doc/graph_io.dox
author hegyi
Mon, 21 Nov 2005 18:03:20 +0000
changeset 1823 cb082cdf3667
parent 1631 e15162d8eca1
child 1839 b2dfd32b4895
permissions -rw-r--r--
NewMapWin has become Dialog instead of Window. Therefore it is created dynamically, when there is need for it, instead of keeping one instance in memory. This solution is slower, but more correct than before.
alpar@1118
     1
namespace lemon {
deba@1114
     2
/*!
deba@1114
     3
deba@1114
     4
deba@1114
     5
\page graph-io-page Graph Input-Output
deba@1114
     6
athos@1540
     7
The standard graph IO enables one to store graphs and additional maps
athos@1540
     8
(i.e. functions on the nodes or edges) in a flexible and efficient way. 
athos@1540
     9
Before you read this page you should be familiar with LEMON 
athos@1540
    10
\ref graphs "graphs" and \ref maps-page "maps".
deba@1114
    11
deba@1114
    12
\section format The general file format
deba@1114
    13
deba@1532
    14
The file contains sections in the following order:
deba@1114
    15
deba@1114
    16
\li nodeset
deba@1114
    17
\li edgeset
deba@1114
    18
\li nodes
deba@1114
    19
\li edges
deba@1532
    20
\li attributes
deba@1114
    21
athos@1540
    22
Some of these sections can be omitted, but you will basicly need the nodeset
athos@1540
    23
section (unless your graph has no nodes at all) and the edgeset section
athos@1540
    24
(unless your graph has no edges at all). 
athos@1540
    25
athos@1540
    26
The nodeset section describes the nodes of your graph: it identifies the nodes
athos@1540
    27
and gives the maps defined on them, if any. It starts with the
athos@1540
    28
following line:
athos@1522
    29
athos@1522
    30
<tt>\@nodeset</tt>
athos@1522
    31
athos@1522
    32
The next line contains the names of the nodemaps, separated by whitespaces.  Each
athos@1522
    33
following line describes a node in the graph: it contains the values of the
athos@1522
    34
maps in the right order. The map named "id" should contain unique values
athos@1540
    35
because it is regarded as an ID-map. These ids need not be numbers but they
athos@1540
    36
must identify the nodes uniquely for later reference. For example:
deba@1114
    37
deba@1114
    38
\code
deba@1114
    39
@nodeset
deba@1114
    40
id  x-coord  y-coord  color
deba@1114
    41
3   1.0      4.0      blue
deba@1114
    42
5   2.3      5.7      red
deba@1114
    43
12  7.8      2.3      green
deba@1114
    44
\endcode
deba@1114
    45
deba@1114
    46
The edgeset section is very similar to the nodeset section, it has
athos@1522
    47
the same coloumn oriented structure. It starts with the line 
athos@1522
    48
athos@1522
    49
<tt>\@edgeset</tt>
athos@1522
    50
athos@1540
    51
The next line contains the whitespace separated list of names of the edge
athos@1540
    52
maps.  Each of the next lines describes one edge. The first two elements in
athos@1540
    53
the line are the IDs of the source and target (or tail and head) nodes of the
athos@1540
    54
edge as they occur in the ID node map of the nodeset section. You can also
athos@1540
    55
have an optional ID map on the edges for later reference (which has to be
athos@1540
    56
unique in this case).
deba@1114
    57
deba@1114
    58
\code
deba@1114
    59
@edgeset
deba@1114
    60
             id    weight   label
deba@1114
    61
3   5        a     4.3      a-edge
deba@1114
    62
5   12       c     2.6      c-edge
deba@1114
    63
3   12       g     3.4      g-edge
deba@1114
    64
\endcode
deba@1114
    65
athos@1540
    66
The \e nodes section contains <em>labeled (distinguished) nodes</em> 
athos@1540
    67
(i.e. nodes having a special
alpar@1118
    68
label on them). The section starts with
athos@1522
    69
athos@1522
    70
<tt> \@nodes </tt>
athos@1522
    71
athos@1522
    72
Each of the next lines contains a label for a node in the graph 
athos@1540
    73
and then the ID as described in the \e nodeset section.
