src/work/alpar/dijkstra.h
author hegyi
Fri, 04 Feb 2005 15:32:11 +0000
changeset 1123 a2e93889a604
parent 1119 d3504fc075dc
child 1124 12623f7ecb37
permissions -rw-r--r--
Documentation is developing itself, but is not ready yet.
alpar@906
     1
/* -*- C++ -*-
alpar@921
     2
 * src/lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
alpar@906
     3
 *
alpar@906
     4
 * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@906
     5
 * (Egervary Combinatorial Optimization Research Group, EGRES).
alpar@906
     6
 *
alpar@906
     7
 * Permission to use, modify and distribute this software is granted
alpar@906
     8
 * provided that this copyright notice appears in all copies. For
alpar@906
     9
 * precise terms see the accompanying LICENSE file.
alpar@906
    10
 *
alpar@906
    11
 * This software is provided "AS IS" with no warranty of any kind,
alpar@906
    12
 * express or implied, and with no claim as to its suitability for any
alpar@906
    13
 * purpose.
alpar@906
    14
 *
alpar@906
    15
 */
alpar@906
    16
alpar@921
    17
#ifndef LEMON_DIJKSTRA_H
alpar@921
    18
#define LEMON_DIJKSTRA_H
alpar@255
    19
alpar@758
    20
///\ingroup flowalgs
alpar@255
    21
///\file
alpar@255
    22
///\brief Dijkstra algorithm.
alpar@255
    23
alpar@953
    24
#include <lemon/list_graph.h>
alpar@921
    25
#include <lemon/bin_heap.h>
alpar@921
    26
#include <lemon/invalid.h>
alpar@1119
    27
#include <lemon/error.h>
alpar@1119
    28
#include <lemon/maps.h>
alpar@255
    29
alpar@921
    30
namespace lemon {
jacint@385
    31
alpar@1119
    32
alpar@1119
    33
  class UninitializedData : public LogicError {};
alpar@1119
    34
alpar@1119
    35
alpar@758
    36
/// \addtogroup flowalgs
alpar@430
    37
/// @{
alpar@430
    38
alpar@954
    39
  ///Default traits class of Dijkstra class.
alpar@954
    40
alpar@954
    41
  ///Default traits class of Dijkstra class.
alpar@954
    42
  ///\param GR Graph type.
alpar@954
    43
  ///\param LM Type of length map.
alpar@953
    44
  template<class GR, class LM>
alpar@953
    45
  struct DijkstraDefaultTraits
alpar@953
    46
  {
alpar@954
    47
    ///The graph type the algorithm runs on. 
alpar@953
    48
    typedef GR Graph;
alpar@953
    49
    ///The type of the map that stores the edge lengths.
alpar@953
    50
alpar@967
    51
    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
alpar@953
    52
    ///
alpar@953
    53
    typedef LM LengthMap;
alpar@954
    54
    //The type of the length of the edges.
alpar@987
    55
    typedef typename LM::Value Value;
alpar@954
    56
    ///The heap type used by Dijkstra algorithm.
alpar@967
    57
alpar@967
    58
    ///The heap type used by Dijkstra algorithm.
alpar@967
    59
    ///
alpar@967
    60
    ///\sa BinHeap
alpar@967
    61
    ///\sa Dijkstra
alpar@953
    62
    typedef BinHeap<typename Graph::Node,
alpar@987
    63
		    typename LM::Value,
alpar@953
    64
		    typename GR::template NodeMap<int>,
alpar@987
    65
		    std::less<Value> > Heap;
alpar@953
    66
alpar@953
    67
    ///\brief The type of the map that stores the last
alpar@953
    68
    ///edges of the shortest paths.
alpar@953
    69
    /// 
alpar@967
    70
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@953
    71
    ///
alpar@954
    72
    typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
alpar@954
    73
    ///Instantiates a PredMap.
alpar@953
    74
 
hegyi@1123
    75
    ///This function instantiates a \ref PredMap. 
hegyi@1123
    76
    ///\param G is the graph, to which we would like to define the PredMap.
alpar@1119
    77
    ///\todo The graph alone may be insufficient for the initialization
alpar@954
    78
    static PredMap *createPredMap(const GR &G) 
alpar@953
    79
    {
alpar@953
    80
      return new PredMap(G);
alpar@953
    81
    }
alpar@953
    82
    ///\brief The type of the map that stores the last but one
alpar@953
    83
    ///nodes of the shortest paths.
alpar@953
    84
    ///
alpar@967
    85
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@953
    86
    ///
alpar@954
    87
    typedef typename Graph::template NodeMap<typename GR::Node> PredNodeMap;
alpar@954
    88
    ///Instantiates a PredNodeMap.
alpar@953
    89
 
hegyi@1123
    90
    ///This function instantiates a \ref PredNodeMap. 
hegyi@1123
    91
    ///\param G is the graph, to which we would like to define the \ref PredNodeMap
alpar@954
    92
    static PredNodeMap *createPredNodeMap(const GR &G)
alpar@953
    93
    {
alpar@953
    94
      return new PredNodeMap(G);
alpar@953
    95
    }
alpar@1119
    96
alpar@1119
    97
    ///The type of the map that stores whether a nodes is reached.
alpar@1119
    98
 
