lemon/concept/bpugraph.h
author deba
Tue, 31 Jan 2006 20:04:36 +0000
changeset 1933 a876a3d6a4c7
parent 1911 c925a077cf73
child 1946 17eb3eaad9f8
permissions -rw-r--r--
Revising the bpugraph concept

We need a public but very limited ANode and BNode class
It can be used with ItemSetTraits and with some special maps

By example:
DescriptorMap<Graph, ANode>
InvertableMap<Graph, ANode, string>
IterableBoolMap<Graph, ANode>
IterableIntMap<Graph, ANode>
IterableValueMap<Graph, ANode, string>
deba@1911
     1
/* -*- C++ -*-
deba@1911
     2
 *
deba@1911
     3
 * lemon/concept/ugraph_component.h - Part of LEMON, a generic
deba@1911
     4
 * C++ optimization library
deba@1911
     5
 *
deba@1911
     6
 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi
deba@1911
     7
 * Kutatocsoport (Egervary Research Group on Combinatorial Optimization,
deba@1911
     8
 * EGRES).
deba@1911
     9
 *
deba@1911
    10
 * Permission to use, modify and distribute this software is granted
deba@1911
    11
 * provided that this copyright notice appears in all copies. For
deba@1911
    12
 * precise terms see the accompanying LICENSE file.
deba@1911
    13
 *
deba@1911
    14
 * This software is provided "AS IS" with no warranty of any kind,
deba@1911
    15
 * express or implied, and with no claim as to its suitability for any
deba@1911
    16
 * purpose.
deba@1911
    17
 *
deba@1911
    18
 */
deba@1911
    19
deba@1911
    20
/// \ingroup graph_concepts
deba@1911
    21
/// \file
deba@1911
    22
/// \brief Undirected bipartite graphs and components of.
deba@1911
    23
deba@1911
    24
deba@1911
    25
#ifndef LEMON_CONCEPT_BPUGRAPH_H
deba@1911
    26
#define LEMON_CONCEPT_BPUGRAPH_H
deba@1911
    27
deba@1911
    28
#include <lemon/concept/graph_component.h>
deba@1911
    29
deba@1911
    30
#include <lemon/concept/graph.h>
deba@1911
    31
#include <lemon/concept/ugraph.h>
deba@1911
    32
deba@1911
    33
#include <lemon/utility.h>
deba@1911
    34
deba@1911
    35
namespace lemon {
deba@1911
    36
  namespace concept {
deba@1911
    37
deba@1911
    38
    /// \addtogroup graph_concepts
deba@1911
    39
    /// @{
deba@1911
    40
deba@1911
    41
deba@1911
    42
    /// \brief Class describing the concept of Bipartite Undirected Graphs.
deba@1911
    43
    ///
deba@1911
    44
    /// This class describes the common interface of all 
deba@1911
    45
    /// Undirected Bipartite Graphs.
deba@1911
    46
    ///
deba@1911
    47
    /// As all concept describing classes it provides only interface
deba@1911
    48
    /// without any sensible implementation. So any algorithm for
deba@1911
    49
    /// bipartite undirected graph should compile with this class, but it 
deba@1911
    50
    /// will not run properly, of course.
deba@1911
    51
    ///
deba@1911
    52
    /// In LEMON bipartite undirected graphs also fulfill the concept of 
deba@1911
    53
    /// the undirected graphs (\ref lemon::concept::UGraph "UGraph Concept"). 
deba@1911
    54
    ///
deba@1911
    55
    /// You can assume that all undirected bipartite graph can be handled
deba@1911
    56
    /// as an undirected graph and consequently as a static graph.
deba@1911
    57
    ///
deba@1911
    58
    /// The bipartite graph stores two types of nodes which are named
deba@1933
    59
    /// ANode and BNode. The graph type contains two types ANode and BNode
deba@1933
    60
    /// which are inherited from Node type. Moreover they have
deba@1933
    61
    /// constructor which converts Node to either ANode or BNode when it is
deba@1933
    62
    /// possible. Therefor everywhere the Node type can be used instead of
deba@1933
    63
    /// ANode and BNode. So the usage of the ANode and BNode is suggested.  
deba@1911
    64
    ///
deba@1911
    65
    /// The iteration on the partition can be done with the ANodeIt and 
deba@1911
    66
    /// BNodeIt classes. The node map can be used to map values to the nodes
deba@1911
    67
    /// and similarly we can use to map values for just the ANodes and
deba@1911
    68
    /// BNodes the ANodeMap and BNodeMap template classes.
deba@1911
    69
deba@1911
    70
    class BpUGraph {
deba@1911
    71
    public:
deba@1911
    72
      /// \todo undocumented
deba@1911
    73
      ///
deba@1911
    74
      typedef True UTag;
deba@1911
    75
deba@1911
    76
      /// \brief The base type of node iterators, 
deba@1911
    77
      /// or in other words, the trivial node iterator.
deba@1911
    78
      ///
deba@1911
    79
      /// This is the base type of each node iterator,
deba@1911
    80
      /// thus each kind of node iterator converts to this.
deba@1911
    81
      /// More precisely each kind of node iterator should be inherited 
deba@1911
    82
      /// from the trivial node iterator. The Node class represents
deba@1911
    83
      /// both of two types of nodes. 
deba@1911
    84
      class Node {
deba@1911
    85
      public:
deba@1911
    86
        /// Default constructor
deba@1911
    87
deba@1911
    88
        /// @warning The default constructor sets the iterator
deba@1911
    89
        /// to an undefined value.
deba@1911
    90
        Node() { }
deba@1911
    91
        /// Copy constructor.
deba@1911
    92
deba@1911
    93
        /// Copy constructor.
deba@1911
    94
        ///
deba@1911
    95
        Node(const Node&) { }
deba@1911
    96
deba@1911
    97
        /// Invalid constructor \& conversion.
deba@1911
    98
deba@1911
    99
        /// This constructor initializes the iterator to be invalid.
deba@1911
   100
        /// \sa Invalid for more details.
deba@1911
   101
        Node(Invalid) { }
deba@1911
   102
        /// Equality operator
deba@1911
   103
deba@1911
   104
        /// Two iterators are equal if and only if they point to the
deba@1911
   105
        /// same object or both are invalid.
deba@1911
   106
        bool operator==(Node) const { return true; }
deba@1911
   107
deba@1911
   108
        /// Inequality operator
deba@1911
   109
        
deba@1911
   110
        /// \sa operator==(Node n)
deba@1911
   111
        ///
deba@1911
   112
        bool operator!=(Node) const { return true; }
deba@1911
   113
deba@1911
   114
	/// Artificial ordering operator.
deba@1911
   115
	
