Edge>EdgeRefMap;
klao@946
   600
deba@1531
   601
    /// \brief Constructor for the GraphCopy.
deba@1531
   602
    ///
deba@1531
   603
    /// It copies the content of the \c _source graph into the
deba@1531
   604
    /// \c _target graph. It creates also two references, one beetween
deba@1531
   605
    /// the two nodeset and one beetween the two edgesets.
deba@1531
   606
    GraphCopy(Target& _target, const Source& _source) 
deba@1531
   607
      : source(_source), target(_target), 
deba@1531
   608
	nodeRefMap(_source), edgeRefMap(_source) {
deba@1531
   609
      for (NodeIt it(source); it != INVALID; ++it) {
deba@1531
   610
	nodeRefMap[it] = target.addNode();
deba@1531
   611
      }
deba@1531
   612
      for (EdgeIt it(source); it != INVALID; ++it) {
deba@1531
   613
	edgeRefMap[it] = target.addEdge(nodeRefMap[source.source(it)], 
deba@1531
   614
					nodeRefMap[source.target(it)]);
deba@1531
   615
      }
deba@1267
   616
    }
klao@946
   617
deba@1531
   618
    /// \brief Copies the node references into the given map.
deba@1531
   619
    ///
deba@1531
   620
    /// Copies the node references into the given map.
deba@1531
   621
    template <typename NodeRef>
deba@1531
   622
    const GraphCopy& nodeRef(NodeRef& map) const {
deba@1531
   623
      for (NodeIt it(source); it != INVALID; ++it) {
deba@1531
   624
	map.set(it, nodeRefMap[it]);
deba@1531
   625
      }
deba@1531
   626
      return *this;
deba@1267
   627
    }
deba@1531
   628
deba@1531
   629
    /// \brief Reverse and copies the node references into the given map.
deba@1531
   630
    ///
deba@1531
   631
    /// Reverse and copies the node references into the given map.
deba@1531
   632
    template <typename NodeRef>
deba@1531
   633
    const GraphCopy& nodeCrossRef(NodeRef& map) const {
deba@1531
   634
      for (NodeIt it(source); it != INVALID; ++it) {
deba@1531
   635
	map.set(nodeRefMap[it], it);
deba@1531
   636
      }
deba@1531
   637
      return *this;
deba@1531
   638
    }
deba@1531
   639
deba@1531
   640
    /// \brief Copies the edge references into the given map.
deba@1531
   641
    ///
deba@1531
   642
    /// Copies the edge references into the given map.
deba@1531
   643
    template <typename EdgeRef>
deba@1531
   644
    const GraphCopy& edgeRef(EdgeRef& map) const {
deba@1531
   645
      for (EdgeIt it(source); it != INVALID; ++it) {
deba@1531
   646
	map.set(it, edgeRefMap[it]);
deba@1531
   647
      }
deba@1531
   648
      return *this;
deba@1531
   649
    }
deba@1531
   650
deba@1531
   651
    /// \brief Reverse and copies the edge references into the given map.
deba@1531
   652
    ///
deba@1531
   653
    /// Reverse and copies the edge references into the given map.
deba@1531
   654
    template <typename EdgeRef>
deba@1531
   655
    const GraphCopy& edgeCrossRef(EdgeRef& map) const {
deba@1531
   656
      for (EdgeIt it(source); it != INVALID; ++it) {
deba@1531
   657
	map.set(edgeRefMap[it], it);
deba@1531
   658
      }
deba@1531
   659
      return *this;
deba@1531
   660
    }
deba@1531
   661
deba@1531
   662
    /// \brief Make copy of the given map.
deba@1531
   663
    ///
deba@1531
   664
    /// Makes copy of the given map for the newly created graph. 
deba@1531
   665
    /// The new map's key type is the target graph's node type,
deba@1531
   666
    /// and the copied map's key type is the source graph's node
deba@1531
   667
    /// type.  
deba@1531
   668
    template <typename TargetMap, typename SourceMap>
deba@1531
   669
    const GraphCopy& nodeMap(TargetMap& tMap, const SourceMap& sMap) const {
deba@1531
   670
      copyMap(tMap, sMap, NodeIt(source), nodeRefMap);
deba@1531
   671
      return *this;
deba@1531
   672
    }
deba@1531
   673
deba@1531
   674
    /// \brief Make copy of the given map.
deba@1531
   675
    ///
deba@1531
   676
    /// Makes copy of the given map for the newly created graph. 
deba@1531
   677
    /// The new map's key type is the target graph's edge type,
deba@1531
   678
    /// and the copied map's key type is the source graph's edge
deba@1531
   679
    /// type.  
deba@1531
   680
    template <typename TargetMap, typename SourceMap>
deba@1531
   681
    const GraphCopy& edgeMap(TargetMap& tMap, const SourceMap& sMap) const {
deba@1531
   682
      copyMap(tMap, sMap, EdgeIt(source), edgeRefMap);
deba@1531
   683
      return *this;
deba@1531
   684
    }
deba@1531
   685
deba@1531
   686
    /// \brief Gives back the stored node references.
deba@1531
   687
    ///
deba@1531
   688
    /// Gives back the stored node references.
deba@1531
   689
    const NodeRefMap& nodeRef() const {
deba@1531
   690
      return nodeRefMap;
deba@1531
   691
    }
deba@1531
   692
deba@1531
   693
    /// \brief Gives back the stored edge references.
deba@1531
   694
    ///
deba@1531
   695
    /// Gives back the stored edge references.
deba@1531
   696
    const EdgeRefMap& edgeRef() const {
deba@1531
   697
      return edgeRefMap;
deba@1531
   698
    }
deba@1531
   699
deba@1981
   700
    void run() const {}
deba@1720
   701
deba@1531
   702
  private:
deba@1531
   703
    
deba@1531
   704
    const Source& source;
deba@1531
   705
    Target& target;
deba@1531
   706
deba@1531
   707
    NodeRefMap nodeRefMap;
deba@1531
   708
    EdgeRefMap edgeRefMap;
deba@1267
   709
  };
klao@946
   710
alpar@2006
   711
  /// \brief Copy a graph to another graph.
deba@1531
   712
  ///
alpar@2006
   713
  /// Copy a graph to another graph.
deba@1531
   714
  /// The usage of the function:
deba@1531
   715
  /// 
alpar@1946
   716
  ///\code
deba@1531
   717
  /// copyGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr);
alpar@1946
   718
  ///\endcode
deba@1531
   719
  /// 
deba@1531
   720
  /// After the copy the \c nr map will contain the mapping from the
deba@1531
   721
  /// source graph's nodes to the target graph's nodes and the \c ecr will
athos@1540
   722
  /// contain the mapping from the target graph's edges to the source's
deba@1531
   723
  /// edges.
deba@1531
   724
  template <typename Target, typename Source>
deba@1531
   725
  GraphCopy<Target, Source> copyGraph(Target& target, const Source& source) {
deba@1531
   726
    return GraphCopy<Target, Source>(target, source);
deba@1531
   727
  }
klao@946
   728
deba@1720
   729
  /// \brief Class to copy an undirected graph.
deba@1720
   730
  ///
alpar@2006
   731
  /// Class to copy an undirected graph to another graph (duplicate a graph).
klao@1909
   732
  /// The simplest way of using it is through the \c copyUGraph() function.
deba@1720
   733
  template <typename Target, typename Source>
klao@1909
   734
  class UGraphCopy {
deba@1720
   735
  public: 
deba@1720
   736
    typedef typename Source::Node Node;
deba@1720
   737
    typedef typename Source::NodeIt NodeIt;
deba@1720
   738
    typedef typename Source::Edge Edge;
deba@1720
   739
    typedef typename Source::EdgeIt EdgeIt;
klao@1909
   740
    typedef typename Source::UEdge UEdge;
klao@1909
   741
    typedef typename Source::UEdgeIt UEdgeIt;
deba@1720
   742
deba@1720
   743
    typedef typename Source::
deba@1720
   744
    template NodeMap<typename Target::Node> NodeRefMap;
deba@1720
   745
    
