3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2007
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_BELMANN_FORD_H
20 #define LEMON_BELMANN_FORD_H
22 /// \ingroup shortest_path
24 /// \brief BellmanFord algorithm.
27 #include <lemon/list_graph.h>
28 #include <lemon/bits/path_dump.h>
29 #include <lemon/bits/invalid.h>
30 #include <lemon/graph_utils.h>
31 #include <lemon/error.h>
32 #include <lemon/maps.h>
38 /// \brief Default OperationTraits for the BellmanFord algorithm class.
40 /// It defines all computational operations and constants which are
41 /// used in the bellman ford algorithm. The default implementation
42 /// is based on the numeric_limits class. If the numeric type does not
43 /// have infinity value then the maximum value is used as extremal
47 bool has_infinity = std::numeric_limits<Value>::has_infinity>
48 struct BellmanFordDefaultOperationTraits {
49 /// \brief Gives back the zero value of the type.
51 return static_cast<Value>(0);
53 /// \brief Gives back the positive infinity value of the type.
54 static Value infinity() {
55 return std::numeric_limits<Value>::infinity();
57 /// \brief Gives back the sum of the given two elements.
58 static Value plus(const Value& left, const Value& right) {
61 /// \brief Gives back true only if the first value less than the second.
62 static bool less(const Value& left, const Value& right) {
67 template <typename Value>
68 struct BellmanFordDefaultOperationTraits<Value, false> {
70 return static_cast<Value>(0);
72 static Value infinity() {
73 return std::numeric_limits<Value>::max();
75 static Value plus(const Value& left, const Value& right) {
76 if (left == infinity() || right == infinity()) return infinity();
79 static bool less(const Value& left, const Value& right) {
84 /// \brief Default traits class of BellmanFord class.
86 /// Default traits class of BellmanFord class.
87 /// \param _Graph Graph type.
88 /// \param _LegthMap Type of length map.
89 template<class _Graph, class _LengthMap>
90 struct BellmanFordDefaultTraits {
91 /// The graph type the algorithm runs on.
94 /// \brief The type of the map that stores the edge lengths.
96 /// The type of the map that stores the edge lengths.
97 /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
98 typedef _LengthMap LengthMap;
100 // The type of the length of the edges.
101 typedef typename _LengthMap::Value Value;
103 /// \brief Operation traits for bellman-ford algorithm.
105 /// It defines the infinity type on the given Value type
106 /// and the used operation.
107 /// \see BellmanFordDefaultOperationTraits
108 typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
110 /// \brief The type of the map that stores the last edges of the
113 /// The type of the map that stores the last
114 /// edges of the shortest paths.
115 /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
117 typedef typename Graph::template NodeMap<typename _Graph::Edge> PredMap;
119 /// \brief Instantiates a PredMap.
121 /// This function instantiates a \ref PredMap.
122 /// \param graph is the graph, to which we would like to define the PredMap.
123 static PredMap *createPredMap(const _Graph& graph) {
124 return new PredMap(graph);
127 /// \brief The type of the map that stores the dists of the nodes.
129 /// The type of the map that stores the dists of the nodes.
130 /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
132 typedef typename Graph::template NodeMap<typename _LengthMap::Value>
135 /// \brief Instantiates a DistMap.
137 /// This function instantiates a \ref DistMap.
138 /// \param graph is the graph, to which we would like to define the
140 static DistMap *createDistMap(const _Graph& graph) {
141 return new DistMap(graph);
146 /// \brief %BellmanFord algorithm class.
148 /// \ingroup shortest_path
149 /// This class provides an efficient implementation of \c Bellman-Ford
150 /// algorithm. The edge lengths are passed to the algorithm using a
151 /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any
154 /// The Bellman-Ford algorithm solves the shortest path from one node
155 /// problem when the edges can have negative length but the graph should
156 /// not contain cycles with negative sum of length. If we can assume
157 /// that all edge is non-negative in the graph then the dijkstra algorithm
158 /// should be used rather.
160 /// The maximal time complexity of the algorithm is \f$ O(ne) \f$.
162 /// The type of the length is determined by the
163 /// \ref concepts::ReadMap::Value "Value" of the length map.
165 /// \param _Graph The graph type the algorithm runs on. The default value
166 /// is \ref ListGraph. The value of _Graph is not used directly by
167 /// BellmanFord, it is only passed to \ref BellmanFordDefaultTraits.