deba@1911
   116
	/// To allow the use of graph descriptors as key type in std::map or
deba@1911
   117
	/// similar associative container we require this.
deba@1911
   118
	///
deba@1911
   119
	/// \note This operator only have to define some strict ordering of
deba@1911
   120
	/// the items; this order has nothing to do with the iteration
deba@1911
   121
	/// ordering of the items.
deba@1911
   122
	///
deba@1911
   123
	/// \bug This is a technical requirement. Do we really need this?
deba@1911
   124
	bool operator<(Node) const { return false; }
deba@1911
   125
deba@1911
   126
      };
deba@1933
   127
deba@1933
   128
      /// \brief The base type of anode iterators, 
deba@1933
   129
      /// or in other words, the trivial anode iterator.
deba@1933
   130
      ///
deba@1933
   131
      /// This is the base type of each anode iterator,
deba@1933
   132
      /// thus each kind of anode iterator converts to this.
deba@1933
   133
      /// More precisely each kind of node iterator should be inherited 
deba@1933
   134
      /// from the trivial anode iterator. The ANode class should be used
deba@1933
   135
      /// only in special cases. Usually the Node type should be used insted
deba@1933
   136
      /// of it. 
deba@1933
   137
      class ANode {
deba@1933
   138
      public:
deba@1933
   139
        /// Default constructor
deba@1933
   140
deba@1933
   141
        /// @warning The default constructor sets the iterator
deba@1933
   142
        /// to an undefined value.
deba@1933
   143
        ANode() { }
deba@1933
   144
        /// Copy constructor.
deba@1933
   145
deba@1933
   146
        /// Copy constructor.
deba@1933
   147
        ///
deba@1933
   148
        ANode(const ANode&) { }
deba@1933
   149
deba@1933
   150
        /// Construct the same node as ANode.
deba@1933
   151
deba@1933
   152
        /// Construct the same node as ANode. It may throws assertion
deba@1933
   153
        /// when the given node is from the BNode set.
deba@1933
   154
        ANode(const Node&) { }
deba@1933
   155
deba@1933
   156
        /// Invalid constructor \& conversion.
deba@1933
   157
deba@1933
   158
        /// This constructor initializes the iterator to be invalid.
deba@1933
   159
        /// \sa Invalid for more details.
deba@1933
   160
        ANode(Invalid) { }
deba@1933
   161
        /// Equality operator
deba@1933
   162
deba@1933
   163
        /// Two iterators are equal if and only if they point to the
deba@1933
   164
        /// same object or both are invalid.
deba@1933
   165
        bool operator==(ANode) const { return true; }
deba@1933
   166
deba@1933
   167
        /// Inequality operator
deba@1933
   168
        
deba@1933
   169
        /// \sa operator==(ANode n)
deba@1933
   170
        ///
deba@1933
   171
        bool operator!=(ANode) const { return true; }
deba@1933
   172
deba@1933
   173
	/// Artificial ordering operator.
deba@1933
   174
	
deba@1933
   175
	/// To allow the use of graph descriptors as key type in std::map or
deba@1933
   176
	/// similar associative container we require this.
deba@1933
   177
	///
deba@1933
   178
	/// \note This operator only have to define some strict ordering of
deba@1933
   179
	/// the items; this order has nothing to do with the iteration
deba@1933
   180
	/// ordering of the items.
deba@1933
   181
	bool operator<(ANode) const { return false; }
deba@1933
   182
deba@1933
   183
      };
deba@1933
   184
deba@1933
   185
      /// \brief The base type of bnode iterators, 
deba@1933
   186
      /// or in other words, the trivial bnode iterator.
deba@1933
   187
      ///
deba@1933
   188
      /// This is the base type of each anode iterator,
deba@1933
   189
      /// thus each kind of anode iterator converts to this.
deba@1933
   190
      /// More precisely each kind of node iterator should be inherited 
deba@1933
   191
      /// from the trivial anode iterator. The BNode class should be used
deba@1933
   192
      /// only in special cases. Usually the Node type should be used insted
deba@1933
   193
      /// of it. 
deba@1933
   194
      class BNode {
deba@1933
   195
      public:
deba@1933
   196
        /// Default constructor
deba@1933
   197
deba@1933
   198
        /// @warning The default constructor sets the iterator
deba@1933
   199
        /// to an undefined value.
deba@1933
   200
        BNode() { }
deba@1933
   201
        /// Copy constructor.
deba@1933
   202
deba@1933
   203
        /// Copy constructor.
deba@1933
   204
        ///
deba@1933
   205
        BNode(const BNode&) { }
deba@1933
   206
deba@1933
   207
        /// Construct the same node as BNode.
deba@1933
   208
deba@1933
   209
        /// Construct the same node as BNode. It may throws assertion
deba@1933
   210
        /// when the given node is from the ANode set.
deba@1933
   211
        BNode(const Node&) { }
deba@1933
   212
deba@1933
   213
        /// Invalid constructor \& conversion.
deba@1933
   214
deba@1933
   215
        /// This constructor initializes the iterator to be invalid.
deba@1933
   216
        /// \sa Invalid for more details.
deba@1933
   217
        BNode(Invalid) { }
deba@1933
   218
        /// Equality operator
deba@1933
   219
deba@1933
   220
        /// Two iterators are equal if and only if they point to the
deba@1933
   221
        /// same object or both are invalid.
deba@1933
   222
        bool operator==(BNode) const { return true; }
deba@1933
   223
deba@1933
   224
        /// Inequality operator
deba@1933
   225
        
deba@1933
   226
        /// \sa operator==(BNode n)
deba@1933
   227
        ///
deba@1933
   228
        bool operator!=(BNode) const { return true; }
deba@1933
   229
deba@1933
   230
	/// Artificial ordering operator.
deba@1933
   231
	
deba@1933
   232
	/// To allow the use of graph descriptors as key type in std::map or
deba@1933
   233
	/// similar associative container we require this.
deba@1933
   234
	///
deba@1933
   235
	/// \note This operator only have to define some strict ordering of
deba@1933
   236
	/// the items; this order has nothing to do with the iteration
deba@1933
   237
	/// ordering of the items.
deba@1933
   238
	bool operator<(BNode) const { return false; }
deba@1933
   239
deba@1933
   240
      };
deba@1911
   241
    