alpar@1119
    99
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@1119
   100
    ///By default it is a NullMap.
alpar@1119
   101
    ///\todo If it is set to a real map, Dijkstra::reached() should read this.
alpar@1119
   102
    ///\todo named parameter to set this type, function to read and write.
alpar@1119
   103
    typedef NullMap<typename Graph::Node,bool> ReachedMap;
alpar@1119
   104
    ///Instantiates a ReachedMap.
alpar@1119
   105
 
hegyi@1123
   106
    ///This function instantiates a \ref ReachedMap. 
hegyi@1123
   107
    ///\param G is the graph, to which we would like to define the \ref ReachedMap
alpar@1119
   108
    static ReachedMap *createReachedMap(const GR &G)
alpar@1119
   109
    {
alpar@1119
   110
      return new ReachedMap();
alpar@1119
   111
    }
alpar@953
   112
    ///The type of the map that stores the dists of the nodes.
alpar@953
   113
 
alpar@967
   114
    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
alpar@953
   115
    ///
alpar@987
   116
    typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
alpar@954
   117
    ///Instantiates a DistMap.
alpar@953
   118
 
hegyi@1123
   119
    ///This function instantiates a \ref DistMap. 
hegyi@1123
   120
    ///\param G is the graph, to which we would like to define the \ref DistMap
alpar@954
   121
    static DistMap *createDistMap(const GR &G)
alpar@953
   122
    {
alpar@953
   123
      return new DistMap(G);
alpar@953
   124
    }
alpar@953
   125
  };
alpar@953
   126
  
alpar@255
   127
  ///%Dijkstra algorithm class.
alpar@255
   128
alpar@255
   129
  ///This class provides an efficient implementation of %Dijkstra algorithm.
alpar@255
   130
  ///The edge lengths are passed to the algorithm using a
klao@959
   131
  ///\ref concept::ReadMap "ReadMap",
alpar@255
   132
  ///so it is easy to change it to any kind of length.
alpar@255
   133
  ///
alpar@880
   134
  ///The type of the length is determined by the
alpar@987
   135
  ///\ref concept::ReadMap::Value "Value" of the length map.
alpar@255
   136
  ///
alpar@255
   137
  ///It is also possible to change the underlying priority heap.
alpar@255
   138
  ///
alpar@953
   139
  ///\param GR The graph type the algorithm runs on. The default value is
alpar@955
   140
  ///\ref ListGraph. The value of GR is not used directly by Dijkstra, it
alpar@954
   141
  ///is only passed to \ref DijkstraDefaultTraits.
alpar@584
   142
  ///\param LM This read-only
jacint@385
   143
  ///EdgeMap
jacint@385
   144
  ///determines the
jacint@385
   145
  ///lengths of the edges. It is read once for each edge, so the map
jacint@385
   146
  ///may involve in relatively time consuming process to compute the edge
jacint@385
   147
  ///length if it is necessary. The default map type is
klao@959
   148
  ///\ref concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".
alpar@955
   149
  ///The value of LM is not used directly by Dijkstra, it
alpar@954
   150
  ///is only passed to \ref DijkstraDefaultTraits.
alpar@954
   151
  ///\param TR Traits class to set various data types used by the algorithm.
alpar@954
   152
  ///The default traits class is
alpar@955
   153
  ///\ref DijkstraDefaultTraits "DijkstraDefaultTraits<GR,LM>".
alpar@954
   154
  ///See \ref DijkstraDefaultTraits for the documentation of
alpar@954
   155
  ///a Dijkstra traits class.
alpar@456
   156
  ///
alpar@689
   157
  ///\author Jacint Szabo and Alpar Juttner
alpar@693
   158
  ///\todo We need a typedef-names should be standardized. (-:
alpar@584
   159
alpar@255
   160
#ifdef DOXYGEN
alpar@584
   161
  template <typename GR,
alpar@584
   162
	    typename LM,
alpar@953
   163
	    typename TR>
alpar@255
   164
#else
alpar@953
   165
  template <typename GR=ListGraph,
alpar@584
   166
	    typename LM=typename GR::template EdgeMap<int>,
alpar@953
   167
	    typename TR=DijkstraDefaultTraits<GR,LM> >
alpar@255
   168
#endif
alpar@1116
   169
  class Dijkstra {
alpar@255
   170
  public:
alpar@1119
   171
    ///Exception thrown by dijkstra.
alpar@1119
   172
    class UninitializedData : public lemon::UninitializedData {};
alpar@1119
   173
alpar@953
   174
    typedef TR Traits;
alpar@584
   175
    ///The type of the underlying graph.
alpar@954
   176
    typedef typename TR::Graph Graph;
alpar@911
   177
    ///\e
alpar@255
   178
    typedef typename Graph::Node Node;
alpar@911
   179
    ///\e
alpar@255
   180
    typedef typename Graph::NodeIt NodeIt;
alpar@911
   181
    ///\e
alpar@255
   182
    typedef typename Graph::Edge Edge;
alpar@911
   183
    ///\e
alpar@255
   184
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@255
   185
    