168 /// \param _LengthMap This read-only EdgeMap determines the lengths of the
169 /// edges. The default map type is \ref concepts::Graph::EdgeMap
170 /// "Graph::EdgeMap<int>". The value of _LengthMap is not used directly
171 /// by BellmanFord, it is only passed to \ref BellmanFordDefaultTraits.
172 /// \param _Traits Traits class to set various data types used by the
173 /// algorithm. The default traits class is \ref BellmanFordDefaultTraits
174 /// "BellmanFordDefaultTraits<_Graph,_LengthMap>". See \ref
175 /// BellmanFordDefaultTraits for the documentation of a BellmanFord traits
178 /// \author Balazs Dezso
181 template <typename _Graph, typename _LengthMap, typename _Traits>
183 template <typename _Graph=ListGraph,
184 typename _LengthMap=typename _Graph::template EdgeMap<int>,
185 typename _Traits=BellmanFordDefaultTraits<_Graph,_LengthMap> >
190 /// \brief \ref Exception for uninitialized parameters.
192 /// This error represents problems in the initialization
193 /// of the parameters of the algorithms.
195 class UninitializedParameter : public lemon::UninitializedParameter {
197 virtual const char* what() const throw() {
198 return "lemon::BellmanFord::UninitializedParameter";
202 typedef _Traits Traits;
203 ///The type of the underlying graph.
204 typedef typename _Traits::Graph Graph;
206 typedef typename Graph::Node Node;
207 typedef typename Graph::NodeIt NodeIt;
208 typedef typename Graph::Edge Edge;
209 typedef typename Graph::OutEdgeIt OutEdgeIt;
211 /// \brief The type of the length of the edges.
212 typedef typename _Traits::LengthMap::Value Value;
213 /// \brief The type of the map that stores the edge lengths.
214 typedef typename _Traits::LengthMap LengthMap;
215 /// \brief The type of the map that stores the last
216 /// edges of the shortest paths.
217 typedef typename _Traits::PredMap PredMap;
218 /// \brief The type of the map that stores the dists of the nodes.
219 typedef typename _Traits::DistMap DistMap;
220 /// \brief The operation traits.
221 typedef typename _Traits::OperationTraits OperationTraits;
223 /// Pointer to the underlying graph.
225 /// Pointer to the length map
226 const LengthMap *length;
227 ///Pointer to the map of predecessors edges.
229 ///Indicates if \ref _pred is locally allocated (\c true) or not.
231 ///Pointer to the map of distances.
233 ///Indicates if \ref _dist is locally allocated (\c true) or not.
236 typedef typename Graph::template NodeMap<bool> MaskMap;
239 std::vector<Node> _process;
241 /// Creates the maps if necessary.
245 _pred = Traits::createPredMap(*graph);
249 _dist = Traits::createDistMap(*graph);
251 _mask = new MaskMap(*graph, false);
256 typedef BellmanFord Create;
258 /// \name Named template parameters
263 struct DefPredMapTraits : public Traits {
265 static PredMap *createPredMap(const Graph&) {
266 throw UninitializedParameter();
270 /// \brief \ref named-templ-param "Named parameter" for setting PredMap
272 /// \ref named-templ-param "Named parameter" for setting PredMap type
276 : public BellmanFord< Graph, LengthMap, DefPredMapTraits<T> > {
277 typedef BellmanFord< Graph, LengthMap, DefPredMapTraits<T> > Create;
281 struct DefDistMapTraits : public Traits {
283 static DistMap *createDistMap(const Graph&) {
284 throw UninitializedParameter();
288 /// \brief \ref named-templ-param "Named parameter" for setting DistMap
291 /// \ref named-templ-param "Named parameter" for setting DistMap type
295 : public BellmanFord< Graph, LengthMap, DefDistMapTraits<T> > {
296 typedef BellmanFord< Graph, LengthMap, DefDistMapTraits<T> > Create;
300 struct DefOperationTraitsTraits : public Traits {
301 typedef T OperationTraits;
304 /// \brief \ref named-templ-param "Named parameter" for setting
305 /// OperationTraits type
307 /// \ref named-templ-param "Named parameter" for setting OperationTraits
310 struct DefOperationTraits
311 : public BellmanFord< Graph, LengthMap, DefOperationTraitsTraits<T> > {
312 typedef BellmanFord< Graph, LengthMap, DefOperationTraitsTraits<T> >
324 /// \brief Constructor.