deba@1114
    74
deba@1114
    75
\code
deba@1114
    76
@nodes 
deba@1114
    77
source 3
deba@1114
    78
target 12
deba@1114
    79
\endcode
deba@1114
    80
athos@1540
    81
The last section describes the <em>labeled (distinguished) edges</em>
deba@1333
    82
(i.e. edges having a special label on them). It starts with \c \@edges
deba@1114
    83
and then each line contains the name of the edge and the ID.
deba@1114
    84
deba@1114
    85
\code
athos@1540
    86
@edges 
deba@1114
    87
observed c
deba@1114
    88
\endcode
deba@1114
    89
deba@1114
    90
deba@1114
    91
The file may contain empty lines and comment lines. The comment lines
deba@1114
    92
start with an \c # character.
deba@1114
    93
deba@1532
    94
The attributes section can handle some information about the graph. It
athos@1540
    95
contains key-value pairs in each line (a key and the mapped value to key). The
athos@1540
    96
key should be a string without whitespaces, the value can be of various types.
deba@1532
    97
deba@1532
    98
\code
deba@1532
    99
@attributes
deba@1532
   100
title "Four colored plan graph"
deba@1532
   101
author "Balazs DEZSO"
deba@1532
   102
copyright "Lemon Library"
deba@1532
   103
version 12
deba@1532
   104
\endcode
deba@1532
   105
athos@1522
   106
<tt> \@end </tt>
athos@1522
   107
athos@1522
   108
line.
athos@1522
   109
deba@1114
   110
deba@1114
   111
\section use Using graph input-output
athos@1540
   112
athos@1540
   113
athos@1540
   114
The graph input and output is based on <em> reading and writing
athos@1540
   115
commands</em>. The user gives reading and writing commands to the reader or
athos@1540
   116
writer class, then he calls the \c run() method that executes all the given
athos@1540
   117
commands.
deba@1114
   118
deba@1114
   119
\subsection write Writing a graph
deba@1114
   120
alpar@1631
   121
The \ref lemon::GraphWriter "GraphWriter" template class
alpar@1631
   122
provides the graph output. To write a graph
athos@1526
   123
you should first give writing commands to the writer. You can declare
athos@1540
   124
writing command as \c NodeMap or \c EdgeMap writing and labeled Node and
deba@1114
   125
Edge writing.
deba@1114
   126
deba@1114
   127
\code
deba@1333
   128
GraphWriter<ListGraph> writer(std::cout, graph);
deba@1114
   129
\endcode
deba@1114
   130
alpar@1631
   131
The \ref lemon::GraphWriter::writeNodeMap() "writeNodeMap()"
alpar@1631
   132
function declares a \c NodeMap writing command in the
alpar@1631
   133
\ref lemon::GraphWriter "GraphWriter".
alpar@1631
   134
You should give a name to the map and the map
athos@1522
   135
object as parameters. The NodeMap writing command with name "id" should write a 
athos@1540
   136
unique map because it will be regarded as an ID map.
deba@1114
   137
deba@1114
   138
\see IdMap, DescriptorMap  
deba@1114
   139
deba@1114
   140
\code
deba@1114
   141
IdMap<ListGraph, Node> nodeIdMap;
deba@1394
   142
writer.writeNodeMap("id", nodeIdMap);
deba@1114
   143
deba@1394
   144
writer.writeNodeMap("x-coord", xCoordMap);
deba@1394
   145
writer.writeNodeMap("y-coord", yCoordMap);
deba@1394
   146
writer.writeNodeMap("color", colorMap);
deba@1114
   147
\endcode
deba@1114
   148
alpar@1631
   149
With the \ref lemon::GraphWriter::writeEdgeMap() "writeEdgeMap()"
alpar@1631
   150
member function you can give an edge map
deba@1333
   151
writing command similar to the NodeMaps.
deba@1114
   152
deba@1114
   153
\see IdMap, DescriptorMap  
athos@1522
   154
deba@1114
   155
\code
deba@1114
   156
DescriptorMap<ListGraph, Edge, ListGraph::EdgeMap<int> > edgeDescMap(graph);
deba@1394
   157
writer.writeEdgeMap("descriptor", edgeDescMap);
deba@1114
   158
deba@1394
   159
writer.writeEdgeMap("weight", weightMap);
deba@1394
   160
writer.writeEdgeMap("label", labelMap);
deba@1114
   161
\endcode
deba@1114
   162
alpar@1631
   163
With \ref lemon::GraphWriter::writeNode() "writeNode()"
alpar@1631
   164
and \ref lemon::GraphWriter::writeEdge() "writeEdge()"
alpar@1631
   165
functions you can designate Nodes and
athos@1522
   166
Edges in the graph. For example, you can write out the source and target node
athos@1522
   167
of a maximum flow instance.