alpar@584
   186
    ///The type of the length of the edges.
alpar@987
   187
    typedef typename TR::LengthMap::Value Value;
alpar@693
   188
    ///The type of the map that stores the edge lengths.
alpar@954
   189
    typedef typename TR::LengthMap LengthMap;
alpar@693
   190
    ///\brief The type of the map that stores the last
alpar@584
   191
    ///edges of the shortest paths.
alpar@953
   192
    typedef typename TR::PredMap PredMap;
alpar@693
   193
    ///\brief The type of the map that stores the last but one
alpar@584
   194
    ///nodes of the shortest paths.
alpar@953
   195
    typedef typename TR::PredNodeMap PredNodeMap;
alpar@1119
   196
    ///The type of the map indicating if a node is reached.
alpar@1119
   197
    typedef typename TR::ReachedMap ReachedMap;
alpar@693
   198
    ///The type of the map that stores the dists of the nodes.
alpar@953
   199
    typedef typename TR::DistMap DistMap;
alpar@953
   200
    ///The heap type used by the dijkstra algorithm.
alpar@953
   201
    typedef typename TR::Heap Heap;
alpar@255
   202
  private:
alpar@802
   203
    /// Pointer to the underlying graph.
alpar@688
   204
    const Graph *G;
alpar@802
   205
    /// Pointer to the length map
alpar@954
   206
    const LengthMap *length;
alpar@802
   207
    ///Pointer to the map of predecessors edges.
alpar@1119
   208
    PredMap *_pred;
alpar@1119
   209
    ///Indicates if \ref _pred is locally allocated (\c true) or not.
alpar@1119
   210
    bool local_pred;
alpar@802
   211
    ///Pointer to the map of predecessors nodes.
alpar@688
   212
    PredNodeMap *pred_node;
alpar@802
   213
    ///Indicates if \ref pred_node is locally allocated (\c true) or not.
alpar@688
   214
    bool local_pred_node;
alpar@802
   215
    ///Pointer to the map of distances.
alpar@688
   216
    DistMap *distance;
alpar@802
   217
    ///Indicates if \ref distance is locally allocated (\c true) or not.
alpar@688
   218
    bool local_distance;
alpar@1119
   219
    ///Pointer to the map of reached status of the nodes.
alpar@1119
   220
    ReachedMap *_reached;
alpar@1119
   221
    ///Indicates if \ref _reached is locally allocated (\c true) or not.
alpar@1119
   222
    bool local_reached;
alpar@688
   223
alpar@802
   224
    ///The source node of the last execution.
alpar@774
   225
    Node source;
alpar@774
   226
alpar@785
   227
    ///Initializes the maps.
alpar@688
   228
    
alpar@694
   229
    ///\todo Error if \c G or are \c NULL. What about \c length?
alpar@688
   230
    ///\todo Better memory allocation (instead of new).
alpar@688
   231
    void init_maps() 
alpar@688
   232
    {
alpar@1119
   233
      if(!_pred) {
alpar@1119
   234
	local_pred = true;
alpar@1119
   235
	_pred = Traits::createPredMap(*G);
alpar@688
   236
      }
alpar@688
   237
      if(!pred_node) {
alpar@688
   238
	local_pred_node = true;
alpar@953
   239
	pred_node = Traits::createPredNodeMap(*G);
alpar@688
   240
      }
alpar@688
   241
      if(!distance) {
alpar@688
   242
	local_distance = true;
alpar@953
   243
	distance = Traits::createDistMap(*G);
alpar@688
   244
      }
alpar@1119
   245
      if(!_reached) {
alpar@1119
   246
	local_reached = true;
alpar@1119
   247
	_reached = Traits::createReachedMap(*G);
alpar@1119
   248
      }
alpar@688
   249
    }
alpar@255
   250
    
alpar@255
   251
  public :
alpar@1116
   252
 
alpar@953
   253
    template <class T>
alpar@1116
   254
    struct DefPredMapTraits : public Traits {
alpar@953
   255
      typedef T PredMap;
alpar@953
   256
      ///\todo An exception should be thrown.
alpar@953
   257
      ///
alpar@953
   258
      static PredMap *createPredMap(const Graph &G) 
alpar@953
   259
      {
alpar@1119
   260
	throw UninitializedData();
alpar@953
   261
      }
alpar@953
   262
    };
alpar@954
   263
    ///\ref named-templ-param "Named parameter" for setting PredMap type
alpar@954
   264
alpar@954
   265
    ///\ref named-templ-param "Named parameter" for setting PredMap type
alpar@1043
   266
    ///
alpar@953
   267
    template <class T>
alpar@1116
   268
    class DefPredMap : public Dijkstra< Graph,
alpar@953
   269
					LengthMap,
alpar@1116
   270
					DefPredMapTraits<T> > { };
alpar@953
   271
    
