lemon/graph_adaptor.h
author alpar
Fri, 03 Feb 2006 09:03:05 +0000
changeset 1948 9e9c035a08be
parent 1909 2d806130e700
child 1949 5db4ff8d69de
permissions -rw-r--r--
Hopefully we can release 0.5 today
     1 /* -*- C++ -*-
     2  * lemon/graph_adaptor.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2006 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_GRAPH_ADAPTOR_H
    18 #define LEMON_GRAPH_ADAPTOR_H
    19 
    20 ///\ingroup graph_adaptors
    21 ///\file
    22 ///\brief Several graph adaptors.
    23 ///
    24 ///This file contains several useful graph adaptor functions.
    25 ///
    26 ///\author Marton Makai
    27 
    28 #include <lemon/invalid.h>
    29 #include <lemon/maps.h>
    30 #include <lemon/bits/erasable_graph_extender.h>
    31 #include <lemon/bits/clearable_graph_extender.h>
    32 #include <lemon/bits/extendable_graph_extender.h>
    33 #include <lemon/bits/iterable_graph_extender.h>
    34 #include <lemon/bits/alteration_notifier.h>
    35 #include <lemon/bits/default_map.h>
    36 #include <lemon/bits/graph_extender.h>
    37 #include <iostream>
    38 
    39 namespace lemon {
    40 
    41   // Graph adaptors
    42 
    43   /*!
    44     \addtogroup graph_adaptors
    45     @{
    46    */
    47 
    48   /*! 
    49     Base type for the Graph Adaptors
    50     
    51     \warning Graph adaptors are in even more experimental state than the other
    52     parts of the lib. Use them at you own risk.
    53     
    54     This is the base type for most of LEMON graph adaptors. 
    55     This class implements a trivial graph adaptor i.e. it only wraps the 
    56     functions and types of the graph. The purpose of this class is to 
    57     make easier implementing graph adaptors. E.g. if an adaptor is 
    58     considered which differs from the wrapped graph only in some of its 
    59     functions or types, then it can be derived from GraphAdaptor, and only the 
    60     differences should be implemented.
    61   
    62     \author Marton Makai 
    63   */
    64   template<typename _Graph>
    65   class GraphAdaptorBase {
    66   public:
    67     typedef _Graph Graph;
    68     typedef Graph ParentGraph;
    69 
    70   protected:
    71     Graph* graph;
    72     GraphAdaptorBase() : graph(0) { }
    73     void setGraph(Graph& _graph) { graph=&_graph; }
    74 
    75   public:
    76     GraphAdaptorBase(Graph& _graph) : graph(&_graph) { }
    77  
    78     typedef typename Graph::Node Node;
    79     typedef typename Graph::Edge Edge;
    80    
    81     void first(Node& i) const { graph->first(i); }
    82     void first(Edge& i) const { graph->first(i); }
    83     void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); }
    84     void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); }
    85 
    86     void next(Node& i) const { graph->next(i); }
    87     void next(Edge& i) const { graph->next(i); }
    88     void nextIn(Edge& i) const { graph->nextIn(i); }
    89     void nextOut(Edge& i) const { graph->nextOut(i); }
    90 
    91     Node source(const Edge& e) const { return graph->source(e); }
    92     Node target(const Edge& e) const { return graph->target(e); }
    93 
    94     typedef NodeNumTagIndicator<Graph> NodeNumTag;
    95     int nodeNum() const { return graph->nodeNum(); }
    96     
    97     typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
    98     int edgeNum() const { return graph->edgeNum(); }
    99 
   100     typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
   101     Edge findEdge(const Node& source, const Node& target, 
   102 		  const Edge& prev = INVALID) {
   103       return graph->findEdge(source, target, prev);
   104     }
   105   
   106     Node addNode() const { 
   107       return Node(graph->addNode()); 
   108     }
   109 
   110     Edge addEdge(const Node& source, const Node& target) const { 
   111       return Edge(graph->addEdge(source, target)); 
   112     }
   113 
   114     void erase(const Node& i) const { graph->erase(i); }
   115     void erase(const Edge& i) const { graph->erase(i); }
   116   
   117     void clear() const { graph->clear(); }
   118     
   119     int id(const Node& v) const { return graph->id(v); }
   120     int id(const Edge& e) const { return graph->id(e); }
   121     
   122     Edge oppositeNode(const Edge& e) const { 
   123       return Edge(graph->opposite(e)); 
   124     }
   125 
   126     template <typename _Value>
   127     class NodeMap : public _Graph::template NodeMap<_Value> {
   128     public:
   129       typedef typename _Graph::template NodeMap<_Value> Parent;
   130       explicit NodeMap(const GraphAdaptorBase<_Graph>& gw) 
   131 	: Parent(*gw.graph) { }
   132       NodeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value)
   133 	: Parent(*gw.graph, value) { }
   134     };
   135 
   136     template <typename _Value>
   137     class EdgeMap : public _Graph::template EdgeMap<_Value> {
   138     public:
   139       typedef typename _Graph::template EdgeMap<_Value> Parent;
   140       explicit EdgeMap(const GraphAdaptorBase<_Graph>& gw) 
   141 	: Parent(*gw.graph) { }
   142       EdgeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value)
   143 	: Parent(*gw.graph, value) { }
   144     };
   145 
   146   };
   147 
   148   template <typename _Graph>
   149   class GraphAdaptor :
   150     public IterableGraphExtender<GraphAdaptorBase<_Graph> > { 
   151   public:
   152     typedef _Graph Graph;
   153     typedef IterableGraphExtender<GraphAdaptorBase<_Graph> > Parent;
   154   protected:
   155     GraphAdaptor() : Parent() { }
   156 
   157   public:
   158     explicit GraphAdaptor(Graph& _graph) { setGraph(_graph); }
   159   };
   160 
   161   template <typename _Graph>
   162   class RevGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
   163   public:
   164     typedef _Graph Graph;
   165     typedef GraphAdaptorBase<_Graph> Parent;
   166   protected:
   167     RevGraphAdaptorBase() : Parent() { }
   168   public:
   169     typedef typename Parent::Node Node;
   170     typedef typename Parent::Edge Edge;
   171 
   172     void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); }
   173     void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); }
   174 
   175     void nextIn(Edge& i) const { Parent::nextOut(i); }
   176     void nextOut(Edge& i) const { Parent::nextIn(i); }
   177 
   178     Node source(const Edge& e) const { return Parent::target(e); }
   179     Node target(const Edge& e) const { return Parent::source(e); }
   180   };
   181     
   182 
   183   /// A graph adaptor which reverses the orientation of the edges.
   184 
   185   ///\warning Graph adaptors are in even more experimental state than the other
   186   ///parts of the lib. Use them at you own risk.
   187   ///
   188   /// Let \f$G=(V, A)\f$ be a directed graph and 
   189   /// suppose that a graph instange \c g of type 
   190   /// \c ListGraph implements \f$G\f$.
   191   ///\code
   192   /// ListGraph g;
   193   ///\endcode
   194   /// For each directed edge 
   195   /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by 
   196   /// reversing its orientation. 
   197   /// Then RevGraphAdaptor implements the graph structure with node-set 
   198   /// \f$V\f$ and edge-set 
   199   /// \f$\{\bar e : e\in A \}\f$, i.e. the graph obtained from \f$G\f$ be 
   200   /// reversing the orientation of its edges. The following code shows how 
   201   /// such an instance can be constructed.
