src/work/alpar/list_graph.h
author alpar
Sun, 25 Apr 2004 16:53:38 +0000
changeset 397 b4d7b19b6740
parent 396 639c9daed784
child 400 cb377609cf1d
permissions -rw-r--r--
I hope it works. The 'erase' functions hasn't been tested yet.
alpar@395
     1
// -*- mode:C++ -*-
alpar@395
     2
alpar@395
     3
#ifndef HUGO_SMART_GRAPH_H
alpar@395
     4
#define HUGO_SMART_GRAPH_H
alpar@395
     5
alpar@395
     6
///\file
alpar@397
     7
///\brief ListGraph and SymListGraph classes.
alpar@395
     8
alpar@395
     9
#include <vector>
alpar@395
    10
#include <limits.h>
alpar@395
    11
alpar@395
    12
#include "invalid.h"
alpar@395
    13
alpar@395
    14
namespace hugo {
alpar@395
    15
alpar@397
    16
  class SymListGraph;
alpar@395
    17
alpar@395
    18
  ///A smart graph class.
alpar@395
    19
alpar@397
    20
  ///This is a simple and fast erasable graph implementation.
alpar@397
    21
  ///
alpar@395
    22
  ///It conforms to the graph interface documented under
alpar@395
    23
  ///the description of \ref GraphSkeleton.
alpar@395
    24
  ///\sa \ref GraphSkeleton.
alpar@397
    25
  class ListGraph {
alpar@395
    26
alpar@397
    27
    //Nodes are double linked.
alpar@397
    28
    //The free nodes are only single linked using the "next" field.
alpar@395
    29
    struct NodeT 
alpar@395
    30
    {
alpar@397
    31
      int first_in,first_out;
alpar@397
    32
      int prev, next;
alpar@397
    33
      //      NodeT() {}
alpar@395
    34
    };
alpar@397
    35
    //Edges are double linked.
alpar@397
    36
    //The free edges are only single linked using the "next_in" field.
alpar@395
    37
    struct EdgeT 
alpar@395
    38
    {
alpar@397
    39
      int head, tail;
alpar@397
    40
      int prev_in, prev_out;
alpar@397
    41
      int next_in, next_out;
alpar@395
    42
      //FIXME: is this necessary?
alpar@397
    43
      //      EdgeT() : next_in(-1), next_out(-1) prev_in(-1), prev_out(-1) {}  
alpar@395
    44
    };
alpar@395
    45
alpar@395
    46
    std::vector<NodeT> nodes;
alpar@397
    47
    //The first node
alpar@397
    48
    int first_node;
alpar@397
    49
    //The first free node
alpar@397
    50
    int first_free_node;
alpar@395
    51
    std::vector<EdgeT> edges;
alpar@397
    52
    //The first free edge
alpar@397
    53
    int first_free_edge;
alpar@395
    54
    
alpar@397
    55
  protected:
alpar@395
    56
    
alpar@395
    57
    template <typename Key> class DynMapBase
alpar@395
    58
    {
alpar@395
    59
    protected:
alpar@397
    60
      const ListGraph* G; 
alpar@395
    61
    public:
alpar@395
    62
      virtual void add(const Key k) = NULL;
alpar@395
    63
      virtual void erase(const Key k) = NULL;
alpar@397
    64
      DynMapBase(const ListGraph &_G) : G(&_G) {}
alpar@395
    65
      virtual ~DynMapBase() {}
alpar@397
    66
      friend class ListGraph;
alpar@395
    67
    };
alpar@395
    68
    
alpar@395
    69
  public:
alpar@395
    70
    template <typename T> class EdgeMap;
alpar@395
    71
    template <typename T> class EdgeMap;
alpar@397
    72
    
alpar@395
    73
    class Node;
alpar@395
    74
    class Edge;
alpar@395
    75
alpar@395
    76
    //  protected:
alpar@395
    77
    // HELPME:
alpar@395
    78
  protected:
alpar@395
    79
    ///\bug It must be public because of SymEdgeMap.
alpar@395
    80
    ///
alpar@395
    81
    mutable std::vector<DynMapBase<Node> * > dyn_node_maps;
alpar@395
    82
    ///\bug It must be public because of SymEdgeMap.
alpar@395
    83
    ///
alpar@395
    84
    mutable std::vector<DynMapBase<Edge> * > dyn_edge_maps;
alpar@395
    85
    
alpar@395
    86
  public:
alpar@395
    87
alpar@395
    88
    class NodeIt;
alpar@395
    89
    class EdgeIt;
alpar@395
    90
    class OutEdgeIt;
alpar@395
    91
    class InEdgeIt;
alpar@395
    92
    
alpar@395
    93
    template <typename T> class NodeMap;
alpar@395
    94
    template <typename T> class EdgeMap;
alpar@395
    95
    
