deba@1699
|
1 |
/* -*- C++ -*-
|
deba@1699
|
2 |
*
|
alpar@1956
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
alpar@1956
|
4 |
*
|
alpar@2391
|
5 |
* Copyright (C) 2003-2007
|
alpar@1956
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
deba@1699
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
deba@1699
|
8 |
*
|
deba@1699
|
9 |
* Permission to use, modify and distribute this software is granted
|
deba@1699
|
10 |
* provided that this copyright notice appears in all copies. For
|
deba@1699
|
11 |
* precise terms see the accompanying LICENSE file.
|
deba@1699
|
12 |
*
|
deba@1699
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
deba@1699
|
14 |
* express or implied, and with no claim as to its suitability for any
|
deba@1699
|
15 |
* purpose.
|
deba@1699
|
16 |
*
|
deba@1699
|
17 |
*/
|
deba@1699
|
18 |
|
deba@1699
|
19 |
#ifndef LEMON_BELMANN_FORD_H
|
deba@1699
|
20 |
#define LEMON_BELMANN_FORD_H
|
deba@1699
|
21 |
|
deba@2376
|
22 |
/// \ingroup shortest_path
|
deba@1699
|
23 |
/// \file
|
deba@1864
|
24 |
/// \brief BellmanFord algorithm.
|
deba@1699
|
25 |
///
|
deba@1699
|
26 |
|
deba@1699
|
27 |
#include <lemon/list_graph.h>
|
deba@2335
|
28 |
#include <lemon/bits/path_dump.h>
|
deba@1993
|
29 |
#include <lemon/bits/invalid.h>
|
deba@2394
|
30 |
#include <lemon/graph_utils.h>
|
deba@1699
|
31 |
#include <lemon/error.h>
|
deba@1699
|
32 |
#include <lemon/maps.h>
|
deba@1699
|
33 |
|
deba@1699
|
34 |
#include <limits>
|
deba@1699
|
35 |
|
deba@1699
|
36 |
namespace lemon {
|
deba@1699
|
37 |
|
deba@1864
|
38 |
/// \brief Default OperationTraits for the BellmanFord algorithm class.
|
deba@1699
|
39 |
///
|
deba@1699
|
40 |
/// It defines all computational operations and constants which are
|
deba@1864
|
41 |
/// used in the bellman ford algorithm. The default implementation
|
deba@1699
|
42 |
/// is based on the numeric_limits class. If the numeric type does not
|
deba@1699
|
43 |
/// have infinity value then the maximum value is used as extremal
|
deba@1699
|
44 |
/// infinity value.
|
deba@1699
|
45 |
template <
|
deba@1699
|
46 |
typename Value,
|
deba@1699
|
47 |
bool has_infinity = std::numeric_limits<Value>::has_infinity>
|
deba@1864
|
48 |
struct BellmanFordDefaultOperationTraits {
|
deba@1699
|
49 |
/// \brief Gives back the zero value of the type.
|
deba@1699
|
50 |
static Value zero() {
|
deba@1699
|
51 |
return static_cast<Value>(0);
|
deba@1699
|
52 |
}
|
deba@1699
|
53 |
/// \brief Gives back the positive infinity value of the type.
|
deba@1699
|
54 |
static Value infinity() {
|
deba@1699
|
55 |
return std::numeric_limits<Value>::infinity();
|
deba@1699
|
56 |
}
|
deba@1699
|
57 |
/// \brief Gives back the sum of the given two elements.
|
deba@1699
|
58 |
static Value plus(const Value& left, const Value& right) {
|
deba@1699
|
59 |
return left + right;
|
deba@1699
|
60 |
}
|
deba@1699
|
61 |
/// \brief Gives back true only if the first value less than the second.
|
deba@1699
|
62 |
static bool less(const Value& left, const Value& right) {
|
deba@1699
|
63 |
return left < right;
|
deba@1699
|
64 |
}
|
deba@1699
|
65 |
};
|
deba@1699
|
66 |
|
deba@1699
|
67 |
template <typename Value>
|
deba@1864
|
68 |
struct BellmanFordDefaultOperationTraits<Value, false> {
|
deba@1699
|
69 |
static Value zero() {
|
deba@1699
|
70 |
return static_cast<Value>(0);
|
deba@1699
|
71 |
}
|
deba@1699
|
72 |
static Value infinity() {
|
deba@1699
|
73 |
return std::numeric_limits<Value>::max();
|
deba@1699
|
74 |
}
|
deba@1699
|
75 |
static Value plus(const Value& left, const Value& right) {
|
deba@1699
|
76 |
if (left == infinity() || right == infinity()) return infinity();
|
deba@1699
|
77 |
return left + right;
|
deba@1699
|
78 |
}
|
deba@1699
|
79 |
static bool less(const Value& left, const Value& right) {
|
deba@1699
|
80 |
return left < right;
|
deba@1699
|
81 |
}
|
deba@1699
|
82 |
};
|
deba@1699
|
83 |
|
deba@1864
|
84 |
/// \brief Default traits class of BellmanFord class.
|
deba@1699
|
85 |
///
|
deba@1864
|
86 |
/// Default traits class of BellmanFord class.
|
deba@1699
|
87 |
/// \param _Graph Graph type.
|
deba@1699
|
88 |
/// \param _LegthMap Type of length map.
|
deba@1699
|
89 |
template<class _Graph, class _LengthMap>
|
deba@1864
|
90 |
struct BellmanFordDefaultTraits {
|
deba@1699
|
91 |
/// The graph type the algorithm runs on.
|
deba@1699
|
92 |
typedef _Graph Graph;
|
deba@1699
|
93 |
|
deba@1699
|
94 |
/// \brief The type of the map that stores the edge lengths.
|
deba@1699
|
95 |
///
|
deba@1699
|
96 |
/// The type of the map that stores the edge lengths.
|
alpar@2260
|
97 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept.
|
deba@1699
|
98 |
typedef _LengthMap LengthMap;
|
deba@1699
|
99 |
|
deba@1699
|
100 |
// The type of the length of the edges.
|
deba@1699
|
101 |
typedef typename _LengthMap::Value Value;
|
deba@1699
|
102 |
|
deba@1864
|
103 |
/// \brief Operation traits for bellman-ford algorithm.
|
deba@1699
|
104 |
///
|
deba@1699
|
105 |
/// It defines the infinity type on the given Value type
|
deba@1699
|
106 |
/// and the used operation.
|
deba@1864
|
107 |
/// \see BellmanFordDefaultOperationTraits
|
deba@1864
|
108 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
|
deba@1699
|
109 |
|
deba@1699
|
110 |
/// \brief The type of the map that stores the last edges of the
|
deba@1699
|
111 |
/// shortest paths.
|
deba@1699
|
112 |
///
|
deba@1699
|
113 |
/// The type of the map that stores the last
|
deba@1699
|
114 |
/// edges of the shortest paths.
|
alpar@2260
|
115 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
deba@1699
|
116 |
///
|
deba@1699
|
117 |
typedef typename Graph::template NodeMap<typename _Graph::Edge> PredMap;
|
deba@1699
|
118 |
|
deba@1699
|
119 |
/// \brief Instantiates a PredMap.
|
deba@1699
|
120 |
///
|
deba@1699
|
121 |
/// This function instantiates a \ref PredMap.
|
deba@1858
|
122 |
/// \param graph is the graph, to which we would like to define the PredMap.
|
deba@1699
|
123 |
static PredMap *createPredMap(const _Graph& graph) {
|
deba@1699
|
124 |
return new PredMap(graph);
|
deba@1699
|
125 |
}
|
deba@1699
|
126 |
|
deba@1699
|
127 |
/// \brief The type of the map that stores the dists of the nodes.
|
deba@1699
|
128 |
///
|
deba@1699
|
129 |
/// The type of the map that stores the dists of the nodes.
|
alpar@2260
|
130 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
deba@1699
|
131 |
///
|
deba@1699
|
132 |
typedef typename Graph::template NodeMap<typename _LengthMap::Value>
|
deba@1699
|
133 |
DistMap;
|
deba@1699
|
134 |
|
deba@1699
|
135 |
/// \brief Instantiates a DistMap.
|
deba@1699
|
136 |
///
|
deba@1699
|
137 |
/// This function instantiates a \ref DistMap.