326 /// \param _graph the graph the algorithm will run on.
327 /// \param _length the length map used by the algorithm.
328 BellmanFord(const Graph& _graph, const LengthMap& _length) :
329 graph(&_graph), length(&_length),
330 _pred(0), local_pred(false),
331 _dist(0), local_dist(false), _mask(0) {}
335 if(local_pred) delete _pred;
336 if(local_dist) delete _dist;
337 if(_mask) delete _mask;
340 /// \brief Sets the length map.
342 /// Sets the length map.
343 /// \return \c (*this)
344 BellmanFord &lengthMap(const LengthMap &m) {
349 /// \brief Sets the map storing the predecessor edges.
351 /// Sets the map storing the predecessor edges.
352 /// If you don't use this function before calling \ref run(),
353 /// it will allocate one. The destuctor deallocates this
354 /// automatically allocated map, of course.
355 /// \return \c (*this)
356 BellmanFord &predMap(PredMap &m) {
365 /// \brief Sets the map storing the distances calculated by the algorithm.
367 /// Sets the map storing the distances calculated by the algorithm.
368 /// If you don't use this function before calling \ref run(),
369 /// it will allocate one. The destuctor deallocates this
370 /// automatically allocated map, of course.
371 /// \return \c (*this)
372 BellmanFord &distMap(DistMap &m) {
381 /// \name Execution control
382 /// The simplest way to execute the algorithm is to use
383 /// one of the member functions called \c run(...).
385 /// If you need more control on the execution,
386 /// first you must call \ref init(), then you can add several source nodes
387 /// with \ref addSource().
388 /// Finally \ref start() will perform the actual path
393 /// \brief Initializes the internal data structures.
395 /// Initializes the internal data structures.
396 void init(const Value value = OperationTraits::infinity()) {
398 for (NodeIt it(*graph); it != INVALID; ++it) {
399 _pred->set(it, INVALID);
400 _dist->set(it, value);
403 if (OperationTraits::less(value, OperationTraits::infinity())) {
404 for (NodeIt it(*graph); it != INVALID; ++it) {
405 _process.push_back(it);
406 _mask->set(it, true);
411 /// \brief Adds a new source node.
413 /// The optional second parameter is the initial distance of the node.
414 /// It just sets the distance of the node to the given value.
415 void addSource(Node source, Value dst = OperationTraits::zero()) {
416 _dist->set(source, dst);
417 if (!(*_mask)[source]) {
418 _process.push_back(source);
419 _mask->set(source, true);
423 /// \brief Executes one round from the bellman ford algorithm.
425 /// If the algoritm calculated the distances in the previous round
426 /// exactly for all at most \f$ k \f$ length path lengths then it will
427 /// calculate the distances exactly for all at most \f$ k + 1 \f$
428 /// length path lengths. With \f$ k \f$ iteration this function
429 /// calculates the at most \f$ k \f$ length path lengths.
431 /// \warning The paths with limited edge number cannot be retrieved
432 /// easily with \ref path() or \ref predEdge() functions. If you
433 /// need the shortest path and not just the distance you should store
434 /// after each iteration the \ref predEdgeMap() map and manually build
437 /// \return %True when the algorithm have not found more shorter
439 bool processNextRound() {
440 for (int i = 0; i < int(_process.size()); ++i) {
441 _mask->set(_process[i], false);
443 std::vector<Node> nextProcess;
444 std::vector<Value> values(_process.size());
445 for (int i = 0; i < int(_process.size()); ++i) {
446 values[i] = (*_dist)[_process[i]];
448 for (int i = 0; i < int(_process.size()); ++i) {
449 for (OutEdgeIt it(*graph, _process[i]); it != INVALID; ++it) {
450 Node target = graph->target(it);
451 Value relaxed = OperationTraits::plus(values[i], (*length)[it]);
452 if (OperationTraits::less(relaxed, (*_dist)[target])) {
453 _pred->set(target, it);
454 _dist->set(target, relaxed);
455 if (!(*_mask)[target]) {
456 _mask->set(target, true);
457 nextProcess.push_back(target);
462 _process.swap(nextProcess);
463 return _process.empty();
466 /// \brief Executes one weak round from the bellman ford algorithm.
468 /// If the algorithm calculated the distances in the
469 /// previous round at least for all at most k length paths then it will
470 /// calculate the distances at least for all at most k + 1 length paths.