alpar@395
    96
  public:
alpar@395
    97
alpar@397
    98
    ListGraph() : nodes(), first_node(-1),
alpar@397
    99
		  first_free_node(-1), edges(), first_free_edge(-1) {}
alpar@397
   100
    ListGraph(const ListGraph &_g) : nodes(_g.nodes), first_node(_g.first_node),
alpar@397
   101
				     first_free_node(_g.first_free_node),
alpar@397
   102
				     edges(_g.edges),
alpar@397
   103
				     first_free_edge(_g.first_free_edge) {}
alpar@395
   104
    
alpar@397
   105
    ~ListGraph()
alpar@395
   106
    {
alpar@395
   107
      for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
alpar@395
   108
	  i!=dyn_node_maps.end(); ++i) (**i).G=NULL;
alpar@395
   109
      for(std::vector<DynMapBase<Edge> * >::iterator i=dyn_edge_maps.begin();
alpar@395
   110
	  i!=dyn_edge_maps.end(); ++i) (**i).G=NULL;
alpar@395
   111
    }
alpar@395
   112
alpar@395
   113
    int nodeNum() const { return nodes.size(); }  //FIXME: What is this?
alpar@395
   114
    int edgeNum() const { return edges.size(); }  //FIXME: What is this?
alpar@395
   115
alpar@395
   116
    ///\bug This function does something different than
alpar@395
   117
    ///its name would suggests...
alpar@395
   118
    int maxNodeId() const { return nodes.size(); }  //FIXME: What is this?
alpar@395
   119
    ///\bug This function does something different than
alpar@395
   120
    ///its name would suggests...
alpar@395
   121
    int maxEdgeId() const { return edges.size(); }  //FIXME: What is this?
alpar@395
   122
alpar@395
   123
    Node tail(Edge e) const { return edges[e.n].tail; }
alpar@395
   124
    Node head(Edge e) const { return edges[e.n].head; }
alpar@395
   125
alpar@395
   126
    Node aNode(OutEdgeIt e) const { return edges[e.n].tail; }
alpar@395
   127
    Node aNode(InEdgeIt e) const { return edges[e.n].head; }
alpar@395
   128
alpar@395
   129
    Node bNode(OutEdgeIt e) const { return edges[e.n].head; }
alpar@395
   130
    Node bNode(InEdgeIt e) const { return edges[e.n].tail; }
alpar@395
   131
alpar@395
   132
    NodeIt& first(NodeIt& v) const { 
alpar@395
   133
      v=NodeIt(*this); return v; }
alpar@395
   134
    EdgeIt& first(EdgeIt& e) const { 
alpar@395
   135
      e=EdgeIt(*this); return e; }
alpar@395
   136
    OutEdgeIt& first(OutEdgeIt& e, const Node v) const { 
alpar@395
   137
      e=OutEdgeIt(*this,v); return e; }
alpar@395
   138
    InEdgeIt& first(InEdgeIt& e, const Node v) const { 
alpar@395
   139
      e=InEdgeIt(*this,v); return e; }
alpar@395
   140
alpar@395
   141
//     template< typename It >
alpar@395
   142
//     It first() const { It e; first(e); return e; }
alpar@395
   143
alpar@395
   144
//     template< typename It >
alpar@395
   145
//     It first(Node v) const { It e; first(e,v); return e; }
alpar@395
   146
alpar@395
   147
    bool valid(Edge e) const { return e.n!=-1; }
alpar@395
   148
    bool valid(Node n) const { return n.n!=-1; }
alpar@395
   149
    
alpar@395
   150
    void setInvalid(Edge &e) { e.n=-1; }
alpar@395
   151
    void setInvalid(Node &n) { n.n=-1; }
alpar@395
   152
    
alpar@395
   153
    template <typename It> It getNext(It it) const
alpar@395
   154
    { It tmp(it); return next(tmp); }
alpar@395
   155
alpar@395
   156
    NodeIt& next(NodeIt& it) const { 
alpar@397
   157
      it.n=nodes[it.n].next; 
alpar@395
   158
      return it; 
alpar@395
   159
    }
alpar@395
   160
    OutEdgeIt& next(OutEdgeIt& it) const
alpar@395
   161
    { it.n=edges[it.n].next_out; return it; }
alpar@395
   162
    InEdgeIt& next(InEdgeIt& it) const
alpar@395
   163
    { it.n=edges[it.n].next_in; return it; }
alpar@397
   164
    EdgeIt& next(EdgeIt& it) const {
alpar@397
   165
      if(edges[it.n].next_in!=-1) { 
alpar@397
   166
	it.n=edges[it.n].next_in;
alpar@397
   167
      }
alpar@397
   168
      else {
alpar@397
   169
	int n;
alpar@397
   170
	for(n=nodes[edges[it.n].head].next;
alpar@397
   171
	    n!=-1 && nodes[n].first_in == -1;
alpar@397
   172
	    n = nodes[n].next) ;
alpar@397
   173
	it.n = (n==-1)?-1:nodes[n].first_in;
alpar@397
   174
      }
alpar@397
   175
      return it;
alpar@397
   176
    }
alpar@395
   177
alpar@395
   178
    int id(Node v) const { return v.n; }
alpar@395
   179
    int id(Edge e) const { return e.n; }
alpar@395
   180
alpar@397
   181
    /// Adds a new node to the graph.
alpar@397
   182
alpar@397
   183
    /// \todo It adds the nodes in a reversed order.
alpar@397
   184
    /// (i.e. the lastly added node becomes the first.)
alpar@395
   185
    Node addNode() {
alpar@397
   186
      int n;
alpar@397
   187
      