|
deba@1858
|
138 |
/// \param graph is the graph, to which we would like to define the
|
deba@1699
|
139 |
/// \ref DistMap
|
deba@1699
|
140 |
static DistMap *createDistMap(const _Graph& graph) {
|
deba@1699
|
141 |
return new DistMap(graph);
|
deba@1699
|
142 |
}
|
deba@1699
|
143 |
|
deba@1699
|
144 |
};
|
deba@1699
|
145 |
|
deba@1864
|
146 |
/// \brief %BellmanFord algorithm class.
|
deba@1699
|
147 |
///
|
deba@2376
|
148 |
/// \ingroup shortest_path
|
deba@1864
|
149 |
/// This class provides an efficient implementation of \c Bellman-Ford
|
deba@1699
|
150 |
/// algorithm. The edge lengths are passed to the algorithm using a
|
alpar@2260
|
151 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any
|
deba@1699
|
152 |
/// kind of length.
|
deba@1699
|
153 |
///
|
deba@1864
|
154 |
/// The Bellman-Ford algorithm solves the shortest path from one node
|
deba@1723
|
155 |
/// problem when the edges can have negative length but the graph should
|
deba@1754
|
156 |
/// not contain cycles with negative sum of length. If we can assume
|
deba@1723
|
157 |
/// that all edge is non-negative in the graph then the dijkstra algorithm
|
deba@1723
|
158 |
/// should be used rather.
|
deba@1723
|
159 |
///
|
deba@2042
|
160 |
/// The maximal time complexity of the algorithm is \f$ O(ne) \f$.
|
deba@1723
|
161 |
///
|
deba@1699
|
162 |
/// The type of the length is determined by the
|
alpar@2260
|
163 |
/// \ref concepts::ReadMap::Value "Value" of the length map.
|
deba@1699
|
164 |
///
|
deba@1699
|
165 |
/// \param _Graph The graph type the algorithm runs on. The default value
|
deba@1699
|
166 |
/// is \ref ListGraph. The value of _Graph is not used directly by
|
deba@1864
|
167 |
/// BellmanFord, it is only passed to \ref BellmanFordDefaultTraits.
|
deba@1699
|
168 |
/// \param _LengthMap This read-only EdgeMap determines the lengths of the
|
alpar@2260
|
169 |
/// edges. The default map type is \ref concepts::Graph::EdgeMap
|
deba@1699
|
170 |
/// "Graph::EdgeMap<int>". The value of _LengthMap is not used directly
|
deba@1864
|
171 |
/// by BellmanFord, it is only passed to \ref BellmanFordDefaultTraits.
|
deba@1699
|
172 |
/// \param _Traits Traits class to set various data types used by the
|
deba@1864
|
173 |
/// algorithm. The default traits class is \ref BellmanFordDefaultTraits
|
deba@1864
|
174 |
/// "BellmanFordDefaultTraits<_Graph,_LengthMap>". See \ref
|
deba@1864
|
175 |
/// BellmanFordDefaultTraits for the documentation of a BellmanFord traits
|
deba@1699
|
176 |
/// class.
|
deba@1699
|
177 |
///
|
deba@1699
|
178 |
/// \author Balazs Dezso
|
deba@1699
|
179 |
|
deba@1710
|
180 |
#ifdef DOXYGEN
|
deba@1710
|
181 |
template <typename _Graph, typename _LengthMap, typename _Traits>
|
deba@1710
|
182 |
#else
|
deba@1699
|
183 |
template <typename _Graph=ListGraph,
|
deba@1699
|
184 |
typename _LengthMap=typename _Graph::template EdgeMap<int>,
|
deba@1864
|
185 |
typename _Traits=BellmanFordDefaultTraits<_Graph,_LengthMap> >
|
deba@1710
|
186 |
#endif
|
deba@1864
|
187 |
class BellmanFord {
|
deba@1699
|
188 |
public:
|
deba@1699
|
189 |
|
deba@1699
|
190 |
/// \brief \ref Exception for uninitialized parameters.
|
deba@1699
|
191 |
///
|
deba@1699
|
192 |
/// This error represents problems in the initialization
|
deba@1699
|
193 |
/// of the parameters of the algorithms.
|
deba@1699
|
194 |
|
deba@1699
|
195 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
deba@1699
|
196 |
public:
|
alpar@2151
|
197 |
virtual const char* what() const throw() {
|
deba@1864
|
198 |
return "lemon::BellmanFord::UninitializedParameter";
|
deba@1699
|
199 |
}
|
deba@1699
|
200 |
};
|
deba@1699
|
201 |
|
deba@1699
|
202 |
typedef _Traits Traits;
|
deba@1699
|
203 |
///The type of the underlying graph.
|
deba@1699
|
204 |
typedef typename _Traits::Graph Graph;
|
deba@1699
|
205 |
|
deba@1699
|
206 |
typedef typename Graph::Node Node;
|
deba@1699
|
207 |
typedef typename Graph::NodeIt NodeIt;
|
deba@1699
|
208 |
typedef typename Graph::Edge Edge;
|
deba@1781
|
209 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
deba@1699
|
210 |
|
deba@1699
|
211 |
/// \brief The type of the length of the edges.
|
deba@1699
|
212 |
typedef typename _Traits::LengthMap::Value Value;
|
deba@1699
|
213 |
/// \brief The type of the map that stores the edge lengths.
|
deba@1699
|
214 |
typedef typename _Traits::LengthMap LengthMap;
|
deba@1699
|
215 |
/// \brief The type of the map that stores the last
|
deba@1699
|
216 |
/// edges of the shortest paths.
|
deba@1699
|
217 |
typedef typename _Traits::PredMap PredMap;
|
deba@1699
|
218 |
/// \brief The type of the map that stores the dists of the nodes.
|
deba@1699
|
219 |
typedef typename _Traits::DistMap DistMap;
|
deba@1699
|
220 |
/// \brief The operation traits.
|
deba@1699
|
221 |
typedef typename _Traits::OperationTraits OperationTraits;
|
deba@1699
|
222 |
private:
|
deba@1699
|
223 |
/// Pointer to the underlying graph.
|
deba@1699
|
224 |
const Graph *graph;
|
deba@1699
|
225 |
/// Pointer to the length map
|
deba@1699
|
226 |
const LengthMap *length;
|
deba@1699
|
227 |
///Pointer to the map of predecessors edges.
|
deba@1699
|
228 |
PredMap *_pred;
|
deba@1699
|
229 |
///Indicates if \ref _pred is locally allocated (\c true) or not.
|
deba@1699
|
230 |
bool local_pred;
|
deba@1699
|
231 |
///Pointer to the map of distances.
|
deba@1699
|
232 |
DistMap *_dist;
|
deba@1699
|
233 |
///Indicates if \ref _dist is locally allocated (\c true) or not.
|
deba@1699
|
234 |
bool local_dist;
|
deba@1699
|
235 |
|
deba@1781
|
236 |
typedef typename Graph::template NodeMap<bool> MaskMap;
|
deba@1781
|
237 |
MaskMap *_mask;
|
deba@1781
|
238 |
|
deba@1781
|
239 |
std::vector<Node> _process;
|
deba@1781
|
240 |
|
deba@1699
|
241 |
/// Creates the maps if necessary.
