lemon/graph_adaptor.h
author alpar
Fri, 03 Feb 2006 09:03:05 +0000
changeset 1948 9e9c035a08be
parent 1909 2d806130e700
child 1949 5db4ff8d69de
permissions -rw-r--r--
Hopefully we can release 0.5 today
alpar@906
     1
/* -*- C++ -*-
ladanyi@1435
     2
 * lemon/graph_adaptor.h - Part of LEMON, a generic C++ optimization library
alpar@906
     3
 *
alpar@1875
     4
 * Copyright (C) 2006 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     5
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@906
     6
 *
alpar@906
     7
 * Permission to use, modify and distribute this software is granted
alpar@906
     8
 * provided that this copyright notice appears in all copies. For
alpar@906
     9
 * precise terms see the accompanying LICENSE file.
alpar@906
    10
 *
alpar@906
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    12
 * express or implied, and with no claim as to its suitability for any
alpar@906
    13
 * purpose.
alpar@906
    14
 *
alpar@906
    15
 */
alpar@906
    16
alpar@1401
    17
#ifndef LEMON_GRAPH_ADAPTOR_H
alpar@1401
    18
#define LEMON_GRAPH_ADAPTOR_H
marci@556
    19
alpar@1401
    20
///\ingroup graph_adaptors
marci@556
    21
///\file
alpar@1401
    22
///\brief Several graph adaptors.
marci@556
    23
///
alpar@1401
    24
///This file contains several useful graph adaptor functions.
marci@556
    25
///
marci@556
    26
///\author Marton Makai
marci@556
    27
alpar@921
    28
#include <lemon/invalid.h>
alpar@921
    29
#include <lemon/maps.h>
deba@1472
    30
#include <lemon/bits/erasable_graph_extender.h>
deba@1472
    31
#include <lemon/bits/clearable_graph_extender.h>
deba@1472
    32
#include <lemon/bits/extendable_graph_extender.h>
deba@1307
    33
#include <lemon/bits/iterable_graph_extender.h>
deba@1472
    34
#include <lemon/bits/alteration_notifier.h>
deba@1472
    35
#include <lemon/bits/default_map.h>
deba@1791
    36
#include <lemon/bits/graph_extender.h>
alpar@774
    37
#include <iostream>
marci@556
    38
alpar@921
    39
namespace lemon {
marci@556
    40
alpar@1401
    41
  // Graph adaptors
marci@556
    42
marci@1172
    43
  /*!
alpar@1401
    44
    \addtogroup graph_adaptors
marci@1004
    45
    @{
marci@1172
    46
   */
marci@556
    47
marci@1172
    48
  /*! 
alpar@1401
    49
    Base type for the Graph Adaptors
marci@1242
    50
    
alpar@1401
    51
    \warning Graph adaptors are in even more experimental state than the other
marci@1004
    52
    parts of the lib. Use them at you own risk.
marci@1242
    53
    
alpar@1401
    54
    This is the base type for most of LEMON graph adaptors. 
alpar@1401
    55
    This class implements a trivial graph adaptor i.e. it only wraps the 
marci@1004
    56
    functions and types of the graph. The purpose of this class is to 
alpar@1401
    57
    make easier implementing graph adaptors. E.g. if an adaptor is 
marci@1004
    58
    considered which differs from the wrapped graph only in some of its 
alpar@1401
    59
    functions or types, then it can be derived from GraphAdaptor, and only the 
marci@1004
    60
    differences should be implemented.
marci@1004
    61
  
marci@1004
    62
    \author Marton Makai 
marci@1004
    63
  */
marci@970
    64
  template<typename _Graph>
alpar@1401
    65
  class GraphAdaptorBase {
marci@970
    66
  public:
marci@970
    67
    typedef _Graph Graph;
marci@970
    68
    typedef Graph ParentGraph;
marci@970
    69
marci@556
    70
  protected:
marci@556
    71
    Graph* graph;
alpar@1401
    72
    GraphAdaptorBase() : graph(0) { }
marci@556
    73
    void setGraph(Graph& _graph) { graph=&_graph; }
marci@556
    74
marci@556
    75
  public:
alpar@1401
    76
    GraphAdaptorBase(Graph& _graph) : graph(&_graph) { }
marci@556
    77
 
alpar@774
    78
    typedef typename Graph::Node Node;
alpar@774
    79
    typedef typename Graph::Edge Edge;
marci@556
    80
   
marci@970
    81
    void first(Node& i) const { graph->first(i); }
marci@970
    82
    void first(Edge& i) const { graph->first(i); }
marci@970
    83
    void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); }
marci@970
    84
    void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); }
marci@556
    85
marci@970
    86
    void next(Node& i) const { graph->next(i); }
marci@970
    87
    void next(Edge& i) const { graph->next(i); }
marci@970
    88
    void nextIn(Edge& i) const { graph->nextIn(i); }
marci@970
    89
    void nextOut(Edge& i) const { graph->nextOut(i); }
marci@970
    90
alpar@986
    91
    Node source(const Edge& e) const { return graph->source(e); }
alpar@986
    92
    Node target(const Edge& e) const { return graph->target(e); }
marci@556
    93
deba@1697
    94
    typedef NodeNumTagIndicator<Graph> NodeNumTag;
marci@556
    95
    int nodeNum() const { return graph->nodeNum(); }
deba@1697
    96
    
deba@1697
    97
    typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
marci@556
    98
    int edgeNum() const { return graph->edgeNum(); }
deba@1697
    99
deba@1697
   100
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
deba@1697
   101
    Edge findEdge(const Node& source, const Node& target, 
deba@1697
   102
		  const Edge& prev = INVALID) {
deba@1697
   103
      return graph->findEdge(source, target, prev);
deba@1697
   104
    }
marci@556
   105
  
deba@1697
   106
    Node addNode() const { 
deba@1697
   107
      return Node(graph->addNode()); 
deba@1697
   108
    }
deba@1697
   109
alpar@986
   110
    Edge addEdge(const Node& source, const Node& target) const { 
deba@1697
   111
      return Edge(graph->addEdge(source, target)); 
deba@1697
   112
    }
marci@556
   113
marci@556
   114
    void erase(const Node& i) const { graph->erase(i); }
marci@556
   115
    void erase(const Edge& i) const { graph->erase(i); }
marci@556
   116
  
marci@556
   117
    void clear() const { graph->clear(); }
marci@556
   118
    
marci@739
   119
    int id(const Node& v) const { return graph->id(v); }
marci@739
   120
    int id(const Edge& e) const { return graph->id(e); }
marci@650
   121
    
deba@1627
   122
    Edge oppositeNode(const Edge& e) const { 
deba@1627
   123
      return Edge(graph->opposite(e)); 
deba@1627
   124
    }
marci@650
   125
marci@970
   126
    template <typename _Value>
marci@970
   127
    class NodeMap : public _Graph::template NodeMap<_Value> {
marci@970
   128
    public:
marci@970
   129
      typedef typename _Graph::template NodeMap<_Value> Parent;
deba@1755
   130
      explicit NodeMap(const GraphAdaptorBase<_Graph>& gw) 
deba@1755
   131
	: Parent(*gw.graph) { }
alpar@1401
   132
      NodeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value)
deba@1755
   133
	: Parent(*gw.graph, value) { }
marci@970
   134
    };
marci@556
   135
marci@970
   136
    template <typename _Value>
marci@970
   137
    class EdgeMap : public _Graph::template EdgeMap<_Value> {
marci@970
   138
    public:
marci@970
   139
      typedef typename _Graph::template EdgeMap<_Value> Parent;
deba@1755
   140
      explicit EdgeMap(const GraphAdaptorBase<_Graph>& gw) 
deba@1755
   141
	: Parent(*gw.graph) { }
alpar@1401
   142
      EdgeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value)
deba@1755
   143
	: Parent(*gw.graph, value) { }
marci@970
   144
    };
deba@877
   145
marci@556
   146
  };
marci@556
   147
marci@970
   148
  template <typename _Graph>
alpar@1401
   149
  class GraphAdaptor :
alpar@1401
   150
    public IterableGraphExtender<GraphAdaptorBase<_Graph> > { 
marci@970
   151
  public:
marci@970
   152
    typedef _Graph Graph;
alpar@1401
   153
    typedef IterableGraphExtender<GraphAdaptorBase<_Graph> > Parent;
marci@970
   154
  protected:
alpar@1401
   155
    GraphAdaptor() : Parent() { }
marci@569
   156
marci@970
   157
  public:
deba@1755
   158
    explicit GraphAdaptor(Graph& _graph) { setGraph(_graph); }
marci@970
   159
  };
marci@569
   160
marci@997
   161
  template <typename _Graph>
alpar@1401
   162
  class RevGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
marci@997
   163
  public:
marci@997
   164
    typedef _Graph Graph;
alpar@1401
   165
    typedef GraphAdaptorBase<_Graph> Parent;
marci@997
   166
  protected:
alpar@1401
   167
    RevGraphAdaptorBase() : Parent() { }
marci@997
   168
  public:
marci@997
   169
    typedef typename Parent::Node Node;
marci@997
   170
    typedef typename Parent::Edge Edge;
marci@997
   171
marci@997
   172
    void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); }
marci@997
   173
    void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); }
marci@997
   174
marci@997
   175
    void nextIn(Edge& i) const { Parent::nextOut(i); }
marci@997
   176
    void nextOut(Edge& i) const { Parent::nextIn(i); }
marci@997
   177
marci@997
   178
    Node source(const Edge& e) const { return Parent::target(e); }
marci@997
   179
    Node target(const Edge& e) const { return Parent::source(e); }
marci@997
   180
  };
marci@997
   181
    
marci@997
   182
alpar@1401
   183
  /// A graph adaptor which reverses the orientation of the edges.
marci@556
   184
alpar@1401
   185
  ///\warning Graph adaptors are in even more experimental state than the other
alpar@879
   186
  ///parts of the lib. Use them at you own risk.
alpar@879
   187
  ///
marci@923
   188
  /// Let \f$G=(V, A)\f$ be a directed graph and 
marci@923
   189
  /// suppose that a graph instange \c g of type 
marci@923
   190
  /// \c ListGraph implements \f$G\f$.
alpar@1946
   191
  ///\code
marci@923
   192
  /// ListGraph g;
alpar@1946
   193
  ///\endcode
marci@923
   194
  /// For each directed edge 
marci@923
   195
  /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by 
marci@923
   196
  /// reversing its orientation. 
alpar@1401
   197
  /// Then RevGraphAdaptor implements the graph structure with node-set 
marci@923
   198
  /// \f$V\f$ and edge-set 
marci@923
   199
  /// \f$\{\bar e : e\in A \}\f$, i.e. the graph obtained from \f$G\f$ be 
marci@923
   200
  /// reversing the orientation of its edges. The following code shows how 
marci@923
   201
  /// such an instance can be constructed.
alpar@1946
   202
  ///\code
alpar@1401
   203
  /// RevGraphAdaptor<ListGraph> gw(g);
alpar@1946
   204
  ///\endcode
marci@556
   205
  ///\author Marton Makai
alpar@1946
   206
marci@997
   207
  template<typename _Graph>
alpar@1401
   208
  class RevGraphAdaptor : 
alpar@1401
   209
    public IterableGraphExtender<RevGraphAdaptorBase<_Graph> > {
marci@650
   210
  public:
marci@997
   211
    typedef _Graph Graph;
marci@997
   212
    typedef IterableGraphExtender<
alpar@1401
   213
      RevGraphAdaptorBase<_Graph> > Parent;
marci@556
   214
  protected:
alpar@1401
   215
    RevGraphAdaptor() { }
marci@556
   216
  public:
deba@1755
   217
    explicit RevGraphAdaptor(_Graph& _graph) { setGraph(_graph); }
marci@997
   218
  };
marci@556
   219
marci@992
   220
  