alpar@953
   272
    template <class T>
alpar@1116
   273
    struct DefPredNodeMapTraits : public Traits {
alpar@953
   274
      typedef T PredNodeMap;
alpar@953
   275
      ///\todo An exception should be thrown.
alpar@953
   276
      ///
alpar@953
   277
      static PredNodeMap *createPredNodeMap(const Graph &G) 
alpar@953
   278
      {
alpar@1119
   279
	throw UninitializedData();
alpar@953
   280
      }
alpar@953
   281
    };
alpar@954
   282
    ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
alpar@954
   283
alpar@954
   284
    ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
alpar@1043
   285
    ///
alpar@953
   286
    template <class T>
alpar@1116
   287
    class DefPredNodeMap : public Dijkstra< Graph,
alpar@953
   288
					    LengthMap,
alpar@1116
   289
					    DefPredNodeMapTraits<T> > { };
alpar@953
   290
    
alpar@953
   291
    template <class T>
alpar@1116
   292
    struct DefDistMapTraits : public Traits {
alpar@953
   293
      typedef T DistMap;
alpar@953
   294
      ///\todo An exception should be thrown.
alpar@953
   295
      ///
alpar@953
   296
      static DistMap *createDistMap(const Graph &G) 
alpar@953
   297
      {
alpar@1119
   298
	throw UninitializedData();
alpar@953
   299
      }
alpar@953
   300
    };
alpar@954
   301
    ///\ref named-templ-param "Named parameter" for setting DistMap type
alpar@954
   302
alpar@954
   303
    ///\ref named-templ-param "Named parameter" for setting DistMap type
alpar@1043
   304
    ///
alpar@953
   305
    template <class T>
alpar@1116
   306
    class DefDistMap : public Dijkstra< Graph,
alpar@953
   307
					LengthMap,
alpar@1116
   308
					DefDistMapTraits<T> > { };
alpar@953
   309
    
alpar@802
   310
    ///Constructor.
alpar@255
   311
    
alpar@802
   312
    ///\param _G the graph the algorithm will run on.
alpar@802
   313
    ///\param _length the length map used by the algorithm.
alpar@954
   314
    Dijkstra(const Graph& _G, const LengthMap& _length) :
alpar@688
   315
      G(&_G), length(&_length),
alpar@1119
   316
      _pred(NULL), local_pred(false),
alpar@707
   317
      pred_node(NULL), local_pred_node(false),
alpar@1119
   318
      distance(NULL), local_distance(false),
alpar@1119
   319
      _reached(NULL), local_reached(false)
alpar@688
   320
    { }
alpar@688
   321
    
alpar@802
   322
    ///Destructor.
alpar@688
   323
    ~Dijkstra() 
alpar@688
   324
    {
alpar@1119
   325
      if(local_pred) delete _pred;
alpar@688
   326
      if(local_pred_node) delete pred_node;
alpar@688
   327
      if(local_distance) delete distance;
alpar@1119
   328
      if(local_reached) delete _reached;
alpar@688
   329
    }
alpar@688
   330
alpar@688
   331
    ///Sets the length map.
alpar@688
   332
alpar@688
   333
    ///Sets the length map.
alpar@688
   334
    ///\return <tt> (*this) </tt>
alpar@1116
   335
    Dijkstra &lengthMap(const LengthMap &m) 
alpar@688
   336
    {
alpar@688
   337
      length = &m;
alpar@688
   338
      return *this;
alpar@688
   339
    }
alpar@688
   340
alpar@688
   341
    ///Sets the map storing the predecessor edges.
alpar@688
   342
alpar@688
   343
    ///Sets the map storing the predecessor edges.
alpar@688
   344
    ///If you don't use this function before calling \ref run(),
alpar@688
   345
    ///it will allocate one. The destuctor deallocates this
alpar@688
   346
    ///automatically allocated map, of course.
alpar@688
   347
    ///\return <tt> (*this) </tt>
alpar@1116
   348
    Dijkstra &predMap(PredMap &m) 
alpar@688
   349
    {
alpar@1119
   350
      if(local_pred) {
alpar@1119
   351
	delete _pred;
alpar@1119
   352
	local_pred=false;
alpar@688
   353
      }
alpar@1119
   354
      _pred = &m;
alpar@688
   355
      return *this;
alpar@688
   356
    }
alpar@688
   357
alpar@688
   358
    ///Sets the map storing the predecessor nodes.
alpar@688
   359
alpar@688
   360
    ///Sets the map storing the predecessor nodes.
alpar@688
   361
    ///If you don't use this function before calling \ref run(),
alpar@688
   362
    ///it will allocate one. The destuctor deallocates this
alpar@688
   363
    ///automatically allocated map, of course.
alpar@688
   364
    ///\return <tt> (*this) </tt>
alpar@1116
   365
    Dijkstra &predNodeMap(PredNodeMap &m) 
alpar@688
   366
    {
alpar@688
   367
      if(local_pred_node) {
alpar@688
   368
	delete pred_node;
alpar@688
   369
	local_pred_node=false;
alpar@688
   370
      }
alpar@688
   371
      pred_node = &m;
alpar@688
   372
      return *this;
alpar@688
   373
    }
alpar@688
   374
alpar@688
   375
    ///Sets the map storing the distances calculated by the algorithm.
alpar@688
   376
alpar@688
   377
    ///Sets the map storing the distances calculated by the algorithm.
alpar@688
   378
    ///If you don't use this function before calling \ref run(),
alpar@688
   379
    ///it will allocate one. The destuctor deallocates this
alpar@688
   380
    ///automatically allocated map, of course.
alpar@688
   381
    ///\return <tt> (*this) </tt>
alpar@1116
   382
    Dijkstra &distMap(DistMap &m) 
alpar@688
   383
    {
alpar@688
   384
      if(local_distance) {
alpar@688
   385
	delete distance;
alpar@688
   386
	local_distance=false;
alpar@688
   387
      }
alpar@688
   388
      distance = &m;
alpar@688
   389
      return *this;
alpar@688
   390
    }
alpar@255
   391
    