|
deba@1699
|
242 |
void create_maps() {
|
deba@1699
|
243 |
if(!_pred) {
|
deba@1699
|
244 |
local_pred = true;
|
deba@1699
|
245 |
_pred = Traits::createPredMap(*graph);
|
deba@1699
|
246 |
}
|
deba@1699
|
247 |
if(!_dist) {
|
deba@1699
|
248 |
local_dist = true;
|
deba@1699
|
249 |
_dist = Traits::createDistMap(*graph);
|
deba@1699
|
250 |
}
|
deba@1781
|
251 |
_mask = new MaskMap(*graph, false);
|
deba@1699
|
252 |
}
|
deba@1699
|
253 |
|
deba@1699
|
254 |
public :
|
deba@1699
|
255 |
|
deba@1864
|
256 |
typedef BellmanFord Create;
|
deba@1710
|
257 |
|
deba@1699
|
258 |
/// \name Named template parameters
|
deba@1699
|
259 |
|
deba@1699
|
260 |
///@{
|
deba@1699
|
261 |
|
deba@1699
|
262 |
template <class T>
|
deba@1699
|
263 |
struct DefPredMapTraits : public Traits {
|
deba@1699
|
264 |
typedef T PredMap;
|
deba@1710
|
265 |
static PredMap *createPredMap(const Graph&) {
|
deba@1699
|
266 |
throw UninitializedParameter();
|
deba@1699
|
267 |
}
|
deba@1699
|
268 |
};
|
deba@1699
|
269 |
|
deba@1699
|
270 |
/// \brief \ref named-templ-param "Named parameter" for setting PredMap
|
deba@1699
|
271 |
/// type
|
deba@1699
|
272 |
/// \ref named-templ-param "Named parameter" for setting PredMap type
|
deba@1699
|
273 |
///
|
deba@1699
|
274 |
template <class T>
|
deba@1858
|
275 |
struct DefPredMap
|
deba@1864
|
276 |
: public BellmanFord< Graph, LengthMap, DefPredMapTraits<T> > {
|
deba@1864
|
277 |
typedef BellmanFord< Graph, LengthMap, DefPredMapTraits<T> > Create;
|
deba@1710
|
278 |
};
|
deba@1699
|
279 |
|
deba@1699
|
280 |
template <class T>
|
deba@1699
|
281 |
struct DefDistMapTraits : public Traits {
|
deba@1699
|
282 |
typedef T DistMap;
|
klao@2010
|
283 |
static DistMap *createDistMap(const Graph&) {
|
deba@1699
|
284 |
throw UninitializedParameter();
|
deba@1699
|
285 |
}
|
deba@1699
|
286 |
};
|
deba@1699
|
287 |
|
deba@1699
|
288 |
/// \brief \ref named-templ-param "Named parameter" for setting DistMap
|
deba@1699
|
289 |
/// type
|
deba@1699
|
290 |
///
|
deba@1699
|
291 |
/// \ref named-templ-param "Named parameter" for setting DistMap type
|
deba@1699
|
292 |
///
|
deba@1699
|
293 |
template <class T>
|
deba@1710
|
294 |
struct DefDistMap
|
deba@1864
|
295 |
: public BellmanFord< Graph, LengthMap, DefDistMapTraits<T> > {
|
deba@1864
|
296 |
typedef BellmanFord< Graph, LengthMap, DefDistMapTraits<T> > Create;
|
deba@1710
|
297 |
};
|
deba@1699
|
298 |
|
deba@1699
|
299 |
template <class T>
|
deba@1699
|
300 |
struct DefOperationTraitsTraits : public Traits {
|
deba@1699
|
301 |
typedef T OperationTraits;
|
deba@1699
|
302 |
};
|
deba@1699
|
303 |
|
deba@1699
|
304 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
deba@1699
|
305 |
/// OperationTraits type
|
deba@1699
|
306 |
///
|
deba@1710
|
307 |
/// \ref named-templ-param "Named parameter" for setting OperationTraits
|
deba@1710
|
308 |
/// type
|
deba@1699
|
309 |
template <class T>
|
deba@1710
|
310 |
struct DefOperationTraits
|
deba@1864
|
311 |
: public BellmanFord< Graph, LengthMap, DefOperationTraitsTraits<T> > {
|
deba@1864
|
312 |
typedef BellmanFord< Graph, LengthMap, DefOperationTraitsTraits<T> >
|
deba@1710
|
313 |
Create;
|
deba@1699
|
314 |
};
|
deba@1699
|
315 |
|
deba@1699
|
316 |
///@}
|
deba@1699
|
317 |
|
deba@1710
|
318 |
protected:
|
deba@1710
|
319 |
|
deba@1864
|
320 |
BellmanFord() {}
|
deba@1710
|
321 |
|
deba@1699
|
322 |
public:
|
deba@1699
|
323 |
|
deba@1699
|
324 |
/// \brief Constructor.
|
deba@1699
|
325 |
///
|
deba@1699
|
326 |
/// \param _graph the graph the algorithm will run on.
|
deba@1699
|
327 |
/// \param _length the length map used by the algorithm.
|
deba@1864
|
328 |
BellmanFord(const Graph& _graph, const LengthMap& _length) :
|
deba@1699
|
329 |
graph(&_graph), length(&_length),
|
deba@1699
|
330 |
_pred(0), local_pred(false),
|
deba@2074
|
331 |
_dist(0), local_dist(false), _mask(0) {}
|
deba@1699
|
332 |
|
deba@1699
|
333 |
///Destructor.
|
deba@1864
|
334 |
~BellmanFord() {
|
deba@1699
|
335 |
if(local_pred) delete _pred;
|
deba@1699
|
336 |
if(local_dist) delete _dist;
|
deba@2074
|
337 |
if(_mask) delete _mask;
|
deba@1699
|
338 |
}
|
deba@1699
|
339 |
|
deba@1699
|
340 |
/// \brief Sets the length map.
|
deba@1699
|
341 |
///
|
deba@1699
|
342 |
/// Sets the length map.
|
deba@1699
|
343 |
/// \return \c (*this)
|
deba@1864
|
344 |
BellmanFord &lengthMap(const LengthMap &m) {
|
deba@1699
|
345 |
length = &m;
|
deba@1699
|
346 |
return *this;
|
deba@1699
|
347 |
}
|
deba@1699
|
348 |
|
deba@1699
|
349 |
/// \brief Sets the map storing the predecessor edges.
|
deba@1699
|
350 |
///
|
deba@1699
|
351 |
/// Sets the map storing the predecessor edges.
|
deba@1699
|
352 |
/// If you don't use this function before calling \ref run(),
|
deba@1699
|
353 |
/// it will allocate one. The destuctor deallocates this
|
deba@1699
|
354 |
/// automatically allocated map, of course.
|
deba@1699
|
355 |
/// \return \c (*this)
|
deba@1864
|
356 |
BellmanFord &predMap(PredMap &m) {
|
deba@1699
|
357 |
if(local_pred) {
|
deba@1699
|
358 |
delete _pred;
|
deba@1699
|
359 |
local_pred=false;
|
deba@1699
|
360 |
}
|
deba@1699
|
361 |
_pred = &m;
|
deba@1699
|
362 |
return *this;
|
deba@1699
|
363 |
}
|
deba@1699
|
364 |
|
deba@1699
|
365 |
/// \brief Sets the map storing the distances calculated by the algorithm.
|
deba@1699
|
366 |
///
|
deba@1699
|
367 |
/// Sets the map storing the distances calculated by the algorithm.
|
deba@1699
|
368 |
/// If you don't use this function before calling \ref run(),
|
deba@1699
|
369 |
/// it will allocate one. The destuctor deallocates this
|
deba@1699
|
370 |
/// automatically allocated map, of course.
|
deba@1699
|
371 |
/// \return \c (*this)
|
deba@1864
|
372 |
BellmanFord &distMap(DistMap &m) {
|
deba@1699
|
373 |
if(local_dist) {
|
deba@1699
|
374 |
delete _dist;
|
deba@1699
|
375 |
local_dist=false;
|
deba@1699
|
376 |
}
|
deba@1699
|
377 |
_dist = &m;
|
deba@1699
|
378 |
return *this;
|
deba@1699
|
379 |
}
|
deba@1699
|
380 |
|
deba@1699
|
381 |
/// \name Execution control
|
deba@1699
|
382 |
/// The simplest way to execute the algorithm is to use
|
deba@1699
|
383 |
/// one of the member functions called \c run(...).
|
deba@1699
|
384 |
/// \n
|
deba@1699
|
385 |
/// If you need more control on the execution,
|
deba@1699
|
386 |
/// first you must call \ref init(), then you can add several source nodes
|
deba@1699
|
387 |
/// with \ref addSource().
|
deba@1699
|
388 |
/// Finally \ref start() will perform the actual path
|
deba@1699
|
389 |
/// computation.
|
deba@1699
|
390 |
|
deba@1699
|
391 |
///@{
|
deba@1699
|
392 |
|
deba@1699
|
393 |
/// \brief Initializes the internal data structures.
|
deba@1699
|
394 |
///
|
deba@1699
|
395 |
/// Initializes the internal data structures.
|
deba@1710
|
396 |
void init(const Value value = OperationTraits::infinity()) {
|
deba@1699
|
397 |
create_maps();
|
deba@1699
|
398 |
for (NodeIt it(*graph); it != INVALID; ++it) {
|
deba@1699
|
399 |
_pred->set(it, INVALID);
|
deba@1710
|
400 |
_dist->set(it, value);
|
deba@1699
|
401 |
}
|
deba@1781
|
402 |
_process.clear();
|
deba@1781
|
403 |
if (OperationTraits::less(value, OperationTraits::infinity())) {
|
deba@1781
|
404 |
for (NodeIt it(*graph); it != INVALID; ++it) {
|
deba@1781
|
405 |
_process.push_back(it);
|
deba@1783
|
406 |
_mask->set(it, true);
|
deba@1781
|
407 |
}
|
deba@1781
|
408 |
}
|
deba@1699
|
409 |
}
|
deba@1699
|
410 |
|
deba@1699
|
411 |
/// \brief Adds a new source node.