deba@1681
   221
  template <typename _Graph, typename NodeFilterMap, 
deba@1681
   222
	    typename EdgeFilterMap, bool checked = true>
alpar@1401
   223
  class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
marci@992
   224
  public:
marci@992
   225
    typedef _Graph Graph;
alpar@1401
   226
    typedef GraphAdaptorBase<_Graph> Parent;
marci@992
   227
  protected:
marci@992
   228
    NodeFilterMap* node_filter_map;
marci@992
   229
    EdgeFilterMap* edge_filter_map;
alpar@1401
   230
    SubGraphAdaptorBase() : Parent(), 
marci@992
   231
			    node_filter_map(0), edge_filter_map(0) { }
marci@775
   232
marci@992
   233
    void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
marci@992
   234
      node_filter_map=&_node_filter_map;
marci@992
   235
    }
marci@992
   236
    void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
marci@992
   237
      edge_filter_map=&_edge_filter_map;
marci@992
   238
    }
marci@992
   239
marci@992
   240
  public:
marci@992
   241
marci@992
   242
    typedef typename Parent::Node Node;
marci@992
   243
    typedef typename Parent::Edge Edge;
marci@992
   244
marci@992
   245
    void first(Node& i) const { 
marci@992
   246
      Parent::first(i); 
marci@992
   247
      while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
marci@992
   248
    }
deba@1681
   249
deba@1681
   250
    void first(Edge& i) const { 
deba@1681
   251
      Parent::first(i); 
deba@1681
   252
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   253
	     || !(*node_filter_map)[Parent::source(i)]
deba@1681
   254
	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
deba@1681
   255
    }
deba@1681
   256
deba@1681
   257
    void firstIn(Edge& i, const Node& n) const { 
deba@1681
   258
      Parent::firstIn(i, n); 
deba@1681
   259
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   260
	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
deba@1681
   261
    }
deba@1681
   262
deba@1681
   263
    void firstOut(Edge& i, const Node& n) const { 
deba@1681
   264
      Parent::firstOut(i, n); 
deba@1681
   265
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   266
	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
deba@1681
   267
    }
deba@1681
   268
deba@1681
   269
    void next(Node& i) const { 
deba@1681
   270
      Parent::next(i); 
deba@1681
   271
      while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
deba@1681
   272
    }
deba@1681
   273
deba@1681
   274
    void next(Edge& i) const { 
deba@1681
   275
      Parent::next(i); 
deba@1681
   276
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   277
	     || !(*node_filter_map)[Parent::source(i)]
deba@1681
   278
	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
deba@1681
   279
    }
deba@1681
   280
deba@1681
   281
    void nextIn(Edge& i) const { 
deba@1681
   282
      Parent::nextIn(i); 
deba@1681
   283
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   284
	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
deba@1681
   285
    }
deba@1681
   286
deba@1681
   287
    void nextOut(Edge& i) const { 
deba@1681
   288
      Parent::nextOut(i); 
deba@1681
   289
      while (i!=INVALID && (!(*edge_filter_map)[i] 
deba@1681
   290
	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
deba@1681
   291
    }
deba@1681
   292
deba@1681
   293
    /// This function hides \c n in the graph, i.e. the iteration 
deba@1681
   294
    /// jumps over it. This is done by simply setting the value of \c n  
deba@1681
   295
    /// to be false in the corresponding node-map.
deba@1681
   296
    void hide(const Node& n) const { node_filter_map->set(n, false); }
deba@1681
   297
deba@1681
   298
    /// This function hides \c e in the graph, i.e. the iteration 
deba@1681
   299
    /// jumps over it. This is done by simply setting the value of \c e  
deba@1681
   300
    /// to be false in the corresponding edge-map.
deba@1681
   301
    void hide(const Edge& e) const { edge_filter_map->set(e, false); }
deba@1681
   302
deba@1681
   303
    /// The value of \c n is set to be true in the node-map which stores 
deba@1681
   304
    /// hide information. If \c n was hidden previuosly, then it is shown 
deba@1681
   305
    /// again
deba@1681
   306
     void unHide(const Node& n) const { node_filter_map->set(n, true); }
deba@1681
   307
deba@1681
   308
    /// The value of \c e is set to be true in the edge-map which stores 
deba@1681
   309
    /// hide information. If \c e was hidden previuosly, then it is shown 
deba@1681
   310
    /// again
deba@1681
   311
    void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
deba@1681
   312
deba@1681
   313
    /// Returns true if \c n is hidden.
deba@1681
   314
    bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
deba@1681
   315
deba@1681
   316
    /// Returns true if \c n is hidden.
deba@1681
   317
    bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
deba@1681
   318
deba@1697
   319
    typedef False NodeNumTag;
deba@1697
   320
    typedef False EdgeNumTag;
deba@1681
   321
  };
deba@1681
   322
deba@1681
   323
  template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
deba@1681
   324
  class SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, false> 
deba@1681
   325
    : public GraphAdaptorBase<_Graph> {
deba@1681
   326
  public:
deba@1681
   327
    typedef _Graph Graph;
deba@1681
   328
    typedef GraphAdaptorBase<_Graph> Parent;
deba@1681
   329
  protected:
deba@1681
   330
    NodeFilterMap* node_filter_map;
deba@1681
   331
    EdgeFilterMap* edge_filter_map;
deba@1681
   332
    SubGraphAdaptorBase() : Parent(), 
deba@1681
   333
			    node_filter_map(0), edge_filter_map(0) { }
deba@1681
   334
deba@1681
   335
    void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
deba@1681
   336
      node_filter_map=&_node_filter_map;
deba@1681
   337
    }
deba@1681
   338
    void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
deba@1681
   339
      edge_filter_map=&_edge_filter_map;
deba@1681
   340
    }
deba@1681
   341
deba@1681
   342
  public:
deba@1681
   343
deba@1681
   344
    typedef typename Parent::Node Node;
deba@1681
   345
    typedef typename Parent::Edge Edge;
deba@1681
   346
deba@1681
   347
    void first(Node& i) const { 
deba@1681
   348
      Parent::first(i); 
deba@1681
   349
      while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
deba@1681
   350
    }
deba@1681
   351
marci@992
   352
    void first(Edge& i) const { 
marci@992
   353
      Parent::first(i); 
marci@992
   354
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
marci@992
   355
    }
deba@1681
   356
marci@992
   357
    void firstIn(Edge& i, const Node& n) const { 
marci@992
   358
      Parent::firstIn(i, n); 
marci@992
   359
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
marci@992
   360
    }
deba@1681
   361
marci@992
   362
    void firstOut(Edge& i, const Node& n) const { 
marci@992
   363
      Parent::firstOut(i, n); 
marci@992
   364
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
marci@992
   365
    }
marci@992
   366
marci@992
   367
    void next(Node& i) const { 
marci@992
   368
      Parent::next(i); 
marci@992
   369
      while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
marci@992
   370
    }
marci@992
   371
    void next(Edge& i) const { 
marci@992
   372
      Parent::next(i); 
marci@992
   373
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
marci@992
   374
    }
marci@992
   375
    void nextIn(Edge& i) const { 
marci@992
   376
      Parent::nextIn(i); 
marci@992
   377
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
marci@992
   378
    }
deba@1681
   379
marci@992
   380
    void nextOut(Edge& i) const { 
marci@992
   381
      Parent::nextOut(i); 
marci@992
   382
      while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
marci@992
   383
    }
marci@992
   384
marci@992
   385
    /// This function hides \c n in the graph, i.e. the iteration 
marci@992
   386
    /// jumps over it. This is done by simply setting the value of \c n  
marci@992
   387
    /// to be false in the corresponding node-map.
marci@992
   388
    void hide(const Node& n) const { node_filter_map->set(n, false); }
marci@992
   389
marci@992
   390
    /// This function hides \c e in the graph, i.e. the iteration 
marci@992
   391
    /// jumps over it. This is done by simply setting the value of \c e  
marci@992
   392
    /// to be false in the corresponding edge-map.
marci@992
   393
    void hide(const Edge& e) const { edge_filter_map->set(e, false); }
marci@992
   394
marci@992
   395
    /// The value of \c n is set to be true in the node-map which stores 
marci@992
   396
    /// hide information. If \c n was hidden previuosly, then it is shown 
marci@992
   397
    /// again
marci@992
   398
     void unHide(const Node& n) const { node_filter_map->set(n, true); }
marci@992
   399
marci@992
   400
    /// The value of \c e is set to be true in the edge-map which stores 
marci@992
   401
    /// hide information. If \c e was hidden previuosly, then it is shown 
marci@992
   402
    /// again
marci@992
   403
    void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
marci@992
   404
marci@992
   405
    /// Returns true if \c n is hidden.
marci@992
   406
    bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
marci@992
   407
marci@992
   408
    /// Returns true if \c n is hidden.
marci@992
   409
    bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
marci@992
   410
deba@1697
   411
    typedef False NodeNumTag;
deba@1697
   412
    typedef False EdgeNumTag;
marci@992
   413
  };
marci@775
   414
alpar@1401
   415
  /*! \brief A graph adaptor for hiding nodes and edges from a graph.
marci@1242
   416
    
alpar@1401
   417
  \warning Graph adaptors are in even more experimental state than the other
marci@930
   418
  parts of the lib. Use them at you own risk.
marci@930
   419
  
