jacint@714
|
1 |
// -*- C++ -*-
|
jacint@714
|
2 |
#ifndef HUGO_MAX_FLOW_NO_STACK_H
|
jacint@714
|
3 |
#define HUGO_MAX_FLOW_NO_STACK_H
|
jacint@714
|
4 |
|
jacint@714
|
5 |
#include <vector>
|
jacint@714
|
6 |
#include <queue>
|
jacint@714
|
7 |
//#include <stack>
|
jacint@714
|
8 |
|
jacint@714
|
9 |
#include <hugo/graph_wrapper.h>
|
jacint@714
|
10 |
#include <bfs_dfs.h>
|
jacint@714
|
11 |
#include <hugo/invalid.h>
|
jacint@714
|
12 |
#include <hugo/maps.h>
|
jacint@714
|
13 |
#include <hugo/for_each_macros.h>
|
jacint@714
|
14 |
|
jacint@714
|
15 |
/// \file
|
jacint@714
|
16 |
/// \brief The same as max_flow.h, but without using stl stack for the active nodes. Only for test.
|
jacint@714
|
17 |
/// \ingroup galgs
|
jacint@714
|
18 |
|
jacint@714
|
19 |
namespace hugo {
|
jacint@714
|
20 |
|
jacint@714
|
21 |
/// \addtogroup galgs
|
jacint@714
|
22 |
/// @{
|
jacint@714
|
23 |
///Maximum flow algorithms class.
|
jacint@714
|
24 |
|
jacint@714
|
25 |
///This class provides various algorithms for finding a flow of
|
jacint@714
|
26 |
///maximum value in a directed graph. The \e source node, the \e
|
jacint@714
|
27 |
///target node, the \e capacity of the edges and the \e starting \e
|
jacint@714
|
28 |
///flow value of the edges should be passed to the algorithm through the
|
jacint@714
|
29 |
///constructor. It is possible to change these quantities using the
|
jacint@714
|
30 |
///functions \ref resetSource, \ref resetTarget, \ref resetCap and
|
jacint@714
|
31 |
///\ref resetFlow. Before any subsequent runs of any algorithm of
|
jacint@714
|
32 |
///the class \ref resetFlow should be called.
|
jacint@714
|
33 |
|
jacint@714
|
34 |
///After running an algorithm of the class, the actual flow value
|
jacint@714
|
35 |
///can be obtained by calling \ref flowValue(). The minimum
|
jacint@714
|
36 |
///value cut can be written into a \c node map of \c bools by
|
jacint@714
|
37 |
///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
|
jacint@714
|
38 |
///the inclusionwise minimum and maximum of the minimum value
|
jacint@714
|
39 |
///cuts, resp.)
|
jacint@714
|
40 |
///\param Graph The directed graph type the algorithm runs on.
|
jacint@714
|
41 |
///\param Num The number type of the capacities and the flow values.
|
jacint@714
|
42 |
///\param CapMap The capacity map type.
|
jacint@714
|
43 |
///\param FlowMap The flow map type.
|
jacint@714
|
44 |
///\author Marton Makai, Jacint Szabo
|
jacint@714
|
45 |
template <typename Graph, typename Num,
|
jacint@714
|
46 |
typename CapMap=typename Graph::template EdgeMap<Num>,
|
jacint@714
|
47 |
typename FlowMap=typename Graph::template EdgeMap<Num> >
|
jacint@714
|
48 |
class MaxFlowNoStack {
|
jacint@714
|
49 |
protected:
|
jacint@714
|
50 |
typedef typename Graph::Node Node;
|
jacint@714
|
51 |
typedef typename Graph::NodeIt NodeIt;
|
jacint@714
|
52 |
typedef typename Graph::EdgeIt EdgeIt;
|
jacint@714
|
53 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
jacint@714
|
54 |
typedef typename Graph::InEdgeIt InEdgeIt;
|
jacint@714
|
55 |
|
jacint@714
|
56 |
// typedef typename std::vector<std::stack<Node> > VecStack;
|
jacint@714
|
57 |
typedef typename std::vector<Node> VecFirst;
|
jacint@714
|
58 |
typedef typename Graph::template NodeMap<Node> NNMap;
|
jacint@714
|
59 |
typedef typename std::vector<Node> VecNode;
|
jacint@714
|
60 |
|
jacint@714
|
61 |
const Graph* g;
|
jacint@714
|
62 |
Node s;
|
jacint@714
|
63 |
Node t;
|
jacint@714
|
64 |
const CapMap* capacity;
|
jacint@714
|
65 |
FlowMap* flow;
|
jacint@714
|
66 |
int n; //the number of nodes of G
|
jacint@714
|
67 |
typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
|
jacint@714
|
68 |
//typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
|
jacint@714
|
69 |
typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
|
jacint@714
|
70 |
typedef typename ResGW::Edge ResGWEdge;
|
jacint@714
|
71 |
//typedef typename ResGW::template NodeMap<bool> ReachedMap;
|
jacint@714
|
72 |
typedef typename Graph::template NodeMap<int> ReachedMap;
|
jacint@714
|
73 |
|
jacint@714
|
74 |
|
jacint@714
|
75 |
//level works as a bool map in augmenting path algorithms and is
|
jacint@714
|
76 |
//used by bfs for storing reached information. In preflow, it
|
jacint@714
|
77 |
//shows the levels of nodes.