|
deba@1699
|
412 |
///
|
deba@1699
|
413 |
/// The optional second parameter is the initial distance of the node.
|
deba@1699
|
414 |
/// It just sets the distance of the node to the given value.
|
deba@1699
|
415 |
void addSource(Node source, Value dst = OperationTraits::zero()) {
|
deba@1699
|
416 |
_dist->set(source, dst);
|
deba@1781
|
417 |
if (!(*_mask)[source]) {
|
deba@1781
|
418 |
_process.push_back(source);
|
deba@1781
|
419 |
_mask->set(source, true);
|
deba@1781
|
420 |
}
|
deba@1781
|
421 |
}
|
deba@1781
|
422 |
|
deba@1864
|
423 |
/// \brief Executes one round from the bellman ford algorithm.
|
deba@1781
|
424 |
///
|
deba@2059
|
425 |
/// If the algoritm calculated the distances in the previous round
|
deba@2059
|
426 |
/// exactly for all at most \f$ k \f$ length path lengths then it will
|
deba@2059
|
427 |
/// calculate the distances exactly for all at most \f$ k + 1 \f$
|
deba@2059
|
428 |
/// length path lengths. With \f$ k \f$ iteration this function
|
deba@2059
|
429 |
/// calculates the at most \f$ k \f$ length path lengths.
|
deba@2059
|
430 |
///
|
deba@2059
|
431 |
/// \warning The paths with limited edge number cannot be retrieved
|
deba@2335
|
432 |
/// easily with \ref path() or \ref predEdge() functions. If you
|
deba@2059
|
433 |
/// need the shortest path and not just the distance you should store
|
deba@2059
|
434 |
/// after each iteration the \ref predEdgeMap() map and manually build
|
deba@2059
|
435 |
/// the path.
|
deba@2059
|
436 |
///
|
deba@2059
|
437 |
/// \return %True when the algorithm have not found more shorter
|
deba@2059
|
438 |
/// paths.
|
deba@1781
|
439 |
bool processNextRound() {
|
deba@2386
|
440 |
for (int i = 0; i < int(_process.size()); ++i) {
|
deba@1781
|
441 |
_mask->set(_process[i], false);
|
deba@1781
|
442 |
}
|
deba@1781
|
443 |
std::vector<Node> nextProcess;
|
deba@1781
|
444 |
std::vector<Value> values(_process.size());
|
deba@2386
|
445 |
for (int i = 0; i < int(_process.size()); ++i) {
|
klao@1857
|
446 |
values[i] = (*_dist)[_process[i]];
|
deba@1781
|
447 |
}
|
deba@2386
|
448 |
for (int i = 0; i < int(_process.size()); ++i) {
|
deba@1781
|
449 |
for (OutEdgeIt it(*graph, _process[i]); it != INVALID; ++it) {
|
deba@1781
|
450 |
Node target = graph->target(it);
|
deba@1781
|
451 |
Value relaxed = OperationTraits::plus(values[i], (*length)[it]);
|
deba@1781
|
452 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
deba@1781
|
453 |
_pred->set(target, it);
|
deba@1781
|
454 |
_dist->set(target, relaxed);
|
deba@1781
|
455 |
if (!(*_mask)[target]) {
|
deba@1781
|
456 |
_mask->set(target, true);
|
deba@1781
|
457 |
nextProcess.push_back(target);
|
deba@1781
|
458 |
}
|
deba@1781
|
459 |
}
|
deba@1781
|
460 |
}
|
deba@1781
|
461 |
}
|
deba@1781
|
462 |
_process.swap(nextProcess);
|
deba@1781
|
463 |
return _process.empty();
|
deba@1781
|
464 |
}
|
deba@1781
|
465 |
|
deba@1864
|
466 |
/// \brief Executes one weak round from the bellman ford algorithm.
|
deba@1781
|
467 |
///
|
deba@1781
|
468 |
/// If the algorithm calculated the distances in the
|
alpar@1816
|
469 |
/// previous round at least for all at most k length paths then it will
|
alpar@1816
|
470 |
/// calculate the distances at least for all at most k + 1 length paths.
|
alpar@1816
|
471 |
/// This function does not make it possible to calculate strictly the
|
alpar@1816
|
472 |
/// at most k length minimal paths, this is why it is
|
alpar@1816
|
473 |
/// called just weak round.
|
deba@1858
|
474 |
/// \return %True when the algorithm have not found more shorter paths.
|
deba@1781
|
475 |
bool processNextWeakRound() {
|
deba@2386
|
476 |
for (int i = 0; i < int(_process.size()); ++i) {
|
deba@1781
|
477 |
_mask->set(_process[i], false);
|
deba@1781
|
478 |
}
|
deba@1781
|
479 |
std::vector<Node> nextProcess;
|
deba@2386
|
480 |
for (int i = 0; i < int(_process.size()); ++i) {
|
deba@1781
|
481 |
for (OutEdgeIt it(*graph, _process[i]); it != INVALID; ++it) {
|
deba@1781
|
482 |
Node target = graph->target(it);
|
deba@1781
|
483 |
Value relaxed =
|
deba@1781
|
484 |
OperationTraits::plus((*_dist)[_process[i]], (*length)[it]);
|
deba@1781
|
485 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
deba@1781
|
486 |
_pred->set(target, it);
|
deba@1781
|
487 |
_dist->set(target, relaxed);
|
deba@1781
|
488 |
if (!(*_mask)[target]) {
|
deba@1781
|
489 |
_mask->set(target, true);
|
deba@1781
|
490 |
nextProcess.push_back(target);
|
deba@1781
|
491 |
}
|
deba@1781
|
492 |
}
|
deba@1781
|
493 |
}
|
deba@1781
|
494 |
}
|
deba@1781
|
495 |
_process.swap(nextProcess);
|
deba@1781
|
496 |
return _process.empty();
|
deba@1699
|
497 |
}
|
deba@1699
|
498 |
|
deba@1699
|
499 |
/// \brief Executes the algorithm.
|
deba@1699
|
500 |
///
|
deba@1699
|
501 |
/// \pre init() must be called and at least one node should be added
|
deba@1699
|
502 |
/// with addSource() before using this function.
|
deba@1699
|
503 |
///
|
deba@1864
|
504 |
/// This method runs the %BellmanFord algorithm from the root node(s)
|
deba@1699
|
505 |
/// in order to compute the shortest path to each node. The algorithm
|
deba@1699
|
506 |
/// computes
|
deba@1699
|
507 |
/// - The shortest path tree.
|
deba@1699
|
508 |
/// - The distance of each node from the root(s).
|
deba@1699
|
509 |
void start() {
|
deba@1723
|
510 |
int num = countNodes(*graph) - 1;
|
deba@1723
|
511 |
for (int i = 0; i < num; ++i) {
|
deba@1781
|
512 |
if (processNextWeakRound()) break;
|
deba@1699
|
513 |
}
|
deba@1699
|
514 |
}
|
deba@1723
|
515 |
|
deba@1754
|
516 |
/// \brief Executes the algorithm and checks the negative cycles.
|
deba@1723
|
517 |
///
|
deba@1723
|
518 |
/// \pre init() must be called and at least one node should be added
|
deba@1723
|
519 |
/// with addSource() before using this function. If there is
|
deba@1754
|
520 |
/// a negative cycles in the graph it gives back false.
|
deba@1723
|
521 |
///
|
deba@1864
|
522 |
/// This method runs the %BellmanFord algorithm from the root node(s)
|
deba@1723
|
523 |
/// in order to compute the shortest path to each node. The algorithm
|
deba@1723
|
524 |
/// computes
|
deba@1723
|
525 |
/// - The shortest path tree.
|
deba@1723
|
526 |
/// - The distance of each node from the root(s).