deba@1114
   168
deba@1114
   169
\code
deba@1394
   170
writer.writeNode("source", sourceNode);
deba@1394
   171
writer.writeNode("target", targetNode);
deba@1114
   172
deba@1394
   173
writer.writeEdge("observed", edge);
deba@1114
   174
\endcode
deba@1114
   175
alpar@1631
   176
With \ref lemon::GraphWriter::writeAttribute() "writeAttribute()"
alpar@1631
   177
function you can write an attribute to the file.
deba@1532
   178
deba@1532
   179
\code
deba@1532
   180
writer.writeAttribute("author", "Balazs DEZSO");
deba@1532
   181
writer.writeAttribute("version", 12);
deba@1532
   182
\endcode
deba@1532
   183
alpar@1631
   184
After you give all write commands you must call the
alpar@1631
   185
\ref lemon::GraphWriter::run() "run()" member
athos@1522
   186
function, which executes all the writing commands.
deba@1114
   187
deba@1114
   188
\code
deba@1114
   189
writer.run();
deba@1114
   190
\endcode
deba@1114
   191
deba@1114
   192
\subsection reading Reading a graph
deba@1114
   193
athos@1540
   194
The file to be read may contain several maps and labeled nodes or edges.
deba@1114
   195
If you read a graph you need not read all the maps and items just those
alpar@1631
   196
that you need. The interface of the \ref lemon::GraphReader "GraphReader"
alpar@1631
   197
is very similar to
alpar@1631
   198
the \ref lemon::GraphWriter "GraphWriter"
alpar@1631
   199
but the reading method does not depend on the order of the
deba@1114
   200
given commands.
deba@1114
   201
athos@1522
   202
The reader object assumes that each not readed value does not contain 
alpar@1118
   203
whitespaces, therefore it has some extra possibilities to control how
alpar@1118
   204
it should skip the values when the string representation contains spaces.
deba@1114
   205
deba@1114
   206
\code
deba@1333
   207
GraphReader<ListGraph> reader(std::cin, graph);
deba@1114
   208
\endcode
deba@1114
   209
alpar@1631
   210
The \ref lemon::GraphReader::readNodeMap() "readNodeMap()"
alpar@1631
   211
function reads a map from the \c nodeset section.
athos@1522
   212
If there is a map that you do not want to read from the file and there are
athos@1522
   213
whitespaces in the string represenation of the values then you should
alpar@1631
   214
call the \ref lemon::GraphReader::skipNodeMap() "skipNodeMap()"
alpar@1631
   215
template member function with proper parameters.
deba@1114
   216
deba@1114
   217
\see QuotedStringReader
athos@1522
   218
deba@1114
   219
\code
deba@1394
   220
reader.readNodeMap("x-coord", xCoordMap);
deba@1394
   221
reader.readNodeMap("y-coord", yCoordMap);
deba@1114
   222
deba@1394
   223
reader.readNodeMap<QuotedStringReader>("label", labelMap);
deba@1114
   224
reader.skipNodeMap<QuotedStringReader>("description");
deba@1114
   225
deba@1394
   226
reader.readNodeMap("color", colorMap);
deba@1114
   227
\endcode
deba@1114
   228
alpar@1631
   229
With the \ref lemon::GraphReader::readEdgeMap() "readEdgeMap()"
alpar@1631
   230
member function you can give an edge map
deba@1114
   231
reading command similar to the NodeMaps. 
deba@1114
   232
deba@1114
   233
\code
deba@1394
   234
reader.readEdgeMap("weight", weightMap);
deba@1394
   235
reader.readEdgeMap("label", labelMap);
deba@1114
   236
\endcode
deba@1114
   237
alpar@1631
   238
With \ref lemon::GraphReader::readNode() "readNode()"
alpar@1631
   239
and \ref lemon::GraphReader::readEdge() "readEdge()"
alpar@1631
   240
functions you can read labeled Nodes and
deba@1114
   241
Edges.