alpar@397
   188
      if(first_free_node==-1)
alpar@397
   189
	{
alpar@397
   190
	  n = nodes.size();
alpar@397
   191
	  nodes.push_back(NodeT());
alpar@397
   192
	}
alpar@397
   193
      else {
alpar@397
   194
	n = first_free_node;
alpar@397
   195
	first_free_node = nodes[n].next;
alpar@397
   196
      }
alpar@397
   197
      
alpar@397
   198
      nodes[n].next = first_node;
alpar@397
   199
      if(first_node != -1) nodes[first_node].prev = n;
alpar@397
   200
      first_node = n;
alpar@397
   201
      nodes[n].prev = -1;
alpar@397
   202
      
alpar@397
   203
      nodes[n].first_in = nodes[n].first_out = -1;
alpar@397
   204
      
alpar@397
   205
      Node nn; nn.n=n;
alpar@395
   206
alpar@397
   207
      //Update dynamic maps
alpar@395
   208
      for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
alpar@397
   209
	  i!=dyn_node_maps.end(); ++i) (**i).add(nn);
alpar@395
   210
alpar@397
   211
      return nn;
alpar@395
   212
    }
alpar@395
   213
    
alpar@395
   214
    Edge addEdge(Node u, Node v) {
alpar@397
   215
      int n;
alpar@397
   216
      
alpar@397
   217
      if(first_free_edge==-1)
alpar@397
   218
	{
alpar@397
   219
	  n = edges.size();
alpar@397
   220
	  edges.push_back(EdgeT());
alpar@397
   221
	}
alpar@397
   222
      else {
alpar@397
   223
	n = first_free_edge;
alpar@397
   224
	first_free_edge = edges[n].next_in;
alpar@397
   225
      }
alpar@397
   226
      
alpar@397
   227
      edges[n].tail = u.n; edges[n].head = v.n;
alpar@395
   228
alpar@397
   229
      edges[n].next_out = nodes[u.n].first_out;
alpar@397
   230
      if(nodes[u.n].first_out != -1) edges[nodes[u.n].first_out].prev_out = n;
alpar@397
   231
      edges[n].next_in = nodes[v.n].first_in;
alpar@397
   232
      if(nodes[v.n].first_in != -1) edges[nodes[v.n].first_in].prev_in = n;
alpar@397
   233
      edges[n].prev_in = edges[n].prev_out = -1;
alpar@397
   234
	
alpar@397
   235
      nodes[u.n].first_out = nodes[v.n].first_in = n;
alpar@397
   236
alpar@397
   237
      Edge e; e.n=n;
alpar@397
   238
alpar@397
   239
      //Update dynamic maps
alpar@395
   240
      for(std::vector<DynMapBase<Edge> * >::iterator i=dyn_edge_maps.begin();
alpar@395
   241
	  i!=dyn_edge_maps.end(); ++i) (**i).add(e);
alpar@395
   242
alpar@395
   243
      return e;
alpar@395
   244
    }
alpar@395
   245
alpar@397
   246
  private:
alpar@397
   247
    void eraseEdge(int n) {
alpar@397
   248
      
alpar@397
   249
      if(edges[n].next_in!=-1)
alpar@397
   250
	edges[edges[n].next_in].prev_in = edges[n].prev_in;
alpar@397
   251
      if(edges[n].prev_in!=-1)
alpar@397
   252
	edges[edges[n].prev_in].next_in = edges[n].next_in;
alpar@397
   253
      else nodes[edges[n].head].first_in = edges[n].next_in;
alpar@397
   254
      
alpar@397
   255
      if(edges[n].next_out!=-1)
alpar@397
   256
	edges[edges[n].next_out].prev_out = edges[n].prev_out;
alpar@397
   257
      if(edges[n].prev_out!=-1)
alpar@397
   258
	edges[edges[n].prev_out].next_out = edges[n].next_out;
alpar@397
   259
      else nodes[edges[n].tail].first_out = edges[n].next_out;
alpar@397
   260
      
alpar@397
   261
      edges[n].next_in = first_free_edge;
alpar@397
   262
      first_free_edge = -1;      
alpar@397
   263
alpar@397
   264
      //Update dynamic maps
alpar@397
   265
      Edge e; e.n=n;
alpar@397
   266
      for(std::vector<DynMapBase<Edge> * >::iterator i=dyn_edge_maps.begin();
alpar@397
   267
	  i!=dyn_edge_maps.end(); ++i) (**i).erase(e);
alpar@397
   268
    }
alpar@397
   269
      
alpar@397
   270
  public:
alpar@397
   271
alpar@397
   272
    void erase(Node nn) {
alpar@397
   273
      int n=nn.n;
alpar@397
   274
      