|
deba@1723
|
527 |
bool checkedStart() {
|
deba@2393
|
528 |
int num = countNodes(*graph);
|
deba@1723
|
529 |
for (int i = 0; i < num; ++i) {
|
deba@1781
|
530 |
if (processNextWeakRound()) return true;
|
deba@1723
|
531 |
}
|
deba@2362
|
532 |
return _process.empty();
|
deba@1723
|
533 |
}
|
deba@1781
|
534 |
|
deba@1781
|
535 |
/// \brief Executes the algorithm with path length limit.
|
deba@1781
|
536 |
///
|
deba@1781
|
537 |
/// \pre init() must be called and at least one node should be added
|
deba@1781
|
538 |
/// with addSource() before using this function.
|
deba@1781
|
539 |
///
|
deba@2059
|
540 |
/// This method runs the %BellmanFord algorithm from the root
|
deba@2059
|
541 |
/// node(s) in order to compute the shortest path lengths with at
|
deba@2059
|
542 |
/// most \c num edge.
|
deba@2059
|
543 |
///
|
deba@2059
|
544 |
/// \warning The paths with limited edge number cannot be retrieved
|
deba@2335
|
545 |
/// easily with \ref path() or \ref predEdge() functions. If you
|
deba@2059
|
546 |
/// need the shortest path and not just the distance you should store
|
deba@2059
|
547 |
/// after each iteration the \ref predEdgeMap() map and manually build
|
deba@2059
|
548 |
/// the path.
|
deba@2059
|
549 |
///
|
deba@2059
|
550 |
/// The algorithm computes
|
deba@2059
|
551 |
/// - The predecessor edge from each node.
|
deba@1781
|
552 |
/// - The limited distance of each node from the root(s).
|
deba@2059
|
553 |
void limitedStart(int num) {
|
deba@2059
|
554 |
for (int i = 0; i < num; ++i) {
|
deba@1781
|
555 |
if (processNextRound()) break;
|
deba@1781
|
556 |
}
|
deba@1781
|
557 |
}
|
deba@1699
|
558 |
|
deba@1864
|
559 |
/// \brief Runs %BellmanFord algorithm from node \c s.
|
deba@1699
|
560 |
///
|
deba@1864
|
561 |
/// This method runs the %BellmanFord algorithm from a root node \c s
|
deba@1699
|
562 |
/// in order to compute the shortest path to each node. The algorithm
|
deba@1699
|
563 |
/// computes
|
deba@1699
|
564 |
/// - The shortest path tree.
|
deba@1699
|
565 |
/// - The distance of each node from the root.
|
deba@1699
|
566 |
///
|
deba@1699
|
567 |
/// \note d.run(s) is just a shortcut of the following code.
|
alpar@1946
|
568 |
///\code
|
deba@1699
|
569 |
/// d.init();
|
deba@1699
|
570 |
/// d.addSource(s);
|
deba@1699
|
571 |
/// d.start();
|
alpar@1946
|
572 |
///\endcode
|
deba@1699
|
573 |
void run(Node s) {
|
deba@1699
|
574 |
init();
|
deba@1699
|
575 |
addSource(s);
|
deba@1699
|
576 |
start();
|
deba@1699
|
577 |
}
|
deba@1699
|
578 |
|
deba@1864
|
579 |
/// \brief Runs %BellmanFord algorithm with limited path length
|
klao@1857
|
580 |
/// from node \c s.
|
klao@1857
|
581 |
///
|
deba@1864
|
582 |
/// This method runs the %BellmanFord algorithm from a root node \c s
|
klao@1857
|
583 |
/// in order to compute the shortest path with at most \c len edges
|
klao@1857
|
584 |
/// to each node. The algorithm computes
|
klao@1857
|
585 |
/// - The shortest path tree.
|
klao@1857
|
586 |
/// - The distance of each node from the root.
|
klao@1857
|
587 |
///
|
deba@2362
|
588 |
/// \note d.run(s, num) is just a shortcut of the following code.
|
alpar@1946
|
589 |
///\code
|
klao@1857
|
590 |
/// d.init();
|
klao@1857
|
591 |
/// d.addSource(s);
|
deba@2362
|
592 |
/// d.limitedStart(num);
|
alpar@1946
|
593 |
///\endcode
|
deba@2362
|
594 |
void run(Node s, int num) {
|
klao@1857
|
595 |
init();
|
klao@1857
|
596 |
addSource(s);
|
deba@2362
|
597 |
limitedStart(num);
|
klao@1857
|
598 |
}
|
klao@1857
|
599 |
|
deba@1699
|
600 |
///@}
|
deba@1699
|
601 |
|
deba@1699
|
602 |
/// \name Query Functions
|
deba@1864
|
603 |
/// The result of the %BellmanFord algorithm can be obtained using these
|
deba@1699
|
604 |
/// functions.\n
|
deba@1699
|
605 |
/// Before the use of these functions,
|
deba@1699
|
606 |
/// either run() or start() must be called.
|
deba@1699
|
607 |
|
deba@1699
|
608 |
///@{
|
deba@1699
|
609 |
|
deba@2070
|
610 |
/// \brief Lemon iterator for get a active nodes.
|
deba@2070
|
611 |
///
|
deba@2362
|
612 |
/// Lemon iterator for get the active nodes. This class provides a
|
deba@2070
|
613 |
/// common style lemon iterator which gives back a subset of the
|
deba@2070
|
614 |
/// nodes. The iterated nodes are active in the algorithm after
|
deba@2070
|
615 |
/// the last phase so these should be checked in the next phase to
|
deba@2070
|
616 |
/// find augmenting edges from these.
|
deba@2070
|
617 |
class ActiveIt {
|
deba@2070
|
618 |
public:
|
deba@2070
|
619 |
|
deba@2070
|
620 |
/// \brief Constructor.
|
deba@2070
|
621 |
///
|
deba@2070
|
622 |
/// Constructor for get the nodeset of the variable.
|
deba@2070
|
623 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
|
deba@2070
|
624 |
{
|
deba@2070
|
625 |
_index = _algorithm->_process.size() - 1;
|
deba@2070
|
626 |
}
|
deba@2070
|
627 |
|
deba@2070
|
628 |
/// \brief Invalid constructor.
|
deba@2070
|
629 |
///
|
deba@2070
|
630 |
/// Invalid constructor.
|
deba@2070
|
631 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
|
deba@2070
|
632 |
|
deba@2070
|
633 |
/// \brief Conversion to node.
|
deba@2070
|
634 |
///
|
deba@2070
|
635 |
/// Conversion to node.
|
deba@2070
|
636 |
operator Node() const {
|
deba@2070
|
637 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID;
|
deba@2070
|
638 |
}
|
deba@2070
|
639 |
|
deba@2070
|
640 |
/// \brief Increment operator.
|
deba@2070
|
641 |
///
|
deba@2070
|
642 |
/// Increment operator.
|
deba@2070
|
643 |
ActiveIt& operator++() {
|
deba@2070
|
644 |
--_index;
|
deba@2070
|
645 |
return *this;
|
deba@2070
|
646 |
}
|
deba@2070
|
647 |
|
deba@2070
|
648 |
bool operator==(const ActiveIt& it) const {
|
deba@2386
|
649 |
return static_cast<Node>(*this) == static_cast<Node>(it);
|
deba@2070
|
650 |
}
|
deba@2070
|
651 |
bool operator!=(const ActiveIt& it) const {
|
deba@2386
|
652 |
return static_cast<Node>(*this) != static_cast<Node>(it);
|
deba@2070
|
653 |
}
|
deba@2070
|
654 |
bool operator<(const ActiveIt& it) const {
|
deba@2386
|
655 |
return static_cast<Node>(*this) < static_cast<Node>(it);
|
deba@2070
|
656 |
}
|
deba@2070
|
657 |
|
deba@2070
|
658 |
private:
|
deba@2070
|
659 |
const BellmanFord* _algorithm;
|
deba@2070
|
660 |
int _index;
|
deba@2070
|
661 |
};
|
deba@2070
|
662 |
|
deba@2335
|
663 |
typedef PredMapPath<Graph, PredMap> Path;
|
deba@2335
|
664 |
|
deba@2335
|
665 |
/// \brief Gives back the shortest path.
|
deba@1699
|
666 |
///
|
deba@2335
|
667 |
/// Gives back the shortest path.
|
deba@2335
|
668 |
/// \pre The \c t should be reachable from the source.
|
deba@2335
|
669 |
Path path(Node t)
|
deba@2335
|
670 |
{
|
deba@2335
|
671 |
return Path(*graph, *_pred, t);
|
deba@1699
|
672 |
}
|
deba@2070
|
673 |
|
deba@2335
|
674 |
|
deba@2335
|
675 |
// TODO : implement negative cycle
|
deba@2335
|
676 |
// /// \brief Gives back a negative cycle.