alpar@1401
   420
  SubGraphAdaptor shows the graph with filtered node-set and 
deba@1697
   421
  edge-set. If the \c checked parameter is true then it filters the edgeset
deba@1697
   422
  to do not get invalid edges without source or target.
marci@1242
   423
  Let \f$G=(V, A)\f$ be a directed graph 
marci@1242
   424
  and suppose that the graph instance \c g of type ListGraph implements 
marci@1242
   425
  \f$G\f$. 
marci@1242
   426
  Let moreover \f$b_V\f$ and 
marci@1242
   427
  \f$b_A\f$ be bool-valued functions resp. on the node-set and edge-set. 
alpar@1401
   428
  SubGraphAdaptor<...>::NodeIt iterates 
marci@1242
   429
  on the node-set \f$\{v\in V : b_V(v)=true\}\f$ and 
alpar@1401
   430
  SubGraphAdaptor<...>::EdgeIt iterates 
marci@1242
   431
  on the edge-set \f$\{e\in A : b_A(e)=true\}\f$. Similarly, 
alpar@1401
   432
  SubGraphAdaptor<...>::OutEdgeIt and SubGraphAdaptor<...>::InEdgeIt iterates 
marci@1242
   433
  only on edges leaving and entering a specific node which have true value.
marci@1242
   434
deba@1697
   435
  If the \c checked template parameter is false then we have to note that 
deba@1697
   436
  the node-iterator cares only the filter on the node-set, and the 
deba@1697
   437
  edge-iterator cares only the filter on the edge-set. This way the edge-map
deba@1697
   438
  should filter all edges which's source or target is filtered by the 
deba@1697
   439
  node-filter.
marci@930
   440
  \code
marci@1242
   441
  typedef ListGraph Graph;
marci@930
   442
  Graph g;
marci@930
   443
  typedef Graph::Node Node;
marci@930
   444
  typedef Graph::Edge Edge;
marci@930
   445
  Node u=g.addNode(); //node of id 0
marci@930
   446
  Node v=g.addNode(); //node of id 1
marci@930
   447
  Node e=g.addEdge(u, v); //edge of id 0
marci@930
   448
  Node f=g.addEdge(v, u); //edge of id 1
marci@930
   449
  Graph::NodeMap<bool> nm(g, true);
marci@930
   450
  nm.set(u, false);
marci@930
   451
  Graph::EdgeMap<bool> em(g, true);
marci@930
   452
  em.set(e, false);
alpar@1401
   453
  typedef SubGraphAdaptor<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGW;
marci@930
   454
  SubGW gw(g, nm, em);
marci@930
   455
  for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
marci@930
   456
  std::cout << ":-)" << std::endl;
marci@930
   457
  for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
marci@930
   458
  \endcode
marci@930
   459
  The output of the above code is the following.
marci@930
   460
  \code
marci@930
   461
  1
marci@930
   462
  :-)
marci@930
   463
  1
marci@930
   464
  \endcode
marci@930
   465
  Note that \c n is of type \c SubGW::NodeIt, but it can be converted to
marci@930
   466
  \c Graph::Node that is why \c g.id(n) can be applied.
marci@930
   467
alpar@1401
   468
  For other examples see also the documentation of NodeSubGraphAdaptor and 
alpar@1401
   469
  EdgeSubGraphAdaptor.
marci@930
   470
marci@930
   471
  \author Marton Makai
marci@930
   472
  */
marci@992
   473
  template<typename _Graph, typename NodeFilterMap, 
deba@1681
   474
	   typename EdgeFilterMap, bool checked = true>
alpar@1401
   475
  class SubGraphAdaptor : 
marci@992
   476
    public IterableGraphExtender<
deba@1681
   477
    SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, checked> > {
marci@650
   478
  public:
marci@992
   479
    typedef _Graph Graph;
marci@992
   480
    typedef IterableGraphExtender<
alpar@1401
   481
      SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent;
marci@556
   482
  protected:
alpar@1401
   483
    SubGraphAdaptor() { }
marci@992
   484
  public:
alpar@1401
   485
    SubGraphAdaptor(_Graph& _graph, NodeFilterMap& _node_filter_map, 
marci@992
   486
		    EdgeFilterMap& _edge_filter_map) { 
marci@992
   487
      setGraph(_graph);
marci@992
   488
      setNodeFilterMap(_node_filter_map);
marci@992
   489
      setEdgeFilterMap(_edge_filter_map);
marci@992
   490
    }
marci@992
   491
  };
marci@556
   492
marci@556
   493
marci@569
   494
alpar@1401
   495
  /*! \brief An adaptor for hiding nodes from a graph.
marci@933
   496
alpar@1401
   497
  \warning Graph adaptors are in even more experimental state than the other
marci@933
   498
  parts of the lib. Use them at you own risk.
marci@933
   499
  
alpar@1401
   500
  An adaptor for hiding nodes from a graph.
alpar@1401
   501
  This adaptor specializes SubGraphAdaptor in the way that only the node-set 
deba@1697
   502
  can be filtered. In usual case the checked parameter is true, we get the
deba@1697
   503
  induced subgraph. But if the checked parameter is false then we can only
deba@1697
   504
  filter only isolated nodes.
marci@933
   505
  \author Marton Makai
marci@933
   506
  */
deba@1681
   507
  template<typename Graph, typename NodeFilterMap, bool checked = true>
alpar@1401
   508
  class NodeSubGraphAdaptor : 
alpar@1401
   509
    public SubGraphAdaptor<Graph, NodeFilterMap, 
deba@1681
   510
			   ConstMap<typename Graph::Edge,bool>, checked> {
marci@933
   511
  public:
alpar@1401
   512
    typedef SubGraphAdaptor<Graph, NodeFilterMap, 
marci@933
   513
			    ConstMap<typename Graph::Edge,bool> > Parent;
marci@933
   514
  protected:
marci@933
   515
    ConstMap<typename Graph::Edge, bool> const_true_map;
marci@933
   516
  public:
alpar@1401
   517
    NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& _node_filter_map) : 
marci@933
   518
      Parent(), const_true_map(true) { 
marci@933
   519
      Parent::setGraph(_graph);
marci@933
   520
      Parent::setNodeFilterMap(_node_filter_map);
marci@933
   521
      Parent::setEdgeFilterMap(const_true_map);
marci@933
   522
    }
marci@933
   523
  };
marci@933
   524
marci@933
   525
alpar@1401
   526
  /*! \brief An adaptor for hiding edges from a graph.
marci@932
   527
alpar@1401
   528
  \warning Graph adaptors are in even more experimental state than the other
marci@932
   529
  parts of the lib. Use them at you own risk.
marci@932
   530
  
alpar@1401
   531
  An adaptor for hiding edges from a graph.
alpar@1401
   532
  This adaptor specializes SubGraphAdaptor in the way that only the edge-set 
alpar@1401
   533
  can be filtered. The usefulness of this adaptor is demonstrated in the 
marci@933
   534
  problem of searching a maximum number of edge-disjoint shortest paths 
marci@933
   535
  between 
marci@933
   536
  two nodes \c s and \c t. Shortest here means being shortest w.r.t. 
marci@933
   537
  non-negative edge-lengths. Note that 
marci@933
   538
  the comprehension of the presented solution 
marci@1252
   539
  need's some elementary knowledge from combinatorial optimization. 
marci@933
   540
marci@933
   541
  If a single shortest path is to be 
marci@1252
   542
  searched between \c s and \c t, then this can be done easily by 
marci@1252
   543
  applying the Dijkstra algorithm. What happens, if a maximum number of 
marci@933
   544
  edge-disjoint shortest paths is to be computed. It can be proved that an 
marci@933
   545
  edge can be in a shortest path if and only if it is tight with respect to 
marci@933
   546
  the potential function computed by Dijkstra. Moreover, any path containing 
marci@933
   547
  only such edges is a shortest one. Thus we have to compute a maximum number 
marci@933
   548
  of edge-disjoint paths between \c s and \c t in the graph which has edge-set 
marci@933
   549
  all the tight edges. The computation will be demonstrated on the following 
alpar@1536
   550
  graph, which is read from the dimacs file \c sub_graph_adaptor_demo.dim. 
marci@1425
   551
  The full source code is available in \ref sub_graph_adaptor_demo.cc. 
marci@1425
   552
  If you are interested in more demo programs, you can use 
marci@1425
   553
  \ref dim_to_dot.cc to generate .dot files from dimacs files. 
athos@1576
   554
  The .dot file of the following figure was generated by  
marci@1425
   555
  the demo program \ref dim_to_dot.cc.
marci@1425
   556
marci@933
   557
  \dot
marci@933
   558
  digraph lemon_dot_example {
marci@933
   559
  node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
marci@933
   560
  n0 [ label="0 (s)" ];
marci@933
   561
  n1 [ label="1" ];
marci@933
   562
  n2 [ label="2" ];
marci@933
   563
  n3 [ label="3" ];
marci@933
   564
  n4 [ label="4" ];
marci@933
   565
  n5 [ label="5" ];
marci@933
   566
  n6 [ label="6 (t)" ];
marci@933
   567
  edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
marci@933
   568
  n5 ->  n6 [ label="9, length:4" ];
marci@933
   569
  n4 ->  n6 [ label="8, length:2" ];
marci@933
   570
  n3 ->  n5 [ label="7, length:1" ];
marci@933
   571
  n2 ->  n5 [ label="6, length:3" ];
marci@933
   572
  n2 ->  n6 [ label="5, length:5" ];
marci@933
   573
  n2 ->  n4 [ label="4, length:2" ];
marci@933
   574
  n1 ->  n4 [ label="3, length:3" ];
marci@933
   575
  n0 ->  n3 [ label="2, length:1" ];
marci@933
   576
  n0 ->  n2 [ label="1, length:2" ];
marci@933
   577
  n0 ->  n1 [ label="0, length:3" ];
marci@933
   578
  }
marci@933
   579
  \enddot
marci@933
   580
marci@933
   581
  \code
marci@933
   582
  Graph g;
marci@933
   583
  Node s, t;
marci@933
   584
  LengthMap length(g);
marci@933
   585
marci@933
   586
  readDimacs(std::cin, g, length, s, t);
marci@933
   587
alpar@986
   588
  cout << "edges with lengths (of form id, source--length->target): " << endl;
marci@933
   589
  for(EdgeIt e(g); e!=INVALID; ++e) 
alpar@986
   590
    cout << g.id(e) << ", " << g.id(g.source(e)) << "--" 
alpar@986
   591
         << length[e] << "->" << g.id(g.target(e)) << endl;
marci@933
   592
marci@933
   593
  cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
marci@933
   594
  \endcode
marci@933
   595
  Next, the potential function is computed with Dijkstra.
marci@933
   596
  \code
marci@933
   597
  typedef Dijkstra<Graph, LengthMap> Dijkstra;
marci@933
   598
  Dijkstra dijkstra(g, length);
marci@933
   599
  dijkstra.run(s);
marci@933
   600
  \endcode
marci@933
   601
  Next, we consrtruct a map which filters the edge-set to the tight edges.
marci@933
   602
  \code
marci@933
   603
  typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> 
marci@933
   604
    TightEdgeFilter;
marci@933
   605
  TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
marci@933
   606
  