471 /// This function does not make it possible to calculate strictly the
472 /// at most k length minimal paths, this is why it is
473 /// called just weak round.
474 /// \return %True when the algorithm have not found more shorter paths.
475 bool processNextWeakRound() {
476 for (int i = 0; i < int(_process.size()); ++i) {
477 _mask->set(_process[i], false);
479 std::vector<Node> nextProcess;
480 for (int i = 0; i < int(_process.size()); ++i) {
481 for (OutEdgeIt it(*graph, _process[i]); it != INVALID; ++it) {
482 Node target = graph->target(it);
484 OperationTraits::plus((*_dist)[_process[i]], (*length)[it]);
485 if (OperationTraits::less(relaxed, (*_dist)[target])) {
486 _pred->set(target, it);
487 _dist->set(target, relaxed);
488 if (!(*_mask)[target]) {
489 _mask->set(target, true);
490 nextProcess.push_back(target);
495 _process.swap(nextProcess);
496 return _process.empty();
499 /// \brief Executes the algorithm.
501 /// \pre init() must be called and at least one node should be added
502 /// with addSource() before using this function.
504 /// This method runs the %BellmanFord algorithm from the root node(s)
505 /// in order to compute the shortest path to each node. The algorithm
507 /// - The shortest path tree.
508 /// - The distance of each node from the root(s).
510 int num = countNodes(*graph) - 1;
511 for (int i = 0; i < num; ++i) {
512 if (processNextWeakRound()) break;
516 /// \brief Executes the algorithm and checks the negative cycles.
518 /// \pre init() must be called and at least one node should be added
519 /// with addSource() before using this function. If there is
520 /// a negative cycles in the graph it gives back false.
522 /// This method runs the %BellmanFord algorithm from the root node(s)
523 /// in order to compute the shortest path to each node. The algorithm
525 /// - The shortest path tree.
526 /// - The distance of each node from the root(s).
527 bool checkedStart() {
528 int num = countNodes(*graph);
529 for (int i = 0; i < num; ++i) {
530 if (processNextWeakRound()) return true;
532 return _process.empty();
535 /// \brief Executes the algorithm with path length limit.
537 /// \pre init() must be called and at least one node should be added
538 /// with addSource() before using this function.
540 /// This method runs the %BellmanFord algorithm from the root
541 /// node(s) in order to compute the shortest path lengths with at
542 /// most \c num edge.
544 /// \warning The paths with limited edge number cannot be retrieved
545 /// easily with \ref path() or \ref predEdge() functions. If you
546 /// need the shortest path and not just the distance you should store
547 /// after each iteration the \ref predEdgeMap() map and manually build
550 /// The algorithm computes
551 /// - The predecessor edge from each node.
552 /// - The limited distance of each node from the root(s).
553 void limitedStart(int num) {
554 for (int i = 0; i < num; ++i) {
555 if (processNextRound()) break;
559 /// \brief Runs %BellmanFord algorithm from node \c s.
561 /// This method runs the %BellmanFord algorithm from a root node \c s
562 /// in order to compute the shortest path to each node. The algorithm
564 /// - The shortest path tree.
565 /// - The distance of each node from the root.
567 /// \note d.run(s) is just a shortcut of the following code.
579 /// \brief Runs %BellmanFord algorithm with limited path length
582 /// This method runs the %BellmanFord algorithm from a root node \c s
583 /// in order to compute the shortest path with at most \c len edges
584 /// to each node. The algorithm computes
585 /// - The shortest path tree.
586 /// - The distance of each node from the root.
588 /// \note d.run(s, num) is just a shortcut of the following code.
592 /// d.limitedStart(num);
594 void run(Node s, int num) {
602 /// \name Query Functions
603 /// The result of the %BellmanFord algorithm can be obtained using these
605 /// Before the use of these functions,
606 /// either run() or start() must be called.
610 /// \brief Lemon iterator for get a active nodes.
612 /// Lemon iterator for get the active nodes. This class provides a
613 /// common style lemon iterator which gives back a subset of the
614 /// nodes. The iterated nodes are active in the algorithm after
615 /// the last phase so these should be checked in the next phase to
616 /// find augmenting edges from these.
620 /// \brief Constructor.
622 /// Constructor for get the nodeset of the variable.
623 ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
625 _index = _algorithm->_process.size() - 1;
628 /// \brief Invalid constructor.
630 /// Invalid constructor.
631 ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
633 /// \brief Conversion to node.
635 /// Conversion to node.