|
deba@2335
|
677 |
// ///
|
deba@2335
|
678 |
// /// This function gives back a negative cycle.
|
deba@2335
|
679 |
// /// If the algorithm have not found yet negative cycle it will give back
|
deba@2335
|
680 |
// /// an empty path.
|
deba@2335
|
681 |
// Path negativeCycle() {
|
deba@2335
|
682 |
// typename Graph::template NodeMap<int> state(*graph, 0);
|
deba@2335
|
683 |
// for (ActiveIt it(*this); it != INVALID; ++it) {
|
deba@2335
|
684 |
// if (state[it] == 0) {
|
deba@2335
|
685 |
// for (Node t = it; predEdge(t) != INVALID; t = predNode(t)) {
|
deba@2335
|
686 |
// if (state[t] == 0) {
|
deba@2335
|
687 |
// state[t] = 1;
|
deba@2335
|
688 |
// } else if (state[t] == 2) {
|
deba@2335
|
689 |
// break;
|
deba@2335
|
690 |
// } else {
|
deba@2335
|
691 |
// p.clear();
|
deba@2335
|
692 |
// typename Path::Builder b(p);
|
deba@2335
|
693 |
// b.setStartNode(t);
|
deba@2335
|
694 |
// b.pushFront(predEdge(t));
|
deba@2335
|
695 |
// for(Node s = predNode(t); s != t; s = predNode(s)) {
|
deba@2335
|
696 |
// b.pushFront(predEdge(s));
|
deba@2335
|
697 |
// }
|
deba@2335
|
698 |
// b.commit();
|
deba@2335
|
699 |
// return true;
|
deba@2335
|
700 |
// }
|
deba@2335
|
701 |
// }
|
deba@2335
|
702 |
// for (Node t = it; predEdge(t) != INVALID; t = predNode(t)) {
|
deba@2335
|
703 |
// if (state[t] == 1) {
|
deba@2335
|
704 |
// state[t] = 2;
|
deba@2335
|
705 |
// } else {
|
deba@2335
|
706 |
// break;
|
deba@2335
|
707 |
// }
|
deba@2335
|
708 |
// }
|
deba@2335
|
709 |
// }
|
deba@2335
|
710 |
// }
|
deba@2335
|
711 |
// return false;
|
deba@2335
|
712 |
// }
|
deba@1699
|
713 |
|
deba@1699
|
714 |
/// \brief The distance of a node from the root.
|
deba@1699
|
715 |
///
|
deba@1699
|
716 |
/// Returns the distance of a node from the root.
|
deba@1699
|
717 |
/// \pre \ref run() must be called before using this function.
|
deba@1699
|
718 |
/// \warning If node \c v in unreachable from the root the return value
|
deba@1699
|
719 |
/// of this funcion is undefined.
|
deba@1699
|
720 |
Value dist(Node v) const { return (*_dist)[v]; }
|
deba@1699
|
721 |
|
deba@1699
|
722 |
/// \brief Returns the 'previous edge' of the shortest path tree.
|
deba@1699
|
723 |
///
|
deba@1699
|
724 |
/// For a node \c v it returns the 'previous edge' of the shortest path
|
deba@1699
|
725 |
/// tree, i.e. it returns the last edge of a shortest path from the root
|
deba@1699
|
726 |
/// to \c v. It is \ref INVALID if \c v is unreachable from the root or
|
deba@1699
|
727 |
/// if \c v=s. The shortest path tree used here is equal to the shortest
|
deba@1699
|
728 |
/// path tree used in \ref predNode().
|
deba@1699
|
729 |
/// \pre \ref run() must be called before using
|
deba@1699
|
730 |
/// this function.
|
deba@1763
|
731 |
Edge predEdge(Node v) const { return (*_pred)[v]; }
|
deba@1699
|
732 |
|
deba@1699
|
733 |
/// \brief Returns the 'previous node' of the shortest path tree.
|
deba@1699
|
734 |
///
|
deba@1699
|
735 |
/// For a node \c v it returns the 'previous node' of the shortest path
|
deba@1699
|
736 |
/// tree, i.e. it returns the last but one node from a shortest path from
|
deba@1699
|
737 |
/// the root to \c /v. It is INVALID if \c v is unreachable from the root
|
deba@1699
|
738 |
/// or if \c v=s. The shortest path tree used here is equal to the
|
deba@1763
|
739 |
/// shortest path tree used in \ref predEdge(). \pre \ref run() must be
|
deba@1699
|
740 |
/// called before using this function.
|
deba@1699
|
741 |
Node predNode(Node v) const {
|
deba@1699
|
742 |
return (*_pred)[v] == INVALID ? INVALID : graph->source((*_pred)[v]);
|
deba@1699
|
743 |
}
|
deba@1699
|
744 |
|
deba@1699
|
745 |
/// \brief Returns a reference to the NodeMap of distances.
|
deba@1699
|
746 |
///
|
deba@1699
|
747 |
/// Returns a reference to the NodeMap of distances. \pre \ref run() must
|
deba@1699
|
748 |
/// be called before using this function.
|
deba@1699
|
749 |
const DistMap &distMap() const { return *_dist;}
|
deba@1699
|
750 |
|
deba@1699
|
751 |
/// \brief Returns a reference to the shortest path tree map.
|
deba@1699
|
752 |
///
|
deba@1699
|
753 |
/// Returns a reference to the NodeMap of the edges of the
|
deba@1699
|
754 |
/// shortest path tree.
|
deba@1699
|
755 |
/// \pre \ref run() must be called before using this function.
|
deba@1699
|
756 |
const PredMap &predMap() const { return *_pred; }
|
deba@1699
|
757 |
|
deba@1699
|
758 |
/// \brief Checks if a node is reachable from the root.
|
deba@1699
|
759 |
///
|
deba@1699
|
760 |
/// Returns \c true if \c v is reachable from the root.
|
deba@1699
|
761 |
/// \pre \ref run() must be called before using this function.
|
deba@1699
|
762 |
///
|
deba@1699
|
763 |
bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); }
|
deba@1699
|
764 |
|
deba@1699
|
765 |
///@}
|
deba@1699
|
766 |
};
|
deba@1699
|
767 |
|
deba@1864
|
768 |
/// \brief Default traits class of BellmanFord function.
|
deba@1699
|
769 |
///
|
deba@1864
|
770 |
/// Default traits class of BellmanFord function.
|
deba@1699
|
771 |
/// \param _Graph Graph type.
|
deba@1699
|
772 |
/// \param _LengthMap Type of length map.
|
deba@1699
|
773 |
template <typename _Graph, typename _LengthMap>
|
deba@1864
|
774 |
struct BellmanFordWizardDefaultTraits {
|
deba@1699
|
775 |
/// \brief The graph type the algorithm runs on.
|
deba@1699
|
776 |
typedef _Graph Graph;
|
deba@1699
|
777 |
|
deba@1699
|
778 |
/// \brief The type of the map that stores the edge lengths.
|
deba@1699
|
779 |
///
|
deba@1699
|
780 |
/// The type of the map that stores the edge lengths.
|
alpar@2260
|
781 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept.
|
deba@1699
|
782 |
typedef _LengthMap LengthMap;
|
deba@1699
|
783 |
|
deba@1699
|
784 |
/// \brief The value type of the length map.
|
deba@1699
|
785 |
typedef typename _LengthMap::Value Value;
|
deba@1699
|
786 |
|
deba@1864
|
787 |
/// \brief Operation traits for bellman-ford algorithm.
|
deba@1699
|
788 |
///
|
deba@1699
|
789 |
/// It defines the infinity type on the given Value type
|
deba@1699
|
790 |
/// and the used operation.
|
deba@1864
|
791 |
/// \see BellmanFordDefaultOperationTraits
|
deba@1864
|
792 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
|
deba@1699
|
793 |
|
deba@1699
|
794 |
/// \brief The type of the map that stores the last
|
deba@1699
|
795 |
/// edges of the shortest paths.
|
deba@1699
|
796 |
///
|
deba@1699
|
797 |
/// The type of the map that stores the last
|
deba@1699
|
798 |
/// edges of the shortest paths.