deba@1720
   746
    typedef typename Source::
klao@1909
   747
    template UEdgeMap<typename Target::UEdge> UEdgeRefMap;
deba@1720
   748
deba@1720
   749
  private:
deba@1720
   750
deba@1720
   751
    struct EdgeRefMap {
klao@1909
   752
      EdgeRefMap(UGraphCopy& _gc) : gc(_gc) {}
deba@1720
   753
      typedef typename Source::Edge Key;
deba@1720
   754
      typedef typename Target::Edge Value;
deba@1720
   755
deba@1720
   756
      Value operator[](const Key& key) {
klao@1909
   757
	return gc.target.direct(gc.uEdgeRef[key], 
deba@1720
   758
				gc.target.direction(key));
deba@1720
   759
      }
deba@1720
   760
      
klao@1909
   761
      UGraphCopy& gc;
deba@1720
   762
    };
deba@1720
   763
    
deba@1192
   764
  public:
deba@1720
   765
klao@1909
   766
    /// \brief Constructor for the UGraphCopy.
deba@1720
   767
    ///
deba@1720
   768
    /// It copies the content of the \c _source graph into the
deba@1720
   769
    /// \c _target graph. It creates also two references, one beetween
deba@1720
   770
    /// the two nodeset and one beetween the two edgesets.
klao@1909
   771
    UGraphCopy(Target& _target, const Source& _source) 
deba@1720
   772
      : source(_source), target(_target), 
klao@1909
   773
	nodeRefMap(_source), edgeRefMap(*this), uEdgeRefMap(_source) {
deba@1720
   774
      for (NodeIt it(source); it != INVALID; ++it) {
deba@1720
   775
	nodeRefMap[it] = target.addNode();
deba@1720
   776
      }
klao@1909
   777
      for (UEdgeIt it(source); it != INVALID; ++it) {
klao@1909
   778
	uEdgeRefMap[it] = target.addEdge(nodeRefMap[source.source(it)], 
deba@1720
   779
					nodeRefMap[source.target(it)]);
deba@1720
   780
      }
deba@1720
   781
    }
deba@1720
   782
deba@1720
   783
    /// \brief Copies the node references into the given map.
deba@1720
   784
    ///
deba@1720
   785
    /// Copies the node references into the given map.
deba@1720
   786
    template <typename NodeRef>
klao@1909
   787
    const UGraphCopy& nodeRef(NodeRef& map) const {
deba@1720
   788
      for (NodeIt it(source); it != INVALID; ++it) {
deba@1720
   789
	map.set(it, nodeRefMap[it]);
deba@1720
   790
      }
deba@1720
   791
      return *this;
deba@1720
   792
    }
deba@1720
   793
deba@1720
   794
    /// \brief Reverse and copies the node references into the given map.
deba@1720
   795
    ///
deba@1720
   796
    /// Reverse and copies the node references into the given map.
deba@1720
   797
    template <typename NodeRef>
klao@1909
   798
    const UGraphCopy& nodeCrossRef(NodeRef& map) const {
deba@1720
   799
      for (NodeIt it(source); it != INVALID; ++it) {
deba@1720
   800
	map.set(nodeRefMap[it], it);
deba@1720
   801
      }
deba@1720
   802
      return *this;
deba@1720
   803
    }
deba@1720
   804
deba@1720
   805
    /// \brief Copies the edge references into the given map.
deba@1720
   806
    ///
deba@1720
   807
    /// Copies the edge references into the given map.
deba@1720
   808
    template <typename EdgeRef>
klao@1909
   809
    const UGraphCopy& edgeRef(EdgeRef& map) const {
deba@1720
   810
      for (EdgeIt it(source); it != INVALID; ++it) {
deba@1720
   811
	map.set(edgeRefMap[it], it);
deba@1720
   812
      }
deba@1720
   813
      return *this;
deba@1720
   814
    }
deba@1720
   815
deba@1720
   816
    /// \brief Reverse and copies the undirected edge references into the 
deba@1720
   817
    /// given map.
deba@1720
   818
    ///
deba@1720
   819
    /// Reverse and copies the undirected edge references into the given map.
deba@1720
   820
    template <typename EdgeRef>
klao@1909
   821
    const UGraphCopy& edgeCrossRef(EdgeRef& map) const {
deba@1720
   822
      for (EdgeIt it(source); it != INVALID; ++it) {
deba@1720
   823
	map.set(it, edgeRefMap[it]);
deba@1720
   824
      }
deba@1720
   825
      return *this;
deba@1720
   826
    }
deba@1720
   827
deba@1720
   828
    /// \brief Copies the undirected edge references into the given map.
deba@1720
   829
    ///
deba@1720
   830
    /// Copies the undirected edge references into the given map.
deba@1720
   831
    template <typename EdgeRef>
klao@1909
   832
    const UGraphCopy& uEdgeRef(EdgeRef& map) const {
klao@1909
   833
      for (UEdgeIt it(source); it != INVALID; ++it) {
klao@1909
   834
	map.set(it, uEdgeRefMap[it]);
deba@1720
   835
      }
deba@1720
   836
      return *this;
deba@1720
   837
    }
deba@1720
   838
deba@1720
   839
    /// \brief Reverse and copies the undirected edge references into the 
deba@1720
   840
    /// given map.
deba@1720
   841
    ///
deba@1720
   842
    /// Reverse and copies the undirected edge references into the given map.
deba@1720
   843
    template <typename EdgeRef>
klao@1909
   844
    const UGraphCopy& uEdgeCrossRef(EdgeRef& map) const {
klao@1909
   845
      for (UEdgeIt it(source); it != INVALID; ++it) {
klao@1909
   846
	map.set(uEdgeRefMap[it], it);
deba@1720
   847
      }
deba@1720
   848
      return *this;
deba@1720
   849
    }
deba@1720
   850
deba@1720
   851
    /// \brief Make copy of the given map.
deba@1720
   852
    ///
deba@1720
   853
    /// Makes copy of the given map for the newly created graph. 
deba@1720
   854
    /// The new map's key type is the target graph's node type,
deba@1720
   855
    /// and the copied map's key type is the source graph's node
deba@1720
   856
    /// type.  
deba@1720
   857
    template <typename TargetMap, typename SourceMap>
klao@1909
   858
    const UGraphCopy& nodeMap(TargetMap& tMap, 
deba@1720
   859
				  const SourceMap& sMap) const {
deba@1720
   860
      copyMap(tMap, sMap, NodeIt(source), nodeRefMap);
deba@1720
   861
      return *this;
deba@1720
   862
    }
deba@1720
   863
deba@1720
   864
    /// \brief Make copy of the given map.
deba@1720
   865
    ///
deba@1720
   866
    /// Makes copy of the given map for the newly created graph. 
deba@1720
   867
    /// The new map's key type is the target graph's edge type,
deba@1720
   868
    /// and the copied map's key type is the source graph's edge
deba@1720
   869
    /// type.  
deba@1720
   870
    template <typename TargetMap, typename SourceMap>
klao@1909
   871
    const UGraphCopy& edgeMap(TargetMap& tMap, 
deba@1720
   872
				  const SourceMap& sMap) const {
deba@1720
   873
      copyMap(tMap, sMap, EdgeIt(source), edgeRefMap);
deba@1720
   874
      return *this;
deba@1720
   875
    }
deba@1720
   876
deba@1720
   877
    /// \brief Make copy of the given map.
deba@1720
   878
    ///
deba@1720
   879
    /// Makes copy of the given map for the newly created graph. 
deba@1720
   880
    /// The new map's key type is the target graph's edge type,
deba@1720
   881
    /// and the copied map's key type is the source graph's edge
deba@1720
   882
    /// type.  
deba@1720
   883
    template <typename TargetMap, typename SourceMap>
klao@1909
   884
    const UGraphCopy& uEdgeMap(TargetMap& tMap, 
deba@1720
   885
				  const SourceMap& sMap) const {
klao@1909
   886
      copyMap(tMap, sMap, UEdgeIt(source), uEdgeRefMap);
deba@1720
   887
      return *this;
deba@1720
   888
    }
deba@1720
   889
deba@1720
   890
    /// \brief Gives back the stored node references.
deba@1720
   891
    ///
deba@1720
   892
    /// Gives back the stored node references.
deba@1720
   893
    const NodeRefMap& nodeRef() const {
deba@1720
   894
      return nodeRefMap;
deba@1720
   895
    }
deba@1720
   896
deba@1720
   897
    /// \brief Gives back the stored edge references.
deba@1720
   898
    ///
deba@1720
   899
    /// Gives back the stored edge references.
deba@1720
   900
    const EdgeRefMap& edgeRef() const {
deba@1720
   901
      return edgeRefMap;
deba@1720
   902
    }
deba@1720
   903
klao@1909
   904
    /// \brief Gives back the stored uedge references.
deba@1720
   905
    ///
klao@1909
   906
    /// Gives back the stored uedge references.
klao@1909
   907
    const UEdgeRefMap& uEdgeRef() const {
klao@1909
   908
      return uEdgeRefMap;
deba@1720
   909
    }
deba@1720
   910
deba@1981
   911
    void run() const {}
deba@1720
   912
deba@1720
   913
  private:
deba@1192
   914
    