   202   ///\code
   203   /// RevGraphAdaptor<ListGraph> gw(g);
   204   ///\endcode
   205   ///\author Marton Makai
   206 
   207   template<typename _Graph>
   208   class RevGraphAdaptor : 
   209     public IterableGraphExtender<RevGraphAdaptorBase<_Graph> > {
   210   public:
   211     typedef _Graph Graph;
   212     typedef IterableGraphExtender<
   213       RevGraphAdaptorBase<_Graph> > Parent;
   214   protected:
   215     RevGraphAdaptor() { }
   216   public:
   217     explicit RevGraphAdaptor(_Graph& _graph) { setGraph(_graph); }
   218   };
   219 
   220   
   221   template <typename _Graph, typename NodeFilterMap, 
   222 	    typename EdgeFilterMap, bool checked = true>
   223   class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
   224   public:
   225     typedef _Graph Graph;
   226     typedef GraphAdaptorBase<_Graph> Parent;
   227   protected:
   228     NodeFilterMap* node_filter_map;
   229     EdgeFilterMap* edge_filter_map;
   230     SubGraphAdaptorBase() : Parent(), 
   231 			    node_filter_map(0), edge_filter_map(0) { }
   232 
   233     void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
   234       node_filter_map=&_node_filter_map;
   235     }
   236     void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
   237       edge_filter_map=&_edge_filter_map;
   238     }
   239 
   240   public:
   241 
   242     typedef typename Parent::Node Node;
   243     typedef typename Parent::Edge Edge;
   244 
   245     void first(Node& i) const { 
   246       Parent::first(i); 
   247       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   248     }
   249 
   250     void first(Edge& i) const { 
   251       Parent::first(i); 
   252       while (i!=INVALID && (!(*edge_filter_map)[i] 
   253 	     || !(*node_filter_map)[Parent::source(i)]
   254 	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
   255     }
   256 
   257     void firstIn(Edge& i, const Node& n) const { 
   258       Parent::firstIn(i, n); 
   259       while (i!=INVALID && (!(*edge_filter_map)[i] 
   260 	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
   261     }
   262 
   263     void firstOut(Edge& i, const Node& n) const { 
   264       Parent::firstOut(i, n); 
   265       while (i!=INVALID && (!(*edge_filter_map)[i] 
   266 	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
   267     }
   268 
   269     void next(Node& i) const { 
   270       Parent::next(i); 
   271       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   272     }
   273 
   274     void next(Edge& i) const { 
   275       Parent::next(i); 
   276       while (i!=INVALID && (!(*edge_filter_map)[i] 
   277 	     || !(*node_filter_map)[Parent::source(i)]
   278 	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
   279     }
   280 
   281     void nextIn(Edge& i) const { 
   282       Parent::nextIn(i); 
   283       while (i!=INVALID && (!(*edge_filter_map)[i] 
   284 	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
   285     }
   286 
   287     void nextOut(Edge& i) const { 
   288       Parent::nextOut(i); 
   289       while (i!=INVALID && (!(*edge_filter_map)[i] 
   290 	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
   291     }
   292 
   293     /// This function hides \c n in the graph, i.e. the iteration 
   294     /// jumps over it. This is done by simply setting the value of \c n  
   295     /// to be false in the corresponding node-map.
   296     void hide(const Node& n) const { node_filter_map->set(n, false); }
   297 
   298     /// This function hides \c e in the graph, i.e. the iteration 
   299     /// jumps over it. This is done by simply setting the value of \c e  
   300     /// to be false in the corresponding edge-map.
   301     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   302 
   303     /// The value of \c n is set to be true in the node-map which stores 
   304     /// hide information. If \c n was hidden previuosly, then it is shown 
   305     /// again
   306      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   307 
   308     /// The value of \c e is set to be true in the edge-map which stores 
   309     /// hide information. If \c e was hidden previuosly, then it is shown 
   310     /// again
   311     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   312 
   313     /// Returns true if \c n is hidden.
   314     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   315 
   316     /// Returns true if \c n is hidden.
   317     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   318 
   319     typedef False NodeNumTag;
   320     typedef False EdgeNumTag;
   321   };
   322 
   323   template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
   324   class SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, false> 
   325     : public GraphAdaptorBase<_Graph> {
   326   public:
   327     typedef _Graph Graph;
   328     typedef GraphAdaptorBase<_Graph> Parent;
   329   protected:
   330     NodeFilterMap* node_filter_map;
   331     EdgeFilterMap* edge_filter_map;
   332     SubGraphAdaptorBase() : Parent(), 
   333 			    node_filter_map(0), edge_filter_map(0) { }
   334 
   335     void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
   336       node_filter_map=&_node_filter_map;
   337     }
   338     void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
   339       edge_filter_map=&_edge_filter_map;
   340     }
   341 
   342   public:
   343 
   344     typedef typename Parent::Node Node;
   345     typedef typename Parent::Edge Edge;
   346 
   347     void first(Node& i) const { 
   348       Parent::first(i); 
   349       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   350     }
   351 
   352     void first(Edge& i) const { 
   353       Parent::first(i); 
   354       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   355     }
   356 
   357     void firstIn(Edge& i, const Node& n) const { 
   358       Parent::firstIn(i, n); 
   359       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   360     }
   361 
   362     void firstOut(Edge& i, const Node& n) const { 
   363       Parent::firstOut(i, n); 
   364       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   365     }
   366 
   367     void next(Node& i) const { 
   368       Parent::next(i); 
   369       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   370     }
   371     void next(Edge& i) const { 
   372       Parent::next(i); 
   373       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   374     }
   375     void nextIn(Edge& i) const { 
   376       Parent::nextIn(i); 
   377       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   378     }
   379 
   380     void nextOut(Edge& i) const { 
   381       Parent::nextOut(i); 
   382       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   383     }
   384 
   385     /// This function hides \c n in the graph, i.e. the iteration 
   386     /// jumps over it. This is done by simply setting the value of \c n  
   387     /// to be false in the corresponding node-map.
   388     void hide(const Node& n) const { node_filter_map->set(n, false); }
   389 
   390     /// This function hides \c e in the graph, i.e. the iteration 
   391     /// jumps over it. This is done by simply setting the value of \c e  
   392     /// to be false in the corresponding edge-map.
   393     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   394 
   395     /// The value of \c n is set to be true in the node-map which stores 
   396     /// hide information. If \c n was hidden previuosly, then it is shown 
   397     /// again
   398      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   399 
   400     /// The value of \c e is set to be true in the edge-map which stores 
   401     /// hide information. If \c e was hidden previuosly, then it is shown 
   402     /// again
   403     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   404 
   405     /// Returns true if \c n is hidden.
   406     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   407 
   408     /// Returns true if \c n is hidden.
   409     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   410 
   411     typedef False NodeNumTag;
   412     typedef False EdgeNumTag;
   413   };
   414 
   415   /*! \brief A graph adaptor for hiding nodes and edges from a graph.
   416     
   417   \warning Graph adaptors are in even more experimental state than the other
   418   parts of the lib. Use them at you own risk.
   419   
   420   SubGraphAdaptor shows the graph with filtered node-set and 
   421   edge-set. If the \c checked parameter is true then it filters the edgeset
   422   to do not get invalid edges without source or target.
   423   Let \f$G=(V, A)\f$ be a directed graph 
   424   and suppose that the graph instance \c g of type ListGraph implements 
   425   \f$G\f$. 
   426   Let moreover \f$b_V\f$ and 
   427   \f$b_A\f$ be bool-valued functions resp. on the node-set and edge-set. 
   428   SubGraphAdaptor<...>::NodeIt iterates 
   429   on the node-set \f$\{v\in V : b_V(v)=true\}\f$ and 
   430   SubGraphAdaptor<...>::EdgeIt iterates 
   431   on the edge-set \f$\{e\in A : b_A(e)=true\}\f$. Similarly, 
   432   SubGraphAdaptor<...>::OutEdgeIt and SubGraphAdaptor<...>::InEdgeIt iterates 
   433   only on edges leaving and entering a specific node which have true value.
   434 
   435   If the \c checked template parameter is false then we have to note that 
   436   the node-iterator cares only the filter on the node-set, and the 
   437   edge-iterator cares only the filter on the edge-set. This way the edge-map
   438   should filter all edges which's source or target is filtered by the 
   439   node-filter.