|
alpar@2260
|
799 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
deba@1699
|
800 |
typedef NullMap <typename _Graph::Node,typename _Graph::Edge> PredMap;
|
deba@1699
|
801 |
|
deba@1699
|
802 |
/// \brief Instantiates a PredMap.
|
deba@1699
|
803 |
///
|
deba@1699
|
804 |
/// This function instantiates a \ref PredMap.
|
deba@1699
|
805 |
static PredMap *createPredMap(const _Graph &) {
|
deba@1699
|
806 |
return new PredMap();
|
deba@1699
|
807 |
}
|
deba@1699
|
808 |
/// \brief The type of the map that stores the dists of the nodes.
|
deba@1699
|
809 |
///
|
deba@1699
|
810 |
/// The type of the map that stores the dists of the nodes.
|
alpar@2260
|
811 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept.
|
deba@1699
|
812 |
typedef NullMap<typename Graph::Node, Value> DistMap;
|
deba@1699
|
813 |
/// \brief Instantiates a DistMap.
|
deba@1699
|
814 |
///
|
deba@1699
|
815 |
/// This function instantiates a \ref DistMap.
|
deba@1699
|
816 |
static DistMap *createDistMap(const _Graph &) {
|
deba@1699
|
817 |
return new DistMap();
|
deba@1699
|
818 |
}
|
deba@1699
|
819 |
};
|
deba@1699
|
820 |
|
deba@1864
|
821 |
/// \brief Default traits used by \ref BellmanFordWizard
|
deba@1699
|
822 |
///
|
deba@1864
|
823 |
/// To make it easier to use BellmanFord algorithm
|
deba@1699
|
824 |
/// we have created a wizard class.
|
deba@1864
|
825 |
/// This \ref BellmanFordWizard class needs default traits,
|
deba@1864
|
826 |
/// as well as the \ref BellmanFord class.
|
deba@1864
|
827 |
/// The \ref BellmanFordWizardBase is a class to be the default traits of the
|
deba@1864
|
828 |
/// \ref BellmanFordWizard class.
|
deba@1699
|
829 |
/// \todo More named parameters are required...
|
deba@1699
|
830 |
template<class _Graph,class _LengthMap>
|
deba@1864
|
831 |
class BellmanFordWizardBase
|
deba@1864
|
832 |
: public BellmanFordWizardDefaultTraits<_Graph,_LengthMap> {
|
deba@1699
|
833 |
|
deba@1864
|
834 |
typedef BellmanFordWizardDefaultTraits<_Graph,_LengthMap> Base;
|
deba@1699
|
835 |
protected:
|
deba@1699
|
836 |
/// Type of the nodes in the graph.
|
deba@1699
|
837 |
typedef typename Base::Graph::Node Node;
|
deba@1699
|
838 |
|
deba@1699
|
839 |
/// Pointer to the underlying graph.
|
deba@1699
|
840 |
void *_graph;
|
deba@1699
|
841 |
/// Pointer to the length map
|
deba@1699
|
842 |
void *_length;
|
deba@1699
|
843 |
///Pointer to the map of predecessors edges.
|
deba@1699
|
844 |
void *_pred;
|
deba@1699
|
845 |
///Pointer to the map of distances.
|
deba@1699
|
846 |
void *_dist;
|
deba@1699
|
847 |
///Pointer to the source node.
|
deba@1699
|
848 |
Node _source;
|
deba@1699
|
849 |
|
deba@1699
|
850 |
public:
|
deba@1699
|
851 |
/// Constructor.
|
deba@1699
|
852 |
|
deba@1699
|
853 |
/// This constructor does not require parameters, therefore it initiates
|
deba@1699
|
854 |
/// all of the attributes to default values (0, INVALID).
|
deba@1864
|
855 |
BellmanFordWizardBase() : _graph(0), _length(0), _pred(0),
|
deba@1699
|
856 |
_dist(0), _source(INVALID) {}
|
deba@1699
|
857 |
|
deba@1699
|
858 |
/// Constructor.
|
deba@1699
|
859 |
|
deba@1699
|
860 |
/// This constructor requires some parameters,
|
deba@1699
|
861 |
/// listed in the parameters list.
|
deba@1699
|
862 |
/// Others are initiated to 0.
|
deba@1699
|
863 |
/// \param graph is the initial value of \ref _graph
|
deba@1699
|
864 |
/// \param length is the initial value of \ref _length
|
deba@1699
|
865 |
/// \param source is the initial value of \ref _source
|
deba@1864
|
866 |
BellmanFordWizardBase(const _Graph& graph,
|
deba@1699
|
867 |
const _LengthMap& length,
|
deba@1699
|
868 |
Node source = INVALID) :
|
deba@2386
|
869 |
_graph(reinterpret_cast<void*>(const_cast<_Graph*>(&graph))),
|
deba@2386
|
870 |
_length(reinterpret_cast<void*>(const_cast<_LengthMap*>(&length))),
|
deba@2386
|
871 |
_pred(0), _dist(0), _source(source) {}
|
deba@1699
|
872 |
|
deba@1699
|
873 |
};
|
deba@1699
|
874 |
|
deba@1864
|
875 |
/// A class to make the usage of BellmanFord algorithm easier
|
deba@1699
|
876 |
|
deba@1864
|
877 |
/// This class is created to make it easier to use BellmanFord algorithm.
|
deba@1864
|
878 |
/// It uses the functions and features of the plain \ref BellmanFord,
|
deba@1699
|
879 |
/// but it is much simpler to use it.
|
deba@1699
|
880 |
///
|
deba@1699
|
881 |
/// Simplicity means that the way to change the types defined
|
deba@1699
|
882 |
/// in the traits class is based on functions that returns the new class
|
deba@1699
|
883 |
/// and not on templatable built-in classes.
|
deba@1864
|
884 |
/// When using the plain \ref BellmanFord
|
deba@1699
|
885 |
/// the new class with the modified type comes from
|
deba@1699
|
886 |
/// the original class by using the ::
|
deba@1864
|
887 |
/// operator. In the case of \ref BellmanFordWizard only
|
deba@1699
|
888 |
/// a function have to be called and it will
|
deba@1699
|
889 |
/// return the needed class.
|
deba@1699
|
890 |
///
|
deba@1699
|
891 |
/// It does not have own \ref run method. When its \ref run method is called
|
deba@1864
|
892 |
/// it initiates a plain \ref BellmanFord class, and calls the \ref
|
deba@1864
|
893 |
/// BellmanFord::run method of it.
|
deba@1699
|
894 |
template<class _Traits>
|
deba@1864
|
895 |
class BellmanFordWizard : public _Traits {
|
deba@1699
|
896 |
typedef _Traits Base;
|
deba@1699
|
897 |
|
deba@1699
|
898 |
///The type of the underlying graph.
|
deba@1699
|
899 |
typedef typename _Traits::Graph Graph;
|
deba@1699
|
900 |
|
deba@1699
|
901 |
typedef typename Graph::Node Node;
|
deba@1699
|
902 |
typedef typename Graph::NodeIt NodeIt;
|
deba@1699
|
903 |
typedef typename Graph::Edge Edge;
|
deba@1699
|
904 |
typedef typename Graph::OutEdgeIt EdgeIt;
|
deba@1699
|
905 |
|
deba@1699
|
906 |
///The type of the map that stores the edge lengths.
|
deba@1699
|
907 |
typedef typename _Traits::LengthMap LengthMap;
|
deba@1699
|
908 |
|
deba@1699
|
909 |
///The type of the length of the edges.
|
deba@1699
|
910 |
typedef typename LengthMap::Value Value;
|
deba@1699
|
911 |
|
deba@1699
|
912 |
///\brief The type of the map that stores the last
|
deba@1699
|
913 |
///edges of the shortest paths.
|
deba@1699
|
914 |
typedef typename _Traits::PredMap PredMap;
|
deba@1699
|
915 |
|
deba@1699
|
916 |
///The type of the map that stores the dists of the nodes.
|
deba@1699
|
917 |
typedef typename _Traits::DistMap DistMap;
|
deba@1699
|
918 |
|
deba@1699
|
919 |
public:
|
deba@1699
|
920 |
/// Constructor.
|
deba@1864
|
921 |
BellmanFordWizard() : _Traits() {}
|
deba@1699
|
922 |
|
deba@1699
|
923 |
/// \brief Constructor that requires parameters.
|
deba@1699
|
924 |
///
|
deba@1699
|
925 |
/// Constructor that requires parameters.
|
deba@1699
|
926 |
/// These parameters will be the default values for the traits class.