deba@1720
   915
    const Source& source;
deba@1720
   916
    Target& target;
alpar@947
   917
deba@1720
   918
    NodeRefMap nodeRefMap;
deba@1720
   919
    EdgeRefMap edgeRefMap;
klao@1909
   920
    UEdgeRefMap uEdgeRefMap;
deba@1192
   921
  };
deba@1192
   922
alpar@2006
   923
  /// \brief Copy a graph to another graph.
deba@1720
   924
  ///
alpar@2006
   925
  /// Copy a graph to another graph.
deba@1720
   926
  /// The usage of the function:
deba@1720
   927
  /// 
alpar@1946
   928
  ///\code
alpar@2022
   929
  /// copyUGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr);
alpar@1946
   930
  ///\endcode
deba@1720
   931
  /// 
deba@1720
   932
  /// After the copy the \c nr map will contain the mapping from the
deba@1720
   933
  /// source graph's nodes to the target graph's nodes and the \c ecr will
deba@1720
   934
  /// contain the mapping from the target graph's edges to the source's
deba@1720
   935
  /// edges.
deba@1720
   936
  template <typename Target, typename Source>
klao@1909
   937
  UGraphCopy<Target, Source> 
klao@1909
   938
  copyUGraph(Target& target, const Source& source) {
klao@1909
   939
    return UGraphCopy<Target, Source>(target, source);
deba@1720
   940
  }
deba@1192
   941
deba@1192
   942
deba@1192
   943
  /// @}
alpar@1402
   944
alpar@1402
   945
  /// \addtogroup graph_maps
alpar@1402
   946
  /// @{
alpar@1402
   947
deba@1413
   948
  /// Provides an immutable and unique id for each item in the graph.
deba@1413
   949
athos@1540
   950
  /// The IdMap class provides a unique and immutable id for each item of the
athos@1540
   951
  /// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
athos@1540
   952
  /// different items (nodes) get different ids <li>\b immutable: the id of an
athos@1540
   953
  /// item (node) does not change (even if you delete other nodes).  </ul>
athos@1540
   954
  /// Through this map you get access (i.e. can read) the inner id values of
athos@1540
   955
  /// the items stored in the graph. This map can be inverted with its member
athos@1540
   956
  /// class \c InverseMap.
deba@1413
   957
  ///
deba@1413
   958
  template <typename _Graph, typename _Item>
deba@1413
   959
  class IdMap {
deba@1413
   960
  public:
deba@1413
   961
    typedef _Graph Graph;
deba@1413
   962
    typedef int Value;
deba@1413
   963
    typedef _Item Item;
deba@1413
   964
    typedef _Item Key;
deba@1413
   965
deba@1413
   966
    /// \brief Constructor.
deba@1413
   967
    ///
deba@1413
   968
    /// Constructor for creating id map.
deba@1413
   969
    IdMap(const Graph& _graph) : graph(&_graph) {}
deba@1413
   970
deba@1413
   971
    /// \brief Gives back the \e id of the item.
deba@1413
   972
    ///
deba@1413
   973
    /// Gives back the immutable and unique \e id of the map.
deba@1413
   974
    int operator[](const Item& item) const { return graph->id(item);}
deba@1413
   975
deba@1413
   976
deba@1413
   977
  private:
deba@1413
   978
    const Graph* graph;
deba@1413
   979
deba@1413
   980
  public:
deba@1413
   981
athos@1540
   982
    /// \brief The class represents the inverse of its owner (IdMap).
deba@1413
   983
    ///
athos@1540
   984
    /// The class represents the inverse of its owner (IdMap).
deba@1413
   985
    /// \see inverse()
deba@1413
   986
    class InverseMap {
deba@1413
   987
    public:
deba@1419
   988
deba@1413
   989
      /// \brief Constructor.
deba@1413
   990
      ///
deba@1413
   991
      /// Constructor for creating an id-to-item map.
deba@1413
   992
      InverseMap(const Graph& _graph) : graph(&_graph) {}
deba@1413
   993
deba@1413
   994
      /// \brief Constructor.
deba@1413
   995
      ///
deba@1413
   996
      /// Constructor for creating an id-to-item map.
deba@1413
   997
      InverseMap(const IdMap& idMap) : graph(idMap.graph) {}
deba@1413
   998
deba@1413
   999
      /// \brief Gives back the given item from its id.
deba@1413
  1000
      ///
deba@1413
  1001
      /// Gives back the given item from its id.
deba@1413
  1002
      /// 
deba@1413
  1003
      Item operator[](int id) const { return graph->fromId(id, Item());}
deba@1413
  1004
    private:
deba@1413
  1005
      const Graph* graph;
deba@1413
  1006
    };
deba@1413
  1007
deba@1413
  1008
    /// \brief Gives back the inverse of the map.
deba@1413
  1009
    ///
athos@1540
  1010
    /// Gives back the inverse of the IdMap.
deba@1413
  1011
    InverseMap inverse() const { return InverseMap(*graph);} 
deba@1413
  1012
deba@1413
  1013
  };
deba@1413
  1014
deba@1413
  1015
  
athos@1526
  1016
  /// \brief General invertable graph-map type.
alpar@1402
  1017
athos@1540
  1018
  /// This type provides simple invertable graph-maps. 
athos@1526
  1019
  /// The InvertableMap wraps an arbitrary ReadWriteMap 
athos@1526
  1020
  /// and if a key is set to a new value then store it
alpar@1402
  1021
  /// in the inverse map.
deba@1931
  1022
  ///
deba@1931
  1023
  /// The values of the map can be accessed
deba@1931
  1024
  /// with stl compatible forward iterator.
deba@1931
  1025
  ///
alpar@1402
  1026
  /// \param _Graph The graph type.
deba@1830
  1027
  /// \param _Item The item type of the graph.
deba@1830
  1028
  /// \param _Value The value type of the map.
deba@1931
  1029
  ///
deba@1931
  1030
  /// \see IterableValueMap
deba@1830
  1031
#ifndef DOXYGEN
deba@1830
  1032
  /// \param _Map A ReadWriteMap mapping from the item type to integer.
alpar@1402
  1033
  template <
deba@1990
  1034
    typename _Graph, typename _Item, typename _Value, 
deba@1990
  1035
    typename _Map = DefaultMap<_Graph, _Item, _Value>
alpar@1402
  1036
  >
deba@1830
  1037
#else
deba@1830
  1038
  template <typename _Graph, typename _Item, typename _Value>
deba@1830
  1039
#endif
deba@1413
  1040
  class InvertableMap : protected _Map {
alpar@1402
  1041
  public:
deba@1413
  1042
klao@1909
  1043
    /// The key type of InvertableMap (Node, Edge, UEdge).
alpar@1402
  1044
    typedef typename _Map::Key Key;
deba@1413
  1045
    /// The value type of the InvertableMap.
alpar@1402
  1046
    typedef typename _Map::Value Value;
alpar@1402
  1047
deba@1931
  1048
  private:
deba@1931
  1049
    
deba@1931
  1050
    typedef _Map Map;
deba@1931
  1051
    typedef _Graph Graph;
deba@1931
  1052
deba@1931
  1053
    typedef std::map<Value, Key> Container;
deba@1931
  1054
    Container invMap;    
deba@1931
  1055
deba@1931
  1056
  public:
deba@1931
  1057
 