636 operator Node() const {
637 return _index >= 0 ? _algorithm->_process[_index] : INVALID;
640 /// \brief Increment operator.
642 /// Increment operator.
643 ActiveIt& operator++() {
648 bool operator==(const ActiveIt& it) const {
649 return static_cast<Node>(*this) == static_cast<Node>(it);
651 bool operator!=(const ActiveIt& it) const {
652 return static_cast<Node>(*this) != static_cast<Node>(it);
654 bool operator<(const ActiveIt& it) const {
655 return static_cast<Node>(*this) < static_cast<Node>(it);
659 const BellmanFord* _algorithm;
663 typedef PredMapPath<Graph, PredMap> Path;
665 /// \brief Gives back the shortest path.
667 /// Gives back the shortest path.
668 /// \pre The \c t should be reachable from the source.
671 return Path(*graph, *_pred, t);
675 // TODO : implement negative cycle
676 // /// \brief Gives back a negative cycle.
678 // /// This function gives back a negative cycle.
679 // /// If the algorithm have not found yet negative cycle it will give back
680 // /// an empty path.
681 // Path negativeCycle() {
682 // typename Graph::template NodeMap<int> state(*graph, 0);
683 // for (ActiveIt it(*this); it != INVALID; ++it) {
684 // if (state[it] == 0) {
685 // for (Node t = it; predEdge(t) != INVALID; t = predNode(t)) {
686 // if (state[t] == 0) {
688 // } else if (state[t] == 2) {
692 // typename Path::Builder b(p);
693 // b.setStartNode(t);
694 // b.pushFront(predEdge(t));
695 // for(Node s = predNode(t); s != t; s = predNode(s)) {
696 // b.pushFront(predEdge(s));
702 // for (Node t = it; predEdge(t) != INVALID; t = predNode(t)) {
703 // if (state[t] == 1) {
714 /// \brief The distance of a node from the root.
716 /// Returns the distance of a node from the root.
717 /// \pre \ref run() must be called before using this function.
718 /// \warning If node \c v in unreachable from the root the return value
719 /// of this funcion is undefined.
720 Value dist(Node v) const { return (*_dist)[v]; }
722 /// \brief Returns the 'previous edge' of the shortest path tree.
724 /// For a node \c v it returns the 'previous edge' of the shortest path
725 /// tree, i.e. it returns the last edge of a shortest path from the root
726 /// to \c v. It is \ref INVALID if \c v is unreachable from the root or
727 /// if \c v=s. The shortest path tree used here is equal to the shortest
728 /// path tree used in \ref predNode().
729 /// \pre \ref run() must be called before using
731 Edge predEdge(Node v) const { return (*_pred)[v]; }
733 /// \brief Returns the 'previous node' of the shortest path tree.
735 /// For a node \c v it returns the 'previous node' of the shortest path
736 /// tree, i.e. it returns the last but one node from a shortest path from
737 /// the root to \c /v. It is INVALID if \c v is unreachable from the root
738 /// or if \c v=s. The shortest path tree used here is equal to the
739 /// shortest path tree used in \ref predEdge(). \pre \ref run() must be
740 /// called before using this function.
741 Node predNode(Node v) const {
742 return (*_pred)[v] == INVALID ? INVALID : graph->source((*_pred)[v]);
745 /// \brief Returns a reference to the NodeMap of distances.
747 /// Returns a reference to the NodeMap of distances. \pre \ref run() must
748 /// be called before using this function.
749 const DistMap &distMap() const { return *_dist;}
751 /// \brief Returns a reference to the shortest path tree map.
753 /// Returns a reference to the NodeMap of the edges of the
754 /// shortest path tree.
755 /// \pre \ref run() must be called before using this function.
756 const PredMap &predMap() const { return *_pred; }
758 /// \brief Checks if a node is reachable from the root.
760 /// Returns \c true if \c v is reachable from the root.
761 /// \pre \ref run() must be called before using this function.
763 bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); }
768 /// \brief Default traits class of BellmanFord function.
770 /// Default traits class of BellmanFord function.
771 /// \param _Graph Graph type.
772 /// \param _LengthMap Type of length map.
773 template <typename _Graph, typename _LengthMap>
774 struct BellmanFordWizardDefaultTraits {
775 /// \brief The graph type the algorithm runs on.
776 typedef _Graph Graph;
778 /// \brief The type of the map that stores the edge lengths.