alpar@397
   275
      int m;
alpar@397
   276
      while((m=nodes[n].first_in)!=-1) eraseEdge(m);
alpar@397
   277
      while((m=nodes[n].first_out)!=-1) eraseEdge(m);
alpar@397
   278
alpar@397
   279
      if(nodes[n].next != -1) nodes[nodes[n].next].prev = nodes[n].prev;
alpar@397
   280
      if(nodes[n].prev != -1) nodes[nodes[n].prev].next = nodes[n].next;
alpar@397
   281
      else first_node = nodes[n].next;
alpar@397
   282
      
alpar@397
   283
      nodes[n].next = first_free_node;
alpar@397
   284
      first_free_node = n;
alpar@397
   285
alpar@397
   286
      //Update dynamic maps
alpar@397
   287
      for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
alpar@397
   288
	  i!=dyn_node_maps.end(); ++i) (**i).erase(nn);
alpar@397
   289
    }
alpar@397
   290
    
alpar@397
   291
    void erase(Edge e) { eraseEdge(e.n); }
alpar@397
   292
alpar@397
   293
    ///\bug Dynamic maps must be updated!
alpar@397
   294
    ///
alpar@397
   295
    void clear() {
alpar@397
   296
      nodes.clear();edges.clear();
alpar@397
   297
      first_node=first_free_node=first_free_edge=-1;
alpar@397
   298
    }
alpar@395
   299
alpar@395
   300
    class Node {
alpar@397
   301
      friend class ListGraph;
alpar@395
   302
      template <typename T> friend class NodeMap;
alpar@395
   303
      
alpar@395
   304
      friend class Edge;
alpar@395
   305
      friend class OutEdgeIt;
alpar@395
   306
      friend class InEdgeIt;
alpar@395
   307
      friend class SymEdge;
alpar@395
   308
alpar@395
   309
    protected:
alpar@395
   310
      int n;
alpar@397
   311
      friend int ListGraph::id(Node v) const; 
alpar@395
   312
      Node(int nn) {n=nn;}
alpar@395
   313
    public:
alpar@395
   314
      Node() {}
alpar@395
   315
      Node (Invalid i) { n=-1; }
alpar@395
   316
      bool operator==(const Node i) const {return n==i.n;}
alpar@395
   317
      bool operator!=(const Node i) const {return n!=i.n;}
alpar@395
   318
      bool operator<(const Node i) const {return n<i.n;}
alpar@395
   319
    };
alpar@395
   320
    
alpar@395
   321
    class NodeIt : public Node {
alpar@397
   322
      friend class ListGraph;
alpar@395
   323
    public:
alpar@397
   324
      NodeIt(const ListGraph& G) : Node(G.first_node) { }
alpar@395
   325
      NodeIt() : Node() { }
alpar@395
   326
    };
alpar@395
   327
alpar@395
   328
    class Edge {
alpar@397
   329
      friend class ListGraph;
alpar@395
   330
      template <typename T> friend class EdgeMap;
alpar@395
   331
alpar@397
   332
      //template <typename T> friend class SymListGraph::SymEdgeMap;      
alpar@397
   333
      //friend Edge SymListGraph::opposite(Edge) const;
alpar@395
   334
      
alpar@395
   335
      friend class Node;
alpar@395
   336
      friend class NodeIt;
alpar@395
   337
    protected:
alpar@395
   338
      int n;
alpar@397
   339
      friend int ListGraph::id(Edge e) const;
alpar@395
   340
alpar@395
   341
      Edge(int nn) {n=nn;}
alpar@395
   342
    public:
alpar@395
   343
      Edge() { }
alpar@395
   344
      Edge (Invalid) { n=-1; }
alpar@395
   345
      bool operator==(const Edge i) const {return n==i.n;}
alpar@395
   346
      bool operator!=(const Edge i) const {return n!=i.n;}
alpar@395
   347
      bool operator<(const Edge i) const {return n<i.n;}
alpar@395
   348
      ///\bug This is a workaround until somebody tells me how to
alpar@397
   349
      ///make class \c SymListGraph::SymEdgeMap friend of Edge
alpar@395
   350
      int &idref() {return n;}
alpar@395
   351
      const int &idref() const {return n;}
alpar@395
   352
    };
alpar@395
   353
    
alpar@395
   354
    class EdgeIt : public Edge {
alpar@397
   355
      friend class ListGraph;
alpar@395
   356
    public:
alpar@397
   357
      EdgeIt(const ListGraph& G) : Edge() {
alpar@397
   358
      	int m;
alpar@397
   359
	for(m=G.first_node;
alpar@397
   360
	    m!=-1 && G.nodes[m].first_in == -1; m = G.nodes[m].next);
alpar@397
   361
	n = (m==-1)?-1:G.nodes[m].first_in;
alpar@397
   362
      }
alpar@395
   363
      EdgeIt (Invalid i) : Edge(i) { }
alpar@395
   364
      EdgeIt() : Edge() { }
alpar@395
   365
      ///\bug This is a workaround until somebody tells me how to
alpar@397
   366
      ///make class \c SymListGraph::SymEdgeMap friend of Edge
alpar@395
   367
      int &idref() {return n;}
alpar@395
   368
    };
alpar@395
   369
    