alpar@694
   392
  ///Runs %Dijkstra algorithm from node \c s.
alpar@694
   393
alpar@694
   394
  ///This method runs the %Dijkstra algorithm from a root node \c s
alpar@694
   395
  ///in order to
alpar@694
   396
  ///compute the
alpar@694
   397
  ///shortest path to each node. The algorithm computes
alpar@694
   398
  ///- The shortest path tree.
alpar@694
   399
  ///- The distance of each node from the root.
alpar@954
   400
  ///\todo heap_map's type could also be in the traits class.
alpar@694
   401
    void run(Node s) {
alpar@694
   402
      
alpar@694
   403
      init_maps();
alpar@694
   404
      
alpar@774
   405
      source = s;
alpar@774
   406
      
alpar@774
   407
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
alpar@1119
   408
	_pred->set(u,INVALID);
alpar@694
   409
	pred_node->set(u,INVALID);
alpar@1119
   410
	///\todo *_reached is not set to false.
alpar@694
   411
      }
alpar@694
   412
      
alpar@954
   413
      typename Graph::template NodeMap<int> heap_map(*G,-1);
alpar@694
   414
      
alpar@953
   415
      Heap heap(heap_map);
alpar@694
   416
      
alpar@694
   417
      heap.push(s,0); 
alpar@694
   418
      
alpar@694
   419
      while ( !heap.empty() ) {
alpar@694
   420
	
alpar@694
   421
	Node v=heap.top(); 
alpar@1119
   422
	_reached->set(v,true);
alpar@987
   423
	Value oldvalue=heap[v];
alpar@694
   424
	heap.pop();
alpar@694
   425
	distance->set(v, oldvalue);
alpar@694
   426
	
alpar@694
   427
	
alpar@774
   428
	for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
alpar@986
   429
	  Node w=G->target(e); 
alpar@694
   430
	  switch(heap.state(w)) {
alpar@953
   431
	  case Heap::PRE_HEAP:
alpar@694
   432
	    heap.push(w,oldvalue+(*length)[e]); 
alpar@1119
   433
	    _pred->set(w,e);
alpar@694
   434
	    pred_node->set(w,v);
alpar@694
   435
	    break;
alpar@953
   436
	  case Heap::IN_HEAP:
alpar@694
   437
	    if ( oldvalue+(*length)[e] < heap[w] ) {
alpar@694
   438
	      heap.decrease(w, oldvalue+(*length)[e]); 
alpar@1119
   439
	      _pred->set(w,e);
alpar@694
   440
	      pred_node->set(w,v);
alpar@694
   441
	    }
alpar@694
   442
	    break;
alpar@953
   443
	  case Heap::POST_HEAP:
alpar@694
   444
	    break;
alpar@694
   445
	  }
alpar@694
   446
	}
alpar@694
   447
      }
alpar@694
   448
    }
alpar@255
   449
    
jacint@385
   450
    ///The distance of a node from the root.
alpar@255
   451
jacint@385
   452
    ///Returns the distance of a node from the root.
alpar@255
   453
    ///\pre \ref run() must be called before using this function.
jacint@385
   454
    ///\warning If node \c v in unreachable from the root the return value
alpar@255
   455
    ///of this funcion is undefined.
alpar@987
   456
    Value dist(Node v) const { return (*distance)[v]; }
jacint@373
   457
alpar@584
   458
    ///Returns the 'previous edge' of the shortest path tree.
alpar@255
   459
alpar@584
   460
    ///For a node \c v it returns the 'previous edge' of the shortest path tree,
alpar@785
   461
    ///i.e. it returns the last edge of a shortest path from the root to \c
alpar@688
   462
    ///v. It is \ref INVALID
alpar@688
   463
    ///if \c v is unreachable from the root or if \c v=s. The
jacint@385
   464
    ///shortest path tree used here is equal to the shortest path tree used in
jacint@385
   465
    ///\ref predNode(Node v).  \pre \ref run() must be called before using
jacint@385
   466
    ///this function.
alpar@780
   467
    ///\todo predEdge could be a better name.
alpar@1119
   468
    Edge pred(Node v) const { return (*_pred)[v]; }
jacint@373
   469
alpar@584
   470
    ///Returns the 'previous node' of the shortest path tree.
alpar@255
   471
alpar@584
   472
    ///For a node \c v it returns the 'previous node' of the shortest path tree,
jacint@385
   473
    ///i.e. it returns the last but one node from a shortest path from the
jacint@385
   474
    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
jacint@385
   475
    ///\c v=s. The shortest path tree used here is equal to the shortest path
jacint@385
   476
    ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
jacint@385
   477
    ///using this function.
alpar@688
   478
    Node predNode(Node v) const { return (*pred_node)[v]; }
alpar@255
   479
    