deba@1931
  1058
deba@1931
  1059
alpar@1402
  1060
    /// \brief Constructor.
alpar@1402
  1061
    ///
deba@1413
  1062
    /// Construct a new InvertableMap for the graph.
alpar@1402
  1063
    ///
deba@1413
  1064
    InvertableMap(const Graph& graph) : Map(graph) {} 
deba@1931
  1065
deba@1931
  1066
    /// \brief Forward iterator for values.
deba@1931
  1067
    ///
deba@1931
  1068
    /// This iterator is an stl compatible forward
deba@1931
  1069
    /// iterator on the values of the map. The values can
deba@1931
  1070
    /// be accessed in the [beginValue, endValue) range.
deba@1931
  1071
    ///
deba@1931
  1072
    class ValueIterator 
deba@1931
  1073
      : public std::iterator<std::forward_iterator_tag, Value> {
deba@1931
  1074
      friend class InvertableMap;
deba@1931
  1075
    private:
deba@1931
  1076
      ValueIterator(typename Container::const_iterator _it) 
deba@1931
  1077
        : it(_it) {}
deba@1931
  1078
    public:
deba@1931
  1079
      
deba@1931
  1080
      ValueIterator() {}
deba@1931
  1081
deba@1931
  1082
      ValueIterator& operator++() { ++it; return *this; }
deba@1931
  1083
      ValueIterator operator++(int) { 
deba@1931
  1084
        ValueIterator tmp(*this); 
deba@1931
  1085
        operator++();
deba@1931
  1086
        return tmp; 
deba@1931
  1087
      }
deba@1931
  1088
deba@1931
  1089
      const Value& operator*() const { return it->first; }
deba@1931
  1090
      const Value* operator->() const { return &(it->first); }
deba@1931
  1091
deba@1931
  1092
      bool operator==(ValueIterator jt) const { return it == jt.it; }
deba@1931
  1093
      bool operator!=(ValueIterator jt) const { return it != jt.it; }
deba@1931
  1094
      
deba@1931
  1095
    private:
deba@1931
  1096
      typename Container::const_iterator it;
deba@1931
  1097
    };
deba@1931
  1098
deba@1931
  1099
    /// \brief Returns an iterator to the first value.
deba@1931
  1100
    ///
deba@1931
  1101
    /// Returns an stl compatible iterator to the 
deba@1931
  1102
    /// first value of the map. The values of the
deba@1931
  1103
    /// map can be accessed in the [beginValue, endValue)
deba@1931
  1104
    /// range.
deba@1931
  1105
    ValueIterator beginValue() const {
deba@1931
  1106
      return ValueIterator(invMap.begin());
deba@1931
  1107
    }
deba@1931
  1108
deba@1931
  1109
    /// \brief Returns an iterator after the last value.
deba@1931
  1110
    ///
deba@1931
  1111
    /// Returns an stl compatible iterator after the 
deba@1931
  1112
    /// last value of the map. The values of the
deba@1931
  1113
    /// map can be accessed in the [beginValue, endValue)
deba@1931
  1114
    /// range.
deba@1931
  1115
    ValueIterator endValue() const {
deba@1931
  1116
      return ValueIterator(invMap.end());
deba@1931
  1117
    }
alpar@1402
  1118
    
alpar@1402
  1119
    /// \brief The setter function of the map.
alpar@1402
  1120
    ///
deba@1413
  1121
    /// Sets the mapped value.
alpar@1402
  1122
    void set(const Key& key, const Value& val) {
alpar@1402
  1123
      Value oldval = Map::operator[](key);
deba@1413
  1124
      typename Container::iterator it = invMap.find(oldval);
alpar@1402
  1125
      if (it != invMap.end() && it->second == key) {
alpar@1402
  1126
	invMap.erase(it);
alpar@1402
  1127
      }      
alpar@1402
  1128
      invMap.insert(make_pair(val, key));
alpar@1402
  1129
      Map::set(key, val);
alpar@1402
  1130
    }
alpar@1402
  1131
alpar@1402
  1132
    /// \brief The getter function of the map.
alpar@1402
  1133
    ///
alpar@1402
  1134
    /// It gives back the value associated with the key.
deba@1931
  1135
    typename MapTraits<Map>::ConstReturnValue 
deba@1931
  1136
    operator[](const Key& key) const {
alpar@1402
  1137
      return Map::operator[](key);
alpar@1402
  1138
    }
alpar@1402
  1139
deba@1515
  1140
  protected:
deba@1515
  1141
alpar@1402
  1142
    /// \brief Erase the key from the map.
alpar@1402
  1143
    ///
alpar@1402
  1144
    /// Erase the key to the map. It is called by the
alpar@1402
  1145
    /// \c AlterationNotifier.
alpar@1402
  1146
    virtual void erase(const Key& key) {
alpar@1402
  1147
      Value val = Map::operator[](key);
deba@1413
  1148
      typename Container::iterator it = invMap.find(val);
alpar@1402
  1149
      if (it != invMap.end() && it->second == key) {
alpar@1402
  1150
	invMap.erase(it);
alpar@1402
  1151
      }
alpar@1402
  1152
      Map::erase(key);
alpar@1402
  1153
    }
alpar@1402
  1154
deba@1829
  1155
    /// \brief Erase more keys from the map.
deba@1829
  1156
    ///
deba@1829
  1157
    /// Erase more keys from the map. It is called by the
deba@1829
  1158
    /// \c AlterationNotifier.
deba@1829
  1159
    virtual void erase(const std::vector<Key>& keys) {
deba@1829
  1160
      for (int i = 0; i < (int)keys.size(); ++i) {
deba@1829
  1161
	Value val = Map::operator[](keys[i]);
deba@1829
  1162
	typename Container::iterator it = invMap.find(val);
deba@1829
  1163
	if (it != invMap.end() && it->second == keys[i]) {
deba@1829
  1164
	  invMap.erase(it);
deba@1829
  1165
	}
deba@1829
  1166
      }
deba@1829
  1167
      Map::erase(keys);
deba@1829
  1168
    }
deba@1829
  1169
alpar@1402
  1170
    /// \brief Clear the keys from the map and inverse map.
alpar@1402
  1171
    ///
alpar@1402
  1172
    /// Clear the keys from the map and inverse map. It is called by the
alpar@1402
  1173
    /// \c AlterationNotifier.
alpar@1402
  1174
    virtual void clear() {
alpar@1402
  1175
      invMap.clear();
alpar@1402
  1176
      Map::clear();
alpar@1402
  1177
    }
alpar@1402
  1178
deba@1413
  1179
  public:
deba@1413
  1180
deba@1413
  1181
    /// \brief The inverse map type.
deba@1413
  1182
    ///
deba@1413
  1183
    /// The inverse of this map. The subscript operator of the map
deba@1413
  1184
    /// gives back always the item what was last assigned to the value. 
deba@1413
  1185
    class InverseMap {
deba@1413
  1186
    public:
deba@1413
  1187
      /// \brief Constructor of the InverseMap.
deba@1413
  1188
      ///
deba@1413
  1189
      /// Constructor of the InverseMap.
deba@1413
  1190
      InverseMap(const InvertableMap& _inverted) : inverted(_inverted) {}
deba@1413
  1191
deba@1413
  1192
      /// The value type of the InverseMap.
deba@1413
  1193
      typedef typename InvertableMap::Key Value;
deba@1413
  1194
      /// The key type of the InverseMap.
deba@1413
  1195
      typedef typename InvertableMap::Value Key; 
deba@1413
  1196
deba@1413
  1197
      /// \brief Subscript operator. 
deba@1413
  1198
      ///
deba@1413
  1199
      /// Subscript operator. It gives back always the item 
deba@1413
  1200
      /// what was last assigned to the value.
deba@1413
  1201
      Value operator[](const Key& key) const {
deba@1413
  1202
	typename Container::const_iterator it = inverted.invMap.find(key);
deba@1413
  1203
	return it->second;
deba@1413
  1204
      }
deba@1413
  1205
      
deba@1413
  1206
    private:
deba@1413
  1207
      const InvertableMap& inverted;
deba@1413
  1208
    };
deba@1413
  1209
alpar@2094
  1210
    /// \brief It gives back the just readable inverse map.
alpar@1402
  1211
    ///
alpar@2094
  1212
    /// It gives back the just readable inverse map.
deba@1413
  1213
    InverseMap inverse() const {
deba@1413
  1214
      return InverseMap(*this);
alpar@1402
  1215
    } 
alpar@1402
  1216
alpar@1402
  1217
deba@1413
  1218
    