deba@1114
   242
deba@1114
   243
\code
deba@1394
   244
reader.readNode("source", sourceNode);
deba@1394
   245
reader.readNode("target", targetNode);
deba@1114
   246
deba@1394
   247
reader.readEdge("observed", edge);
deba@1114
   248
\endcode
deba@1114
   249
alpar@1631
   250
With \ref lemon::GraphReader::readAttribute() "readAttribute()"
alpar@1631
   251
function you can read an attribute from the file.
deba@1532
   252
deba@1532
   253
\code
deba@1532
   254
std::string author;
deba@1532
   255
writer.readAttribute("author", author);
deba@1532
   256
int version;
deba@1532
   257
writer.writeAttribute("version", version);
deba@1532
   258
\endcode
deba@1532
   259
alpar@1631
   260
After you give all read commands you must call the
alpar@1631
   261
\ref lemon::GraphReader::run() "run()" member
athos@1522
   262
function, which executes all the commands.
deba@1114
   263
deba@1114
   264
\code
deba@1114
   265
reader.run();
deba@1114
   266
\endcode
deba@1114
   267
athos@1540
   268
\anchor rwbackground
athos@1527
   269
\section types Background of Reading and Writing
athos@1540
   270
athos@1540
   271
athos@1527
   272
To read a map (on the nodes or edges)
alpar@1631
   273
the \ref lemon::GraphReader "GraphReader"
alpar@1631
   274
should know how to read a Value from the given map.
deba@1114
   275
By the default implementation the input operator reads a value from
deba@1114
   276
the stream and the type of the readed value is the value type of the given map.
deba@1114
   277
When the reader should skip a value in the stream, because you do not
athos@1527
   278
want to store it in a map, the reader skips a character sequence without 
athos@1540
   279
whitespaces. 
deba@1114
   280
deba@1114
   281
If you want to change the functionality of the reader, you can use
deba@1114
   282
template parameters to specialize it. When you give a reading
deba@1114
   283
command for a map you can give a Reader type as template parameter.
deba@1333
   284
With this template parameter you can control how the Reader reads
deba@1114
   285
a value from the stream.
deba@1114
   286
deba@1114
   287
The reader has the next structure: 
deba@1114
   288
\code
deba@1114
   289
struct TypeReader {
deba@1114
   290
  typedef TypeName Value;
deba@1114
   291
deba@1114
   292
  void read(std::istream& is, Value& value);
deba@1114
   293
};
deba@1114
   294
\endcode
deba@1114
   295
athos@1527
   296
For example, the \c "strings" nodemap contains strings and you do not need
athos@1540
   297
the value of the string just the length. Then you can implement an own Reader
deba@1114
   298
struct.
deba@1114
   299
deba@1114
   300
\code
deba@1114
   301
struct LengthReader {
deba@1114
   302
  typedef int Value;
deba@1114
   303
deba@1114
   304
  void read(std::istream& is, Value& value) {
deba@1114
   305
    std::string tmp;
deba@1114
   306
    is >> tmp;
deba@1114
   307
    value = tmp.length();
deba@1114
   308
  }
deba@1114
   309
};
deba@1114
   310
...
deba@1394
   311
reader.readNodeMap<LengthReader>("strings", lengthMap);
deba@1114
   312
\endcode  
deba@1114
   313
deba@1114
   314
The global functionality of the reader class can be changed by giving a
athos@1526
   315
special template parameter to the GraphReader class. By default, the
alpar@1118
   316
template parameter is \c DefaultReaderTraits. A reader traits class 
athos@1540
   317
should provide an inner template class Reader for each type, and a 
deba@1114
   318
DefaultReader for skipping a value.
deba@1114
   319
athos@1540
   320
The specialization of  writing is very similar to that of reading.
deba@1114
   321
athos@1540
   322
\section undir Undirected graphs
deba@1532
   323
athos@1540
   324
In a file describing an undirected graph (undir graph, for short) you find an
athos@1540
   325
\c undiredgeset section instead of the \c edgeset section. The first line of
athos@1540
   326
the section describes the names of the maps on the undirected egdes and all
athos@1540
   327
next lines describe one undirected edge with the the incident nodes and the
athos@1540
   328
values of the map.