alpar@1401
   607
  typedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGW;
marci@933
   608
  SubGW gw(g, tight_edge_filter);
marci@933
   609
  \endcode
marci@933
   610
  Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed 
marci@933
   611
  with a max flow algorithm Preflow.
marci@933
   612
  \code
marci@933
   613
  ConstMap<Edge, int> const_1_map(1);
marci@933
   614
  Graph::EdgeMap<int> flow(g, 0);
marci@933
   615
marci@933
   616
  Preflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > 
marci@933
   617
    preflow(gw, s, t, const_1_map, flow);
marci@933
   618
  preflow.run();
marci@933
   619
  \endcode
marci@933
   620
  Last, the output is:
marci@933
   621
  \code  
marci@933
   622
  cout << "maximum number of edge-disjoint shortest path: " 
marci@933
   623
       << preflow.flowValue() << endl;
marci@933
   624
  cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " 
marci@933
   625
       << endl;
marci@933
   626
  for(EdgeIt e(g); e!=INVALID; ++e) 
marci@933
   627
    if (flow[e])
alpar@986
   628
      cout << " " << g.id(g.source(e)) << "--" 
alpar@986
   629
	   << length[e] << "->" << g.id(g.target(e)) << endl;
marci@933
   630
  \endcode
marci@933
   631
  The program has the following (expected :-)) output:
marci@933
   632
  \code
alpar@986
   633
  edges with lengths (of form id, source--length->target):
marci@933
   634
   9, 5--4->6
marci@933
   635
   8, 4--2->6
marci@933
   636
   7, 3--1->5
marci@933
   637
   6, 2--3->5
marci@933
   638
   5, 2--5->6
marci@933
   639
   4, 2--2->4
marci@933
   640
   3, 1--3->4
marci@933
   641
   2, 0--1->3
marci@933
   642
   1, 0--2->2
marci@933
   643
   0, 0--3->1
marci@933
   644
  s: 0 t: 6
marci@933
   645
  maximum number of edge-disjoint shortest path: 2
marci@933
   646
  edges of the maximum number of edge-disjoint shortest s-t paths:
marci@933
   647
   9, 5--4->6
marci@933
   648
   8, 4--2->6
marci@933
   649
   7, 3--1->5
marci@933
   650
   4, 2--2->4
marci@933
   651
   2, 0--1->3
marci@933
   652
   1, 0--2->2
marci@933
   653
  \endcode
marci@933
   654
marci@932
   655
  \author Marton Makai
marci@932
   656
  */
marci@932
   657
  template<typename Graph, typename EdgeFilterMap>
alpar@1401
   658
  class EdgeSubGraphAdaptor : 
alpar@1401
   659
    public SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
deba@1681
   660
			   EdgeFilterMap, false> {
marci@932
   661
  public:
alpar@1401
   662
    typedef SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
deba@1685
   663
			    EdgeFilterMap, false> Parent;
marci@932
   664
  protected:
marci@932
   665
    ConstMap<typename Graph::Node, bool> const_true_map;
marci@932
   666
  public:
alpar@1401
   667
    EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& _edge_filter_map) : 
marci@932
   668
      Parent(), const_true_map(true) { 
marci@932
   669
      Parent::setGraph(_graph);
marci@932
   670
      Parent::setNodeFilterMap(const_true_map);
marci@932
   671
      Parent::setEdgeFilterMap(_edge_filter_map);
marci@932
   672
    }
marci@932
   673
  };
marci@932
   674
marci@1383
   675
  template <typename _Graph>
klao@1909
   676
  class UGraphAdaptorBase : 
klao@1909
   677
    public UGraphExtender<GraphAdaptorBase<_Graph> > {
marci@1383
   678
  public:
marci@1383
   679
    typedef _Graph Graph;
klao@1909
   680
    typedef UGraphExtender<GraphAdaptorBase<_Graph> > Parent;
marci@1383
   681
  protected:
klao@1909
   682
    UGraphAdaptorBase() : Parent() { }
marci@1383
   683
  public:
klao@1909
   684
    typedef typename Parent::UEdge UEdge;
marci@1383
   685
    typedef typename Parent::Edge Edge;
marci@1383
   686
    
marci@1383
   687
    template <typename T>
marci@1383
   688
    class EdgeMap {
marci@1383
   689
    protected:
klao@1909
   690
      const UGraphAdaptorBase<_Graph>* g;
marci@1383
   691
      template <typename TT> friend class EdgeMap;
marci@1383
   692
      typename _Graph::template EdgeMap<T> forward_map, backward_map; 
marci@1383
   693
    public:
marci@1383
   694
      typedef T Value;
marci@1383
   695
      typedef Edge Key;
marci@1383
   696
      
klao@1909
   697
      EdgeMap(const UGraphAdaptorBase<_Graph>& _g) : g(&_g), 
marci@1383
   698
	forward_map(*(g->graph)), backward_map(*(g->graph)) { }
marci@569
   699
klao@1909
   700
      EdgeMap(const UGraphAdaptorBase<_Graph>& _g, T a) : g(&_g), 
marci@1383
   701
	forward_map(*(g->graph), a), backward_map(*(g->graph), a) { }
marci@1383
   702
      
marci@1383
   703
      void set(Edge e, T a) { 
deba@1627
   704
	if (g->direction(e)) 
marci@1383
   705
	  forward_map.set(e, a); 
marci@1383
   706
	else 
marci@1383
   707
	  backward_map.set(e, a); 
marci@1383
   708
      }
marci@556
   709
marci@1383
   710
      T operator[](Edge e) const { 
deba@1627
   711
	if (g->direction(e)) 
marci@1383
   712
	  return forward_map[e]; 
marci@1383
   713
	else 
marci@1383
   714
	  return backward_map[e]; 
marci@556
   715
      }
marci@556
   716
    };
marci@1383
   717
        
marci@1383
   718
    template <typename T>
klao@1909
   719
    class UEdgeMap {
klao@1909
   720
      template <typename TT> friend class UEdgeMap;
marci@1383
   721
      typename _Graph::template EdgeMap<T> map; 
marci@1383
   722
    public:
marci@1383
   723
      typedef T Value;
klao@1909
   724
      typedef UEdge Key;
marci@1383
   725
      
klao@1909
   726
      UEdgeMap(const UGraphAdaptorBase<_Graph>& g) : 
marci@1383
   727
	map(*(g.graph)) { }
marci@556
   728
klao@1909
   729
      UEdgeMap(const UGraphAdaptorBase<_Graph>& g, T a) : 
marci@1383
   730
	map(*(g.graph), a) { }
marci@1383
   731
      
klao@1909
   732
      void set(UEdge e, T a) { 
marci@1383
   733
	map.set(e, a); 
marci@1383
   734
      }
marci@556
   735
klao@1909
   736
      T operator[](UEdge e) const { 
marci@1383
   737
	return map[e]; 
marci@1383
   738
      }
marci@1383
   739
    };
marci@1383
   740
      
marci@1383
   741
  };
marci@1383
   742
alpar@1401
   743
  /// \brief An undirected graph is made from a directed graph by an adaptor
marci@1383
   744
  ///
marci@1383
   745
  /// Undocumented, untested!!!
marci@1383
   746
  /// If somebody knows nice demo application, let's polulate it.
marci@1383
   747
  /// 
marci@1383
   748
  /// \author Marton Makai
marci@1383
   749
  template<typename _Graph>
klao@1909
   750
  class UGraphAdaptor : 
klao@1909
   751
    public IterableUGraphExtender<
klao@1909
   752
    UGraphAdaptorBase<_Graph> > {
marci@1383
   753
  public:
marci@1383
   754
    typedef _Graph Graph;
klao@1909
   755
    typedef IterableUGraphExtender<
klao@1909
   756
      UGraphAdaptorBase<_Graph> > Parent;
marci@1383
   757
  protected:
klao@1909
   758
    UGraphAdaptor() { }
marci@1383
   759
  public:
klao@1909
   760
    UGraphAdaptor(_Graph& _graph) { 
marci@1383
   761
      setGraph(_graph);
marci@556
   762
    }
marci@556
   763
  };
marci@556
   764
marci@992
   765
  