alpar@1402
  1219
  };
alpar@1402
  1220
alpar@1402
  1221
  /// \brief Provides a mutable, continuous and unique descriptor for each 
alpar@1402
  1222
  /// item in the graph.
alpar@1402
  1223
  ///
athos@1540
  1224
  /// The DescriptorMap class provides a unique and continuous (but mutable)
athos@1540
  1225
  /// descriptor (id) for each item of the same type (e.g. node) in the
athos@1540
  1226
  /// graph. This id is <ul><li>\b unique: different items (nodes) get
athos@1540
  1227
  /// different ids <li>\b continuous: the range of the ids is the set of
athos@1540
  1228
  /// integers between 0 and \c n-1, where \c n is the number of the items of
athos@1540
  1229
  /// this type (e.g. nodes) (so the id of a node can change if you delete an
athos@1540
  1230
  /// other node, i.e. this id is mutable).  </ul> This map can be inverted
athos@1540
  1231
  /// with its member class \c InverseMap.
alpar@1402
  1232
  ///
alpar@1402
  1233
  /// \param _Graph The graph class the \c DescriptorMap belongs to.
alpar@1402
  1234
  /// \param _Item The Item is the Key of the Map. It may be Node, Edge or 
klao@1909
  1235
  /// UEdge.
deba@1830
  1236
#ifndef DOXYGEN
alpar@1402
  1237
  /// \param _Map A ReadWriteMap mapping from the item type to integer.
alpar@1402
  1238
  template <
deba@1990
  1239
    typename _Graph, typename _Item,
deba@1990
  1240
    typename _Map = DefaultMap<_Graph, _Item, int>
alpar@1402
  1241
  >
deba@1830
  1242
#else
deba@1830
  1243
  template <typename _Graph, typename _Item>
deba@1830
  1244
#endif
alpar@1402
  1245
  class DescriptorMap : protected _Map {
alpar@1402
  1246
alpar@1402
  1247
    typedef _Item Item;
alpar@1402
  1248
    typedef _Map Map;
alpar@1402
  1249
alpar@1402
  1250
  public:
alpar@1402
  1251
    /// The graph class of DescriptorMap.
alpar@1402
  1252
    typedef _Graph Graph;
alpar@1402
  1253
klao@1909
  1254
    /// The key type of DescriptorMap (Node, Edge, UEdge).
alpar@1402
  1255
    typedef typename _Map::Key Key;
alpar@1402
  1256
    /// The value type of DescriptorMap.
alpar@1402
  1257
    typedef typename _Map::Value Value;
alpar@1402
  1258
alpar@1402
  1259
    /// \brief Constructor.
alpar@1402
  1260
    ///
deba@1413
  1261
    /// Constructor for descriptor map.
alpar@1402
  1262
    DescriptorMap(const Graph& _graph) : Map(_graph) {
alpar@1402
  1263
      build();
alpar@1402
  1264
    }
alpar@1402
  1265
deba@1515
  1266
  protected:
deba@1515
  1267
alpar@1402
  1268
    /// \brief Add a new key to the map.
alpar@1402
  1269
    ///
alpar@1402
  1270
    /// Add a new key to the map. It is called by the
alpar@1402
  1271
    /// \c AlterationNotifier.
alpar@1402
  1272
    virtual void add(const Item& item) {
alpar@1402
  1273
      Map::add(item);
alpar@1402
  1274
      Map::set(item, invMap.size());
alpar@1402
  1275
      invMap.push_back(item);
alpar@1402
  1276
    }
alpar@1402
  1277
deba@1829
  1278
    /// \brief Add more new keys to the map.
deba@1829
  1279
    ///
deba@1829
  1280
    /// Add more new keys to the map. It is called by the
deba@1829
  1281
    /// \c AlterationNotifier.
deba@1829
  1282
    virtual void add(const std::vector<Item>& items) {
deba@1829
  1283
      Map::add(items);
deba@1829
  1284
      for (int i = 0; i < (int)items.size(); ++i) {
deba@1829
  1285
	Map::set(items[i], invMap.size());
deba@1829
  1286
	invMap.push_back(items[i]);
deba@1829
  1287
      }
deba@1829
  1288
    }
deba@1829
  1289
alpar@1402
  1290
    /// \brief Erase the key from the map.
alpar@1402
  1291
    ///
deba@1829
  1292
    /// Erase the key from the map. It is called by the
alpar@1402
  1293
    /// \c AlterationNotifier.
alpar@1402
  1294
    virtual void erase(const Item& item) {
alpar@1402
  1295
      Map::set(invMap.back(), Map::operator[](item));
alpar@1402
  1296
      invMap[Map::operator[](item)] = invMap.back();
deba@1413
  1297
      invMap.pop_back();
alpar@1402
  1298
      Map::erase(item);
alpar@1402
  1299
    }
alpar@1402
  1300
deba@1829
  1301
    /// \brief Erase more keys from the map.
deba@1829
  1302
    ///
deba@1829
  1303
    /// Erase more keys from the map. It is called by the
deba@1829
  1304
    /// \c AlterationNotifier.
deba@1829
  1305
    virtual void erase(const std::vector<Item>& items) {
deba@1829
  1306
      for (int i = 0; i < (int)items.size(); ++i) {
deba@1829
  1307
	Map::set(invMap.back(), Map::operator[](items[i]));
deba@1829
  1308
	invMap[Map::operator[](items[i])] = invMap.back();
deba@1829
  1309
	invMap.pop_back();
deba@1829
  1310
      }
deba@1829
  1311
      Map::erase(items);
deba@1829
  1312
    }
deba@1829
  1313
alpar@1402
  1314
    /// \brief Build the unique map.
alpar@1402
  1315
    ///
alpar@1402
  1316
    /// Build the unique map. It is called by the
alpar@1402
  1317
    /// \c AlterationNotifier.
alpar@1402
  1318
    virtual void build() {
alpar@1402
  1319
      Map::build();
alpar@1402
  1320
      Item it;
deba@1999
  1321
      const typename Map::Notifier* notifier = Map::getNotifier(); 
deba@1999
  1322
      for (notifier->first(it); it != INVALID; notifier->next(it)) {
alpar@1402
  1323
	Map::set(it, invMap.size());
alpar@1402
  1324
	invMap.push_back(it);	
alpar@1402
  1325
      }      
alpar@1402
  1326
    }
alpar@1402
  1327
    
alpar@1402
  1328
    /// \brief Clear the keys from the map.
alpar@1402
  1329
    ///
alpar@1402
  1330
    /// Clear the keys from the map. It is called by the
alpar@1402
  1331
    /// \c AlterationNotifier.
alpar@1402
  1332
    virtual void clear() {
alpar@1402
  1333
      invMap.clear();
alpar@1402
  1334
      Map::clear();
alpar@1402
  1335
    }
alpar@1402
  1336
deba@1538
  1337
  public:
deba@1538
  1338
deba@1931
  1339
    /// \brief Returns the maximal value plus one.
deba@1931
  1340
    ///
deba@1931
  1341
    /// Returns the maximal value plus one in the map.
deba@1931
  1342
    unsigned int size() const {
deba@1931
  1343
      return invMap.size();
deba@1931
  1344
    }
deba@1931
  1345
deba@1552
  1346
    /// \brief Swaps the position of the two items in the map.
deba@1552
  1347
    ///
deba@1552
  1348
    /// Swaps the position of the two items in the map.
deba@1552
  1349
    void swap(const Item& p, const Item& q) {
deba@1552
  1350
      int pi = Map::operator[](p);
deba@1552
  1351
      int qi = Map::operator[](q);
deba@1552
  1352
      Map::set(p, qi);
deba@1552
  1353
      invMap[qi] = p;
deba@1552
  1354
      Map::set(q, pi);
deba@1552
  1355
      invMap[pi] = q;
deba@1552
  1356
    }
deba@1552
  1357
alpar@1402
  1358
    /// \brief Gives back the \e descriptor of the item.
alpar@1402
  1359
    ///
alpar@1402
  1360
    /// Gives back the mutable and unique \e descriptor of the map.
alpar@1402
  1361
    int operator[](const Item& item) const {
alpar@1402
  1362
      return Map::operator[](item);
alpar@1402
  1363
    }
alpar@1402
  1364
    