   440   \code
   441   typedef ListGraph Graph;
   442   Graph g;
   443   typedef Graph::Node Node;
   444   typedef Graph::Edge Edge;
   445   Node u=g.addNode(); //node of id 0
   446   Node v=g.addNode(); //node of id 1
   447   Node e=g.addEdge(u, v); //edge of id 0
   448   Node f=g.addEdge(v, u); //edge of id 1
   449   Graph::NodeMap<bool> nm(g, true);
   450   nm.set(u, false);
   451   Graph::EdgeMap<bool> em(g, true);
   452   em.set(e, false);
   453   typedef SubGraphAdaptor<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGW;
   454   SubGW gw(g, nm, em);
   455   for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
   456   std::cout << ":-)" << std::endl;
   457   for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
   458   \endcode
   459   The output of the above code is the following.
   460   \code
   461   1
   462   :-)
   463   1
   464   \endcode
   465   Note that \c n is of type \c SubGW::NodeIt, but it can be converted to
   466   \c Graph::Node that is why \c g.id(n) can be applied.
   467 
   468   For other examples see also the documentation of NodeSubGraphAdaptor and 
   469   EdgeSubGraphAdaptor.
   470 
   471   \author Marton Makai
   472   */
   473   template<typename _Graph, typename NodeFilterMap, 
   474 	   typename EdgeFilterMap, bool checked = true>
   475   class SubGraphAdaptor : 
   476     public IterableGraphExtender<
   477     SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, checked> > {
   478   public:
   479     typedef _Graph Graph;
   480     typedef IterableGraphExtender<
   481       SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent;
   482   protected:
   483     SubGraphAdaptor() { }
   484   public:
   485     SubGraphAdaptor(_Graph& _graph, NodeFilterMap& _node_filter_map, 
   486 		    EdgeFilterMap& _edge_filter_map) { 
   487       setGraph(_graph);
   488       setNodeFilterMap(_node_filter_map);
   489       setEdgeFilterMap(_edge_filter_map);
   490     }
   491   };
   492 
   493 
   494 
   495   /*! \brief An adaptor for hiding nodes from a graph.
   496 
   497   \warning Graph adaptors are in even more experimental state than the other
   498   parts of the lib. Use them at you own risk.
   499   
   500   An adaptor for hiding nodes from a graph.
   501   This adaptor specializes SubGraphAdaptor in the way that only the node-set 
   502   can be filtered. In usual case the checked parameter is true, we get the
   503   induced subgraph. But if the checked parameter is false then we can only
   504   filter only isolated nodes.
   505   \author Marton Makai
   506   */
   507   template<typename Graph, typename NodeFilterMap, bool checked = true>
   508   class NodeSubGraphAdaptor : 
   509     public SubGraphAdaptor<Graph, NodeFilterMap, 
   510 			   ConstMap<typename Graph::Edge,bool>, checked> {
   511   public:
   512     typedef SubGraphAdaptor<Graph, NodeFilterMap, 
   513 			    ConstMap<typename Graph::Edge,bool> > Parent;
   514   protected:
   515     ConstMap<typename Graph::Edge, bool> const_true_map;
   516   public:
   517     NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& _node_filter_map) : 
   518       Parent(), const_true_map(true) { 
   519       Parent::setGraph(_graph);
   520       Parent::setNodeFilterMap(_node_filter_map);
   521       Parent::setEdgeFilterMap(const_true_map);
   522     }
   523   };
   524 
   525 
   526   /*! \brief An adaptor for hiding edges from a graph.
   527 
   528   \warning Graph adaptors are in even more experimental state than the other
   529   parts of the lib. Use them at you own risk.
   530   
   531   An adaptor for hiding edges from a graph.
   532   This adaptor specializes SubGraphAdaptor in the way that only the edge-set 
   533   can be filtered. The usefulness of this adaptor is demonstrated in the 
   534   problem of searching a maximum number of edge-disjoint shortest paths 
   535   between 
   536   two nodes \c s and \c t. Shortest here means being shortest w.r.t. 
   537   non-negative edge-lengths. Note that 
   538   the comprehension of the presented solution 
   539   need's some elementary knowledge from combinatorial optimization. 
   540 
   541   If a single shortest path is to be 
   542   searched between \c s and \c t, then this can be done easily by 
   543   applying the Dijkstra algorithm. What happens, if a maximum number of 
   544   edge-disjoint shortest paths is to be computed. It can be proved that an 
   545   edge can be in a shortest path if and only if it is tight with respect to 
   546   the potential function computed by Dijkstra. Moreover, any path containing 
   547   only such edges is a shortest one. Thus we have to compute a maximum number 
   548   of edge-disjoint paths between \c s and \c t in the graph which has edge-set 
   549   all the tight edges. The computation will be demonstrated on the following 
   550   graph, which is read from the dimacs file \c sub_graph_adaptor_demo.dim. 
   551   The full source code is available in \ref sub_graph_adaptor_demo.cc. 
   552   If you are interested in more demo programs, you can use 
   553   \ref dim_to_dot.cc to generate .dot files from dimacs files. 
   554   The .dot file of the following figure was generated by  
   555   the demo program \ref dim_to_dot.cc.
   556 
   557   \dot
   558   digraph lemon_dot_example {
   559   node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   560   n0 [ label="0 (s)" ];
   561   n1 [ label="1" ];
   562   n2 [ label="2" ];
   563   n3 [ label="3" ];
   564   n4 [ label="4" ];
   565   n5 [ label="5" ];
   566   n6 [ label="6 (t)" ];
   567   edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   568   n5 ->  n6 [ label="9, length:4" ];
   569   n4 ->  n6 [ label="8, length:2" ];
   570   n3 ->  n5 [ label="7, length:1" ];
   571   n2 ->  n5 [ label="6, length:3" ];
   572   n2 ->  n6 [ label="5, length:5" ];
   573   n2 ->  n4 [ label="4, length:2" ];
   574   n1 ->  n4 [ label="3, length:3" ];
   575   n0 ->  n3 [ label="2, length:1" ];
   576   n0 ->  n2 [ label="1, length:2" ];
   577   n0 ->  n1 [ label="0, length:3" ];
   578   }
   579   \enddot
   580 
   581   \code
   582   Graph g;
   583   Node s, t;
   584   LengthMap length(g);
   585 
   586   readDimacs(std::cin, g, length, s, t);
   587 
   588   cout << "edges with lengths (of form id, source--length->target): " << endl;
   589   for(EdgeIt e(g); e!=INVALID; ++e) 
   590     cout << g.id(e) << ", " << g.id(g.source(e)) << "--" 
   591          << length[e] << "->" << g.id(g.target(e)) << endl;
   592 
   593   cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
   594   \endcode
   595   Next, the potential function is computed with Dijkstra.
   596   \code
   597   typedef Dijkstra<Graph, LengthMap> Dijkstra;
   598   Dijkstra dijkstra(g, length);
   599   dijkstra.run(s);
   600   \endcode
   601   Next, we consrtruct a map which filters the edge-set to the tight edges.
   602   \code
   603   typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> 
   604     TightEdgeFilter;
   605   TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
   606   
   607   typedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGW;
   608   SubGW gw(g, tight_edge_filter);
   609   \endcode
   610   Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed 
   611   with a max flow algorithm Preflow.