marci@992
   766
  template <typename _Graph, 
marci@992
   767
	    typename ForwardFilterMap, typename BackwardFilterMap>
alpar@1401
   768
  class SubBidirGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
marci@992
   769
  public:
marci@992
   770
    typedef _Graph Graph;
alpar@1401
   771
    typedef GraphAdaptorBase<_Graph> Parent;
marci@992
   772
  protected:
marci@992
   773
    ForwardFilterMap* forward_filter;
marci@992
   774
    BackwardFilterMap* backward_filter;
alpar@1401
   775
    SubBidirGraphAdaptorBase() : Parent(), 
marci@992
   776
				 forward_filter(0), backward_filter(0) { }
marci@992
   777
marci@992
   778
    void setForwardFilterMap(ForwardFilterMap& _forward_filter) {
marci@992
   779
      forward_filter=&_forward_filter;
marci@992
   780
    }
marci@992
   781
    void setBackwardFilterMap(BackwardFilterMap& _backward_filter) {
marci@992
   782
      backward_filter=&_backward_filter;
marci@992
   783
    }
marci@992
   784
marci@992
   785
  public:
alpar@1401
   786
//     SubGraphAdaptorBase(Graph& _graph, 
marci@992
   787
// 			NodeFilterMap& _node_filter_map, 
marci@992
   788
// 			EdgeFilterMap& _edge_filter_map) : 
marci@992
   789
//       Parent(&_graph), 
marci@992
   790
//       node_filter_map(&node_filter_map), 
marci@992
   791
//       edge_filter_map(&edge_filter_map) { }
marci@992
   792
marci@992
   793
    typedef typename Parent::Node Node;
marci@992
   794
    typedef typename _Graph::Edge GraphEdge;
marci@992
   795
    template <typename T> class EdgeMap;
alpar@1401
   796
    /// SubBidirGraphAdaptorBase<..., ..., ...>::Edge is inherited from 
marci@992
   797
    /// _Graph::Edge. It contains an extra bool flag which is true 
marci@992
   798
    /// if and only if the 
marci@992
   799
    /// edge is the backward version of the original edge.
marci@992
   800
    class Edge : public _Graph::Edge {
alpar@1401
   801
      friend class SubBidirGraphAdaptorBase<
marci@992
   802
	Graph, ForwardFilterMap, BackwardFilterMap>;
marci@992
   803
      template<typename T> friend class EdgeMap;
marci@992
   804
    protected:
marci@992
   805
      bool backward; //true, iff backward
marci@992
   806
    public:
marci@992
   807
      Edge() { }
marci@992
   808
      /// \todo =false is needed, or causes problems?
marci@992
   809
      /// If \c _backward is false, then we get an edge corresponding to the 
marci@992
   810
      /// original one, otherwise its oppositely directed pair is obtained.
marci@992
   811
      Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) : 
marci@992
   812
	_Graph::Edge(e), backward(_backward) { }
marci@992
   813
      Edge(Invalid i) : _Graph::Edge(i), backward(true) { }
marci@992
   814
      bool operator==(const Edge& v) const { 
marci@992
   815
	return (this->backward==v.backward && 
marci@992
   816
		static_cast<typename _Graph::Edge>(*this)==
marci@992
   817
		static_cast<typename _Graph::Edge>(v));
marci@992
   818
      } 
marci@992
   819
      bool operator!=(const Edge& v) const { 
marci@992
   820
	return (this->backward!=v.backward || 
marci@992
   821
		static_cast<typename _Graph::Edge>(*this)!=
marci@992
   822
		static_cast<typename _Graph::Edge>(v));
marci@992
   823
      }
marci@992
   824
    };
marci@992
   825
marci@992
   826
    void first(Node& i) const { 
marci@992
   827
      Parent::first(i); 
marci@992
   828
    }
marci@992
   829
marci@992
   830
    void first(Edge& i) const { 
marci@992
   831
      Parent::first(i); 
marci@992
   832
      i.backward=false;
marci@992
   833
      while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   834
	     !(*forward_filter)[i]) Parent::next(i);
marci@992
   835
      if (*static_cast<GraphEdge*>(&i)==INVALID) {
marci@992
   836
	Parent::first(i); 
marci@992
   837
	i.backward=true;
marci@992
   838
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   839
	       !(*backward_filter)[i]) Parent::next(i);
marci@992
   840
      }
marci@992
   841
    }
marci@992
   842
marci@992
   843
    void firstIn(Edge& i, const Node& n) const { 
marci@992
   844
      Parent::firstIn(i, n); 
marci@992
   845
      i.backward=false;
marci@992
   846
      while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@1269
   847
	     !(*forward_filter)[i]) Parent::nextIn(i);
marci@992
   848
      if (*static_cast<GraphEdge*>(&i)==INVALID) {
marci@992
   849
	Parent::firstOut(i, n); 
marci@992
   850
	i.backward=true;
marci@992
   851
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   852
	       !(*backward_filter)[i]) Parent::nextOut(i);
marci@992
   853
      }
marci@992
   854
    }
marci@992
   855
marci@992
   856
    void firstOut(Edge& i, const Node& n) const { 
marci@992
   857
      Parent::firstOut(i, n); 
marci@992
   858
      i.backward=false;
marci@992
   859
      while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   860
	     !(*forward_filter)[i]) Parent::nextOut(i);
marci@992
   861
      if (*static_cast<GraphEdge*>(&i)==INVALID) {
marci@992
   862
	Parent::firstIn(i, n); 
marci@992
   863
	i.backward=true;
marci@992
   864
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   865
	       !(*backward_filter)[i]) Parent::nextIn(i);
marci@992
   866
      }
marci@992
   867
    }
marci@992
   868
marci@992
   869
    void next(Node& i) const { 
marci@992
   870
      Parent::next(i); 
marci@992
   871
    }
marci@992
   872
marci@992
   873
    void next(Edge& i) const { 
marci@992
   874
      if (!(i.backward)) {
marci@992
   875
	Parent::next(i);
marci@992
   876
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   877
	       !(*forward_filter)[i]) Parent::next(i);
marci@992
   878
	if (*static_cast<GraphEdge*>(&i)==INVALID) {
marci@992
   879
	  Parent::first(i); 
marci@992
   880
	  i.backward=true;
marci@992
   881
	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   882
		 !(*backward_filter)[i]) Parent::next(i);
marci@992
   883
	}
marci@992
   884
      } else {
marci@992
   885
	Parent::next(i);
marci@992
   886
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   887
	       !(*backward_filter)[i]) Parent::next(i);
marci@992
   888
      }
marci@992
   889
    }
marci@992
   890
marci@992
   891
    void nextIn(Edge& i) const { 
marci@992
   892
      if (!(i.backward)) {
marci@992
   893
	Node n=Parent::target(i);
marci@992
   894
	Parent::nextIn(i);
marci@992
   895
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   896
	       !(*forward_filter)[i]) Parent::nextIn(i);
marci@992
   897
	if (*static_cast<GraphEdge*>(&i)==INVALID) {
marci@992
   898
	  Parent::firstOut(i, n); 
marci@992
   899
	  i.backward=true;
marci@992
   900
	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   901
		 !(*backward_filter)[i]) Parent::nextOut(i);
marci@992
   902
	}
marci@992
   903
      } else {
marci@992
   904
	Parent::nextOut(i);
marci@992
   905
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   906
	       !(*backward_filter)[i]) Parent::nextOut(i);
marci@992
   907
      }
marci@992
   908
    }
marci@992
   909
marci@992
   910
    void nextOut(Edge& i) const { 
marci@992
   911
      if (!(i.backward)) {
marci@992
   912
	Node n=Parent::source(i);
marci@992
   913
	Parent::nextOut(i);
marci@992
   914
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   915
	       !(*forward_filter)[i]) Parent::nextOut(i);
marci@992
   916
	if (*static_cast<GraphEdge*>(&i)==INVALID) {
marci@992
   917
	  Parent::firstIn(i, n); 
marci@992
   918
	  i.backward=true;
marci@992
   919
	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   920
		 !(*backward_filter)[i]) Parent::nextIn(i);
marci@992
   921
	}
marci@992
   922
      } else {
marci@992
   923
	Parent::nextIn(i);
marci@992
   924
	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
marci@992
   925
	       !(*backward_filter)[i]) Parent::nextIn(i);
marci@992
   926
      }
marci@992
   927
    }
marci@992
   928
marci@992
   929
    Node source(Edge e) const { 
marci@992
   930
      return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); }
marci@992
   931
    Node target(Edge e) const { 
marci@992
   932
      return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); }
marci@992
   933
marci@992
   934
    /// Gives back the opposite edge.
marci@992
   935
    Edge opposite(const Edge& e) const { 
marci@992
   936
      Edge f=e;
marci@992
   937
      f.backward=!f.backward;
marci@992
   938
      return f;
marci@992
   939
    }
marci@992
   940
marci@992
   941
    /// \warning This is a linear time operation and works only if 
marci@992
   942
    /// \c Graph::EdgeIt is defined.
marci@992
   943
    /// \todo hmm
marci@992
   944
    int edgeNum() const { 
marci@992
   945
      int i=0;
marci@992
   946
      Edge e;
marci@992
   947
      for (first(e); e!=INVALID; next(e)) ++i;
marci@992
   948
      return i; 
marci@992
   949
    }
marci@992
   950
marci@992
   951
    bool forward(const Edge& e) const { return !e.backward; }
marci@992
   952
    bool backward(const Edge& e) const { return e.backward; }
marci@992
   953
marci@992
   954
    template <typename T>
alpar@1401
   955
    /// \c SubBidirGraphAdaptorBase<..., ..., ...>::EdgeMap contains two 
marci@992
   956
    /// _Graph::EdgeMap one for the forward edges and 
marci@992
   957
    /// one for the backward edges.
marci@992
   958
    class EdgeMap {
marci@992
   959
      template <typename TT> friend class EdgeMap;
marci@992
   960
      typename _Graph::template EdgeMap<T> forward_map, backward_map; 
marci@992
   961
    public:
marci@992
   962
      typedef T Value;
marci@992
   963
      typedef Edge Key;
marci@992
   964
alpar@1401
   965
      EdgeMap(const SubBidirGraphAdaptorBase<_Graph, 
marci@992
   966
	      ForwardFilterMap, BackwardFilterMap>& g) : 
marci@992
   967
	forward_map(*(g.graph)), backward_map(*(g.graph)) { }
marci@992
   968
alpar@1401
   969
      EdgeMap(const SubBidirGraphAdaptorBase<_Graph, 
marci@992
   970
	      ForwardFilterMap, BackwardFilterMap>& g, T a) : 
marci@992
   971
	forward_map(*(g.graph), a), backward_map(*(g.graph), a) { }
marci@992
   972
      
marci@992
   973
      void set(Edge e, T a) { 
marci@992
   974
	if (!e.backward) 
marci@992
   975
	  forward_map.set(e, a); 
marci@992
   976
	else 
marci@992
   977
	  backward_map.set(e, a); 
marci@992
   978
      }
marci@992
   979
marci@992
   980
//       typename _Graph::template EdgeMap<T>::ConstReference 
marci@992
   981
//       operator[](Edge e) const { 
marci@992
   982
// 	if (!e.backward) 
marci@992
   983
// 	  return forward_map[e]; 
marci@992
   984
// 	else 
marci@992
   985
// 	  return backward_map[e]; 
marci@992
   986
//       }
marci@992
   987
marci@992
   988
//      typename _Graph::template EdgeMap<T>::Reference 
marci@1016
   989
      T operator[](Edge e) const { 
marci@992
   990
	if (!e.backward) 
marci@992
   991
	  return forward_map[e]; 
marci@992
   992
	else 
marci@992
   993
	  return backward_map[e]; 
marci@992
   994
      }
marci@992
   995
marci@992
   996
      void update() { 
marci@992
   997
	forward_map.update(); 
marci@992
   998
	backward_map.update();
marci@992
   999
      }
marci@992
  1000
    };
marci@992
  1001
marci@992
  1002
  };
marci@569
  1003
marci@650
  1004
alpar@1401
  1005
  ///\brief An adaptor for composing a subgraph of a 
marci@792
  1006
  /// bidirected graph made from a directed one. 
marci@612
  1007
  ///
alpar@1401
  1008
  /// An adaptor for composing a subgraph of a 
alpar@911
  1009
  /// bidirected graph made from a directed one. 
alpar@911
  1010
  ///
alpar@1401
  1011
  ///\warning Graph adaptors are in even more experimental state than the other
alpar@879
  1012
  ///parts of the lib. Use them at you own risk.
alpar@879
  1013
  ///
marci@923
  1014
  /// Let \f$G=(V, A)\f$ be a directed graph and for each directed edge 
marci@923
  1015
  /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by
marci@923
  1016
  /// reversing its orientation. We are given moreover two bool valued 
marci@923
  1017
  /// maps on the edge-set, 
marci@923
  1018
  /// \f$forward\_filter\f$, and \f$backward\_filter\f$. 
alpar@1401
  1019
  /// SubBidirGraphAdaptor implements the graph structure with node-set 
marci@923
  1020
  /// \f$V\f$ and edge-set 
marci@923
  1021
  /// \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$. 
marci@792
  1022
  /// The purpose of writing + instead of union is because parallel 
marci@923
  1023
  /// edges can arise. (Similarly, antiparallel edges also can arise).
marci@792
  1024
  /// In other words, a subgraph of the bidirected graph obtained, which 
marci@792
  1025
  /// is given by orienting the edges of the original graph in both directions.
marci@923
  1026
  /// As the oppositely directed edges are logically different, 
marci@923
  1027
  /// the maps are able to attach different values for them. 
marci@923
  1028
  ///
alpar@1401
  1029
  /// An example for such a construction is \c RevGraphAdaptor where the 
marci@792
  1030
  /// forward_filter is everywhere false and the backward_filter is 
marci@792
  1031
  /// everywhere true. We note that for sake of efficiency, 
alpar@1401
  1032
  /// \c RevGraphAdaptor is implemented in a different way. 
alpar@1401
  1033
  /// But BidirGraphAdaptor is obtained from 
alpar@1401
  1034
  /// SubBidirGraphAdaptor by considering everywhere true 
marci@910
  1035
  /// valued maps both for forward_filter and backward_filter. 
marci@1252
  1036
  ///
alpar@1401
  1037
  /// The most important application of SubBidirGraphAdaptor 
alpar@1401
  1038
  /// is ResGraphAdaptor, which stands for the residual graph in directed 
marci@792
  1039
  /// flow and circulation problems. 
alpar@1401
  1040
  /// As adaptors usually, the SubBidirGraphAdaptor implements the 
marci@792
  1041
  /// above mentioned graph structure without its physical storage, 
marci@923
  1042
  /// that is the whole stuff is stored in constant memory. 
marci@992
  1043
  template<typename _Graph, 
marci@650
  1044
	   typename ForwardFilterMap, typename BackwardFilterMap>
alpar@1401
  1045
  class SubBidirGraphAdaptor : 
marci@992
  1046
    public IterableGraphExtender<
alpar@1401
  1047
    SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap> > {
marci@650
  1048
  public:
marci@992
  1049
    typedef _Graph Graph;
marci@992
  1050
    typedef IterableGraphExtender<
alpar@1401
  1051
      SubBidirGraphAdaptorBase<
marci@992
  1052
      _Graph, ForwardFilterMap, BackwardFilterMap> > Parent;
marci@569
  1053
  protected:
alpar@1401
  1054
    SubBidirGraphAdaptor() { }
marci@992
  1055
  public:
alpar@1401
  1056
    SubBidirGraphAdaptor(_Graph& _graph, ForwardFilterMap& _forward_filter, 
marci@992
  1057
			 BackwardFilterMap& _backward_filter) { 
marci@992
  1058
      setGraph(_graph);
marci@992
  1059
      setForwardFilterMap(_forward_filter);
marci@992
  1060
      setBackwardFilterMap(_backward_filter);
marci@992
  1061
    }
marci@992
  1062
  };
marci@650
  1063
marci@569
  1064
marci@650
  1065
alpar@1401
  1066
  ///\brief An adaptor for composing bidirected graph from a directed one. 
marci@650
  1067
  ///
alpar@1401
  1068
  ///\warning Graph adaptors are in even more experimental state than the other
alpar@879
  1069
  ///parts of the lib. Use them at you own risk.
alpar@879
  1070
  ///
alpar@1401
  1071
  /// An adaptor for composing bidirected graph from a directed one. 
marci@650
  1072
  /// A bidirected graph is composed over the directed one without physical 
marci@650
  1073
  /// storage. As the oppositely directed edges are logically different ones 
marci@650
  1074
  /// the maps are able to attach different values for them.
marci@650
  1075
  template<typename Graph>
alpar@1401
  1076
  class BidirGraphAdaptor : 
alpar@1401
  1077
    public SubBidirGraphAdaptor<
marci@650
  1078
    Graph, 
marci@650
  1079
    ConstMap<typename Graph::Edge, bool>, 
marci@650
  1080
    ConstMap<typename Graph::Edge, bool> > {
marci@650
  1081
  public:
alpar@1401
  1082
    typedef  SubBidirGraphAdaptor<
marci@650
  1083
      Graph, 
marci@650
  1084
      ConstMap<typename Graph::Edge, bool>, 
marci@650
  1085
      ConstMap<typename Graph::Edge, bool> > Parent; 
marci@650
  1086
  protected:
marci@650
  1087
    ConstMap<typename Graph::Edge, bool> cm;
marci@650
  1088
alpar@1401
  1089
    BidirGraphAdaptor() : Parent(), cm(true) { 
marci@655
  1090
      Parent::setForwardFilterMap(cm);
marci@655
  1091
      Parent::setBackwardFilterMap(cm);
marci@655
  1092
    }
marci@650
  1093
  public:
alpar@1401
  1094
    BidirGraphAdaptor(Graph& _graph) : Parent(), cm(true) { 
marci@650
  1095
      Parent::setGraph(_graph);
marci@650
  1096
      Parent::setForwardFilterMap(cm);
marci@650
  1097
      Parent::setBackwardFilterMap(cm);
marci@650
  1098
    }
marci@738
  1099
marci@738
  1100
    int edgeNum() const { 
marci@738
  1101
      return 2*this->graph->edgeNum();
marci@738
  1102
    }
marci@650
  1103
  };
marci@650
  1104
marci@650
  1105
marci@650
  1106
  template<typename Graph, typename Number,
marci@650
  1107
	   typename CapacityMap, typename FlowMap>
marci@658
  1108
  class ResForwardFilter {
marci@658
  1109
    //    const Graph* graph;
marci@650
  1110
    const CapacityMap* capacity;
marci@650
  1111
    const FlowMap* flow;
marci@650
  1112
  public:
marci@658
  1113
    ResForwardFilter(/*const Graph& _graph, */
marci@658
  1114
		     const CapacityMap& _capacity, const FlowMap& _flow) :
marci@658
  1115
      /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
marci@658
  1116
    ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
marci@656
  1117
    void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
marci@656
  1118
    void setFlow(const FlowMap& _flow) { flow=&_flow; }
marci@650
  1119
    bool operator[](const typename Graph::Edge& e) const {
marci@738
  1120
      return (Number((*flow)[e]) < Number((*capacity)[e]));
marci@650
  1121
    }
marci@650
  1122
  };
marci@650
  1123
marci@650
  1124
  template<typename Graph, typename Number,
marci@650
  1125
	   typename CapacityMap, typename FlowMap>
marci@658
  1126
  class ResBackwardFilter {
marci@650
  1127
    const CapacityMap* capacity;
marci@650
  1128
    const FlowMap* flow;
marci@650
  1129
  public:
marci@658
  1130
    ResBackwardFilter(/*const Graph& _graph,*/ 
marci@658
  1131
		      const CapacityMap& _capacity, const FlowMap& _flow) :
marci@658
  1132
      /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
marci@658
  1133
    ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
marci@656
  1134
    void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
marci@656
  1135
    void setFlow(const FlowMap& _flow) { flow=&_flow; }
marci@650
  1136
    bool operator[](const typename Graph::Edge& e) const {
marci@738
  1137
      return (Number(0) < Number((*flow)[e]));
marci@650
  1138
    }
marci@650
  1139
  };
marci@650
  1140
marci@653
  1141
  