deba@1413
  1365
  private:
deba@1413
  1366
deba@1413
  1367
    typedef std::vector<Item> Container;
deba@1413
  1368
    Container invMap;
deba@1413
  1369
deba@1413
  1370
  public:
athos@1540
  1371
    /// \brief The inverse map type of DescriptorMap.
deba@1413
  1372
    ///
athos@1540
  1373
    /// The inverse map type of DescriptorMap.
deba@1413
  1374
    class InverseMap {
deba@1413
  1375
    public:
deba@1413
  1376
      /// \brief Constructor of the InverseMap.
deba@1413
  1377
      ///
deba@1413
  1378
      /// Constructor of the InverseMap.
deba@1413
  1379
      InverseMap(const DescriptorMap& _inverted) 
deba@1413
  1380
	: inverted(_inverted) {}
deba@1413
  1381
deba@1413
  1382
deba@1413
  1383
      /// The value type of the InverseMap.
deba@1413
  1384
      typedef typename DescriptorMap::Key Value;
deba@1413
  1385
      /// The key type of the InverseMap.
deba@1413
  1386
      typedef typename DescriptorMap::Value Key; 
deba@1413
  1387
deba@1413
  1388
      /// \brief Subscript operator. 
deba@1413
  1389
      ///
deba@1413
  1390
      /// Subscript operator. It gives back the item 
deba@1413
  1391
      /// that the descriptor belongs to currently.
deba@1413
  1392
      Value operator[](const Key& key) const {
deba@1413
  1393
	return inverted.invMap[key];
deba@1413
  1394
      }
deba@1470
  1395
deba@1470
  1396
      /// \brief Size of the map.
deba@1470
  1397
      ///
deba@1470
  1398
      /// Returns the size of the map.
deba@1931
  1399
      unsigned int size() const {
deba@1470
  1400
	return inverted.invMap.size();
deba@1470
  1401
      }
deba@1413
  1402
      
deba@1413
  1403
    private:
deba@1413
  1404
      const DescriptorMap& inverted;
deba@1413
  1405
    };
deba@1413
  1406
alpar@1402
  1407
    /// \brief Gives back the inverse of the map.
alpar@1402
  1408
    ///
alpar@1402
  1409
    /// Gives back the inverse of the map.
alpar@1402
  1410
    const InverseMap inverse() const {
deba@1413
  1411
      return InverseMap(*this);
alpar@1402
  1412
    }
alpar@1402
  1413
  };
alpar@1402
  1414
alpar@1402
  1415
  /// \brief Returns the source of the given edge.
alpar@1402
  1416
  ///
alpar@1402
  1417
  /// The SourceMap gives back the source Node of the given edge. 
alpar@1402
  1418
  /// \author Balazs Dezso
alpar@1402
  1419
  template <typename Graph>
alpar@1402
  1420
  class SourceMap {
alpar@1402
  1421
  public:
deba@1419
  1422
alpar@1402
  1423
    typedef typename Graph::Node Value;
alpar@1402
  1424
    typedef typename Graph::Edge Key;
alpar@1402
  1425
alpar@1402
  1426
    /// \brief Constructor
alpar@1402
  1427
    ///
alpar@1402
  1428
    /// Constructor
alpar@1402
  1429
    /// \param _graph The graph that the map belongs to.
alpar@1402
  1430
    SourceMap(const Graph& _graph) : graph(_graph) {}
alpar@1402
  1431
alpar@1402
  1432
    /// \brief The subscript operator.
alpar@1402
  1433
    ///
alpar@1402
  1434
    /// The subscript operator.
alpar@1402
  1435
    /// \param edge The edge 
alpar@1402
  1436
    /// \return The source of the edge 
deba@1679
  1437
    Value operator[](const Key& edge) const {
alpar@1402
  1438
      return graph.source(edge);
alpar@1402
  1439
    }
alpar@1402
  1440
alpar@1402
  1441
  private:
alpar@1402
  1442
    const Graph& graph;
alpar@1402
  1443
  };
alpar@1402
  1444
alpar@1402
  1445
  /// \brief Returns a \ref SourceMap class
alpar@1402
  1446
  ///
alpar@1402
  1447
  /// This function just returns an \ref SourceMap class.
alpar@1402
  1448
  /// \relates SourceMap
alpar@1402
  1449
  template <typename Graph>
alpar@1402
  1450
  inline SourceMap<Graph> sourceMap(const Graph& graph) {
alpar@1402
  1451
    return SourceMap<Graph>(graph);
alpar@1402
  1452
  } 
alpar@1402
  1453
alpar@1402
  1454
  /// \brief Returns the target of the given edge.
alpar@1402
  1455
  ///
alpar@1402
  1456
  /// The TargetMap gives back the target Node of the given edge. 
alpar@1402
  1457
  /// \author Balazs Dezso
alpar@1402
  1458
  template <typename Graph>
alpar@1402
  1459
  class TargetMap {
alpar@1402
  1460
  public:
deba@1419
  1461
alpar@1402
  1462
    typedef typename Graph::Node Value;
alpar@1402
  1463
    typedef typename Graph::Edge Key;
alpar@1402
  1464
alpar@1402
  1465
    /// \brief Constructor
alpar@1402
  1466
    ///
alpar@1402
  1467
    /// Constructor
alpar@1402
  1468
    /// \param _graph The graph that the map belongs to.
alpar@1402
  1469
    TargetMap(const Graph& _graph) : graph(_graph) {}
alpar@1402
  1470
alpar@1402
  1471
    /// \brief The subscript operator.
alpar@1402
  1472
    ///
alpar@1402
  1473
    /// The subscript operator.
alpar@1536
  1474
    /// \param e The edge 
alpar@1402
  1475
    /// \return The target of the edge 
deba@1679
  1476
    Value operator[](const Key& e) const {
alpar@1536
  1477
      return graph.target(e);
alpar@1402
  1478
    }
alpar@1402
  1479
alpar@1402
  1480
  private:
alpar@1402
  1481
    const Graph& graph;
alpar@1402
  1482
  };
alpar@1402
  1483
alpar@1402
  1484
  /// \brief Returns a \ref TargetMap class
deba@1515
  1485
  ///
athos@1540
  1486
  /// This function just returns a \ref TargetMap class.
alpar@1402
  1487
  /// \relates TargetMap
alpar@1402
  1488
  template <typename Graph>
alpar@1402
  1489
  inline TargetMap<Graph> targetMap(const Graph& graph) {
alpar@1402
  1490
    return TargetMap<Graph>(graph);
alpar@1402
  1491
  }
alpar@1402
  1492
athos@1540
  1493
  /// \brief Returns the "forward" directed edge view of an undirected edge.
deba@1419
  1494
  ///
athos@1540
  1495
  /// Returns the "forward" directed edge view of an undirected edge.
deba@1419
  1496
  /// \author Balazs Dezso
deba@1419
  1497
  template <typename Graph>
deba@1419
  1498
  class ForwardMap {
deba@1419
  1499
  public:
deba@1419
  1500
deba@1419
  1501
    typedef typename Graph::Edge Value;
klao@1909
  1502
    typedef typename Graph::UEdge Key;
deba@1419
  1503
deba@1419
  1504
    /// \brief Constructor
deba@1419
  1505
    ///
deba@1419
  1506
    /// Constructor
deba@1419
  1507
    /// \param _graph The graph that the map belongs to.
deba@1419
  1508
    ForwardMap(const Graph& _graph) : graph(_graph) {}
deba@1419
  1509
deba@1419
  1510
    /// \brief The subscript operator.
deba@1419
  1511
    ///
deba@1419
  1512
    /// The subscript operator.
deba@1419
  1513
    /// \param key An undirected edge 
deba@1419
  1514
    /// \return The "forward" directed edge view of undirected edge 
deba@1419
  1515
    Value operator[](const Key& key) const {
deba@1627
  1516
      return graph.direct(key, true);
deba@1419
  1517
    }
deba@1419
  1518
deba@1419
  1519
  private:
deba@1419
  1520
    const Graph& graph;
deba@1419
  1521
  };
deba@1419
  1522
deba@1419
  1523
  /// \brief Returns a \ref ForwardMap class
deba@1515
  1524
  ///
deba@1419
  1525
  /// This function just returns an \ref ForwardMap class.
deba@1419
  1526
  /// \relates ForwardMap
deba@1419
  1527
  template <typename Graph>
deba@1419
  1528
  inline ForwardMap<Graph> forwardMap(const Graph& graph) {
deba@1419
  1529
    return ForwardMap<Graph>(graph);
deba@1419
  1530
  }
deba@1419
  1531
athos@1540
  1532
  /// \brief Returns the "backward" directed edge view of an undirected edge.
deba@1419
  1533
  ///
athos@1540
  1534
  /// Returns the "backward" directed edge view of an undirected edge.
deba@1419
  1535
  /// \author Balazs Dezso
deba@1419
  1536
  template <typename Graph>
deba@1419
  1537
  class BackwardMap {
deba@1419
  1538
  public:
deba@1419
  1539
deba@1419
  1540
    typedef typename Graph::Edge Value;
klao@1909
  1541
    typedef typename Graph::UEdge Key;
deba@1419
  1542
deba@1419
  1543
    /// \brief Constructor
deba@1419
  1544
    ///
deba@1419
  1545
    /// Constructor
deba@1419
  1546
    /// \param _graph The graph that the map belongs to.
deba@1419
  1547
    BackwardMap(const Graph& _graph) : graph(_graph) {}
deba@1419
  1548
deba@1419
  1549
    /// \brief The subscript operator.
deba@1419
  1550
    ///
deba@1419
  1551
    /// The subscript operator.
deba@1419
  1552
    /// \param key An undirected edge 
deba@1419
  1553
    /// \return The "backward" directed edge view of undirected edge 
deba@1419
  1554
    Value operator[](const Key& key) const {
deba@1627
  1555
      return graph.direct(key, false);
deba@1419
  1556
    }
deba@1419
  1557
deba@1419
  1558
  private:
deba@1419
  1559
    const Graph& graph;
deba@1419
  1560
  };
deba@1419
  1561
deba@1419
  1562
  /// \brief Returns a \ref BackwardMap class
deba@1419
  1563
athos@1540
  1564
  /// This function just returns a \ref BackwardMap class.
deba@1419
  1565
  /// \relates BackwardMap
deba@1419
  1566
  template <typename Graph>
deba@1419
  1567
  inline BackwardMap<Graph> backwardMap(const Graph& graph) {
deba@1419
  1568
    return BackwardMap<Graph>(graph);
deba@1419
  1569
  }
deba@1419
  1570
deba@1695
  1571
  /// \brief Potential difference map
deba@1695
  1572
  ///
deba@1695
  1573
  /// If there is an potential map on the nodes then we
deba@1695
  1574
  /// can get an edge map as we get the substraction of the
deba@1695
  1575
  /// values of the target and source.
deba@1695
  1576
  template <typename Graph, typename NodeMap>
deba@1695
  1577
  class PotentialDifferenceMap {
deba@1515
  1578
  public:
deba@1695
  1579
    typedef typename Graph::Edge Key;
deba@1695
  1580
    typedef typename NodeMap::Value Value;
deba@1695
  1581
deba@1695
  1582
    /// \brief Constructor
deba@1695
  1583
    ///
deba@1695
  1584
    /// Contructor of the map
deba@1695
  1585
    PotentialDifferenceMap(const Graph& _graph, const NodeMap& _potential) 
deba@1695
  1586
      : graph(_graph), potential(_potential) {}
deba@1695
  1587
deba@1695
  1588
    /// \brief Const subscription operator
deba@1695
  1589
    ///
deba@1695
  1590
    /// Const subscription operator
deba@1695
  1591
    Value operator[](const Key& edge) const {
deba@1695
  1592
      return potential[graph.target(edge)] - potential[graph.source(edge)];
deba@1695
  1593
    }
deba@1695
  1594
deba@1695
  1595
  private:
deba@1695
  1596
    const Graph& graph;
deba@1695
  1597
    const NodeMap& potential;
deba@1695
  1598
  };
deba@1695
  1599
deba@1695
  1600
  /// \brief Just returns a PotentialDifferenceMap
deba@1695
  1601
  ///
deba@1695
  1602
  /// Just returns a PotentialDifferenceMap
deba@1695
  1603
  /// \relates PotentialDifferenceMap
deba@1695
  1604
  template <typename Graph, typename NodeMap>
deba@1695
  1605
  PotentialDifferenceMap<Graph, NodeMap> 
deba@1695
  1606
  potentialDifferenceMap(const Graph& graph, const NodeMap& potential) {
deba@1695
  1607
    return PotentialDifferenceMap<Graph, NodeMap>(graph, potential);
deba@1695
  1608
  }
deba@1695
  1609
deba@1515
  1610
  /// \brief Map of the node in-degrees.
alpar@1453
  1611
  ///
athos@1540
  1612
  /// This map returns the in-degree of a node. Once it is constructed,
deba@1515
  1613
  /// the degrees are stored in a standard NodeMap, so each query is done
athos@1540
  1614
  /// in constant time. On the other hand, the values are updated automatically
deba@1515
  1615
  /// whenever the graph changes.
deba@1515
  1616
  ///
deba@1729
  1617
  /// \warning Besides addNode() and addEdge(), a graph structure may provide
deba@1730
  1618
  /// alternative ways to modify the graph. The correct behavior of InDegMap
deba@1829
  1619
  /// is not guarantied if these additional features are used. For example
deba@1829
  1620
  /// the functions \ref ListGraph::changeSource() "changeSource()",
deba@1729
  1621
  /// \ref ListGraph::changeTarget() "changeTarget()" and
deba@1729
  1622
  /// \ref ListGraph::reverseEdge() "reverseEdge()"
deba@1729
  1623
  /// of \ref ListGraph will \e not update the degree values correctly.
deba@1729
  1624
  ///
deba@1515
  1625
  /// \sa OutDegMap
deba@1515
  1626
alpar@1453
  1627
  template <typename _Graph>
deba@1515
  1628
  class InDegMap  
deba@1999
  1629
    : protected ItemSetTraits<_Graph, typename _Graph::Edge>
deba@1999
  1630
      ::ItemNotifier::ObserverBase {
deba@1515
  1631
alpar@1453
  1632
  public:
deba@1515
  1633
    