780 /// The type of the map that stores the edge lengths.
781 /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
782 typedef _LengthMap LengthMap;
784 /// \brief The value type of the length map.
785 typedef typename _LengthMap::Value Value;
787 /// \brief Operation traits for bellman-ford algorithm.
789 /// It defines the infinity type on the given Value type
790 /// and the used operation.
791 /// \see BellmanFordDefaultOperationTraits
792 typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
794 /// \brief The type of the map that stores the last
795 /// edges of the shortest paths.
797 /// The type of the map that stores the last
798 /// edges of the shortest paths.
799 /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
800 typedef NullMap <typename _Graph::Node,typename _Graph::Edge> PredMap;
802 /// \brief Instantiates a PredMap.
804 /// This function instantiates a \ref PredMap.
805 static PredMap *createPredMap(const _Graph &) {
806 return new PredMap();
808 /// \brief The type of the map that stores the dists of the nodes.
810 /// The type of the map that stores the dists of the nodes.
811 /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
812 typedef NullMap<typename Graph::Node, Value> DistMap;
813 /// \brief Instantiates a DistMap.
815 /// This function instantiates a \ref DistMap.
816 static DistMap *createDistMap(const _Graph &) {
817 return new DistMap();
821 /// \brief Default traits used by \ref BellmanFordWizard
823 /// To make it easier to use BellmanFord algorithm
824 /// we have created a wizard class.
825 /// This \ref BellmanFordWizard class needs default traits,
826 /// as well as the \ref BellmanFord class.
827 /// The \ref BellmanFordWizardBase is a class to be the default traits of the
828 /// \ref BellmanFordWizard class.
829 /// \todo More named parameters are required...
830 template<class _Graph,class _LengthMap>
831 class BellmanFordWizardBase
832 : public BellmanFordWizardDefaultTraits<_Graph,_LengthMap> {
834 typedef BellmanFordWizardDefaultTraits<_Graph,_LengthMap> Base;
836 /// Type of the nodes in the graph.
837 typedef typename Base::Graph::Node Node;
839 /// Pointer to the underlying graph.
841 /// Pointer to the length map
843 ///Pointer to the map of predecessors edges.
845 ///Pointer to the map of distances.
847 ///Pointer to the source node.
853 /// This constructor does not require parameters, therefore it initiates
854 /// all of the attributes to default values (0, INVALID).
855 BellmanFordWizardBase() : _graph(0), _length(0), _pred(0),
856 _dist(0), _source(INVALID) {}
860 /// This constructor requires some parameters,
861 /// listed in the parameters list.
862 /// Others are initiated to 0.
863 /// \param graph is the initial value of \ref _graph
864 /// \param length is the initial value of \ref _length
865 /// \param source is the initial value of \ref _source
866 BellmanFordWizardBase(const _Graph& graph,
867 const _LengthMap& length,
868 Node source = INVALID) :
869 _graph(reinterpret_cast<void*>(const_cast<_Graph*>(&graph))),
870 _length(reinterpret_cast<void*>(const_cast<_LengthMap*>(&length))),
871 _pred(0), _dist(0), _source(source) {}
875 /// A class to make the usage of BellmanFord algorithm easier
877 /// This class is created to make it easier to use BellmanFord algorithm.
878 /// It uses the functions and features of the plain \ref BellmanFord,
879 /// but it is much simpler to use it.
881 /// Simplicity means that the way to change the types defined
882 /// in the traits class is based on functions that returns the new class
883 /// and not on templatable built-in classes.
884 /// When using the plain \ref BellmanFord
885 /// the new class with the modified type comes from
886 /// the original class by using the ::
887 /// operator. In the case of \ref BellmanFordWizard only
888 /// a function have to be called and it will
889 /// return the needed class.
891 /// It does not have own \ref run method. When its \ref run method is called
892 /// it initiates a plain \ref BellmanFord class, and calls the \ref
893 /// BellmanFord::run method of it.
894 template<class _Traits>
895 class BellmanFordWizard : public _Traits {
896 typedef _Traits Base;
898 ///The type of the underlying graph.
899 typedef typename _Traits::Graph Graph;
901 typedef typename Graph::Node Node;
902 typedef typename Graph::NodeIt NodeIt;
903 typedef typename Graph::Edge Edge;
904 typedef typename Graph::OutEdgeIt EdgeIt;
906 ///The type of the map that stores the edge lengths.