   612   \code
   613   ConstMap<Edge, int> const_1_map(1);
   614   Graph::EdgeMap<int> flow(g, 0);
   615 
   616   Preflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > 
   617     preflow(gw, s, t, const_1_map, flow);
   618   preflow.run();
   619   \endcode
   620   Last, the output is:
   621   \code  
   622   cout << "maximum number of edge-disjoint shortest path: " 
   623        << preflow.flowValue() << endl;
   624   cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " 
   625        << endl;
   626   for(EdgeIt e(g); e!=INVALID; ++e) 
   627     if (flow[e])
   628       cout << " " << g.id(g.source(e)) << "--" 
   629 	   << length[e] << "->" << g.id(g.target(e)) << endl;
   630   \endcode
   631   The program has the following (expected :-)) output:
   632   \code
   633   edges with lengths (of form id, source--length->target):
   634    9, 5--4->6
   635    8, 4--2->6
   636    7, 3--1->5
   637    6, 2--3->5
   638    5, 2--5->6
   639    4, 2--2->4
   640    3, 1--3->4
   641    2, 0--1->3
   642    1, 0--2->2
   643    0, 0--3->1
   644   s: 0 t: 6
   645   maximum number of edge-disjoint shortest path: 2
   646   edges of the maximum number of edge-disjoint shortest s-t paths:
   647    9, 5--4->6
   648    8, 4--2->6
   649    7, 3--1->5
   650    4, 2--2->4
   651    2, 0--1->3
   652    1, 0--2->2
   653   \endcode
   654 
   655   \author Marton Makai
   656   */
   657   template<typename Graph, typename EdgeFilterMap>
   658   class EdgeSubGraphAdaptor : 
   659     public SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
   660 			   EdgeFilterMap, false> {
   661   public:
   662     typedef SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
   663 			    EdgeFilterMap, false> Parent;
   664   protected:
   665     ConstMap<typename Graph::Node, bool> const_true_map;
   666   public:
   667     EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& _edge_filter_map) : 
   668       Parent(), const_true_map(true) { 
   669       Parent::setGraph(_graph);
   670       Parent::setNodeFilterMap(const_true_map);
   671       Parent::setEdgeFilterMap(_edge_filter_map);
   672     }
   673   };
   674 
   675   template <typename _Graph>
   676   class UGraphAdaptorBase : 
   677     public UGraphExtender<GraphAdaptorBase<_Graph> > {
   678   public:
   679     typedef _Graph Graph;
   680     typedef UGraphExtender<GraphAdaptorBase<_Graph> > Parent;
   681   protected:
   682     UGraphAdaptorBase() : Parent() { }
   683   public:
   684     typedef typename Parent::UEdge UEdge;
   685     typedef typename Parent::Edge Edge;
   686     
   687     template <typename T>
   688     class EdgeMap {
   689     protected:
   690       const UGraphAdaptorBase<_Graph>* g;
   691       template <typename TT> friend class EdgeMap;
   692       typename _Graph::template EdgeMap<T> forward_map, backward_map; 
   693     public:
   694       typedef T Value;
   695       typedef Edge Key;
   696       
   697       EdgeMap(const UGraphAdaptorBase<_Graph>& _g) : g(&_g), 
   698 	forward_map(*(g->graph)), backward_map(*(g->graph)) { }
   699 
   700       EdgeMap(const UGraphAdaptorBase<_Graph>& _g, T a) : g(&_g), 
   701 	forward_map(*(g->graph), a), backward_map(*(g->graph), a) { }
   702       
   703       void set(Edge e, T a) { 
   704 	if (g->direction(e)) 
   705 	  forward_map.set(e, a); 
   706 	else 
   707 	  backward_map.set(e, a); 
   708       }
   709 
   710       T operator[](Edge e) const { 
   711 	if (g->direction(e)) 
   712 	  return forward_map[e]; 
   713 	else 
   714 	  return backward_map[e]; 
   715       }
   716     };
   717         
   718     template <typename T>
   719     class UEdgeMap {
   720       template <typename TT> friend class UEdgeMap;
   721       typename _Graph::template EdgeMap<T> map; 
   722     public:
   723       typedef T Value;
   724       typedef UEdge Key;
   725       
   726       UEdgeMap(const UGraphAdaptorBase<_Graph>& g) : 
   727 	map(*(g.graph)) { }
   728 
   729       UEdgeMap(const UGraphAdaptorBase<_Graph>& g, T a) : 
   730 	map(*(g.graph), a) { }
   731       
   732       void set(UEdge e, T a) { 
   733 	map.set(e, a); 
   734       }
   735 
   736       T operator[](UEdge e) const { 
   737 	return map[e]; 
   738       }
   739     };
   740       
   741   };
   742 
   743   /// \brief An undirected graph is made from a directed graph by an adaptor
   744   ///
   745   /// Undocumented, untested!!!
   746   /// If somebody knows nice demo application, let's polulate it.
   747   /// 
   748   /// \author Marton Makai
   749   template<typename _Graph>
   750   class UGraphAdaptor : 
   751     public IterableUGraphExtender<
   752     UGraphAdaptorBase<_Graph> > {
   753   public:
   754     typedef _Graph Graph;
   755     typedef IterableUGraphExtender<
   756       UGraphAdaptorBase<_Graph> > Parent;
   757   protected:
   758     UGraphAdaptor() { }
   759   public:
   760     UGraphAdaptor(_Graph& _graph) { 
   761       setGraph(_graph);
   762     }
   763   };
   764 
   765   
   766   template <typename _Graph, 
   767 	    typename ForwardFilterMap, typename BackwardFilterMap>
   768   class SubBidirGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
   769   public:
   770     typedef _Graph Graph;
   771     typedef GraphAdaptorBase<_Graph> Parent;
   772   protected:
   773     ForwardFilterMap* forward_filter;
   774     BackwardFilterMap* backward_filter;
   775     SubBidirGraphAdaptorBase() : Parent(), 
   776 				 forward_filter(0), backward_filter(0) { }
   777 
   778     void setForwardFilterMap(ForwardFilterMap& _forward_filter) {
   779       forward_filter=&_forward_filter;
   780     }
   781     void setBackwardFilterMap(BackwardFilterMap& _backward_filter) {
   782       backward_filter=&_backward_filter;
   783     }
   784 
   785   public:
   786 //     SubGraphAdaptorBase(Graph& _graph, 
   787 // 			NodeFilterMap& _node_filter_map, 
   788 // 			EdgeFilterMap& _edge_filter_map) : 
   789 //       Parent(&_graph), 
   790 //       node_filter_map(&node_filter_map), 
   791 //       edge_filter_map(&edge_filter_map) { }
   792 
   793     typedef typename Parent::Node Node;
   794     typedef typename _Graph::Edge GraphEdge;
   795     template <typename T> class EdgeMap;
   796     /// SubBidirGraphAdaptorBase<..., ..., ...>::Edge is inherited from 
   797     /// _Graph::Edge. It contains an extra bool flag which is true 
   798     /// if and only if the 
   799     /// edge is the backward version of the original edge.
   800     class Edge : public _Graph::Edge {
   801       friend class SubBidirGraphAdaptorBase<
   802 	Graph, ForwardFilterMap, BackwardFilterMap>;
   803       template<typename T> friend class EdgeMap;
   804     protected:
   805       bool backward; //true, iff backward
   806     public:
   807       Edge() { }
   808       /// \todo =false is needed, or causes problems?
   809       /// If \c _backward is false, then we get an edge corresponding to the 
   810       /// original one, otherwise its oppositely directed pair is obtained.