deba@1515
  1634
    typedef _Graph Graph;
alpar@1453
  1635
    typedef int Value;
deba@1515
  1636
    typedef typename Graph::Node Key;
deba@1515
  1637
deba@1999
  1638
    typedef typename ItemSetTraits<_Graph, typename _Graph::Edge>
deba@1999
  1639
    ::ItemNotifier::ObserverBase Parent;
deba@1999
  1640
deba@1515
  1641
  private:
deba@1515
  1642
deba@1990
  1643
    class AutoNodeMap : public DefaultMap<_Graph, Key, int> {
deba@1515
  1644
    public:
deba@1515
  1645
deba@1990
  1646
      typedef DefaultMap<_Graph, Key, int> Parent;
deba@2002
  1647
      typedef typename Parent::Graph Graph;
deba@1515
  1648
deba@1515
  1649
      AutoNodeMap(const Graph& graph) : Parent(graph, 0) {}
deba@1515
  1650
      
deba@1829
  1651
      virtual void add(const Key& key) {
deba@1515
  1652
	Parent::add(key);
deba@1515
  1653
	Parent::set(key, 0);
deba@1515
  1654
      }
deba@1931
  1655
deba@1829
  1656
      virtual void add(const std::vector<Key>& keys) {
deba@1829
  1657
	Parent::add(keys);
deba@1829
  1658
	for (int i = 0; i < (int)keys.size(); ++i) {
deba@1829
  1659
	  Parent::set(keys[i], 0);
deba@1829
  1660
	}
deba@1829
  1661
      }
deba@1515
  1662
    };
deba@1515
  1663
deba@1515
  1664
  public:
alpar@1453
  1665
alpar@1453
  1666
    /// \brief Constructor.
alpar@1453
  1667
    ///
alpar@1453
  1668
    /// Constructor for creating in-degree map.
deba@1515
  1669
    InDegMap(const Graph& _graph) : graph(_graph), deg(_graph) {
deba@1999
  1670
      Parent::attach(graph.getNotifier(typename _Graph::Edge()));
deba@1515
  1671
      
deba@1515
  1672
      for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
deba@1515
  1673
	deg[it] = countInEdges(graph, it);
deba@1515
  1674
      }
alpar@1453
  1675
    }
alpar@1453
  1676
    