alpar@1401
  1142
  /*! \brief An adaptor for composing the residual graph for directed flow and circulation problems.
marci@650
  1143
alpar@1401
  1144
  An adaptor for composing the residual graph for directed flow and circulation problems. 
marci@1242
  1145
  Let \f$G=(V, A)\f$ be a directed graph and let \f$F\f$ be a 
marci@1242
  1146
  number type. Let moreover 
marci@1242
  1147
  \f$f,c:A\to F\f$, be functions on the edge-set. 
alpar@1401
  1148
  In the appications of ResGraphAdaptor, \f$f\f$ usually stands for a flow 
marci@1242
  1149
  and \f$c\f$ for a capacity function.   
marci@1242
  1150
  Suppose that a graph instange \c g of type 
marci@1242
  1151
  \c ListGraph implements \f$G\f$.
marci@1242
  1152
  \code
marci@1242
  1153
  ListGraph g;
marci@1242
  1154
  \endcode
alpar@1401
  1155
  Then RevGraphAdaptor implements the graph structure with node-set 
marci@1242
  1156
  \f$V\f$ and edge-set \f$A_{forward}\cup A_{backward}\f$, where 
marci@1242
  1157
  \f$A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\}\f$ and 
marci@1242
  1158
  \f$A_{backward}=\{vu : uv\in A, f(uv)>0\}\f$, 
marci@1242
  1159
  i.e. the so called residual graph. 
marci@1242
  1160
  When we take the union \f$A_{forward}\cup A_{backward}\f$, 
marci@1242
  1161
  multilicities are counted, i.e. if an edge is in both 
alpar@1401
  1162
  \f$A_{forward}\f$ and \f$A_{backward}\f$, then in the adaptor it 
marci@1242
  1163
  appears twice. 
marci@1242
  1164
  The following code shows how 
marci@1242
  1165
  such an instance can be constructed.
marci@1242
  1166
  \code
marci@1242
  1167
  typedef ListGraph Graph;
marci@1242
  1168
  Graph::EdgeMap<int> f(g);
marci@1242
  1169
  Graph::EdgeMap<int> c(g);
alpar@1401
  1170
  ResGraphAdaptor<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > gw(g);
marci@1242
  1171
  \endcode
marci@1242
  1172
  \author Marton Makai
marci@1242
  1173
  */
marci@650
  1174
  template<typename Graph, typename Number, 
marci@650
  1175
	   typename CapacityMap, typename FlowMap>
alpar@1401
  1176
  class ResGraphAdaptor : 
alpar@1401
  1177
    public SubBidirGraphAdaptor< 
marci@650
  1178
    Graph, 
marci@658
  1179
    ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
marci@658
  1180
    ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > {
marci@650
  1181
  public:
alpar@1401
  1182
    typedef SubBidirGraphAdaptor< 
marci@650
  1183
      Graph, 
marci@658
  1184
      ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
marci@658
  1185
      ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > Parent;
marci@650
  1186
  protected:
marci@650
  1187
    const CapacityMap* capacity;
marci@650
  1188
    FlowMap* flow;
marci@658
  1189
    ResForwardFilter<Graph, Number, CapacityMap, FlowMap> forward_filter;
marci@658
  1190
    ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> backward_filter;
alpar@1401
  1191
    ResGraphAdaptor() : Parent(), 
marci@658
  1192
 			capacity(0), flow(0) { }
marci@658
  1193
    void setCapacityMap(const CapacityMap& _capacity) {
marci@658
  1194
      capacity=&_capacity;
marci@658
  1195
      forward_filter.setCapacity(_capacity);
marci@658
  1196
      backward_filter.setCapacity(_capacity);
marci@658
  1197
    }
marci@658
  1198
    void setFlowMap(FlowMap& _flow) {
marci@658
  1199
      flow=&_flow;
marci@658
  1200
      forward_filter.setFlow(_flow);
marci@658
  1201
      backward_filter.setFlow(_flow);
marci@658
  1202
    }
marci@650
  1203
  public:
alpar@1401
  1204
    ResGraphAdaptor(Graph& _graph, const CapacityMap& _capacity, 
marci@650
  1205
		       FlowMap& _flow) : 
marci@650
  1206
      Parent(), capacity(&_capacity), flow(&_flow), 
marci@658
  1207
      forward_filter(/*_graph,*/ _capacity, _flow), 
marci@658
  1208
      backward_filter(/*_graph,*/ _capacity, _flow) {
marci@650
  1209
      Parent::setGraph(_graph);
marci@650
  1210
      Parent::setForwardFilterMap(forward_filter);
marci@650
  1211
      Parent::setBackwardFilterMap(backward_filter);
marci@650
  1212
    }
marci@650
  1213
marci@660
  1214
    typedef typename Parent::Edge Edge;
marci@660
  1215
marci@660
  1216
    void augment(const Edge& e, Number a) const {
marci@650
  1217
      if (Parent::forward(e))  
marci@650
  1218
	flow->set(e, (*flow)[e]+a);
marci@650
  1219
      else  
marci@650
  1220
	flow->set(e, (*flow)[e]-a);
marci@650
  1221
    }
marci@650
  1222
marci@660
  1223
    /// \brief Residual capacity map.
marci@660
  1224
    ///
marci@910
  1225
    /// In generic residual graphs the residual capacity can be obtained 
marci@910
  1226
    /// as a map. 
marci@660
  1227
    class ResCap {
marci@660
  1228
    protected:
alpar@1401
  1229
      const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>* res_graph;
marci@660
  1230
    public:
alpar@987
  1231
      typedef Number Value;
alpar@987
  1232
      typedef Edge Key;
alpar@1401
  1233
      ResCap(const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>& 
marci@888
  1234
	     _res_graph) : res_graph(&_res_graph) { }
marci@660
  1235
      Number operator[](const Edge& e) const { 
marci@660
  1236
	if (res_graph->forward(e)) 
marci@660
  1237
	  return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e]; 
marci@660
  1238
	else 
marci@660
  1239
	  return (*(res_graph->flow))[e]; 
marci@660
  1240
      }
marci@660
  1241
    };
marci@660
  1242
alpar@1401
  1243
    //    KEEP_MAPS(Parent, ResGraphAdaptor);
marci@650
  1244
  };
marci@650
  1245
marci@650
  1246
marci@998
  1247
marci@998
  1248
  template <typename _Graph, typename FirstOutEdgesMap>
alpar@1401
  1249
  class ErasingFirstGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
marci@998
  1250
  public:
marci@998
  1251
    typedef _Graph Graph;
alpar@1401
  1252
    typedef GraphAdaptorBase<_Graph> Parent;
marci@998
  1253
  protected:
marci@998
  1254
    FirstOutEdgesMap* first_out_edges;
alpar@1401
  1255
    ErasingFirstGraphAdaptorBase() : Parent(), 
marci@998
  1256
				     first_out_edges(0) { }
marci@998
  1257
marci@998
  1258
    void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) {
marci@998
  1259
      first_out_edges=&_first_out_edges;
marci@998
  1260
    }
marci@998
  1261
marci@998
  1262
  public:
marci@998
  1263
marci@998
  1264
    typedef typename Parent::Node Node;
marci@998
  1265
    typedef typename Parent::Edge Edge;
marci@998
  1266
marci@998
  1267
    void firstOut(Edge& i, const Node& n) const { 
marci@998
  1268
      i=(*first_out_edges)[n];
marci@998
  1269
    }
marci@998
  1270
marci@998
  1271
    void erase(const Edge& e) const {
marci@998
  1272
      Node n=source(e);
marci@998
  1273
      Edge f=e;
marci@998
  1274
      Parent::nextOut(f);
marci@998
  1275
      first_out_edges->set(n, f);
marci@998
  1276
    }    
marci@998
  1277
  };
marci@998
  1278
marci@998
  1279
marci@612
  1280
  /// For blocking flows.
marci@556
  1281
alpar@1946
  1282
  ///\warning Graph adaptors are in even more
alpar@1946
  1283
  ///experimental state than the other
alpar@879
  1284
  ///parts of the lib. Use them at you own risk.
alpar@879
  1285
  ///
alpar@1946
  1286
  ///This graph adaptor is used for on-the-fly 
alpar@1946
  1287
  ///Dinits blocking flow computations.
alpar@1946
  1288
  ///For each node, an out-edge is stored which is used when the 
alpar@1946
  1289
  ///\code OutEdgeIt& first(OutEdgeIt&, const Node&)\endcode
alpar@1946
  1290
  ///is called. 
marci@556
  1291
  ///
alpar@1946
  1292
  ///\author Marton Makai
alpar@1946
  1293
  ///
marci@998
  1294
  template <typename _Graph, typename FirstOutEdgesMap>
alpar@1401
  1295
  class ErasingFirstGraphAdaptor : 
marci@998
  1296
    public IterableGraphExtender<
alpar@1401
  1297
    ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > {
marci@650
  1298
  public:
marci@998
  1299
    typedef _Graph Graph;
marci@998
  1300
    typedef IterableGraphExtender<
alpar@1401
  1301
      ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > Parent;
alpar@1401
  1302
    ErasingFirstGraphAdaptor(Graph& _graph, 
marci@998
  1303
			     FirstOutEdgesMap& _first_out_edges) { 
marci@998
  1304
      setGraph(_graph);
marci@998
  1305
      setFirstOutEdgesMap(_first_out_edges);
marci@998
  1306
    } 
marci@1019
  1307
marci@998
  1308
  };
marci@556
  1309
deba@1472
  1310
  template <typename _Graph>
deba@1697
  1311
  class SplitGraphAdaptorBase 
deba@1697
  1312
    : public GraphAdaptorBase<_Graph> {
deba@1697
  1313
  public:
deba@1697
  1314
    typedef GraphAdaptorBase<_Graph> Parent;
deba@1697
  1315
deba@1697
  1316
    class Node;
deba@1697
  1317
    class Edge;
deba@1697
  1318
    template <typename T> class NodeMap;
deba@1697
  1319
    template <typename T> class EdgeMap;
deba@1697
  1320
    