alpar@255
   480
    ///Returns a reference to the NodeMap of distances.
alpar@255
   481
jacint@385
   482
    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
jacint@385
   483
    ///be called before using this function.
alpar@688
   484
    const DistMap &distMap() const { return *distance;}
jacint@385
   485
 
alpar@255
   486
    ///Returns a reference to the shortest path tree map.
alpar@255
   487
alpar@255
   488
    ///Returns a reference to the NodeMap of the edges of the
alpar@255
   489
    ///shortest path tree.
alpar@255
   490
    ///\pre \ref run() must be called before using this function.
alpar@1119
   491
    const PredMap &predMap() const { return *_pred;}
jacint@385
   492
 
jacint@385
   493
    ///Returns a reference to the map of nodes of shortest paths.
alpar@255
   494
alpar@255
   495
    ///Returns a reference to the NodeMap of the last but one nodes of the
jacint@385
   496
    ///shortest path tree.
alpar@255
   497
    ///\pre \ref run() must be called before using this function.
alpar@688
   498
    const PredNodeMap &predNodeMap() const { return *pred_node;}
alpar@255
   499
jacint@385
   500
    ///Checks if a node is reachable from the root.
alpar@255
   501
jacint@385
   502
    ///Returns \c true if \c v is reachable from the root.
alpar@802
   503
    ///\note The root node is reported to be reached!
alpar@255
   504
    ///\pre \ref run() must be called before using this function.
jacint@385
   505
    ///
alpar@1119
   506
    bool reached(Node v) { return v==source || (*_pred)[v]!=INVALID; }
alpar@255
   507
    
alpar@255
   508
  };
alpar@953
   509
hegyi@1123
   510
  /// Default traits used by \ref DijkstraWizard
hegyi@1123
   511
hegyi@1123
   512
  /// To make it easier to use Dijkstra algorithm we created a wizard class.
hegyi@1123
   513
  /// This \ref DijkstraWizard class also needs default traits.
hegyi@1123
   514
  /// The \ref DijkstraWizardBase is a class to be the default traits of the
hegyi@1123
   515
  /// \ref DijkstraWizard class.
alpar@1116
   516
  template<class GR,class LM>
alpar@1116
   517
  class DijkstraWizardBase : public DijkstraDefaultTraits<GR,LM>
alpar@1116
   518
  {
alpar@1116
   519
alpar@1116
   520
    typedef DijkstraDefaultTraits<GR,LM> Base;
alpar@1116
   521
  protected:
alpar@1116
   522
    /// Pointer to the underlying graph.
alpar@1116
   523
    void *_g;
alpar@1116
   524
    /// Pointer to the length map
alpar@1116
   525
    void *_length;
alpar@1116
   526
    ///Pointer to the map of predecessors edges.
alpar@1116
   527
    void *_pred;
alpar@1116
   528
    ///Pointer to the map of predecessors nodes.
alpar@1116
   529
    void *_predNode;
alpar@1116
   530
    ///Pointer to the map of distances.
alpar@1116
   531
    void *_dist;
alpar@1116
   532
    ///Pointer to the source node.
alpar@1116
   533
    void *_source;
alpar@1116
   534
hegyi@1123
   535
    /// Type of the nodes in the graph.
alpar@1116
   536
    typedef typename Base::Graph::Node Node;
alpar@1116
   537
alpar@1116
   538
    public:
hegyi@1123
   539
    /// Constructor.
hegyi@1123
   540
    
hegyi@1123
   541
    /// This constructor does not require parameters, therefore it initiates
hegyi@1123
   542
    /// all of the attributes to default values (0, INVALID).
alpar@1116
   543
    DijkstraWizardBase() : _g(0), _length(0), _pred(0), _predNode(0),
alpar@1116
   544
		       _dist(0), _source(INVALID) {}
alpar@1116
   545
hegyi@1123
   546
    /// Constructor.
hegyi@1123
   547
    