alpar@1459
  1677
    /// Gives back the in-degree of a Node.
deba@1515
  1678
    int operator[](const Key& key) const {
deba@1515
  1679
      return deg[key];
alpar@1459
  1680
    }
alpar@1453
  1681
alpar@1453
  1682
  protected:
deba@1515
  1683
    
deba@1515
  1684
    typedef typename Graph::Edge Edge;
deba@1515
  1685
deba@1515
  1686
    virtual void add(const Edge& edge) {
deba@1515
  1687
      ++deg[graph.target(edge)];
alpar@1453
  1688
    }
alpar@1453
  1689
deba@1931
  1690
    virtual void add(const std::vector<Edge>& edges) {
deba@1931
  1691
      for (int i = 0; i < (int)edges.size(); ++i) {
deba@1931
  1692
        ++deg[graph.target(edges[i])];
deba@1931
  1693
      }
deba@1931
  1694
    }
deba@1931
  1695
deba@1515
  1696
    virtual void erase(const Edge& edge) {
deba@1515
  1697
      --deg[graph.target(edge)];
deba@1515
  1698
    }
deba@1515
  1699
deba@1931
  1700
    virtual void erase(const std::vector<Edge>& edges) {
deba@1931
  1701
      for (int i = 0; i < (int)edges.size(); ++i) {
deba@1931
  1702
        --deg[graph.target(edges[i])];
deba@1931
  1703
      }
deba@1931
  1704
    }
deba@1931
  1705
deba@1515
  1706
    virtual void build() {
deba@1515
  1707
      for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
deba@1515
  1708
	deg[it] = countInEdges(graph, it);
deba@1515
  1709
      }      
deba@1515
  1710
    }
deba@1515
  1711
deba@1515
  1712
    virtual void clear() {
deba@1515
  1713
      for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
deba@1515
  1714
	deg[it] = 0;
deba@1515
  1715
      }
deba@1515
  1716
    }
deba@1515
  1717
  private:
alpar@1506
  1718
    
deba@1515
  1719
    const _Graph& graph;
deba@1515
  1720
    AutoNodeMap deg;
alpar@1459
  1721
  };
alpar@1459
  1722
deba@1515
  1723
  /// \brief Map of the node out-degrees.
deba@1515
  1724
  ///
athos@1540
  1725
  /// This map returns the out-degree of a node. Once it is constructed,
deba@1515
  1726
  /// the degrees are stored in a standard NodeMap, so each query is done
athos@1540
  1727
  /// in constant time. On the other hand, the values are updated automatically
deba@1515
  1728
  /// whenever the graph changes.
deba@1515
  1729
  ///
deba@1729
  1730
  /// \warning Besides addNode() and addEdge(), a graph structure may provide
deba@1730
  1731
  /// alternative ways to modify the graph. The correct behavior of OutDegMap
deba@1829
  1732
  /// is not guarantied if these additional features are used. For example
deba@1829
  1733
  /// the functions \ref ListGraph::changeSource() "changeSource()",
deba@1729
  1734
  /// \ref ListGraph::changeTarget() "changeTarget()" and
deba@1729
  1735
  /// \ref ListGraph::reverseEdge() "reverseEdge()"
deba@1729
  1736
  /// of \ref ListGraph will \e not update the degree values correctly.
deba@1729
  1737
  ///
alpar@1555
  1738
  /// \sa InDegMap
alpar@1459
  1739
alpar@1459
  1740
  template <typename _Graph>
deba@1515
  1741
  class OutDegMap  
deba@1999
  1742
    : protected ItemSetTraits<_Graph, typename _Graph::Edge>
deba@1999
  1743
      ::ItemNotifier::ObserverBase {
deba@1515
  1744
alpar@1459
  1745
  public:
deba@1999
  1746
deba@1999
  1747
    typedef typename ItemSetTraits<_Graph, typename _Graph::Edge>
deba@1999
  1748
    ::ItemNotifier::ObserverBase Parent;
deba@1515
  1749
    
deba@1515
  1750
    typedef _Graph Graph;
alpar@1459
  1751
    typedef int Value;
deba@1515
  1752
    typedef typename Graph::Node Key;
deba@1515
  1753
deba@1515
  1754
  private:
deba@1515
  1755
deba@1990
  1756
    class AutoNodeMap : public DefaultMap<_Graph, Key, int> {
deba@1515
  1757
    public:
deba@1515
  1758
deba@1990
  1759
      typedef DefaultMap<_Graph, Key, int> Parent;
deba@2002
  1760
      typedef typename Parent::Graph Graph;
deba@1515
  1761
deba@1515
  1762
      AutoNodeMap(const Graph& graph) : Parent(graph, 0) {}
deba@1515
  1763
      
deba@1829
  1764
      virtual void add(const Key& key) {
deba@1515
  1765
	Parent::add(key);
deba@1515
  1766
	Parent::set(key, 0);
deba@1515
  1767
      }
deba@1829
  1768
      virtual void add(const std::vector<Key>& keys) {
deba@1829
  1769
	Parent::add(keys);
deba@1829
  1770
	for (int i = 0; i < (int)keys.size(); ++i) {
deba@1829
  1771
	  Parent::set(keys[i], 0);
deba@1829
  1772
	}
deba@1829
  1773
      }
deba@1515
  1774
    };
deba@1515
  1775
deba@1515
  1776
  public:
alpar@1459
  1777
alpar@1459
  1778
    /// \brief Constructor.
alpar@1459
  1779
    ///
alpar@1459
  1780
    /// Constructor for creating out-degree map.
deba@1515
  1781
    OutDegMap(const Graph& _graph) : graph(_graph), deg(_graph) {
deba@1999
  1782
      Parent::attach(graph.getNotifier(typename _Graph::Edge()));
deba@1515
  1783
      
deba@1515
  1784
      for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
deba@1515
  1785
	deg[it] = countOutEdges(graph, it);
deba@1515
  1786
      }
alpar@1459
  1787
    }
alpar@1459
  1788
deba@1990
  1789
    /// Gives back the out-degree of a Node.
deba@1515
  1790
    int operator[](const Key& key) const {
deba@1515
  1791
      return deg[key];
alpar@1459
  1792
    }
alpar@1459
  1793
alpar@1459
  1794
  protected:
deba@1515
  1795
    
deba@1515
  1796
    typedef typename Graph::Edge Edge;
deba@1515
  1797
deba@1515
  1798
    virtual void add(const Edge& edge) {
deba@1515
  1799
      ++deg[graph.source(edge)];
alpar@1459
  1800
    }
alpar@1459
  1801
deba@1931
  1802
    virtual void add(const std::vector<Edge>& edges) {
deba@1931
  1803
      for (int i = 0; i < (int)edges.size(); ++i) {
deba@1931
  1804
        ++deg[graph.source(edges[i])];
deba@1931
  1805
      }
deba@1931
  1806
    }
deba@1931
  1807
deba@1515
  1808
    virtual void erase(const Edge& edge) {
deba@1515
  1809
      --deg[graph.source(edge)];
deba@1515
  1810
    }
deba@1515
  1811
deba@1931
  1812
    virtual void erase(const std::vector<Edge>& edges) {
deba@1931
  1813
      for (int i = 0; i < (int)edges.size(); ++i) {
deba@1931
  1814
        --deg[graph.source(edges[i])];
deba@1931
  1815
      }
deba@1931
  1816
    }
deba@1931
  1817
deba@1515
  1818
    virtual void build() {
deba@1515
  1819
      for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
deba@1515
  1820
	deg[it] = countOutEdges(graph, it);
deba@1515
  1821
      }      
deba@1515
  1822
    }
deba@1515
  1823
deba@1515
  1824
    virtual void clear() {
deba@1515
  1825
      for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
deba@1515
  1826
	deg[it] = 0;
deba@1515
  1827
      }
deba@1515
  1828
    }
deba@1515
  1829
  private:
alpar@1506
  1830
    
deba@1515
  1831
    const _Graph& graph;
deba@1515
  1832
    AutoNodeMap deg;
alpar@1453
  1833
  };
alpar@1453
  1834
deba@1695
  1835
alpar@1402
  1836
  /// @}
alpar@1402
  1837
alpar@947
  1838
} //END OF NAMESPACE LEMON
klao@946
  1839
klao@946
  1840
#endif