deba@1911
   242
      /// This iterator goes through each node.
deba@1911
   243
deba@1911
   244
      /// This iterator goes through each node.
deba@1911
   245
      /// Its usage is quite simple, for example you can count the number
deba@1911
   246
      /// of nodes in graph \c g of type \c Graph like this:
deba@1911
   247
      /// \code
deba@1911
   248
      /// int count=0;
deba@1911
   249
      /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
deba@1911
   250
      /// \endcode
deba@1911
   251
      class NodeIt : public Node {
deba@1911
   252
      public:
deba@1911
   253
        /// Default constructor
deba@1911
   254
deba@1911
   255
        /// @warning The default constructor sets the iterator
deba@1911
   256
        /// to an undefined value.
deba@1911
   257
        NodeIt() { }
deba@1911
   258
        /// Copy constructor.
deba@1911
   259
        
deba@1911
   260
        /// Copy constructor.
deba@1911
   261
        ///
deba@1911
   262
        NodeIt(const NodeIt& n) : Node(n) { }
deba@1911
   263
        /// Invalid constructor \& conversion.
deba@1911
   264
deba@1911
   265
        /// Initialize the iterator to be invalid.
deba@1911
   266
        /// \sa Invalid for more details.
deba@1911
   267
        NodeIt(Invalid) { }
deba@1911
   268
        /// Sets the iterator to the first node.
deba@1911
   269
deba@1911
   270
        /// Sets the iterator to the first node of \c g.
deba@1911
   271
        ///
deba@1911
   272
        NodeIt(const BpUGraph&) { }
deba@1911
   273
        /// Node -> NodeIt conversion.
deba@1911
   274
deba@1911
   275
        /// Sets the iterator to the node of \c the graph pointed by 
deba@1911
   276
	/// the trivial iterator.
deba@1911
   277
        /// This feature necessitates that each time we 
deba@1911
   278
        /// iterate the edge-set, the iteration order is the same.
deba@1911
   279
        NodeIt(const BpUGraph&, const Node&) { }
deba@1911
   280
        /// Next node.
deba@1911
   281
deba@1911
   282
        /// Assign the iterator to the next node.
deba@1911
   283
        ///
deba@1911
   284
        NodeIt& operator++() { return *this; }
deba@1911
   285
      };
deba@1911
   286
deba@1911
   287
      /// This iterator goes through each ANode.
deba@1911
   288
deba@1911
   289
      /// This iterator goes through each ANode.
deba@1911
   290
      /// Its usage is quite simple, for example you can count the number
deba@1911
   291
      /// of nodes in graph \c g of type \c Graph like this:
deba@1911
   292
      /// \code
deba@1911
   293
      /// int count=0;
deba@1911
   294
      /// for (Graph::ANodeIt n(g); n!=INVALID; ++n) ++count;
deba@1911
   295
      /// \endcode
deba@1933
   296
      class ANodeIt : public ANode {
deba@1911
   297
      public:
deba@1911
   298
        /// Default constructor
deba@1911
   299
deba@1911
   300
        /// @warning The default constructor sets the iterator
deba@1911
   301
        /// to an undefined value.
deba@1911
   302
        ANodeIt() { }
deba@1911
   303
        /// Copy constructor.
deba@1911
   304
        
deba@1911
   305
        /// Copy constructor.
deba@1911
   306
        ///
deba@1911
   307
        ANodeIt(const ANodeIt& n) : Node(n) { }
deba@1911
   308
        /// Invalid constructor \& conversion.
deba@1911
   309
deba@1911
   310
        /// Initialize the iterator to be invalid.
deba@1911
   311
        /// \sa Invalid for more details.
deba@1911
   312
        ANodeIt(Invalid) { }
deba@1911
   313
        /// Sets the iterator to the first node.
deba@1911
   314
deba@1911
   315
        /// Sets the iterator to the first node of \c g.
deba@1911
   316
        ///
deba@1911
   317
        ANodeIt(const BpUGraph&) { }
deba@1911
   318
        /// Node -> ANodeIt conversion.
deba@1911
   319
deba@1911
   320
        /// Sets the iterator to the node of \c the graph pointed by 
deba@1911
   321
	/// the trivial iterator.
deba@1911
   322
        /// This feature necessitates that each time we 
deba@1911
   323
        /// iterate the edge-set, the iteration order is the same.
deba@1911
   324
        ANodeIt(const BpUGraph&, const Node&) { }
deba@1911
   325
        /// Next node.
deba@1911
   326
deba@1911
   327
        /// Assign the iterator to the next node.
deba@1911
   328
        ///
deba@1911
   329
        ANodeIt& operator++() { return *this; }
deba@1911
   330
      };
deba@1911
   331
deba@1911
   332
      /// This iterator goes through each BNode.
deba@1911
   333
deba@1911
   334
      /// This iterator goes through each BNode.
deba@1911
   335
      /// Its usage is quite simple, for example you can count the number
deba@1911
   336
      /// of nodes in graph \c g of type \c Graph like this:
deba@1911
   337
      /// \code
deba@1911
   338
      /// int count=0;
deba@1911
   339
      /// for (Graph::BNodeIt n(g); n!=INVALID; ++n) ++count;
deba@1911
   340
      /// \endcode
deba@1933
   341
      class BNodeIt : public BNode {
deba@1911
   342
      public:
deba@1911
   343
        /// Default constructor
deba@1911
   344
deba@1911
   345
        /// @warning The default constructor sets the iterator
deba@1911
   346
        /// to an undefined value.
deba@1911
   347
        BNodeIt() { }
deba@1911
   348
        /// Copy constructor.
deba@1911
   349
        
deba@1911
   350
        /// Copy constructor.
deba@1911
   351
        ///
deba@1911
   352
        BNodeIt(const BNodeIt& n) : Node(n) { }
deba@1911
   353
        /// Invalid constructor \& conversion.
deba@1911
   354
deba@1911
   355
        /// Initialize the iterator to be invalid.
deba@1911
   356
        /// \sa Invalid for more details.
deba@1911
   357
        BNodeIt(Invalid) { }
deba@1911
   358
        /// Sets the iterator to the first node.
deba@1911
   359
deba@1911
   360
        /// Sets the iterator to the first node of \c g.
deba@1911
   361
        ///
deba@1911
   362
        BNodeIt(const BpUGraph&) { }
deba@1911
   363
        /// Node -> BNodeIt conversion.
deba@1911
   364
deba@1911
   365
        /// Sets the iterator to the node of \c the graph pointed by 
deba@1911
   366
	/// the trivial iterator.
deba@1911
   367
        /// This feature necessitates that each time we 
deba@1911
   368
        /// iterate the edge-set, the iteration order is the same.
deba@1911
   369
        BNodeIt(const BpUGraph&, const Node&) { }
deba@1911
   370
        /// Next node.
deba@1911
   371
deba@1911
   372
        /// Assign the iterator to the next node.
deba@1911
   373
        ///
deba@1911
   374
        BNodeIt& operator++() { return *this; }
deba@1911
   375
      };
deba@1911
   376
    