   811       Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) : 
   812 	_Graph::Edge(e), backward(_backward) { }
   813       Edge(Invalid i) : _Graph::Edge(i), backward(true) { }
   814       bool operator==(const Edge& v) const { 
   815 	return (this->backward==v.backward && 
   816 		static_cast<typename _Graph::Edge>(*this)==
   817 		static_cast<typename _Graph::Edge>(v));
   818       } 
   819       bool operator!=(const Edge& v) const { 
   820 	return (this->backward!=v.backward || 
   821 		static_cast<typename _Graph::Edge>(*this)!=
   822 		static_cast<typename _Graph::Edge>(v));
   823       }
   824     };
   825 
   826     void first(Node& i) const { 
   827       Parent::first(i); 
   828     }
   829 
   830     void first(Edge& i) const { 
   831       Parent::first(i); 
   832       i.backward=false;
   833       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   834 	     !(*forward_filter)[i]) Parent::next(i);
   835       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   836 	Parent::first(i); 
   837 	i.backward=true;
   838 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   839 	       !(*backward_filter)[i]) Parent::next(i);
   840       }
   841     }
   842 
   843     void firstIn(Edge& i, const Node& n) const { 
   844       Parent::firstIn(i, n); 
   845       i.backward=false;
   846       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   847 	     !(*forward_filter)[i]) Parent::nextIn(i);
   848       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   849 	Parent::firstOut(i, n); 
   850 	i.backward=true;
   851 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   852 	       !(*backward_filter)[i]) Parent::nextOut(i);
   853       }
   854     }
   855 
   856     void firstOut(Edge& i, const Node& n) const { 
   857       Parent::firstOut(i, n); 
   858       i.backward=false;
   859       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   860 	     !(*forward_filter)[i]) Parent::nextOut(i);
   861       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   862 	Parent::firstIn(i, n); 
   863 	i.backward=true;
   864 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   865 	       !(*backward_filter)[i]) Parent::nextIn(i);
   866       }
   867     }
   868 
   869     void next(Node& i) const { 
   870       Parent::next(i); 
   871     }
   872 
   873     void next(Edge& i) const { 
   874       if (!(i.backward)) {
   875 	Parent::next(i);
   876 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   877 	       !(*forward_filter)[i]) Parent::next(i);
   878 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   879 	  Parent::first(i); 
   880 	  i.backward=true;
   881 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   882 		 !(*backward_filter)[i]) Parent::next(i);
   883 	}
   884       } else {
   885 	Parent::next(i);
   886 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   887 	       !(*backward_filter)[i]) Parent::next(i);
   888       }
   889     }
   890 
   891     void nextIn(Edge& i) const { 
   892       if (!(i.backward)) {
   893 	Node n=Parent::target(i);
   894 	Parent::nextIn(i);
   895 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   896 	       !(*forward_filter)[i]) Parent::nextIn(i);
   897 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   898 	  Parent::firstOut(i, n); 
   899 	  i.backward=true;
   900 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   901 		 !(*backward_filter)[i]) Parent::nextOut(i);
   902 	}
   903       } else {
   904 	Parent::nextOut(i);
   905 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   906 	       !(*backward_filter)[i]) Parent::nextOut(i);
   907       }
   908     }
   909 
   910     void nextOut(Edge& i) const { 
   911       if (!(i.backward)) {
   912 	Node n=Parent::source(i);
   913 	Parent::nextOut(i);
   914 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   915 	       !(*forward_filter)[i]) Parent::nextOut(i);
   916 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   917 	  Parent::firstIn(i, n); 
   918 	  i.backward=true;
   919 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   920 		 !(*backward_filter)[i]) Parent::nextIn(i);
   921 	}
   922       } else {
   923 	Parent::nextIn(i);
   924 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   925 	       !(*backward_filter)[i]) Parent::nextIn(i);
   926       }
   927     }
   928 
   929     Node source(Edge e) const { 
   930       return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); }
   931     Node target(Edge e) const { 
   932       return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); }
   933 
   934     /// Gives back the opposite edge.
   935     Edge opposite(const Edge& e) const { 
   936       Edge f=e;
   937       f.backward=!f.backward;
   938       return f;
   939     }
   940 
   941     /// \warning This is a linear time operation and works only if 
   942     /// \c Graph::EdgeIt is defined.
   943     /// \todo hmm
   944     int edgeNum() const { 
   945       int i=0;
   946       Edge e;
   947       for (first(e); e!=INVALID; next(e)) ++i;
   948       return i; 
   949     }
   950 
   951     bool forward(const Edge& e) const { return !e.backward; }
   952     bool backward(const Edge& e) const { return e.backward; }
   953 
   954     template <typename T>
   955     /// \c SubBidirGraphAdaptorBase<..., ..., ...>::EdgeMap contains two 
   956     /// _Graph::EdgeMap one for the forward edges and 
   957     /// one for the backward edges.
   958     class EdgeMap {
   959       template <typename TT> friend class EdgeMap;
   960       typename _Graph::template EdgeMap<T> forward_map, backward_map; 
   961     public:
   962       typedef T Value;
   963       typedef Edge Key;
   964 
   965       EdgeMap(const SubBidirGraphAdaptorBase<_Graph, 
   966 	      ForwardFilterMap, BackwardFilterMap>& g) : 
   967 	forward_map(*(g.graph)), backward_map(*(g.graph)) { }
   968 
   969       EdgeMap(const SubBidirGraphAdaptorBase<_Graph, 
   970 	      ForwardFilterMap, BackwardFilterMap>& g, T a) : 
   971 	forward_map(*(g.graph), a), backward_map(*(g.graph), a) { }
   972       
   973       void set(Edge e, T a) { 
   974 	if (!e.backward) 
   975 	  forward_map.set(e, a); 
   976 	else 
   977 	  backward_map.set(e, a); 
   978       }
   979 
   980 //       typename _Graph::template EdgeMap<T>::ConstReference 
   981 //       operator[](Edge e) const { 
   982 // 	if (!e.backward) 
   983 // 	  return forward_map[e]; 
   984 // 	else 
   985 // 	  return backward_map[e]; 
   986 //       }
   987 
   988 //      typename _Graph::template EdgeMap<T>::Reference 
   989       T operator[](Edge e) const { 
   990 	if (!e.backward) 
   991 	  return forward_map[e]; 
   992 	else 
   993 	  return backward_map[e]; 
   994       }
   995 
   996       void update() { 
   997 	forward_map.update(); 
   998 	backward_map.update();
   999       }
  1000     };
  1001 
  1002   };
  1003 
  1004 
  1005   ///\brief An adaptor for composing a subgraph of a 
  1006   /// bidirected graph made from a directed one. 
  1007   ///
  1008   /// An adaptor for composing a subgraph of a 
  1009   /// bidirected graph made from a directed one. 
  1010   ///
  1011   ///\warning Graph adaptors are in even more experimental state than the other
  1012   ///parts of the lib. Use them at you own risk.
  1013   ///
  1014   /// Let \f$G=(V, A)\f$ be a directed graph and for each directed edge 
  1015   /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by
  1016   /// reversing its orientation. We are given moreover two bool valued 
  1017   /// maps on the edge-set, 
  1018   /// \f$forward\_filter\f$, and \f$backward\_filter\f$. 
  1019   /// SubBidirGraphAdaptor implements the graph structure with node-set 
  1020   /// \f$V\f$ and edge-set 
  1021   /// \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$. 
  1022   /// The purpose of writing + instead of union is because parallel 
  1023   /// edges can arise. (Similarly, antiparallel edges also can arise).
  1024   /// In other words, a subgraph of the bidirected graph obtained, which 
  1025   /// is given by orienting the edges of the original graph in both directions.
  1026   /// As the oppositely directed edges are logically different, 
  1027   /// the maps are able to attach different values for them. 
  1028   ///
  1029   /// An example for such a construction is \c RevGraphAdaptor where the 
  1030   /// forward_filter is everywhere false and the backward_filter is 
  1031   /// everywhere true. We note that for sake of efficiency, 
  1032   /// \c RevGraphAdaptor is implemented in a different way. 
  1033   /// But BidirGraphAdaptor is obtained from 
  1034   /// SubBidirGraphAdaptor by considering everywhere true 
  1035   /// valued maps both for forward_filter and backward_filter. 
  1036   ///
  1037   /// The most important application of SubBidirGraphAdaptor 
  1038   /// is ResGraphAdaptor, which stands for the residual graph in directed 
  1039   /// flow and circulation problems. 
  1040   /// As adaptors usually, the SubBidirGraphAdaptor implements the 
  1041   /// above mentioned graph structure without its physical storage, 
  1042   /// that is the whole stuff is stored in constant memory. 
  1043   template<typename _Graph, 
  1044 	   typename ForwardFilterMap, typename BackwardFilterMap>
  1045   class SubBidirGraphAdaptor : 
  1046     public IterableGraphExtender<
  1047     SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap> > {
  1048   public:
  1049     typedef _Graph Graph;
  1050     typedef IterableGraphExtender<
  1051       SubBidirGraphAdaptorBase<
  1052       _Graph, ForwardFilterMap, BackwardFilterMap> > Parent;
  1053   protected:
  1054     SubBidirGraphAdaptor() { }
  1055   public:
  1056     SubBidirGraphAdaptor(_Graph& _graph, ForwardFilterMap& _forward_filter, 
  1057 			 BackwardFilterMap& _backward_filter) { 
  1058       setGraph(_graph);
  1059       setForwardFilterMap(_forward_filter);
  1060       setBackwardFilterMap(_backward_filter);
  1061     }
  1062   };
  1063 
  1064 
  1065 
  1066   ///\brief An adaptor for composing bidirected graph from a directed one. 