deba@1697
  1321
deba@1697
  1322
    class Node : public Parent::Node {
deba@1697
  1323
      friend class SplitGraphAdaptorBase;
deba@1697
  1324
      template <typename T> friend class NodeMap;
deba@1697
  1325
      typedef typename Parent::Node NodeParent;
deba@1697
  1326
    private:
deba@1697
  1327
deba@1697
  1328
      bool entry;
deba@1697
  1329
      Node(typename Parent::Node _node, bool _entry)
deba@1697
  1330
	: Parent::Node(_node), entry(_entry) {}
deba@1697
  1331
      
deba@1697
  1332
    public:
deba@1697
  1333
      Node() {}
deba@1697
  1334
      Node(Invalid) : NodeParent(INVALID), entry(true) {}
deba@1697
  1335
deba@1697
  1336
      bool operator==(const Node& node) const {
deba@1697
  1337
	return NodeParent::operator==(node) && entry == node.entry;
deba@1697
  1338
      }
deba@1697
  1339
      
deba@1697
  1340
      bool operator!=(const Node& node) const {
deba@1697
  1341
	return !(*this == node);
deba@1697
  1342
      }
deba@1697
  1343
      
deba@1697
  1344
      bool operator<(const Node& node) const {
deba@1697
  1345
	return NodeParent::operator<(node) || 
deba@1697
  1346
	  (NodeParent::operator==(node) && entry < node.entry);
deba@1697
  1347
      }
deba@1697
  1348
    };
deba@1697
  1349
deba@1697
  1350
    /// \todo May we want VARIANT/union type
deba@1697
  1351
    class Edge : public Parent::Edge {
deba@1697
  1352
      friend class SplitGraphAdaptorBase;
deba@1697
  1353
      template <typename T> friend class EdgeMap;
deba@1697
  1354
    private:
deba@1697
  1355
      typedef typename Parent::Edge EdgeParent;
deba@1697
  1356
      typedef typename Parent::Node NodeParent;
deba@1697
  1357
      NodeParent bind;
deba@1697
  1358
deba@1697
  1359
      Edge(const EdgeParent& edge, const NodeParent& node)
deba@1697
  1360
	: EdgeParent(edge), bind(node) {}
deba@1697
  1361
    public:
deba@1697
  1362
      Edge() {}
deba@1697
  1363
      Edge(Invalid) : EdgeParent(INVALID), bind(INVALID) {}
deba@1697
  1364
deba@1697
  1365
      bool operator==(const Edge& edge) const {
deba@1697
  1366
	return EdgeParent::operator==(edge) && bind == edge.bind;
deba@1697
  1367
      }
deba@1697
  1368
      
deba@1697
  1369
      bool operator!=(const Edge& edge) const {
deba@1697
  1370
	return !(*this == edge);
deba@1697
  1371
      }
deba@1697
  1372
      
deba@1697
  1373
      bool operator<(const Edge& edge) const {
deba@1697
  1374
	return EdgeParent::operator<(edge) || 
deba@1697
  1375
	  (EdgeParent::operator==(edge) && bind < edge.bind);
deba@1697
  1376
      }
deba@1697
  1377
    };
deba@1697
  1378
deba@1697
  1379
    void first(Node& node) const {
deba@1697
  1380
      Parent::first(node);
deba@1697
  1381
      node.entry = true;
deba@1697
  1382
    } 
deba@1697
  1383
deba@1697
  1384
    void next(Node& node) const {
deba@1697
  1385
      if (node.entry) {
deba@1697
  1386
	node.entry = false;
deba@1697
  1387
      } else {
deba@1697
  1388
	node.entry = true;
deba@1697
  1389
	Parent::next(node);
deba@1697
  1390
      }
deba@1697
  1391
    }
deba@1697
  1392
deba@1697
  1393
    void first(Edge& edge) const {
deba@1697
  1394
      Parent::first(edge);
deba@1697
  1395
      if ((typename Parent::Edge&)edge == INVALID) {
deba@1697
  1396
	Parent::first(edge.bind);
deba@1697
  1397
      } else {
deba@1697
  1398
	edge.bind = INVALID;
deba@1697
  1399
      }
deba@1697
  1400
    }
deba@1697
  1401
deba@1697
  1402
    void next(Edge& edge) const {
deba@1697
  1403
      if ((typename Parent::Edge&)edge != INVALID) {
deba@1697
  1404
	Parent::next(edge);
deba@1697
  1405
	if ((typename Parent::Edge&)edge == INVALID) {
deba@1697
  1406
	  Parent::first(edge.bind);
deba@1697
  1407
	}
deba@1697
  1408
      } else {
deba@1697
  1409
	Parent::next(edge.bind);
deba@1697
  1410
      }      
deba@1697
  1411
    }
deba@1697
  1412
deba@1697
  1413
    void firstIn(Edge& edge, const Node& node) const {
deba@1697
  1414
      if (node.entry) {
deba@1697
  1415
	Parent::firstIn(edge, node);
deba@1697
  1416
	edge.bind = INVALID;
deba@1697
  1417
      } else {
deba@1697
  1418
	(typename Parent::Edge&)edge = INVALID;
deba@1697
  1419
	edge.bind = node;
deba@1697
  1420
      }
deba@1697
  1421
    }
deba@1697
  1422
deba@1697
  1423
    void nextIn(Edge& edge) const {
deba@1697
  1424
      if ((typename Parent::Edge&)edge != INVALID) {
deba@1697
  1425
	Parent::nextIn(edge);
deba@1697
  1426
      } else {
deba@1697
  1427
	edge.bind = INVALID;
deba@1697
  1428
      }      
deba@1697
  1429
    }
deba@1697
  1430
deba@1697
  1431
    void firstOut(Edge& edge, const Node& node) const {
deba@1697
  1432
      if (!node.entry) {
deba@1697
  1433
	Parent::firstOut(edge, node);
deba@1697
  1434
	edge.bind = INVALID;
deba@1697
  1435
      } else {
deba@1697
  1436
	(typename Parent::Edge&)edge = INVALID;
deba@1697
  1437
	edge.bind = node;
deba@1697
  1438
      }
deba@1697
  1439
    }
deba@1697
  1440
deba@1697
  1441
    void nextOut(Edge& edge) const {
deba@1697
  1442
      if ((typename Parent::Edge&)edge != INVALID) {
deba@1697
  1443
	Parent::nextOut(edge);
deba@1697
  1444
      } else {
deba@1697
  1445
	edge.bind = INVALID;
deba@1697
  1446
      }
deba@1697
  1447
    }
deba@1697
  1448
deba@1697
  1449
    Node source(const Edge& edge) const {
deba@1697
  1450
      if ((typename Parent::Edge&)edge != INVALID) {
deba@1697
  1451
	return Node(Parent::source(edge), false);
deba@1697
  1452
      } else {
deba@1697
  1453
	return Node(edge.bind, true);
deba@1697
  1454
      }
deba@1697
  1455
    }
deba@1697
  1456
deba@1697
  1457
    Node target(const Edge& edge) const {
deba@1697
  1458
      if ((typename Parent::Edge&)edge != INVALID) {
deba@1697
  1459
	return Node(Parent::target(edge), true);
deba@1697
  1460
      } else {
deba@1697
  1461
	return Node(edge.bind, false);
deba@1697
  1462
      }
deba@1697
  1463
    }
deba@1697
  1464
deba@1697
  1465
    static bool entryNode(const Node& node) {
deba@1697
  1466
      return node.entry;
deba@1697
  1467
    }
deba@1697
  1468
deba@1697
  1469
    static bool exitNode(const Node& node) {
deba@1697
  1470
      return !node.entry;
deba@1697
  1471
    }
deba@1697
  1472
deba@1697
  1473
    static Node getEntry(const typename Parent::Node& node) {
deba@1697
  1474
      return Node(node, true);
deba@1697
  1475
    }
deba@1697
  1476
deba@1697
  1477
    static Node getExit(const typename Parent::Node& node) {
deba@1697
  1478
      return Node(node, false);
deba@1697
  1479
    }
deba@1697
  1480
deba@1697
  1481
    static bool originalEdge(const Edge& edge) {
deba@1697
  1482
      return (typename Parent::Edge&)edge != INVALID;
deba@1697
  1483
    }
deba@1697
  1484
deba@1697
  1485
    static bool bindingEdge(const Edge& edge) {
deba@1697
  1486
      return edge.bind != INVALID;
deba@1697
  1487
    }
deba@1697
  1488
deba@1697
  1489
    static Node getBindedNode(const Edge& edge) {
deba@1697
  1490
      return edge.bind;
deba@1697
  1491
    }
deba@1697
  1492
deba@1697
  1493
    int nodeNum() const {
deba@1697
  1494
      return Parent::nodeNum() * 2;
deba@1697
  1495
    }
deba@1697
  1496
deba@1697
  1497
    typedef CompileTimeAnd<typename Parent::NodeNumTag, 
deba@1697
  1498
    			   typename Parent::EdgeNumTag> EdgeNumTag;
deba@1697
  1499
    