deba@1911
   377
    
deba@1911
   378
      /// The base type of the undirected edge iterators.
deba@1911
   379
deba@1911
   380
      /// The base type of the undirected edge iterators.
deba@1911
   381
      ///
deba@1911
   382
      class UEdge {
deba@1911
   383
      public:
deba@1911
   384
        /// Default constructor
deba@1911
   385
deba@1911
   386
        /// @warning The default constructor sets the iterator
deba@1911
   387
        /// to an undefined value.
deba@1911
   388
        UEdge() { }
deba@1911
   389
        /// Copy constructor.
deba@1911
   390
deba@1911
   391
        /// Copy constructor.
deba@1911
   392
        ///
deba@1911
   393
        UEdge(const UEdge&) { }
deba@1911
   394
        /// Initialize the iterator to be invalid.
deba@1911
   395
deba@1911
   396
        /// Initialize the iterator to be invalid.
deba@1911
   397
        ///
deba@1911
   398
        UEdge(Invalid) { }
deba@1911
   399
        /// Equality operator
deba@1911
   400
deba@1911
   401
        /// Two iterators are equal if and only if they point to the
deba@1911
   402
        /// same object or both are invalid.
deba@1911
   403
        bool operator==(UEdge) const { return true; }
deba@1911
   404
        /// Inequality operator
deba@1911
   405
deba@1911
   406
        /// \sa operator==(UEdge n)
deba@1911
   407
        ///
deba@1911
   408
        bool operator!=(UEdge) const { return true; }
deba@1911
   409
deba@1911
   410
	/// Artificial ordering operator.
deba@1911
   411
	
deba@1911
   412
	/// To allow the use of graph descriptors as key type in std::map or
deba@1911
   413
	/// similar associative container we require this.
deba@1911
   414
	///
deba@1911
   415
	/// \note This operator only have to define some strict ordering of
deba@1911
   416
	/// the items; this order has nothing to do with the iteration
deba@1911
   417
	/// ordering of the items.
deba@1911
   418
	///
deba@1911
   419
	/// \bug This is a technical requirement. Do we really need this?
deba@1911
   420
	bool operator<(UEdge) const { return false; }
deba@1911
   421
      };
deba@1911
   422
deba@1911
   423
      /// This iterator goes through each undirected edge.
deba@1911
   424
deba@1911
   425
      /// This iterator goes through each undirected edge of a graph.
deba@1911
   426
      /// Its usage is quite simple, for example you can count the number
deba@1911
   427
      /// of undirected edges in a graph \c g of type \c Graph as follows:
deba@1911
   428
      /// \code
deba@1911
   429
      /// int count=0;
deba@1911
   430
      /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
deba@1911
   431
      /// \endcode
deba@1911
   432
      class UEdgeIt : public UEdge {
deba@1911
   433
      public:
deba@1911
   434
        /// Default constructor
deba@1911
   435
deba@1911
   436
        /// @warning The default constructor sets the iterator
deba@1911
   437
        /// to an undefined value.
deba@1911
   438
        UEdgeIt() { }
deba@1911
   439
        /// Copy constructor.
deba@1911
   440
deba@1911
   441
        /// Copy constructor.
deba@1911
   442
        ///
deba@1911
   443
        UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
deba@1911
   444
        /// Initialize the iterator to be invalid.
deba@1911
   445
deba@1911
   446
        /// Initialize the iterator to be invalid.
deba@1911
   447
        ///
deba@1911
   448
        UEdgeIt(Invalid) { }
deba@1911
   449
        /// This constructor sets the iterator to the first undirected edge.
deba@1911
   450
    
deba@1911
   451
        /// This constructor sets the iterator to the first undirected edge.
deba@1911
   452
        UEdgeIt(const BpUGraph&) { }
deba@1911
   453
        /// UEdge -> UEdgeIt conversion
deba@1911
   454
deba@1911
   455
        /// Sets the iterator to the value of the trivial iterator.
deba@1911
   456
        /// This feature necessitates that each time we
deba@1911
   457
        /// iterate the undirected edge-set, the iteration order is the 
deba@1911
   458
	/// same.
deba@1911
   459
        UEdgeIt(const BpUGraph&, const UEdge&) { } 
deba@1911
   460
        /// Next undirected edge
deba@1911
   461
        
deba@1911
   462
        /// Assign the iterator to the next undirected edge.
deba@1911
   463
        UEdgeIt& operator++() { return *this; }
deba@1911
   464
      };
deba@1911
   465
deba@1911
   466
      /// \brief This iterator goes trough the incident undirected 
deba@1911
   467
      /// edges of a node.
deba@1911
   468
      ///
deba@1911
   469
      /// This iterator goes trough the incident undirected edges
deba@1911
   470
      /// of a certain node
deba@1911
   471
      /// of a graph.
deba@1911
   472
      /// Its usage is quite simple, for example you can compute the
deba@1911
   473
      /// degree (i.e. count the number
deba@1911
   474
      /// of incident edges of a node \c n
deba@1911
   475
      /// in graph \c g of type \c Graph as follows.
deba@1911
   476
      /// \code
deba@1911
   477
      /// int count=0;
deba@1911
   478
      /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
deba@1911
   479
      /// \endcode
deba@1911
   480
      class IncEdgeIt : public UEdge {
deba@1911
   481
      public:
deba@1911
   482
        /// Default constructor
deba@1911
   483
deba@1911
   484
        /// @warning The default constructor sets the iterator
deba@1911
   485
        /// to an undefined value.
deba@1911
   486
        IncEdgeIt() { }
deba@1911
   487
        /// Copy constructor.
deba@1911
   488
deba@1911
   489
        /// Copy constructor.
deba@1911
   490
        ///
deba@1911
   491
        IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
deba@1911
   492
        /// Initialize the iterator to be invalid.
deba@1911
   493
deba@1911
   494
        /// Initialize the iterator to be invalid.
deba@1911
   495
        ///
deba@1911
   496
        IncEdgeIt(Invalid) { }
deba@1911
   497
        /// This constructor sets the iterator to first incident edge.
deba@1911
   498
    