907 typedef typename _Traits::LengthMap LengthMap;
909 ///The type of the length of the edges.
910 typedef typename LengthMap::Value Value;
912 ///\brief The type of the map that stores the last
913 ///edges of the shortest paths.
914 typedef typename _Traits::PredMap PredMap;
916 ///The type of the map that stores the dists of the nodes.
917 typedef typename _Traits::DistMap DistMap;
921 BellmanFordWizard() : _Traits() {}
923 /// \brief Constructor that requires parameters.
925 /// Constructor that requires parameters.
926 /// These parameters will be the default values for the traits class.
927 BellmanFordWizard(const Graph& graph, const LengthMap& length,
929 : _Traits(graph, length, src) {}
931 /// \brief Copy constructor
932 BellmanFordWizard(const _Traits &b) : _Traits(b) {}
934 ~BellmanFordWizard() {}
936 /// \brief Runs BellmanFord algorithm from a given node.
938 /// Runs BellmanFord algorithm from a given node.
939 /// The node can be given by the \ref source function.
941 if(Base::_source == INVALID) throw UninitializedParameter();
942 BellmanFord<Graph,LengthMap,_Traits>
943 bf(*reinterpret_cast<const Graph*>(Base::_graph),
944 *reinterpret_cast<const LengthMap*>(Base::_length));
945 if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
946 if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
947 bf.run(Base::_source);
950 /// \brief Runs BellmanFord algorithm from the given node.
952 /// Runs BellmanFord algorithm from the given node.
953 /// \param source is the given source.
960 struct DefPredMapBase : public Base {
962 static PredMap *createPredMap(const Graph &) { return 0; };
963 DefPredMapBase(const _Traits &b) : _Traits(b) {}
966 ///\brief \ref named-templ-param "Named parameter"
967 ///function for setting PredMap type
969 /// \ref named-templ-param "Named parameter"
970 ///function for setting PredMap type
973 BellmanFordWizard<DefPredMapBase<T> > predMap(const T &t)
975 Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
976 return BellmanFordWizard<DefPredMapBase<T> >(*this);
980 struct DefDistMapBase : public Base {
982 static DistMap *createDistMap(const Graph &) { return 0; };
983 DefDistMapBase(const _Traits &b) : _Traits(b) {}
986 ///\brief \ref named-templ-param "Named parameter"
987 ///function for setting DistMap type
989 /// \ref named-templ-param "Named parameter"
990 ///function for setting DistMap type
993 BellmanFordWizard<DefDistMapBase<T> > distMap(const T &t) {
994 Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
995 return BellmanFordWizard<DefDistMapBase<T> >(*this);
999 struct DefOperationTraitsBase : public Base {
1000 typedef T OperationTraits;
1001 DefOperationTraitsBase(const _Traits &b) : _Traits(b) {}
1004 ///\brief \ref named-templ-param "Named parameter"
1005 ///function for setting OperationTraits type
1007 /// \ref named-templ-param "Named parameter"
1008 ///function for setting OperationTraits type
1011 BellmanFordWizard<DefOperationTraitsBase<T> > distMap() {
1012 return BellmanFordWizard<DefDistMapBase<T> >(*this);
1015 /// \brief Sets the source node, from which the BellmanFord algorithm runs.
1017 /// Sets the source node, from which the BellmanFord algorithm runs.
1018 /// \param source is the source node.
1019 BellmanFordWizard<_Traits>& source(Node src) {
1020 Base::_source = src;
1026 /// \brief Function type interface for BellmanFord algorithm.
1028 /// \ingroup shortest_path
1029 /// Function type interface for BellmanFord algorithm.
1031 /// This function also has several \ref named-templ-func-param
1032 /// "named parameters", they are declared as the members of class
1033 /// \ref BellmanFordWizard.
1035 /// example shows how to use these parameters.
1037 /// bellmanford(g,length,source).predMap(preds).run();
1039 /// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
1040 /// to the end of the parameter list.
1041 /// \sa BellmanFordWizard
1043 template<class _Graph, class _LengthMap>
1044 BellmanFordWizard<BellmanFordWizardBase<_Graph,_LengthMap> >
1045 bellmanFord(const _Graph& graph,
1046 const _LengthMap& length,
1047 typename _Graph::Node source = INVALID) {
1048 return BellmanFordWizard<BellmanFordWizardBase<_Graph,_LengthMap> >
1049 (graph, length, source);
1052 } //END OF NAMESPACE LEMON