  1067   ///
  1068   ///\warning Graph adaptors are in even more experimental state than the other
  1069   ///parts of the lib. Use them at you own risk.
  1070   ///
  1071   /// An adaptor for composing bidirected graph from a directed one. 
  1072   /// A bidirected graph is composed over the directed one without physical 
  1073   /// storage. As the oppositely directed edges are logically different ones 
  1074   /// the maps are able to attach different values for them.
  1075   template<typename Graph>
  1076   class BidirGraphAdaptor : 
  1077     public SubBidirGraphAdaptor<
  1078     Graph, 
  1079     ConstMap<typename Graph::Edge, bool>, 
  1080     ConstMap<typename Graph::Edge, bool> > {
  1081   public:
  1082     typedef  SubBidirGraphAdaptor<
  1083       Graph, 
  1084       ConstMap<typename Graph::Edge, bool>, 
  1085       ConstMap<typename Graph::Edge, bool> > Parent; 
  1086   protected:
  1087     ConstMap<typename Graph::Edge, bool> cm;
  1088 
  1089     BidirGraphAdaptor() : Parent(), cm(true) { 
  1090       Parent::setForwardFilterMap(cm);
  1091       Parent::setBackwardFilterMap(cm);
  1092     }
  1093   public:
  1094     BidirGraphAdaptor(Graph& _graph) : Parent(), cm(true) { 
  1095       Parent::setGraph(_graph);
  1096       Parent::setForwardFilterMap(cm);
  1097       Parent::setBackwardFilterMap(cm);
  1098     }
  1099 
  1100     int edgeNum() const { 
  1101       return 2*this->graph->edgeNum();
  1102     }
  1103   };
  1104 
  1105 
  1106   template<typename Graph, typename Number,
  1107 	   typename CapacityMap, typename FlowMap>
  1108   class ResForwardFilter {
  1109     //    const Graph* graph;
  1110     const CapacityMap* capacity;
  1111     const FlowMap* flow;
  1112   public:
  1113     ResForwardFilter(/*const Graph& _graph, */
  1114 		     const CapacityMap& _capacity, const FlowMap& _flow) :
  1115       /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
  1116     ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
  1117     void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
  1118     void setFlow(const FlowMap& _flow) { flow=&_flow; }
  1119     bool operator[](const typename Graph::Edge& e) const {
  1120       return (Number((*flow)[e]) < Number((*capacity)[e]));
  1121     }
  1122   };
  1123 
  1124   template<typename Graph, typename Number,
  1125 	   typename CapacityMap, typename FlowMap>
  1126   class ResBackwardFilter {
  1127     const CapacityMap* capacity;
  1128     const FlowMap* flow;
  1129   public:
  1130     ResBackwardFilter(/*const Graph& _graph,*/ 
  1131 		      const CapacityMap& _capacity, const FlowMap& _flow) :
  1132       /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
  1133     ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
  1134     void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
  1135     void setFlow(const FlowMap& _flow) { flow=&_flow; }
  1136     bool operator[](const typename Graph::Edge& e) const {
  1137       return (Number(0) < Number((*flow)[e]));
  1138     }
  1139   };
  1140 
  1141   
  1142   /*! \brief An adaptor for composing the residual graph for directed flow and circulation problems.
  1143 
  1144   An adaptor for composing the residual graph for directed flow and circulation problems. 
  1145   Let \f$G=(V, A)\f$ be a directed graph and let \f$F\f$ be a 
  1146   number type. Let moreover 
  1147   \f$f,c:A\to F\f$, be functions on the edge-set. 
  1148   In the appications of ResGraphAdaptor, \f$f\f$ usually stands for a flow 
  1149   and \f$c\f$ for a capacity function.   
  1150   Suppose that a graph instange \c g of type 
  1151   \c ListGraph implements \f$G\f$.
  1152   \code
  1153   ListGraph g;
  1154   \endcode
  1155   Then RevGraphAdaptor implements the graph structure with node-set 
  1156   \f$V\f$ and edge-set \f$A_{forward}\cup A_{backward}\f$, where 
  1157   \f$A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\}\f$ and 
  1158   \f$A_{backward}=\{vu : uv\in A, f(uv)>0\}\f$, 
  1159   i.e. the so called residual graph. 
  1160   When we take the union \f$A_{forward}\cup A_{backward}\f$, 
  1161   multilicities are counted, i.e. if an edge is in both 
  1162   \f$A_{forward}\f$ and \f$A_{backward}\f$, then in the adaptor it 
  1163   appears twice. 
  1164   The following code shows how 
  1165   such an instance can be constructed.
  1166   \code
  1167   typedef ListGraph Graph;
  1168   Graph::EdgeMap<int> f(g);
  1169   Graph::EdgeMap<int> c(g);
  1170   ResGraphAdaptor<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > gw(g);
  1171   \endcode
  1172   \author Marton Makai
  1173   */
  1174   template<typename Graph, typename Number, 
  1175 	   typename CapacityMap, typename FlowMap>
  1176   class ResGraphAdaptor : 
  1177     public SubBidirGraphAdaptor< 
  1178     Graph, 
  1179     ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
  1180     ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > {
  1181   public:
  1182     typedef SubBidirGraphAdaptor< 
  1183       Graph, 
  1184       ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
  1185       ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > Parent;
  1186   protected:
  1187     const CapacityMap* capacity;
  1188     FlowMap* flow;
  1189     ResForwardFilter<Graph, Number, CapacityMap, FlowMap> forward_filter;
  1190     ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> backward_filter;
  1191     ResGraphAdaptor() : Parent(), 
  1192  			capacity(0), flow(0) { }
  1193     void setCapacityMap(const CapacityMap& _capacity) {
  1194       capacity=&_capacity;
  1195       forward_filter.setCapacity(_capacity);
  1196       backward_filter.setCapacity(_capacity);
  1197     }
  1198     void setFlowMap(FlowMap& _flow) {
  1199       flow=&_flow;
  1200       forward_filter.setFlow(_flow);
  1201       backward_filter.setFlow(_flow);
  1202     }
  1203   public:
  1204     ResGraphAdaptor(Graph& _graph, const CapacityMap& _capacity, 
  1205 		       FlowMap& _flow) : 
  1206       Parent(), capacity(&_capacity), flow(&_flow), 
  1207       forward_filter(/*_graph,*/ _capacity, _flow), 
  1208       backward_filter(/*_graph,*/ _capacity, _flow) {
  1209       Parent::setGraph(_graph);
  1210       Parent::setForwardFilterMap(forward_filter);
  1211       Parent::setBackwardFilterMap(backward_filter);
  1212     }
  1213 
  1214     typedef typename Parent::Edge Edge;
  1215 
  1216     void augment(const Edge& e, Number a) const {
  1217       if (Parent::forward(e))  
  1218 	flow->set(e, (*flow)[e]+a);
  1219       else  
  1220 	flow->set(e, (*flow)[e]-a);
  1221     }
  1222 
  1223     /// \brief Residual capacity map.
  1224     ///
  1225     /// In generic residual graphs the residual capacity can be obtained 
  1226     /// as a map. 