deba@1911
   499
        /// This constructor set the iterator to the first incident edge of
deba@1911
   500
        /// the node.
deba@1911
   501
        IncEdgeIt(const BpUGraph&, const Node&) { }
deba@1911
   502
        /// UEdge -> IncEdgeIt conversion
deba@1911
   503
deba@1911
   504
        /// Sets the iterator to the value of the trivial iterator \c e.
deba@1911
   505
        /// This feature necessitates that each time we 
deba@1911
   506
        /// iterate the edge-set, the iteration order is the same.
deba@1911
   507
        IncEdgeIt(const BpUGraph&, const UEdge&) { }
deba@1911
   508
        /// Next incident edge
deba@1911
   509
deba@1911
   510
        /// Assign the iterator to the next incident edge
deba@1911
   511
	/// of the corresponding node.
deba@1911
   512
        IncEdgeIt& operator++() { return *this; }
deba@1911
   513
      };
deba@1911
   514
deba@1911
   515
      /// The directed edge type.
deba@1911
   516
deba@1911
   517
      /// The directed edge type. It can be converted to the
deba@1911
   518
      /// undirected edge.
deba@1911
   519
      class Edge : public UEdge {
deba@1911
   520
      public:
deba@1911
   521
        /// Default constructor
deba@1911
   522
deba@1911
   523
        /// @warning The default constructor sets the iterator
deba@1911
   524
        /// to an undefined value.
deba@1911
   525
        Edge() { }
deba@1911
   526
        /// Copy constructor.
deba@1911
   527
deba@1911
   528
        /// Copy constructor.
deba@1911
   529
        ///
deba@1911
   530
        Edge(const Edge& e) : UEdge(e) { }
deba@1911
   531
        /// Initialize the iterator to be invalid.
deba@1911
   532
deba@1911
   533
        /// Initialize the iterator to be invalid.
deba@1911
   534
        ///
deba@1911
   535
        Edge(Invalid) { }
deba@1911
   536
        /// Equality operator
deba@1911
   537
deba@1911
   538
        /// Two iterators are equal if and only if they point to the
deba@1911
   539
        /// same object or both are invalid.
deba@1911
   540
        bool operator==(Edge) const { return true; }
deba@1911
   541
        /// Inequality operator
deba@1911
   542
deba@1911
   543
        /// \sa operator==(Edge n)
deba@1911
   544
        ///
deba@1911
   545
        bool operator!=(Edge) const { return true; }
deba@1911
   546
deba@1911
   547
	/// Artificial ordering operator.
deba@1911
   548
	
deba@1911
   549
	/// To allow the use of graph descriptors as key type in std::map or
deba@1911
   550
	/// similar associative container we require this.
deba@1911
   551
	///
deba@1911
   552
	/// \note This operator only have to define some strict ordering of
deba@1911
   553
	/// the items; this order has nothing to do with the iteration
deba@1911
   554
	/// ordering of the items.
deba@1911
   555
	///
deba@1911
   556
	/// \bug This is a technical requirement. Do we really need this?
deba@1911
   557
	bool operator<(Edge) const { return false; }
deba@1911
   558
	
deba@1911
   559
      }; 
deba@1911
   560
      /// This iterator goes through each directed edge.
deba@1911
   561
deba@1911
   562
      /// This iterator goes through each edge of a graph.
deba@1911
   563
      /// Its usage is quite simple, for example you can count the number
deba@1911
   564
      /// of edges in a graph \c g of type \c Graph as follows:
deba@1911
   565
      /// \code
deba@1911
   566
      /// int count=0;
deba@1911
   567
      /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
deba@1911
   568
      /// \endcode
deba@1911
   569
      class EdgeIt : public Edge {
deba@1911
   570
      public:
deba@1911
   571
        /// Default constructor
deba@1911
   572
deba@1911
   573
        /// @warning The default constructor sets the iterator
deba@1911
   574
        /// to an undefined value.
deba@1911
   575
        EdgeIt() { }
deba@1911
   576
        /// Copy constructor.
deba@1911
   577
deba@1911
   578
        /// Copy constructor.
deba@1911
   579
        ///
deba@1911
   580
        EdgeIt(const EdgeIt& e) : Edge(e) { }
deba@1911
   581
        /// Initialize the iterator to be invalid.
deba@1911
   582
deba@1911
   583
        /// Initialize the iterator to be invalid.
deba@1911
   584
        ///
deba@1911
   585
        EdgeIt(Invalid) { }
deba@1911
   586
        /// This constructor sets the iterator to the first edge.
deba@1911
   587
    
deba@1911
   588
        /// This constructor sets the iterator to the first edge of \c g.
deba@1911
   589
        ///@param g the graph
deba@1911
   590
        EdgeIt(const BpUGraph &g) { ignore_unused_variable_warning(g); }
deba@1911
   591
        /// Edge -> EdgeIt conversion
deba@1911
   592
deba@1911
   593
        /// Sets the iterator to the value of the trivial iterator \c e.
deba@1911
   594
        /// This feature necessitates that each time we 
deba@1911
   595
        /// iterate the edge-set, the iteration order is the same.
deba@1911
   596
        EdgeIt(const BpUGraph&, const Edge&) { } 
deba@1911
   597
        ///Next edge
deba@1911
   598
        
deba@1911
   599
        /// Assign the iterator to the next edge.
deba@1911
   600
        EdgeIt& operator++() { return *this; }
deba@1911
   601
      };
deba@1911
   602
   
deba@1911
   603
      /// This iterator goes trough the outgoing directed edges of a node.
deba@1911
   604
deba@1911
   605
      /// This iterator goes trough the \e outgoing edges of a certain node
deba@1911
   606
      /// of a graph.
deba@1911
   607
      /// Its usage is quite simple, for example you can count the number
deba@1911
   608
      /// of outgoing edges of a node \c n
deba@1911
   609
      /// in graph \c g of type \c Graph as follows.
deba@1911
   610
      /// \code
deba@1911
   611
      /// int count=0;
deba@1911
   612
      /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
deba@1911
   613
      /// \endcode
deba@1911
   614
    
deba@1911
   615
      class OutEdgeIt : public Edge {
deba@1911
   616
      public:
deba@1911
   617
        /// Default constructor
deba@1911
   618
deba@1911
   619
        /// @warning The default constructor sets the iterator
deba@1911
   620
        /// to an undefined value.
deba@1911
   621
        OutEdgeIt() { }
deba@1911
   622
        /// Copy constructor.
deba@1911
   623
deba@1911
   624
        /// Copy constructor.
deba@1911
   625
        ///
deba@1911
   626
        OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
deba@1911
   627
        /// Initialize the iterator to be invalid.
deba@1911
   628
deba@1911
   629
        /// Initialize the iterator to be invalid.
deba@1911
   630
        ///
deba@1911
   631
        OutEdgeIt(Invalid) { }
deba@1911
   632
        /// This constructor sets the iterator to the first outgoing edge.
deba@1911
   633
    