alpar@395
   370
    class OutEdgeIt : public Edge {
alpar@397
   371
      friend class ListGraph;
alpar@395
   372
    public: 
alpar@395
   373
      OutEdgeIt() : Edge() { }
alpar@395
   374
      OutEdgeIt (Invalid i) : Edge(i) { }
alpar@395
   375
alpar@397
   376
      OutEdgeIt(const ListGraph& G,const Node v)
alpar@395
   377
	: Edge(G.nodes[v.n].first_out) {}
alpar@395
   378
    };
alpar@395
   379
    
alpar@395
   380
    class InEdgeIt : public Edge {
alpar@397
   381
      friend class ListGraph;
alpar@395
   382
    public: 
alpar@395
   383
      InEdgeIt() : Edge() { }
alpar@395
   384
      InEdgeIt (Invalid i) : Edge(i) { }
alpar@397
   385
      InEdgeIt(const ListGraph& G,Node v) :Edge(G.nodes[v.n].first_in){}
alpar@395
   386
    };
alpar@395
   387
alpar@395
   388
    template <typename T> class NodeMap : public DynMapBase<Node>
alpar@395
   389
    {
alpar@395
   390
      std::vector<T> container;
alpar@395
   391
alpar@395
   392
    public:
alpar@395
   393
      typedef T ValueType;
alpar@395
   394
      typedef Node KeyType;
alpar@395
   395
alpar@397
   396
      NodeMap(const ListGraph &_G) :
alpar@395
   397
	DynMapBase<Node>(_G), container(_G.maxNodeId())
alpar@395
   398
      {
alpar@395
   399
	G->dyn_node_maps.push_back(this);
alpar@395
   400
      }
alpar@397
   401
      NodeMap(const ListGraph &_G,const T &t) :
alpar@395
   402
	DynMapBase<Node>(_G), container(_G.maxNodeId(),t)
alpar@395
   403
      {
alpar@395
   404
	G->dyn_node_maps.push_back(this);
alpar@395
   405
      }
alpar@395
   406
      
alpar@395
   407
      NodeMap(const NodeMap<T> &m) :
alpar@395
   408
 	DynMapBase<Node>(*m.G), container(m.container)
alpar@395
   409
      {
alpar@395
   410
 	G->dyn_node_maps.push_back(this);
alpar@395
   411
      }
alpar@395
   412
alpar@395
   413
      template<typename TT> friend class NodeMap;
alpar@395
   414
 
alpar@395
   415
      ///\todo It can copy between different types.
alpar@395
   416
      ///
alpar@395
   417
      template<typename TT> NodeMap(const NodeMap<TT> &m) :
alpar@395
   418
	DynMapBase<Node>(*m.G)
alpar@395
   419
      {
alpar@395
   420
	G->dyn_node_maps.push_back(this);
alpar@395
   421
	typename std::vector<TT>::const_iterator i;
alpar@395
   422
	for(typename std::vector<TT>::const_iterator i=m.container.begin();
alpar@395
   423
	    i!=m.container.end();
alpar@395
   424
	    i++)
alpar@395
   425
	  container.push_back(*i);
alpar@395
   426
      }
alpar@395
   427
      ~NodeMap()
alpar@395
   428
      {
alpar@395
   429
	if(G) {
alpar@395
   430
	  std::vector<DynMapBase<Node>* >::iterator i;
alpar@395
   431
	  for(i=G->dyn_node_maps.begin();
alpar@395
   432
	      i!=G->dyn_node_maps.end() && *i!=this; ++i) ;
alpar@395
   433
	  //if(*i==this) G->dyn_node_maps.erase(i); //FIXME: Way too slow...
alpar@395
   434
	  //A better way to do that: (Is this really important?)
alpar@395
   435
	  if(*i==this) {
alpar@395
   436
	    *i=G->dyn_node_maps.back();
alpar@395
   437
	    G->dyn_node_maps.pop_back();
alpar@395
   438
	  }
alpar@395
   439
	}
alpar@395
   440
      }
alpar@395
   441
alpar@395
   442
      void add(const Node k) 
alpar@395
   443
      {
alpar@395
   444
	if(k.n>=int(container.size())) container.resize(k.n+1);
alpar@395
   445
      }
alpar@395
   446
alpar@395
   447
      void erase(const Node) { }
alpar@395
   448
      