hegyi@1123
   548
    /// This constructor requires some parameters, listed in the parameters list.
hegyi@1123
   549
    /// Others are initiated to 0.
hegyi@1123
   550
    /// \param g is the initial value of  \ref _g
hegyi@1123
   551
    /// \param l is the initial value of  \ref _length
hegyi@1123
   552
    /// \param s is the initial value of  \ref _source
alpar@1116
   553
    DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
alpar@1116
   554
      _g((void *)&g), _length((void *)&l), _pred(0), _predNode(0),
alpar@1116
   555
		  _dist(0), _source((void *)&s) {}
alpar@1116
   556
alpar@1116
   557
  };
alpar@1116
   558
  
hegyi@1123
   559
  /// A class to make easier the usage of Dijkstra algorithm
alpar@953
   560
hegyi@1123
   561
  /// This class is created to make it easier to use Dijkstra algorithm.
hegyi@1123
   562
  /// It uses the functions and features of the plain \ref Dijkstra,
hegyi@1123
   563
  /// but it is much more simple to use it.
alpar@953
   564
  ///
hegyi@1123
   565
  /// Simplicity means that the way to change the types defined
hegyi@1123
   566
  /// in the traits class is based on functions that returns the new class
hegyi@1123
   567
  /// and not on templatable built-in classes. When using the plain \Dijkstra
hegyi@1123
   568
  /// the new class with the modified type comes from the original by using the ::
hegyi@1123
   569
  /// operator. In this case only a function have to be called and it will
hegyi@1123
   570
  /// return the needed class.
hegyi@1123
   571
  ///
hegyi@1123
   572
  /// It does not have own \ref run method. When its \ref run method is called
hegyi@1123
   573
  /// it initiates a plain \ref Dijkstra class, and calls the \ref Dijkstra::run
hegyi@1123
   574
  /// method of it.
alpar@953
   575
  template<class TR>
alpar@1116
   576
  class DijkstraWizard : public TR
alpar@953
   577
  {
alpar@1116
   578
    typedef TR Base;
alpar@953
   579
hegyi@1123
   580
    ///The type of the underlying graph.
alpar@953
   581
    typedef typename TR::Graph Graph;
alpar@1119
   582
    //\e
alpar@953
   583
    typedef typename Graph::Node Node;
alpar@1119
   584
    //\e
alpar@953
   585
    typedef typename Graph::NodeIt NodeIt;
alpar@1119
   586
    //\e
alpar@953
   587
    typedef typename Graph::Edge Edge;
alpar@1119
   588
    //\e
alpar@953
   589
    typedef typename Graph::OutEdgeIt OutEdgeIt;
alpar@953
   590
    
hegyi@1123
   591
    ///The type of the map that stores the edge lengths.
alpar@953
   592
    typedef typename TR::LengthMap LengthMap;
hegyi@1123
   593
    ///The type of the length of the edges.
alpar@987
   594
    typedef typename LengthMap::Value Value;
hegyi@1123
   595
    ///\brief The type of the map that stores the last
hegyi@1123
   596
    ///edges of the shortest paths.
alpar@953
   597
    typedef typename TR::PredMap PredMap;
hegyi@1123
   598
    ///\brief The type of the map that stores the last but one
hegyi@1123
   599
    ///nodes of the shortest paths.
alpar@953
   600
    typedef typename TR::PredNodeMap PredNodeMap;
hegyi@1123
   601
    ///The type of the map that stores the dists of the nodes.
alpar@953
   602
    typedef typename TR::DistMap DistMap;
alpar@953
   603
hegyi@1123
   604
    ///The heap type used by the dijkstra algorithm.
alpar@953
   605
    typedef typename TR::Heap Heap;
alpar@1116
   606
public:
hegyi@1123
   607
    /// Constructor.
alpar@1116
   608
    DijkstraWizard() : TR() {}
alpar@953
   609
hegyi@1123
   610
    /// Constructor that requires parameters.
hegyi@1123
   611
    /// These parameters will be the default values for the traits class.
alpar@1116
   612
    DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
alpar@1116
   613
      TR(g,l,s) {}
alpar@953
   614
hegyi@1123
   615
    ///Copy constructor
alpar@1116
   616
    DijkstraWizard(const TR &b) : TR(b) {}
alpar@953
   617
alpar@1116
   618
    ~DijkstraWizard() {}
alpar@1116
   619
hegyi@1123
   620
    ///Runs Dijkstra algorithm from a given node.
hegyi@1123
   621
    