deba@1532
   329
athos@1540
   330
The format handles directed edge maps as a syntactical sugar???, if there
athos@1540
   331
are two maps with names being the same with a \c '+' and a \c '-' prefix
athos@1540
   332
then this will be read as a directed map.
deba@1532
   333
deba@1532
   334
\code
deba@1532
   335
@undiredgeset
deba@1532
   336
             id    capacity +flow -flow
deba@1532
   337
32   2       1     4.3      2.0	  0.0
deba@1532
   338
21   21      5     2.6      0.0   2.6
deba@1532
   339
21   12      8     3.4      0.0   0.0
deba@1532
   340
\endcode
deba@1532
   341
athos@1540
   342
The \c edges section is changed to \c undiredges section. This section
deba@1532
   343
describes labeled edges and undirected edges. The directed edge label
athos@1540
   344
should start with a \c '+' or a \c '-' prefix to decide the direction
deba@1532
   345
of the edge. 
deba@1532
   346
deba@1532
   347
\code
deba@1532
   348
@undiredges
deba@1532
   349
undiredge 1
deba@1532
   350
+edge 5
deba@1532
   351
-back 5
deba@1532
   352
\endcode
deba@1532
   353
alpar@1631
   354
There are similar classes to the \ref lemon::GraphReader "GraphReader" and
alpar@1631
   355
\ref lemon::GraphWriter "GraphWriter" which
alpar@1631
   356
handle the undirected graphs. These classes are
alpar@1631
   357
the \ref lemon::UndirGraphReader "UndirGraphReader"
alpar@1631
   358
and \ref lemon::UndirGraphWriter "UndirGraphWriter".
deba@1532
   359
deba@1788
   360
The \ref lemon::UndirGraphReader::readUndirEdgeMap() "readUndirEdgeMap()"
alpar@1631
   361
function reads an undirected map and the
alpar@1631
   362
\ref lemon::UndirGraphReader::readUndirEdge() "readUndirEdge()"
alpar@1631
   363
reads an undirected edge from the file, 
deba@1532
   364
deba@1532
   365
\code
deba@1532
   366
reader.readUndirEdgeMap("capacity", capacityMap);
deba@1532
   367
reader.readEdgeMap("flow", flowMap);
deba@1532
   368
...
deba@1532
   369
reader.readUndirEdge("undir_edge", undir_edge);
deba@1532
   370
reader.readEdge("edge", edge);
deba@1532
   371
\endcode
deba@1532
   372
deba@1532
   373
\section advanced Advanced features
deba@1532
   374
athos@1540
   375
The graph reader and writer classes give an easy way to read and write
athos@1540
   376
graphs. But sometimes we want more advanced features. In this case we can
athos@1540
   377
use the more general <tt>lemon reader and writer</tt> interface.
deba@1532
   378
athos@1540
   379
The LEMON file format is a section oriented file format. It contains one or
athos@1540
   380
more sections, each starting with a line identifying its type 
athos@1540
   381
(the word starting with the \c \@  character).
deba@1532
   382
The content of the section this way cannot contain line with \c \@ first
deba@1532
   383
character. The file may contains comment lines with \c # first character.
deba@1532
   384
alpar@1631
   385
The \ref lemon::LemonReader "LemonReader"
alpar@1631
   386
and \ref lemon::LemonWriter "LemonWriter"
alpar@1631
   387
gives a framework to read and
deba@1532
   388
write sections. There are various section reader and section writer
alpar@1631
   389
classes which can be attached to a \ref lemon::LemonReader "LemonReader"
alpar@1631
   390
or a \ref lemon::LemonWriter "LemonWriter".
deba@1532
   391
deba@1532
   392
There are default section readers and writers for reading and writing
athos@1540
   393
item sets, and labeled items in the graph. These read and write
deba@1532
   394
the format described above. Other type of data can be handled with own
deba@1532
   395
section reader and writer classes which are inherited from the
alpar@1631
   396
\c LemonReader::SectionReader or the
alpar@1631
   397
\ref lemon::LemonWriter::SectionWriter "LemonWriter::SectionWriter"
alpar@1631
   398
classes.