deba@1697
  1500
    int edgeNum() const {
deba@1697
  1501
      return Parent::edgeNum() + Parent::nodeNum();
deba@1697
  1502
    }
deba@1697
  1503
deba@1697
  1504
    Edge findEdge(const Node& source, const Node& target, 
deba@1697
  1505
		  const Edge& prev = INVALID) const {
deba@1697
  1506
      if (exitNode(source) && entryNode(target)) {
deba@1697
  1507
	return Parent::findEdge(source, target, prev);
deba@1697
  1508
      } else {
deba@1697
  1509
	if (prev == INVALID && entryNode(source) && exitNode(target) && 
deba@1697
  1510
	    (typename Parent::Node&)source == (typename Parent::Node&)target) {
deba@1697
  1511
	  return Edge(INVALID, source);
deba@1697
  1512
	} else {
deba@1697
  1513
	  return INVALID;
deba@1697
  1514
	}
deba@1697
  1515
      }
deba@1697
  1516
    }
deba@1697
  1517
    
deba@1697
  1518
    template <typename T>
deba@1697
  1519
    class NodeMap : public MapBase<Node, T> {
deba@1697
  1520
      typedef typename Parent::template NodeMap<T> NodeImpl;
deba@1697
  1521
    public:
deba@1697
  1522
      NodeMap(const SplitGraphAdaptorBase& _graph) 
deba@1697
  1523
	: entry(_graph), exit(_graph) {}
deba@1697
  1524
      NodeMap(const SplitGraphAdaptorBase& _graph, const T& t) 
deba@1697
  1525
	: entry(_graph, t), exit(_graph, t) {}
deba@1697
  1526
      
deba@1697
  1527
      void set(const Node& key, const T& val) {
deba@1697
  1528
	if (key.entry) { entry.set(key, val); }
deba@1697
  1529
	else {exit.set(key, val); }
deba@1697
  1530
      }
deba@1697
  1531
      
deba@1725
  1532
      typename MapTraits<NodeImpl>::ReturnValue 
deba@1697
  1533
      operator[](const Node& key) {
deba@1697
  1534
	if (key.entry) { return entry[key]; }
deba@1697
  1535
	else { return exit[key]; }
deba@1697
  1536
      }
deba@1697
  1537
deba@1725
  1538
      typename MapTraits<NodeImpl>::ConstReturnValue
deba@1725
  1539
      operator[](const Node& key) const {
deba@1697
  1540
	if (key.entry) { return entry[key]; }
deba@1697
  1541
	else { return exit[key]; }
deba@1697
  1542
      }
deba@1697
  1543
deba@1697
  1544
    private:
deba@1697
  1545
      NodeImpl entry, exit;
deba@1697
  1546
    };
deba@1697
  1547
deba@1697
  1548
    template <typename T>
deba@1697
  1549
    class EdgeMap : public MapBase<Edge, T> {
deba@1697
  1550
      typedef typename Parent::template NodeMap<T> NodeImpl;
deba@1697
  1551
      typedef typename Parent::template EdgeMap<T> EdgeImpl;
deba@1697
  1552
    public:
deba@1697
  1553
      EdgeMap(const SplitGraphAdaptorBase& _graph) 
deba@1697
  1554
	: bind(_graph), orig(_graph) {}
deba@1697
  1555
      EdgeMap(const SplitGraphAdaptorBase& _graph, const T& t) 
deba@1697
  1556
	: bind(_graph, t), orig(_graph, t) {}
deba@1697
  1557
      
deba@1697
  1558
      void set(const Edge& key, const T& val) {
deba@1697
  1559
	if ((typename Parent::Edge&)key != INVALID) { orig.set(key, val); }
deba@1697
  1560
	else {bind.set(key.bind, val); }
deba@1697
  1561
      }
deba@1697
  1562
      
deba@1725
  1563
      typename MapTraits<EdgeImpl>::ReturnValue
deba@1697
  1564
      operator[](const Edge& key) {
deba@1697
  1565
	if ((typename Parent::Edge&)key != INVALID) { return orig[key]; }
deba@1697
  1566
	else {return bind[key.bind]; }
deba@1697
  1567
      }
deba@1697
  1568
deba@1725
  1569
      typename MapTraits<EdgeImpl>::ConstReturnValue
deba@1725
  1570
      operator[](const Edge& key) const {
deba@1697
  1571
	if ((typename Parent::Edge&)key != INVALID) { return orig[key]; }
deba@1697
  1572
	else {return bind[key.bind]; }
deba@1697
  1573
      }
deba@1697
  1574
deba@1697
  1575
    private:
deba@1697
  1576
      typename Parent::template NodeMap<T> bind;
deba@1697
  1577
      typename Parent::template EdgeMap<T> orig;
deba@1697
  1578
    };
deba@1697
  1579
deba@1697
  1580
    template <typename EntryMap, typename ExitMap>
deba@1697
  1581
    class CombinedNodeMap : public MapBase<Node, typename EntryMap::Value> {
deba@1697
  1582
    public:
deba@1697
  1583
      typedef MapBase<Node, typename EntryMap::Value> Parent;
deba@1697
  1584
deba@1697
  1585
      typedef typename Parent::Key Key;
deba@1697
  1586
      typedef typename Parent::Value Value;
deba@1697
  1587
deba@1697
  1588
      CombinedNodeMap(EntryMap& _entryMap, ExitMap& _exitMap) 
deba@1697
  1589
	: entryMap(_entryMap), exitMap(_exitMap) {}
deba@1697
  1590
deba@1697
  1591
      Value& operator[](const Key& key) {
deba@1697
  1592
	if (key.entry) {
deba@1697
  1593
	  return entryMap[key];
deba@1697
  1594
	} else {
deba@1697
  1595
	  return exitMap[key];
deba@1697
  1596
	}
deba@1697
  1597
      }
deba@1697
  1598
deba@1697
  1599
      Value operator[](const Key& key) const {
deba@1697
  1600
	if (key.entry) {
deba@1697
  1601
	  return entryMap[key];
deba@1697
  1602
	} else {
deba@1697
  1603
	  return exitMap[key];
deba@1697
  1604
	}
deba@1697
  1605
      }
deba@1697
  1606
deba@1697
  1607
      void set(const Key& key, const Value& value) {
deba@1697
  1608
	if (key.entry) {
deba@1697
  1609
	  entryMap.set(key, value);
deba@1697
  1610
	} else {
deba@1697
  1611
	  exitMap.set(key, value);
deba@1697
  1612
	}
deba@1697
  1613
      }
deba@1697
  1614
      
deba@1697
  1615
    private:
deba@1697
  1616
      
deba@1697
  1617
      EntryMap& entryMap;
deba@1697
  1618
      ExitMap& exitMap;
deba@1697
  1619
      
deba@1697
  1620
    };
deba@1697
  1621
deba@1697
  1622
    template <typename EdgeMap, typename NodeMap>
deba@1697
  1623
    class CombinedEdgeMap : public MapBase<Edge, typename EdgeMap::Value> {
deba@1697
  1624
    public:
deba@1697
  1625
      typedef MapBase<Edge, typename EdgeMap::Value> Parent;
deba@1697
  1626
deba@1697
  1627
      typedef typename Parent::Key Key;
deba@1697
  1628
      typedef typename Parent::Value Value;
deba@1697
  1629
deba@1697
  1630
      CombinedEdgeMap(EdgeMap& _edgeMap, NodeMap& _nodeMap) 
deba@1697
  1631
	: edgeMap(_edgeMap), nodeMap(_nodeMap) {}
deba@1697
  1632
deba@1697
  1633
      void set(const Edge& edge, const Value& val) {
deba@1697
  1634
	if (SplitGraphAdaptorBase::originalEdge(edge)) {
deba@1697
  1635
	  edgeMap.set(edge, val);
deba@1697
  1636
	} else {
deba@1697
  1637
	  nodeMap.set(SplitGraphAdaptorBase::bindedNode(edge), val);
deba@1697
  1638
	}
deba@1697
  1639
      }
deba@1697
  1640
deba@1697
  1641
      Value operator[](const Key& edge) const {
deba@1697
  1642
	if (SplitGraphAdaptorBase::originalEdge(edge)) {
deba@1697
  1643
	  return edgeMap[edge];
deba@1697
  1644
	} else {
deba@1697
  1645
	  return nodeMap[SplitGraphAdaptorBase::bindedNode(edge)];
deba@1697
  1646
	}
deba@1697
  1647
      }      
deba@1697
  1648
deba@1697
  1649
      Value& operator[](const Key& edge) {
deba@1697
  1650
	if (SplitGraphAdaptorBase::originalEdge(edge)) {
deba@1697
  1651
	  return edgeMap[edge];
deba@1697
  1652
	} else {
deba@1697
  1653
	  return nodeMap[SplitGraphAdaptorBase::bindedNode(edge)];
deba@1697
  1654
	}
deba@1697
  1655
      }      
deba@1697
  1656
      
deba@1697
  1657
    private:
deba@1697
  1658
      EdgeMap& edgeMap;
deba@1697
  1659
      NodeMap& nodeMap;
deba@1697
  1660
    };
deba@1697
  1661
deba@1697
  1662
  };
deba@1697
  1663
deba@1697
  1664
  template <typename _Graph>
deba@1697
  1665
  class SplitGraphAdaptor 
deba@1697
  1666
    : public IterableGraphExtender<SplitGraphAdaptorBase<_Graph> > {
deba@1697
  1667
  public:
deba@1697
  1668
    typedef IterableGraphExtender<SplitGraphAdaptorBase<_Graph> > Parent;
deba@1697
  1669
deba@1697
  1670
    SplitGraphAdaptor(_Graph& graph) {
deba@1697
  1671
      Parent::setGraph(graph);
deba@1697
  1672
    }
deba@1697
  1673
deba@1697
  1674
deba@1697
  1675
  };
deba@1697
  1676
marci@556
  1677
  ///@}
marci@556
  1678
alpar@921
  1679
} //namespace lemon
marci@556
  1680
alpar@1401
  1681
#endif //LEMON_GRAPH_ADAPTOR_H
marci@556
  1682