alpar@395
   449
      void set(Node n, T a) { container[n.n]=a; }
alpar@395
   450
      //'T& operator[](Node n)' would be wrong here
alpar@395
   451
      typename std::vector<T>::reference
alpar@395
   452
      operator[](Node n) { return container[n.n]; }
alpar@395
   453
      //'const T& operator[](Node n)' would be wrong here
alpar@395
   454
      typename std::vector<T>::const_reference 
alpar@395
   455
      operator[](Node n) const { return container[n.n]; }
alpar@395
   456
alpar@395
   457
      ///\warning There is no safety check at all!
alpar@395
   458
      ///Using operator = between maps attached to different graph may
alpar@395
   459
      ///cause serious problem.
alpar@395
   460
      ///\todo Is this really so?
alpar@395
   461
      ///\todo It can copy between different types.
alpar@395
   462
      const NodeMap<T>& operator=(const NodeMap<T> &m)
alpar@395
   463
      {
alpar@395
   464
	container = m.container;
alpar@395
   465
	return *this;
alpar@395
   466
      }
alpar@395
   467
      template<typename TT>
alpar@395
   468
      const NodeMap<T>& operator=(const NodeMap<TT> &m)
alpar@395
   469
      {
alpar@395
   470
	copy(m.container.begin(), m.container.end(), container.begin());
alpar@395
   471
	return *this;
alpar@395
   472
      }
alpar@395
   473
      
alpar@395
   474
      void update() {}    //Useless for Dynamic Maps
alpar@395
   475
      void update(T a) {}  //Useless for Dynamic Maps
alpar@395
   476
    };
alpar@395
   477
    
alpar@395
   478
    template <typename T> class EdgeMap : public DynMapBase<Edge>
alpar@395
   479
    {
alpar@395
   480
      std::vector<T> container;
alpar@395
   481
alpar@395
   482
    public:
alpar@395
   483
      typedef T ValueType;
alpar@395
   484
      typedef Edge KeyType;
alpar@395
   485
alpar@397
   486
      EdgeMap(const ListGraph &_G) :
alpar@395
   487
	DynMapBase<Edge>(_G), container(_G.maxEdgeId())
alpar@395
   488
      {
alpar@395
   489
	//FIXME: What if there are empty Id's?
alpar@395
   490
	//FIXME: Can I use 'this' in a constructor?
alpar@395
   491
	G->dyn_edge_maps.push_back(this);
alpar@395
   492
      }
alpar@397
   493
      EdgeMap(const ListGraph &_G,const T &t) :
alpar@395
   494
	DynMapBase<Edge>(_G), container(_G.maxEdgeId(),t)
alpar@395
   495
      {
alpar@395
   496
	G->dyn_edge_maps.push_back(this);
alpar@395
   497
      } 
alpar@395
   498
      EdgeMap(const EdgeMap<T> &m) :
alpar@395
   499
 	DynMapBase<Edge>(*m.G), container(m.container)
alpar@395
   500
      {
alpar@395
   501
 	G->dyn_node_maps.push_back(this);
alpar@395
   502
      }
alpar@395
   503
alpar@395
   504
      template<typename TT> friend class EdgeMap;
alpar@395
   505
alpar@395
   506
      ///\todo It can copy between different types.
alpar@395
   507
      ///
alpar@395
   508
      template<typename TT> EdgeMap(const EdgeMap<TT> &m) :
alpar@395
   509
	DynMapBase<Edge>(*m.G)
alpar@395
   510
      {
alpar@395
   511
	G->dyn_node_maps.push_back(this);
alpar@395
   512
	typename std::vector<TT>::const_iterator i;
alpar@395
   513
	for(typename std::vector<TT>::const_iterator i=m.container.begin();
alpar@395
   514
	    i!=m.container.end();
alpar@395
   515
	    i++)
alpar@395
   516
	  container.push_back(*i);
alpar@395
   517
      }
alpar@395
   518
      ~EdgeMap()
alpar@395
   519
      {
alpar@395
   520
	if(G) {
alpar@395
   521
	  std::vector<DynMapBase<Edge>* >::iterator i;
alpar@395
   522
	  for(i=G->dyn_edge_maps.begin();
alpar@395
   523
	      i!=G->dyn_edge_maps.end() && *i!=this; ++i) ;
alpar@395
   524
	  //if(*i==this) G->dyn_edge_maps.erase(i); //Way too slow...
alpar@395
   525
	  //A better way to do that: (Is this really important?)
alpar@395
   526
	  if(*i==this) {
alpar@395
   527
	    *i=G->dyn_edge_maps.back();
alpar@395
   528
	    G->dyn_edge_maps.pop_back();
alpar@395
   529
	  }
alpar@395
   530
	}
alpar@395
   531
      }
alpar@395
   532
      
alpar@395
   533
      void add(const Edge k) 
alpar@395
   534
      {
alpar@395
   535
	if(k.n>=int(container.size())) container.resize(k.n+1);
alpar@395
   536
      }
alpar@395
   537
      void erase(const Edge) { }
alpar@395
   538
      