  1227     class ResCap {
  1228     protected:
  1229       const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>* res_graph;
  1230     public:
  1231       typedef Number Value;
  1232       typedef Edge Key;
  1233       ResCap(const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>& 
  1234 	     _res_graph) : res_graph(&_res_graph) { }
  1235       Number operator[](const Edge& e) const { 
  1236 	if (res_graph->forward(e)) 
  1237 	  return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e]; 
  1238 	else 
  1239 	  return (*(res_graph->flow))[e]; 
  1240       }
  1241     };
  1242 
  1243     //    KEEP_MAPS(Parent, ResGraphAdaptor);
  1244   };
  1245 
  1246 
  1247 
  1248   template <typename _Graph, typename FirstOutEdgesMap>
  1249   class ErasingFirstGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
  1250   public:
  1251     typedef _Graph Graph;
  1252     typedef GraphAdaptorBase<_Graph> Parent;
  1253   protected:
  1254     FirstOutEdgesMap* first_out_edges;
  1255     ErasingFirstGraphAdaptorBase() : Parent(), 
  1256 				     first_out_edges(0) { }
  1257 
  1258     void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) {
  1259       first_out_edges=&_first_out_edges;
  1260     }
  1261 
  1262   public:
  1263 
  1264     typedef typename Parent::Node Node;
  1265     typedef typename Parent::Edge Edge;
  1266 
  1267     void firstOut(Edge& i, const Node& n) const { 
  1268       i=(*first_out_edges)[n];
  1269     }
  1270 
  1271     void erase(const Edge& e) const {
  1272       Node n=source(e);
  1273       Edge f=e;
  1274       Parent::nextOut(f);
  1275       first_out_edges->set(n, f);
  1276     }    
  1277   };
  1278 
  1279 
  1280   /// For blocking flows.
  1281 
  1282   ///\warning Graph adaptors are in even more
  1283   ///experimental state than the other
  1284   ///parts of the lib. Use them at you own risk.
  1285   ///
  1286   ///This graph adaptor is used for on-the-fly 
  1287   ///Dinits blocking flow computations.
  1288   ///For each node, an out-edge is stored which is used when the 
  1289   ///\code OutEdgeIt& first(OutEdgeIt&, const Node&)\endcode
  1290   ///is called. 
  1291   ///
  1292   ///\author Marton Makai
  1293   ///
  1294   template <typename _Graph, typename FirstOutEdgesMap>
  1295   class ErasingFirstGraphAdaptor : 
  1296     public IterableGraphExtender<
  1297     ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > {
  1298   public:
  1299     typedef _Graph Graph;
  1300     typedef IterableGraphExtender<
  1301       ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > Parent;
  1302     ErasingFirstGraphAdaptor(Graph& _graph, 
  1303 			     FirstOutEdgesMap& _first_out_edges) { 
  1304       setGraph(_graph);
  1305       setFirstOutEdgesMap(_first_out_edges);
  1306     } 
  1307 
  1308   };
  1309 
  1310   template <typename _Graph>
  1311   class SplitGraphAdaptorBase 
  1312     : public GraphAdaptorBase<_Graph> {
  1313   public:
  1314     typedef GraphAdaptorBase<_Graph> Parent;
  1315 
  1316     class Node;
  1317     class Edge;
  1318     template <typename T> class NodeMap;
  1319     template <typename T> class EdgeMap;
  1320     
  1321 
  1322     class Node : public Parent::Node {
  1323       friend class SplitGraphAdaptorBase;
  1324       template <typename T> friend class NodeMap;
  1325       typedef typename Parent::Node NodeParent;
  1326     private:
  1327 
  1328       bool entry;
  1329       Node(typename Parent::Node _node, bool _entry)
  1330 	: Parent::Node(_node), entry(_entry) {}
  1331       
  1332     public:
  1333       Node() {}
  1334       Node(Invalid) : NodeParent(INVALID), entry(true) {}
  1335 
  1336       bool operator==(const Node& node) const {
  1337 	return NodeParent::operator==(node) && entry == node.entry;
  1338       }
  1339       
  1340       bool operator!=(const Node& node) const {
  1341 	return !(*this == node);
  1342       }
  1343       
  1344       bool operator<(const Node& node) const {
  1345 	return NodeParent::operator<(node) || 
  1346 	  (NodeParent::operator==(node) && entry < node.entry);
  1347       }
  1348     };
  1349 
  1350     /// \todo May we want VARIANT/union type
  1351     class Edge : public Parent::Edge {
  1352       friend class SplitGraphAdaptorBase;
  1353       template <typename T> friend class EdgeMap;
  1354     private:
  1355       typedef typename Parent::Edge EdgeParent;
  1356       typedef typename Parent::Node NodeParent;
  1357       NodeParent bind;
  1358 
  1359       Edge(const EdgeParent& edge, const NodeParent& node)
  1360 	: EdgeParent(edge), bind(node) {}
  1361     public:
  1362       Edge() {}
  1363       Edge(Invalid) : EdgeParent(INVALID), bind(INVALID) {}
  1364 
  1365       bool operator==(const Edge& edge) const {
  1366 	return EdgeParent::operator==(edge) && bind == edge.bind;
  1367       }
  1368       
  1369       bool operator!=(const Edge& edge) const {
  1370 	return !(*this == edge);
  1371       }
  1372       
  1373       bool operator<(const Edge& edge) const {
  1374 	return EdgeParent::operator<(edge) || 
  1375 	  (EdgeParent::operator==(edge) && bind < edge.bind);
  1376       }
  1377     };
  1378 
  1379     void first(Node& node) const {
  1380       Parent::first(node);
  1381       node.entry = true;
  1382     } 
  1383 
  1384     void next(Node& node) const {
  1385       if (node.entry) {
  1386 	node.entry = false;
  1387       } else {
  1388 	node.entry = true;
  1389 	Parent::next(node);
  1390       }
  1391     }
  1392 
  1393     void first(Edge& edge) const {
  1394       Parent::first(edge);
  1395       if ((typename Parent::Edge&)edge == INVALID) {
  1396 	Parent::first(edge.bind);
  1397       } else {
  1398 	edge.bind = INVALID;
  1399       }
  1400     }
  1401 
  1402     void next(Edge& edge) const {
  1403       if ((typename Parent::Edge&)edge != INVALID) {
  1404 	Parent::next(edge);
  1405 	if ((typename Parent::Edge&)edge == INVALID) {
  1406 	  Parent::first(edge.bind);
  1407 	}
  1408       } else {
  1409 	Parent::next(edge.bind);
  1410       }      
  1411     }
  1412 
  1413     void firstIn(Edge& edge, const Node& node) const {
  1414       if (node.entry) {
  1415 	Parent::firstIn(edge, node);
  1416 	edge.bind = INVALID;
  1417       } else {
  1418 	(typename Parent::Edge&)edge = INVALID;
  1419 	edge.bind = node;
  1420       }
  1421     }
  1422 
  1423     void nextIn(Edge& edge) const {
  1424       if ((typename Parent::Edge&)edge != INVALID) {
  1425 	Parent::nextIn(edge);
  1426       } else {
  1427 	edge.bind = INVALID;
  1428       }      
  1429     }
  1430 
  1431     void firstOut(Edge& edge, const Node& node) const {
  1432       if (!node.entry) {
  1433 	Parent::firstOut(edge, node);
  1434 	edge.bind = INVALID;
  1435       } else {
  1436 	(typename Parent::Edge&)edge = INVALID;
  1437 	edge.bind = node;
  1438       }
  1439     }
  1440 
  1441     void nextOut(Edge& edge) const {
  1442       if ((typename Parent::Edge&)edge != INVALID) {
  1443 	Parent::nextOut(edge);
  1444       } else {
  1445 	edge.bind = INVALID;
  1446       }
  1447     }
  1448 
  1449     Node source(const Edge& edge) const {
  1450       if ((typename Parent::Edge&)edge != INVALID) {
  1451 	return Node(Parent::source(edge), false);
  1452       } else {
  1453 	return Node(edge.bind, true);