deba@1911
   634
        /// This constructor sets the iterator to the first outgoing edge of
deba@1911
   635
        /// the node.
deba@1911
   636
        ///@param n the node
deba@1911
   637
        ///@param g the graph
deba@1911
   638
        OutEdgeIt(const BpUGraph& n, const Node& g) {
deba@1911
   639
	  ignore_unused_variable_warning(n);
deba@1911
   640
	  ignore_unused_variable_warning(g);
deba@1911
   641
	}
deba@1911
   642
        /// Edge -> OutEdgeIt conversion
deba@1911
   643
deba@1911
   644
        /// Sets the iterator to the value of the trivial iterator.
deba@1911
   645
	/// This feature necessitates that each time we 
deba@1911
   646
        /// iterate the edge-set, the iteration order is the same.
deba@1911
   647
        OutEdgeIt(const BpUGraph&, const Edge&) { }
deba@1911
   648
        ///Next outgoing edge
deba@1911
   649
        
deba@1911
   650
        /// Assign the iterator to the next 
deba@1911
   651
        /// outgoing edge of the corresponding node.
deba@1911
   652
        OutEdgeIt& operator++() { return *this; }
deba@1911
   653
      };
deba@1911
   654
deba@1911
   655
      /// This iterator goes trough the incoming directed edges of a node.
deba@1911
   656
deba@1911
   657
      /// This iterator goes trough the \e incoming edges of a certain node
deba@1911
   658
      /// of a graph.
deba@1911
   659
      /// Its usage is quite simple, for example you can count the number
deba@1911
   660
      /// of outgoing edges of a node \c n
deba@1911
   661
      /// in graph \c g of type \c Graph as follows.
deba@1911
   662
      /// \code
deba@1911
   663
      /// int count=0;
deba@1911
   664
      /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
deba@1911
   665
      /// \endcode
deba@1911
   666
deba@1911
   667
      class InEdgeIt : public Edge {
deba@1911
   668
      public:
deba@1911
   669
        /// Default constructor
deba@1911
   670
deba@1911
   671
        /// @warning The default constructor sets the iterator
deba@1911
   672
        /// to an undefined value.
deba@1911
   673
        InEdgeIt() { }
deba@1911
   674
        /// Copy constructor.
deba@1911
   675
deba@1911
   676
        /// Copy constructor.
deba@1911
   677
        ///
deba@1911
   678
        InEdgeIt(const InEdgeIt& e) : Edge(e) { }
deba@1911
   679
        /// Initialize the iterator to be invalid.
deba@1911
   680
deba@1911
   681
        /// Initialize the iterator to be invalid.
deba@1911
   682
        ///
deba@1911
   683
        InEdgeIt(Invalid) { }
deba@1911
   684
        /// This constructor sets the iterator to first incoming edge.
deba@1911
   685
    