deba@1532
   399
deba@1532
   400
The next example defines a special section reader which reads the
deba@1532
   401
\c \@description sections into a string:
deba@1532
   402
deba@1532
   403
\code 
deba@1532
   404
class DescriptionReader : LemonReader::SectionReader {
deba@1532
   405
protected:
deba@1532
   406
  virtual bool header(const std::string& line) {
deba@1532
   407
    std::istringstream ls(line);
deba@1532
   408
    std::string head;
deba@1532
   409
    ls >> head;
deba@1532
   410
    return head == "@description";
deba@1532
   411
  }
deba@1532
   412
deba@1532
   413
  virtual void read(std::istream& is) {
deba@1532
   414
    std::string line;
deba@1532
   415
    while (getline(is, line)) {
deba@1532
   416
      desc += line;
deba@1532
   417
    }
deba@1532
   418
  }
deba@1532
   419
public:
deba@1532
   420
deba@1532
   421
  typedef LemonReader::SectionReader Parent;
deba@1532
   422
  
deba@1532
   423
  DescriptionReader(LemonReader& reader) : Parent(reader) {}
deba@1532
   424
deba@1532
   425
  const std::string& description() const {
deba@1532
   426
    return description;
deba@1532
   427
  }
deba@1532
   428
deba@1532
   429
private:
deba@1532
   430
  std::string desc;
deba@1532
   431
};
deba@1532
   432
\endcode
deba@1532
   433
deba@1532
   434
The other advanced stuff of the generalized file format is that 
deba@1532
   435
multiple edgesets can be stored to the same nodeset. It can be used 
athos@1540
   436
for example as a network traffic matrix.
deba@1532
   437
athos@1540
   438
In our example there is a network with symmetric links and there are assymetric
deba@1532
   439
traffic request on the network. This construction can be stored in an
alpar@1631
   440
undirected graph and in a directed \c NewEdgeSetAdaptor class. The example
alpar@1631
   441
shows the input with the \ref lemon::LemonReader "LemonReader" class:
deba@1532
   442
deba@1532
   443
\code
deba@1532
   444
UndirListGraph network;
deba@1532
   445
UndirListGraph::UndirEdgeSet<double> capacity;
deba@1532
   446
NewEdgeSetAdaptor<UndirListGraph> traffic(network);
deba@1532
   447
NewEdgeSetAdaptor<UndirListGraph>::EdgeSet<double> request(network);
deba@1532
   448
deba@1532
   449
LemonReader reader(std::cin);
deba@1532
   450
NodeSetReader nodesetReader(reader, network);
deba@1532
   451
UndirEdgeSetReader undirEdgesetReader(reader, network, nodesetReader);
deba@1532
   452
undirEdgesetReader.readEdgeMap("capacity", capacity);
deba@1532
   453
EdgeSetReader edgesetReader(reader, traffic, nodesetReader);
deba@1532
   454
edgesetReader.readEdgeMap("request", request);
deba@1532
   455
deba@1532
   456
reader.run();
deba@1532
   457
\endcode
deba@1532
   458
alpar@1631
   459
Because both the \ref lemon::GraphReader "GraphReader"
alpar@1631
   460
and the \ref lemon::UndirGraphReader "UndirGraphReader" can be converted
alpar@1631
   461
to \ref lemon::LemonReader "LemonReader"
alpar@1631
   462
and it can resolve the ID's of the items, the previous
alpar@1631
   463
result can be achived with the \ref lemon::UndirGraphReader "UndirGraphReader"
alpar@1631
   464
class, too.
deba@1532
   465
deba@1532
   466
deba@1532
   467
\code
deba@1532
   468
UndirListGraph network;
deba@1532
   469
UndirListGraph::UndirEdgeSet<double> capacity;
deba@1532
   470
NewEdgeSetAdaptor<UndirListGraph> traffic(network);
deba@1532
   471
NewEdgeSetAdaptor<UndirListGraph>::EdgeSet<double> request(network);
deba@1532
   472
deba@1532
   473
UndirGraphReader reader(std::cin, network);
deba@1532
   474
reader.readEdgeMap("capacity", capacity);
deba@1532
   475
EdgeSetReader edgesetReader(reader, traffic, reader);
deba@1532
   476
edgesetReader.readEdgeMap("request", request);
deba@1532
   477
deba@1532
   478
reader.run();
deba@1532
   479
\endcode
deba@1532
   480
deba@1333
   481
\author Balazs Dezso
deba@1114
   482
*/
alpar@1631
   483
}