  1454       }
  1455     }
  1456 
  1457     Node target(const Edge& edge) const {
  1458       if ((typename Parent::Edge&)edge != INVALID) {
  1459 	return Node(Parent::target(edge), true);
  1460       } else {
  1461 	return Node(edge.bind, false);
  1462       }
  1463     }
  1464 
  1465     static bool entryNode(const Node& node) {
  1466       return node.entry;
  1467     }
  1468 
  1469     static bool exitNode(const Node& node) {
  1470       return !node.entry;
  1471     }
  1472 
  1473     static Node getEntry(const typename Parent::Node& node) {
  1474       return Node(node, true);
  1475     }
  1476 
  1477     static Node getExit(const typename Parent::Node& node) {
  1478       return Node(node, false);
  1479     }
  1480 
  1481     static bool originalEdge(const Edge& edge) {
  1482       return (typename Parent::Edge&)edge != INVALID;
  1483     }
  1484 
  1485     static bool bindingEdge(const Edge& edge) {
  1486       return edge.bind != INVALID;
  1487     }
  1488 
  1489     static Node getBindedNode(const Edge& edge) {
  1490       return edge.bind;
  1491     }
  1492 
  1493     int nodeNum() const {
  1494       return Parent::nodeNum() * 2;
  1495     }
  1496 
  1497     typedef CompileTimeAnd<typename Parent::NodeNumTag, 
  1498     			   typename Parent::EdgeNumTag> EdgeNumTag;
  1499     
  1500     int edgeNum() const {
  1501       return Parent::edgeNum() + Parent::nodeNum();
  1502     }
  1503 
  1504     Edge findEdge(const Node& source, const Node& target, 
  1505 		  const Edge& prev = INVALID) const {
  1506       if (exitNode(source) && entryNode(target)) {
  1507 	return Parent::findEdge(source, target, prev);
  1508       } else {
  1509 	if (prev == INVALID && entryNode(source) && exitNode(target) && 
  1510 	    (typename Parent::Node&)source == (typename Parent::Node&)target) {
  1511 	  return Edge(INVALID, source);
  1512 	} else {
  1513 	  return INVALID;
  1514 	}
  1515       }
  1516     }
  1517     
  1518     template <typename T>
  1519     class NodeMap : public MapBase<Node, T> {
  1520       typedef typename Parent::template NodeMap<T> NodeImpl;
  1521     public:
  1522       NodeMap(const SplitGraphAdaptorBase& _graph) 
  1523 	: entry(_graph), exit(_graph) {}
  1524       NodeMap(const SplitGraphAdaptorBase& _graph, const T& t) 
  1525 	: entry(_graph, t), exit(_graph, t) {}
  1526       
  1527       void set(const Node& key, const T& val) {
  1528 	if (key.entry) { entry.set(key, val); }
  1529 	else {exit.set(key, val); }
  1530       }
  1531       
  1532       typename MapTraits<NodeImpl>::ReturnValue 
  1533       operator[](const Node& key) {
  1534 	if (key.entry) { return entry[key]; }
  1535 	else { return exit[key]; }
  1536       }
  1537 
  1538       typename MapTraits<NodeImpl>::ConstReturnValue
  1539       operator[](const Node& key) const {
  1540 	if (key.entry) { return entry[key]; }
  1541 	else { return exit[key]; }
  1542       }
  1543 
  1544     private:
  1545       NodeImpl entry, exit;
  1546     };
  1547 
  1548     template <typename T>
  1549     class EdgeMap : public MapBase<Edge, T> {
  1550       typedef typename Parent::template NodeMap<T> NodeImpl;
  1551       typedef typename Parent::template EdgeMap<T> EdgeImpl;
  1552     public:
  1553       EdgeMap(const SplitGraphAdaptorBase& _graph) 
  1554 	: bind(_graph), orig(_graph) {}
  1555       EdgeMap(const SplitGraphAdaptorBase& _graph, const T& t) 
  1556 	: bind(_graph, t), orig(_graph, t) {}
  1557       
  1558       void set(const Edge& key, const T& val) {
  1559 	if ((typename Parent::Edge&)key != INVALID) { orig.set(key, val); }
  1560 	else {bind.set(key.bind, val); }
  1561       }
  1562       
  1563       typename MapTraits<EdgeImpl>::ReturnValue
  1564       operator[](const Edge& key) {
  1565 	if ((typename Parent::Edge&)key != INVALID) { return orig[key]; }
  1566 	else {return bind[key.bind]; }
  1567       }
  1568 
  1569       typename MapTraits<EdgeImpl>::ConstReturnValue
  1570       operator[](const Edge& key) const {
  1571 	if ((typename Parent::Edge&)key != INVALID) { return orig[key]; }
  1572 	else {return bind[key.bind]; }
  1573       }
  1574 
  1575     private:
  1576       typename Parent::template NodeMap<T> bind;
  1577       typename Parent::template EdgeMap<T> orig;
  1578     };
  1579 
  1580     template <typename EntryMap, typename ExitMap>
  1581     class CombinedNodeMap : public MapBase<Node, typename EntryMap::Value> {
  1582     public:
  1583       typedef MapBase<Node, typename EntryMap::Value> Parent;
  1584 
  1585       typedef typename Parent::Key Key;
  1586       typedef typename Parent::Value Value;
  1587 
  1588       CombinedNodeMap(EntryMap& _entryMap, ExitMap& _exitMap) 
  1589 	: entryMap(_entryMap), exitMap(_exitMap) {}
  1590 
  1591       Value& operator[](const Key& key) {
  1592 	if (key.entry) {
  1593 	  return entryMap[key];
  1594 	} else {
  1595 	  return exitMap[key];
  1596 	}
  1597       }
  1598 
  1599       Value operator[](const Key& key) const {
  1600 	if (key.entry) {
  1601 	  return entryMap[key];
  1602 	} else {
  1603 	  return exitMap[key];
  1604 	}
  1605       }
  1606 
  1607       void set(const Key& key, const Value& value) {
  1608 	if (key.entry) {
  1609 	  entryMap.set(key, value);
  1610 	} else {
  1611 	  exitMap.set(key, value);
  1612 	}
  1613       }
  1614       
  1615     private:
  1616       
  1617       EntryMap& entryMap;
  1618       ExitMap& exitMap;
  1619       
  1620     };
  1621 
  1622     template <typename EdgeMap, typename NodeMap>
  1623     class CombinedEdgeMap : public MapBase<Edge, typename EdgeMap::Value> {
  1624     public:
  1625       typedef MapBase<Edge, typename EdgeMap::Value> Parent;
  1626 
  1627       typedef typename Parent::Key Key;
  1628       typedef typename Parent::Value Value;
  1629 
  1630       CombinedEdgeMap(EdgeMap& _edgeMap, NodeMap& _nodeMap) 
  1631 	: edgeMap(_edgeMap), nodeMap(_nodeMap) {}
  1632 
  1633       void set(const Edge& edge, const Value& val) {
  1634 	if (SplitGraphAdaptorBase::originalEdge(edge)) {
  1635 	  edgeMap.set(edge, val);
  1636 	} else {
  1637 	  nodeMap.set(SplitGraphAdaptorBase::bindedNode(edge), val);
  1638 	}
  1639       }
  1640 
  1641       Value operator[](const Key& edge) const {
  1642 	if (SplitGraphAdaptorBase::originalEdge(edge)) {
  1643 	  return edgeMap[edge];
  1644 	} else {
  1645 	  return nodeMap[SplitGraphAdaptorBase::bindedNode(edge)];
  1646 	}
  1647       }      
  1648 
  1649       Value& operator[](const Key& edge) {
  1650 	if (SplitGraphAdaptorBase::originalEdge(edge)) {
  1651 	  return edgeMap[edge];
  1652 	} else {
  1653 	  return nodeMap[SplitGraphAdaptorBase::bindedNode(edge)];
  1654 	}
  1655       }      
  1656       
  1657     private:
  1658       EdgeMap& edgeMap;
  1659       NodeMap& nodeMap;
  1660     };
  1661 
  1662   };
  1663 
  1664   template <typename _Graph>
  1665   class SplitGraphAdaptor 
  1666     : public IterableGraphExtender<SplitGraphAdaptorBase<_Graph> > {
  1667   public:
  1668     typedef IterableGraphExtender<SplitGraphAdaptorBase<_Graph> > Parent;
  1669 
  1670     SplitGraphAdaptor(_Graph& graph) {
  1671       Parent::setGraph(graph);
  1672     }
  1673 
  1674 
  1675   };
  1676 
  1677   ///@}
  1678 
  1679 } //namespace lemon
  1680 
  1681 #endif //LEMON_GRAPH_ADAPTOR_H
  1682