alpar@395
   539
      void set(Edge n, T a) { container[n.n]=a; }
alpar@395
   540
      //T get(Edge n) const { return container[n.n]; }
alpar@395
   541
      typename std::vector<T>::reference
alpar@395
   542
      operator[](Edge n) { return container[n.n]; }
alpar@395
   543
      typename std::vector<T>::const_reference
alpar@395
   544
      operator[](Edge n) const { return container[n.n]; }
alpar@395
   545
alpar@395
   546
      ///\warning There is no safety check at all!
alpar@395
   547
      ///Using operator = between maps attached to different graph may
alpar@395
   548
      ///cause serious problem.
alpar@395
   549
      ///\todo Is this really so?
alpar@395
   550
      ///\todo It can copy between different types.
alpar@395
   551
      const EdgeMap<T>& operator=(const EdgeMap<T> &m)
alpar@395
   552
      {
alpar@395
   553
	container = m.container;
alpar@395
   554
	return *this;
alpar@395
   555
      }
alpar@395
   556
      template<typename TT>
alpar@395
   557
      const EdgeMap<T>& operator=(const EdgeMap<TT> &m)
alpar@395
   558
      {
alpar@395
   559
	copy(m.container.begin(), m.container.end(), container.begin());
alpar@395
   560
	return *this;
alpar@395
   561
      }
alpar@395
   562
      
alpar@395
   563
      void update() {}    //Useless for DynMaps
alpar@395
   564
      void update(T a) {}  //Useless for DynMaps
alpar@395
   565
    };
alpar@395
   566
alpar@395
   567
  };
alpar@395
   568
alpar@395
   569
  ///Graph for bidirectional edges.
alpar@395
   570
alpar@395
   571
  ///The purpose of this graph structure is to handle graphs
alpar@395
   572
  ///having bidirectional edges. Here the function \c addEdge(u,v) adds a pair
alpar@395
   573
  ///of oppositely directed edges.
alpar@395
   574
  ///There is a new edge map type called
alpar@397
   575
  ///\ref SymListGraph::SymEdgeMap "SymEdgeMap"
alpar@395
   576
  ///that complements this
alpar@395
   577
  ///feature by
alpar@395
   578
  ///storing shared values for the edge pairs. The usual
alpar@395
   579
  ///\ref GraphSkeleton::EdgeMap "EdgeMap"
alpar@395
   580
  ///can be used
alpar@395
   581
  ///as well.
alpar@395
   582
  ///
alpar@395
   583
  ///The oppositely directed edge can also be obtained easily
alpar@395
   584
  ///using \ref opposite.
alpar@397
   585
  ///
alpar@397
   586
  ///Here erase(Edge) deletes a pair of edges.
alpar@397
   587
  ///
alpar@397
   588
  ///\todo this date structure need some reconsiderations. Maybe it
alpar@397
   589
  ///should be implemented independently from ListGraph.
alpar@395
   590
alpar@397
   591
  class SymListGraph : public ListGraph
alpar@395
   592
  {
alpar@395
   593
  public:
alpar@395
   594
    template<typename T> class SymEdgeMap;
alpar@395
   595
    template<typename T> friend class SymEdgeMap;
alpar@395
   596
alpar@397
   597
    SymListGraph() : ListGraph() { }
alpar@397
   598
    SymListGraph(const ListGraph &_g) : ListGraph(_g) { }
alpar@397
   599
    ///Adds a pair of oppositely directed edges to the graph.
alpar@395
   600
    Edge addEdge(Node u, Node v)
alpar@395
   601
    {
alpar@397
   602
      Edge e = ListGraph::addEdge(u,v);
alpar@397
   603
      ListGraph::addEdge(v,u);
alpar@395
   604
      return e;
alpar@395
   605
    }
alpar@395
   606
alpar@397
   607
    void erase(Node n) { ListGraph::erase(n); }
alpar@395
   608
    ///The oppositely directed edge.
alpar@395
   609
alpar@395
   610
    ///Returns the oppositely directed
alpar@395
   611
    ///pair of the edge \c e.
alpar@395
   612
    Edge opposite(Edge e) const
alpar@395
   613
    {
alpar@395
   614
      Edge f;
alpar@395
   615
      f.idref() = e.idref() - 2*(e.idref()%2) + 1;
alpar@395
   616
      return f;
alpar@395
   617
    }
alpar@395
   618
    
alpar@397
   619
    ///Removes a pair of oppositely directed edges to the graph.
alpar@397
   620
    void erase(Edge e) {
alpar@397
   621
      ListGraph::erase(opposite(e));
alpar@397
   622
      ListGraph::erase(e);
alpar@397
   623
    }
alpar@397
   624
    
alpar@395
   625
    ///Common data storage for the edge pairs.
alpar@395
   626
alpar@395
   627
    ///This map makes it possible to store data shared by the oppositely
alpar@395
   628
    ///directed pairs of edges.
alpar@395
   629
    template <typename T> class SymEdgeMap : public DynMapBase<Edge>
alpar@395
   630
    {
alpar@395
   631
      std::vector<T> container;
alpar@395
   632
      