hegyi@1123
   622
    ///Runs Dijkstra algorithm from a given node.
hegyi@1123
   623
    ///The node can be given by the \ref source function.
alpar@1116
   624
    void run()
alpar@953
   625
    {
alpar@1119
   626
      if(_source==0) throw UninitializedData();
alpar@1116
   627
      Dijkstra<Graph,LengthMap,TR> Dij(*(Graph*)_g,*(LengthMap*)_length);
alpar@1116
   628
      if(_pred) Dij.predMap(*(PredMap*)_pred);
alpar@1116
   629
      if(_predNode) Dij.predNodeMap(*(PredNodeMap*)_predNode);
alpar@1116
   630
      if(_dist) Dij.distMap(*(DistMap*)_dist);
alpar@1116
   631
      Dij.run(*(Node*)_source);
alpar@1116
   632
    }
alpar@1116
   633
hegyi@1123
   634
    ///Runs Dijkstra algorithm from a given node.
hegyi@1123
   635
hegyi@1123
   636
    ///Runs Dijkstra algorithm from a given node.
hegyi@1123
   637
    ///\param s is the given source.
alpar@1116
   638
    void run(Node s)
alpar@1116
   639
    {
alpar@1116
   640
      _source=(void *)&s;
alpar@1116
   641
      run();
alpar@953
   642
    }
alpar@953
   643
alpar@953
   644
    template<class T>
alpar@1116
   645
    struct DefPredMapBase : public Base {
alpar@1116
   646
      typedef T PredMap;
alpar@1117
   647
      static PredMap *createPredMap(const Graph &G) { return 0; };
alpar@1117
   648
      DefPredMapBase(const Base &b) : Base(b) {}
alpar@1116
   649
    };
alpar@953
   650
    
hegyi@1123
   651
    /// \ref named-templ-param "Named parameter" function for setting PredMap type
hegyi@1123
   652
hegyi@1123
   653
    /// \ref named-templ-param "Named parameter" function for setting PredMap type
alpar@953
   654
    template<class T>
alpar@1116
   655
    DijkstraWizard<DefPredMapBase<T> > predMap(const T &t) 
alpar@953
   656
    {
alpar@1116
   657
      _pred=(void *)&t;
alpar@1116
   658
      return DijkstraWizard<DefPredMapBase<T> >(*this);
alpar@953
   659
    }
alpar@953
   660
    
alpar@1116
   661
alpar@953
   662
    template<class T>
alpar@1116
   663
    struct DefPredNodeMapBase : public Base {
alpar@1116
   664
      typedef T PredNodeMap;
alpar@1117
   665
      static PredNodeMap *createPredNodeMap(const Graph &G) { return 0; };
alpar@1117
   666
      DefPredNodeMapBase(const Base &b) : Base(b) {}
alpar@1116
   667
    };
alpar@1116
   668
    
hegyi@1123
   669
    /// \ref named-templ-param "Named parameter" function for setting PredNodeMap type
hegyi@1123
   670
hegyi@1123
   671
    /// \ref named-templ-param "Named parameter" function for setting PredNodeMap type
alpar@953
   672
    template<class T>
alpar@1116
   673
    DijkstraWizard<DefPredNodeMapBase<T> > predNodeMap(const T &t) 
alpar@953
   674
    {
alpar@1116
   675
      _predNode=(void *)&t;
alpar@1116
   676
      return DijkstraWizard<DefPredNodeMapBase<T> >(*this);
alpar@953
   677
    }
alpar@1116
   678
   
alpar@1116
   679
    template<class T>
alpar@1116
   680
    struct DefDistMapBase : public Base {
alpar@1116
   681
      typedef T DistMap;
alpar@1117
   682
      static DistMap *createDistMap(const Graph &G) { return 0; };
alpar@1117
   683
      DefDistMapBase(const Base &b) : Base(b) {}
alpar@1116
   684
    };
alpar@953
   685
    
hegyi@1123
   686
    /// \ref named-templ-param "Named parameter" function for setting DistMap type
hegyi@1123
   687
hegyi@1123
   688
    /// \ref named-templ-param "Named parameter" function for setting DistMap type
alpar@953
   689
    template<class T>
alpar@1116
   690
    DijkstraWizard<DefDistMapBase<T> > distMap(const T &t) 
alpar@953
   691
    {
alpar@1116
   692
      _dist=(void *)&t;
alpar@1116
   693
      return DijkstraWizard<DefDistMapBase<T> >(*this);
alpar@953
   694
    }
alpar@1117
   695
    
hegyi@1123
   696
    /// Sets the source node, from which the Dijkstra algorithm runs.
hegyi@1123
   697
hegyi@1123
   698
    /// Sets the source node, from which the Dijkstra algorithm runs.
hegyi@1123
   699
    /// \param s is the source node.
alpar@1117
   700
    DijkstraWizard<TR> &source(Node s) 
alpar@953
   701
    {
alpar@1116
   702
      source=(void *)&s;
alpar@953
   703
      return *this;
alpar@953
   704
    }
alpar@953
   705
    
alpar@953
   706
  };
alpar@255
   707
  
alpar@953
   708
  ///\e
alpar@953
   709
alpar@954
   710
  ///\todo Please document...
alpar@953
   711
  ///
alpar@953
   712
  template<class GR, class LM>
alpar@1116
   713
  DijkstraWizard<DijkstraWizardBase<GR,LM> >
alpar@1116
   714
  dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
alpar@953
   715
  {
alpar@1116
   716
    return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
alpar@953
   717
  }
alpar@953
   718
alpar@430
   719
/// @}
alpar@255
   720
  
alpar@921
   721
} //END OF NAMESPACE LEMON
alpar@255
   722
alpar@255
   723
#endif
alpar@255
   724