|
deba@1864
|
927 |
BellmanFordWizard(const Graph& graph, const LengthMap& length,
|
deba@2386
|
928 |
Node src = INVALID)
|
deba@2386
|
929 |
: _Traits(graph, length, src) {}
|
deba@1699
|
930 |
|
deba@1699
|
931 |
/// \brief Copy constructor
|
deba@1864
|
932 |
BellmanFordWizard(const _Traits &b) : _Traits(b) {}
|
deba@1699
|
933 |
|
deba@1864
|
934 |
~BellmanFordWizard() {}
|
deba@1699
|
935 |
|
deba@1864
|
936 |
/// \brief Runs BellmanFord algorithm from a given node.
|
deba@1699
|
937 |
///
|
deba@1864
|
938 |
/// Runs BellmanFord algorithm from a given node.
|
deba@1699
|
939 |
/// The node can be given by the \ref source function.
|
deba@1699
|
940 |
void run() {
|
deba@1699
|
941 |
if(Base::_source == INVALID) throw UninitializedParameter();
|
deba@1864
|
942 |
BellmanFord<Graph,LengthMap,_Traits>
|
deba@2386
|
943 |
bf(*reinterpret_cast<const Graph*>(Base::_graph),
|
deba@2386
|
944 |
*reinterpret_cast<const LengthMap*>(Base::_length));
|
deba@2386
|
945 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
|
deba@2386
|
946 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
|
deba@1699
|
947 |
bf.run(Base::_source);
|
deba@1699
|
948 |
}
|
deba@1699
|
949 |
|
deba@1864
|
950 |
/// \brief Runs BellmanFord algorithm from the given node.
|
deba@1699
|
951 |
///
|
deba@1864
|
952 |
/// Runs BellmanFord algorithm from the given node.
|
deba@1858
|
953 |
/// \param source is the given source.
|
deba@2386
|
954 |
void run(Node src) {
|
deba@2386
|
955 |
Base::_source = src;
|
deba@1699
|
956 |
run();
|
deba@1699
|
957 |
}
|
deba@1699
|
958 |
|
deba@1699
|
959 |
template<class T>
|
deba@1699
|
960 |
struct DefPredMapBase : public Base {
|
deba@1699
|
961 |
typedef T PredMap;
|
deba@1699
|
962 |
static PredMap *createPredMap(const Graph &) { return 0; };
|
deba@1699
|
963 |
DefPredMapBase(const _Traits &b) : _Traits(b) {}
|
deba@1699
|
964 |
};
|
deba@1699
|
965 |
|
deba@1699
|
966 |
///\brief \ref named-templ-param "Named parameter"
|
deba@1699
|
967 |
///function for setting PredMap type
|
deba@1699
|
968 |
///
|
deba@1699
|
969 |
/// \ref named-templ-param "Named parameter"
|
deba@1699
|
970 |
///function for setting PredMap type
|
deba@1699
|
971 |
///
|
deba@1699
|
972 |
template<class T>
|
deba@1864
|
973 |
BellmanFordWizard<DefPredMapBase<T> > predMap(const T &t)
|
deba@1699
|
974 |
{
|
deba@2386
|
975 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
|
deba@1864
|
976 |
return BellmanFordWizard<DefPredMapBase<T> >(*this);
|
deba@1699
|
977 |
}
|
deba@1699
|
978 |
|
deba@1699
|
979 |
template<class T>
|
deba@1699
|
980 |
struct DefDistMapBase : public Base {
|
deba@1699
|
981 |
typedef T DistMap;
|
deba@1699
|
982 |
static DistMap *createDistMap(const Graph &) { return 0; };
|
deba@1699
|
983 |
DefDistMapBase(const _Traits &b) : _Traits(b) {}
|
deba@1699
|
984 |
};
|
deba@1699
|
985 |
|
deba@1699
|
986 |
///\brief \ref named-templ-param "Named parameter"
|
deba@1699
|
987 |
///function for setting DistMap type
|
deba@1699
|
988 |
///
|
deba@1699
|
989 |
/// \ref named-templ-param "Named parameter"
|
deba@1699
|
990 |
///function for setting DistMap type
|
deba@1699
|
991 |
///
|
deba@1699
|
992 |
template<class T>
|
deba@1864
|
993 |
BellmanFordWizard<DefDistMapBase<T> > distMap(const T &t) {
|
deba@2386
|
994 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
|
deba@1864
|
995 |
return BellmanFordWizard<DefDistMapBase<T> >(*this);
|
deba@1699
|
996 |
}
|
deba@1710
|
997 |
|
deba@1710
|
998 |
template<class T>
|
deba@1710
|
999 |
struct DefOperationTraitsBase : public Base {
|
deba@1710
|
1000 |
typedef T OperationTraits;
|
deba@1710
|
1001 |
DefOperationTraitsBase(const _Traits &b) : _Traits(b) {}
|
deba@1710
|
1002 |
};
|
deba@1710
|
1003 |
|
deba@1710
|
1004 |
///\brief \ref named-templ-param "Named parameter"
|
deba@1710
|
1005 |
///function for setting OperationTraits type
|
deba@1710
|
1006 |
///
|
deba@1710
|
1007 |
/// \ref named-templ-param "Named parameter"
|
deba@1710
|
1008 |
///function for setting OperationTraits type
|
deba@1710
|
1009 |
///
|
deba@1710
|
1010 |
template<class T>
|
deba@1864
|
1011 |
BellmanFordWizard<DefOperationTraitsBase<T> > distMap() {
|
deba@1864
|
1012 |
return BellmanFordWizard<DefDistMapBase<T> >(*this);
|
deba@1710
|
1013 |
}
|
deba@1699
|
1014 |
|
deba@1864
|
1015 |
/// \brief Sets the source node, from which the BellmanFord algorithm runs.
|
deba@1699
|
1016 |
///
|
deba@1864
|
1017 |
/// Sets the source node, from which the BellmanFord algorithm runs.
|
deba@1858
|
1018 |
/// \param source is the source node.
|
deba@2386
|
1019 |
BellmanFordWizard<_Traits>& source(Node src) {
|
deba@2386
|
1020 |
Base::_source = src;
|
deba@1699
|
1021 |
return *this;
|
deba@1699
|
1022 |
}
|
deba@1699
|
1023 |
|
deba@1699
|
1024 |
};
|
deba@1699
|
1025 |
|
deba@1864
|
1026 |
/// \brief Function type interface for BellmanFord algorithm.
|
deba@1699
|
1027 |
///
|
deba@2376
|
1028 |
/// \ingroup shortest_path
|
deba@1864
|
1029 |
/// Function type interface for BellmanFord algorithm.
|
deba@1699
|
1030 |
///
|
deba@1699
|
1031 |
/// This function also has several \ref named-templ-func-param
|
deba@1699
|
1032 |
/// "named parameters", they are declared as the members of class
|
deba@1864
|
1033 |
/// \ref BellmanFordWizard.
|
deba@1699
|
1034 |
/// The following
|
deba@1699
|
1035 |
/// example shows how to use these parameters.
|
alpar@1946
|
1036 |
///\code
|
deba@1864
|
1037 |
/// bellmanford(g,length,source).predMap(preds).run();
|
alpar@1946
|
1038 |
///\endcode
|
deba@1864
|
1039 |
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
|
deba@1699
|
1040 |
/// to the end of the parameter list.
|
deba@1864
|
1041 |
/// \sa BellmanFordWizard
|
deba@1864
|
1042 |
/// \sa BellmanFord
|
deba@1699
|
1043 |
template<class _Graph, class _LengthMap>
|
deba@1864
|
1044 |
BellmanFordWizard<BellmanFordWizardBase<_Graph,_LengthMap> >
|
deba@1864
|
1045 |
bellmanFord(const _Graph& graph,
|
deba@1699
|
1046 |
const _LengthMap& length,
|
deba@1699
|
1047 |
typename _Graph::Node source = INVALID) {
|
deba@1864
|
1048 |
return BellmanFordWizard<BellmanFordWizardBase<_Graph,_LengthMap> >
|
deba@1699
|
1049 |
(graph, length, source);
|
deba@1699
|
1050 |
}
|
deba@1699
|
1051 |
|
deba@1699
|
1052 |
} //END OF NAMESPACE LEMON
|
deba@1699
|
1053 |
|
deba@1699
|
1054 |
#endif
|
deba@1699
|
1055 |
|