alpar@395
   633
    public:
alpar@395
   634
      typedef T ValueType;
alpar@395
   635
      typedef Edge KeyType;
alpar@395
   636
alpar@397
   637
      SymEdgeMap(const SymListGraph &_G) :
alpar@395
   638
	DynMapBase<Edge>(_G), container(_G.maxEdgeId()/2)
alpar@395
   639
      {
alpar@397
   640
	static_cast<const SymListGraph*>(G)->dyn_edge_maps.push_back(this);
alpar@395
   641
      }
alpar@397
   642
      SymEdgeMap(const SymListGraph &_G,const T &t) :
alpar@395
   643
	DynMapBase<Edge>(_G), container(_G.maxEdgeId()/2,t)
alpar@395
   644
      {
alpar@395
   645
	G->dyn_edge_maps.push_back(this);
alpar@395
   646
      }
alpar@395
   647
alpar@395
   648
      SymEdgeMap(const SymEdgeMap<T> &m) :
alpar@395
   649
 	DynMapBase<SymEdge>(*m.G), container(m.container)
alpar@395
   650
      {
alpar@395
   651
 	G->dyn_node_maps.push_back(this);
alpar@395
   652
      }
alpar@395
   653
alpar@395
   654
      //      template<typename TT> friend class SymEdgeMap;
alpar@395
   655
alpar@395
   656
      ///\todo It can copy between different types.
alpar@395
   657
      ///
alpar@395
   658
alpar@395
   659
      template<typename TT> SymEdgeMap(const SymEdgeMap<TT> &m) :
alpar@395
   660
	DynMapBase<SymEdge>(*m.G)
alpar@395
   661
      {
alpar@395
   662
	G->dyn_node_maps.push_back(this);
alpar@395
   663
	typename std::vector<TT>::const_iterator i;
alpar@395
   664
	for(typename std::vector<TT>::const_iterator i=m.container.begin();
alpar@395
   665
	    i!=m.container.end();
alpar@395
   666
	    i++)
alpar@395
   667
	  container.push_back(*i);
alpar@395
   668
      }
alpar@395
   669
 
alpar@395
   670
      ~SymEdgeMap()
alpar@395
   671
      {
alpar@395
   672
	if(G) {
alpar@395
   673
	  std::vector<DynMapBase<Edge>* >::iterator i;
alpar@397
   674
	  for(i=static_cast<const SymListGraph*>(G)->dyn_edge_maps.begin();
alpar@397
   675
	      i!=static_cast<const SymListGraph*>(G)->dyn_edge_maps.end()
alpar@395
   676
		&& *i!=this; ++i) ;
alpar@395
   677
	  //if(*i==this) G->dyn_edge_maps.erase(i); //Way too slow...
alpar@395
   678
	  //A better way to do that: (Is this really important?)
alpar@395
   679
	  if(*i==this) {
alpar@397
   680
	    *i=static_cast<const SymListGraph*>(G)->dyn_edge_maps.back();
alpar@397
   681
	    static_cast<const SymListGraph*>(G)->dyn_edge_maps.pop_back();
alpar@395
   682
	  }
alpar@395
   683
	}
alpar@395
   684
      }
alpar@395
   685
      
alpar@395
   686
      void add(const Edge k) 
alpar@395
   687
      {
alpar@395
   688
	if(!k.idref()%2&&k.idref()/2>=int(container.size()))
alpar@395
   689
	  container.resize(k.idref()/2+1);
alpar@395
   690
      }
alpar@395
   691
      void erase(const Edge k) { }
alpar@395
   692
      
alpar@395
   693
      void set(Edge n, T a) { container[n.idref()/2]=a; }
alpar@395
   694
      //T get(Edge n) const { return container[n.idref()/2]; }
alpar@395
   695
      typename std::vector<T>::reference
alpar@395
   696
      operator[](Edge n) { return container[n.idref()/2]; }
alpar@395
   697
      typename std::vector<T>::const_reference
alpar@395
   698
      operator[](Edge n) const { return container[n.idref()/2]; }
alpar@395
   699
alpar@395
   700
      ///\warning There is no safety check at all!
alpar@395
   701
      ///Using operator = between maps attached to different graph may
alpar@395
   702
      ///cause serious problem.
alpar@395
   703
      ///\todo Is this really so?
alpar@395
   704
      ///\todo It can copy between different types.
alpar@395
   705
      const SymEdgeMap<T>& operator=(const SymEdgeMap<T> &m)
alpar@395
   706
      {
alpar@395
   707
	container = m.container;
alpar@395
   708
	return *this;
alpar@395
   709
      }
alpar@395
   710
      template<typename TT>
alpar@395
   711
      const SymEdgeMap<T>& operator=(const SymEdgeMap<TT> &m)
alpar@395
   712
      {
alpar@395
   713
	copy(m.container.begin(), m.container.end(), container.begin());
alpar@395
   714
	return *this;
alpar@395
   715
      }
alpar@395
   716
      
alpar@395
   717
      void update() {}    //Useless for DynMaps
alpar@395
   718
      void update(T a) {}  //Useless for DynMaps
alpar@395
   719
alpar@395
   720
    };
alpar@395
   721
alpar@395
   722
  };
alpar@395
   723
  
alpar@395
   724
  
alpar@395
   725
} //namespace hugo
alpar@395
   726
alpar@395
   727
alpar@395
   728
alpar@395
   729
alpar@395
   730
#endif //SMART_GRAPH_H