deba@1911
   686
        /// This constructor set the iterator to the first incoming edge of
deba@1911
   687
        /// the node.
deba@1911
   688
        ///@param n the node
deba@1911
   689
        ///@param g the graph
deba@1911
   690
        InEdgeIt(const BpUGraph& g, const Node& n) { 
deba@1911
   691
	  ignore_unused_variable_warning(n);
deba@1911
   692
	  ignore_unused_variable_warning(g);
deba@1911
   693
	}
deba@1911
   694
        /// Edge -> InEdgeIt conversion
deba@1911
   695
deba@1911
   696
        /// Sets the iterator to the value of the trivial iterator \c e.
deba@1911
   697
        /// This feature necessitates that each time we 
deba@1911
   698
        /// iterate the edge-set, the iteration order is the same.
deba@1911
   699
        InEdgeIt(const BpUGraph&, const Edge&) { }
deba@1911
   700
        /// Next incoming edge
deba@1911
   701
deba@1911
   702
        /// Assign the iterator to the next inedge of the corresponding node.
deba@1911
   703
        ///
deba@1911
   704
        InEdgeIt& operator++() { return *this; }
deba@1911
   705
      };
deba@1911
   706
deba@1911
   707
      /// \brief Read write map of the nodes to type \c T.
deba@1911
   708
      /// 
deba@1911
   709
      /// ReadWrite map of the nodes to type \c T.
deba@1911
   710
      /// \sa Reference
deba@1911
   711
      /// \warning Making maps that can handle bool type (NodeMap<bool>)
deba@1911
   712
      /// needs some extra attention!
deba@1911
   713
      /// \todo Wrong documentation
deba@1911
   714
      template<class T> 
deba@1911
   715
      class NodeMap : public ReadWriteMap< Node, T >
deba@1911
   716
      {
deba@1911
   717
      public:
deba@1911
   718
deba@1911
   719
        ///\e
deba@1911
   720
        NodeMap(const BpUGraph&) { }
deba@1911
   721
        ///\e
deba@1911
   722
        NodeMap(const BpUGraph&, T) { }
deba@1911
   723
deba@1911
   724
        ///Copy constructor
deba@1911
   725
        NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
deba@1911
   726
        ///Assignment operator
deba@1911
   727
        NodeMap& operator=(const NodeMap&) { return *this; }
deba@1911
   728
        // \todo fix this concept
deba@1911
   729
      };
deba@1911
   730
deba@1911
   731
      /// \brief Read write map of the ANodes to type \c T.
deba@1911
   732
      /// 
deba@1911
   733
      /// ReadWrite map of the ANodes to type \c T.
deba@1911
   734
      /// \sa Reference
deba@1911
   735
      /// \warning Making maps that can handle bool type (NodeMap<bool>)
deba@1911
   736
      /// needs some extra attention!
deba@1911
   737
      /// \todo Wrong documentation
deba@1911
   738
      template<class T> 
deba@1911
   739
      class ANodeMap : public ReadWriteMap< Node, T >
deba@1911
   740
      {
deba@1911
   741
      public:
deba@1911
   742
deba@1911
   743
        ///\e
deba@1911
   744
        ANodeMap(const BpUGraph&) { }
deba@1911
   745
        ///\e
deba@1911
   746
        ANodeMap(const BpUGraph&, T) { }
deba@1911
   747
deba@1911
   748
        ///Copy constructor
deba@1911
   749
        ANodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
deba@1911
   750
        ///Assignment operator
deba@1911
   751
        ANodeMap& operator=(const NodeMap&) { return *this; }
deba@1911
   752
        // \todo fix this concept
deba@1911
   753
      };
deba@1911
   754
deba@1911
   755
      /// \brief Read write map of the BNodes to type \c T.
deba@1911
   756
      /// 
deba@1911
   757
      /// ReadWrite map of the BNodes to type \c T.
deba@1911
   758
      /// \sa Reference
deba@1911
   759
      /// \warning Making maps that can handle bool type (NodeMap<bool>)
deba@1911
   760
      /// needs some extra attention!
deba@1911
   761
      /// \todo Wrong documentation
deba@1911
   762
      template<class T> 
deba@1911
   763
      class BNodeMap : public ReadWriteMap< Node, T >
deba@1911
   764
      {
deba@1911
   765
      public:
deba@1911
   766
deba@1911
   767
        ///\e
deba@1911
   768
        BNodeMap(const BpUGraph&) { }
deba@1911
   769
        ///\e
deba@1911
   770
        BNodeMap(const BpUGraph&, T) { }
deba@1911
   771
deba@1911
   772
        ///Copy constructor
deba@1911
   773
        BNodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
deba@1911
   774
        ///Assignment operator
deba@1911
   775
        BNodeMap& operator=(const NodeMap&) { return *this; }
deba@1911
   776
        // \todo fix this concept
deba@1911
   777
      };
deba@1911
   778
deba@1911
   779
      /// \brief Read write map of the directed edges to type \c T.
deba@1911
   780
      ///
deba@1911
   781
      /// Reference map of the directed edges to type \c T.
deba@1911
   782
      /// \sa Reference
deba@1911
   783
      /// \warning Making maps that can handle bool type (EdgeMap<bool>)
deba@1911
   784
      /// needs some extra attention!
deba@1911
   785
      /// \todo Wrong documentation
deba@1911
   786
      template<class T> 
deba@1911
   787
      class EdgeMap : public ReadWriteMap<Edge,T>
deba@1911
   788
      {
deba@1911
   789
      public:
deba@1911
   790
deba@1911
   791
        ///\e
deba@1911
   792
        EdgeMap(const BpUGraph&) { }
deba@1911
   793
        ///\e
deba@1911
   794
        EdgeMap(const BpUGraph&, T) { }
deba@1911
   795
        ///Copy constructor
deba@1911
   796
        EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
deba@1911
   797
        ///Assignment operator
deba@1911
   798
        EdgeMap& operator=(const EdgeMap&) { return *this; }
deba@1911
   799
        // \todo fix this concept    
deba@1911
   800
      };
deba@1911
   801
deba@1911
   802
      /// Read write map of the undirected edges to type \c T.
deba@1911
   803
deba@1911
   804
      /// Reference map of the edges to type \c T.
deba@1911
   805
      /// \sa Reference
deba@1911
   806
      /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
deba@1911
   807
      /// needs some extra attention!
deba@1911
   808
      /// \todo Wrong documentation
deba@1911
   809
      template<class T> 
deba@1911
   810
      class UEdgeMap : public ReadWriteMap<UEdge,T>
deba@1911
   811
      {
deba@1911
   812
      public:
deba@1911
   813
deba@1911
   814
        ///\e
deba@1911
   815
        UEdgeMap(const BpUGraph&) { }
deba@1911
   816
        ///\e
deba@1911
   817
        UEdgeMap(const BpUGraph&, T) { }
deba@1911
   818
        ///Copy constructor
deba@1911
   819
        UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
deba@1911
   820
        ///Assignment operator
deba@1911
   821
        UEdgeMap &operator=(const UEdgeMap&) { return *this; }
deba@1911
   822
        // \todo fix this concept    
deba@1911
   823
      };
deba@1911
   824
deba@1911
   825
      /// \brief Direct the given undirected edge.
deba@1911
   826
      ///
deba@1911
   827
      /// Direct the given undirected edge. The returned edge source
deba@1911
   828
      /// will be the given edge.
deba@1911
   829
      Edge direct(const UEdge&, const Node&) const {
deba@1911
   830
	return INVALID;
deba@1911
   831
      }
deba@1911
   832
deba@1911
   833
      /// \brief Direct the given undirected edge.
deba@1911
   834
      ///
deba@1911
   835
      /// Direct the given undirected edge. The returned edge source
deba@1911
   836
      /// will be the source of the undirected edge if the given bool
deba@1911
   837
      /// is true.
deba@1911
   838
      Edge direct(const UEdge&, bool) const {
deba@1911
   839
	return INVALID;
deba@1911
   840
      }
deba@1911
   841
deba@1911
   842
      /// \brief Returns true when the given node is an ANode.
deba@1911
   843
      ///
deba@1911
   844
      /// Returns true when the given node is an ANode.
deba@1911
   845
      bool aNode(Node) const { return true;}
deba@1911
   846
deba@1911
   847
      /// \brief Returns true when the given node is an BNode.
deba@1911
   848
      ///
deba@1911
   849
      /// Returns true when the given node is an BNode.
deba@1911
   850
      bool bNode(Node) const { return true;}
deba@1911
   851
deba@1911
   852
      /// \brief Returns the edge's end node which is in the ANode set.
deba@1911
   853
      ///
deba@1911
   854
      /// Returns the edge's end node which is in the ANode set.
deba@1911
   855
      Node aNode(UEdge) const { return INVALID;}
deba@1911
   856
deba@1911
   857
      /// \brief Returns the edge's end node which is in the BNode set.
deba@1911
   858
      ///
deba@1911
   859
      /// Returns the edge's end node which is in the BNode set.
deba@1911
   860
      Node bNode(UEdge) const { return INVALID;}
deba@1911
   861
deba@1911
   862
      /// \brief Returns true if the edge has default orientation.
deba@1911
   863
      ///
deba@1911
   864
      /// Returns whether the given directed edge is same orientation as
deba@1911
   865
      /// the corresponding undirected edge.
deba@1911
   866
      bool direction(Edge) const { return true; }
deba@1911
   867
deba@1911
   868
      /// \brief Returns the opposite directed edge.
deba@1911
   869
      ///
deba@1911
   870
      /// Returns the opposite directed edge.
deba@1911
   871
      Edge oppositeEdge(Edge) const { return INVALID; }
deba@1911
   872
deba@1911
   873
      /// \brief Opposite node on an edge
deba@1911
   874
      ///
deba@1911
   875
      /// \return the opposite of the given Node on the given Edge
deba@1911
   876
      Node oppositeNode(Node, UEdge) const { return INVALID; }
deba@1911
   877
deba@1911
   878
      /// \brief First node of the undirected edge.
deba@1911
   879
      ///
deba@1911
   880
      /// \return the first node of the given UEdge.
deba@1911
   881
      ///
deba@1911
   882
      /// Naturally uectected edges don't have direction and thus
deba@1911
   883
      /// don't have source and target node. But we use these two methods
deba@1911
   884
      /// to query the two endnodes of the edge. The direction of the edge
deba@1911
   885
      /// which arises this way is called the inherent direction of the
deba@1911
   886
      /// undirected edge, and is used to define the "default" direction
deba@1911
   887
      /// of the directed versions of the edges.
deba@1911
   888
      /// \sa direction
deba@1911
   889
      Node source(UEdge) const { return INVALID; }
deba@1911
   890
deba@1911
   891
      /// \brief Second node of the undirected edge.
deba@1911
   892
      Node target(UEdge) const { return INVALID; }
deba@1911
   893
deba@1911
   894
      /// \brief Source node of the directed edge.
deba@1911
   895
      Node source(Edge) const { return INVALID; }
deba@1911
   896
deba@1911
   897
      /// \brief Target node of the directed edge.
deba@1911
   898
      Node target(Edge) const { return INVALID; }
deba@1911
   899
deba@1911
   900
      /// \brief Base node of the iterator
deba@1911
   901
      ///
deba@1911
   902
      /// Returns the base node (the source in this case) of the iterator
deba@1911
   903
      Node baseNode(OutEdgeIt e) const {
deba@1911
   904
	return source(e);
deba@1911
   905
      }
deba@1911
   906
deba@1911
   907
      /// \brief Running node of the iterator
deba@1911
   908
      ///
deba@1911
   909
      /// Returns the running node (the target in this case) of the
deba@1911
   910
      /// iterator
deba@1911
   911
      Node runningNode(OutEdgeIt e) const {
deba@1911
   912
	return target(e);
deba@1911
   913
      }
deba@1911
   914
deba@1911
   915
      /// \brief Base node of the iterator
deba@1911
   916
      ///
deba@1911
   917
      /// Returns the base node (the target in this case) of the iterator
deba@1911
   918
      Node baseNode(InEdgeIt e) const {
deba@1911
   919
	return target(e);
deba@1911
   920
      }
deba@1911
   921
      /// \brief Running node of the iterator
deba@1911
   922
      ///
deba@1911
   923
      /// Returns the running node (the source in this case) of the
deba@1911
   924
      /// iterator
deba@1911
   925
      Node runningNode(InEdgeIt e) const {
deba@1911
   926
	return source(e);
deba@1911
   927
      }
deba@1911
   928
deba@1911
   929
      /// \brief Base node of the iterator
deba@1911
   930
      ///
deba@1911
   931
      /// Returns the base node of the iterator
deba@1911
   932
      Node baseNode(IncEdgeIt) const {
deba@1911
   933
	return INVALID;
deba@1911
   934
      }
deba@1911
   935
      
deba@1911
   936
      /// \brief Running node of the iterator
deba@1911
   937
      ///
deba@1911
   938
      /// Returns the running node of the iterator
deba@1911
   939
      Node runningNode(IncEdgeIt) const {
deba@1911
   940
	return INVALID;
deba@1911
   941
      }
deba@1911
   942
deba@1911
   943
      template <typename Graph>
deba@1911
   944
      struct Constraints {
deba@1911
   945
	void constraints() {
deba@1911
   946
	}
deba@1911
   947
      };
deba@1911
   948
deba@1911
   949
    };
deba@1911
   950
deba@1911
   951
    /// \brief An empty non-static undirected graph class.
deba@1911
   952
    ///    
deba@1911
   953
    /// This class provides everything that \ref BpUGraph does.
deba@1911
   954
    /// Additionally it enables building graphs from scratch.
deba@1911
   955
    class ExtendableBpUGraph : public BpUGraph {
deba@1911
   956
    public:
deba@1911
   957
      
deba@1911
   958
      /// \brief Add a new ANode to the graph.
deba@1911
   959
      ///
deba@1911
   960
      /// Add a new ANode to the graph.
deba@1911
   961
      /// \return the new node.
deba@1911
   962
      Node addANode();
deba@1911
   963
deba@1911
   964
      /// \brief Add a new ANode to the graph.
deba@1911
   965
      ///
deba@1911
   966
      /// Add a new ANode to the graph.
deba@1911
   967
      /// \return the new node.
deba@1911
   968
      Node addBNode();
deba@1911
   969
deba@1911
   970
      /// \brief Add a new undirected edge to the graph.
deba@1911
   971
      ///
deba@1911
   972
      /// Add a new undirected edge to the graph. One of the nodes
deba@1911
   973
      /// should be ANode and the other should be BNode.
deba@1911
   974
      /// \pre The nodes are not in the same nodeset.
deba@1911
   975
      /// \return the new edge.
deba@1911
   976
      UEdge addEdge(const Node& from, const Node& to);
deba@1911
   977
deba@1911
   978
      /// \brief Resets the graph.
deba@1911
   979
      ///
deba@1911
   980
      /// This function deletes all undirected edges and nodes of the graph.
deba@1911
   981
      /// It also frees the memory allocated to store them.
deba@1911
   982
      void clear() { }
deba@1911
   983
deba@1911
   984
      template <typename Graph>
deba@1911
   985
      struct Constraints {
deba@1911
   986
	void constraints() {}
deba@1911
   987
      };
deba@1911
   988
deba@1911
   989
    };
deba@1911
   990
deba@1911
   991
    /// \brief An empty erasable undirected graph class.
deba@1911
   992
    ///
deba@1911
   993
    /// This class is an extension of \ref ExtendableBpUGraph. It makes it
deba@1911
   994
    /// possible to erase undirected edges or nodes.
deba@1911
   995
    class ErasableBpUGraph : public ExtendableBpUGraph {
deba@1911
   996
    public:
deba@1911
   997
deba@1911
   998
      /// \brief Deletes a node.
deba@1911
   999
      ///
deba@1911
  1000
      /// Deletes a node.
deba@1911
  1001
      ///
deba@1911
  1002
      void erase(Node) { }
deba@1911
  1003
      /// \brief Deletes an undirected edge.
deba@1911
  1004
      ///
deba@1911
  1005
      /// Deletes an undirected edge.
deba@1911
  1006
      ///
deba@1911
  1007
      void erase(UEdge) { }
deba@1911
  1008
deba@1911
  1009
      template <typename Graph>
deba@1911
  1010
      struct Constraints {
deba@1911
  1011
	void constraints() {}
deba@1911
  1012
      };
deba@1911
  1013
deba@1911
  1014
    };
deba@1911
  1015
deba@1911
  1016
    /// @}
deba@1911
  1017
deba@1911
  1018
  }
deba@1911
  1019
deba@1911
  1020
}
deba@1911
  1021
deba@1911
  1022
#endif