|
jacint@714
|
78 |
ReachedMap level;
|
jacint@714
|
79 |
|
jacint@714
|
80 |
//excess is needed only in preflow
|
jacint@714
|
81 |
typename Graph::template NodeMap<Num> excess;
|
jacint@714
|
82 |
|
jacint@714
|
83 |
//fixme
|
jacint@714
|
84 |
// protected:
|
jacint@714
|
85 |
// MaxFlow() { }
|
jacint@714
|
86 |
// void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
|
jacint@714
|
87 |
// FlowMap& _flow)
|
jacint@714
|
88 |
// {
|
jacint@714
|
89 |
// g=&_G;
|
jacint@714
|
90 |
// s=_s;
|
jacint@714
|
91 |
// t=_t;
|
jacint@714
|
92 |
// capacity=&_capacity;
|
jacint@714
|
93 |
// flow=&_flow;
|
jacint@714
|
94 |
// n=_G.nodeNum;
|
jacint@714
|
95 |
// level.set (_G); //kellene vmi ilyesmi fv
|
jacint@714
|
96 |
// excess(_G,0); //itt is
|
jacint@714
|
97 |
// }
|
jacint@714
|
98 |
|
jacint@714
|
99 |
// constants used for heuristics
|
jacint@714
|
100 |
static const int H0=20;
|
jacint@714
|
101 |
static const int H1=1;
|
jacint@714
|
102 |
|
jacint@714
|
103 |
public:
|
jacint@714
|
104 |
|
jacint@714
|
105 |
///Indicates the property of the starting flow.
|
jacint@714
|
106 |
|
jacint@714
|
107 |
///Indicates the property of the starting flow. The meanings are as follows:
|
jacint@714
|
108 |
///- \c ZERO_FLOW: constant zero flow
|
jacint@714
|
109 |
///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
|
jacint@714
|
110 |
///the sum of the out-flows in every node except the \e source and
|
jacint@714
|
111 |
///the \e target.
|
jacint@714
|
112 |
///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at
|
jacint@714
|
113 |
///least the sum of the out-flows in every node except the \e source.
|
jacint@714
|
114 |
///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be
|
jacint@714
|
115 |
///set to the constant zero flow in the beginning of the algorithm in this case.
|
jacint@714
|
116 |
enum FlowEnum{
|
jacint@714
|
117 |
ZERO_FLOW,
|
jacint@714
|
118 |
GEN_FLOW,
|
jacint@714
|
119 |
PRE_FLOW,
|
jacint@714
|
120 |
NO_FLOW
|
jacint@714
|
121 |
};
|
jacint@714
|
122 |
|
jacint@714
|
123 |
enum StatusEnum {
|
jacint@714
|
124 |
AFTER_NOTHING,
|
jacint@714
|
125 |
AFTER_AUGMENTING,
|
jacint@714
|
126 |
AFTER_FAST_AUGMENTING,
|
jacint@714
|
127 |
AFTER_PRE_FLOW_PHASE_1,
|
jacint@714
|
128 |
AFTER_PRE_FLOW_PHASE_2
|
jacint@714
|
129 |
};
|
jacint@714
|
130 |
|
jacint@714
|
131 |
/// Don not needle this flag only if necessary.
|
jacint@714
|
132 |
StatusEnum status;
|
jacint@714
|
133 |
int number_of_augmentations;
|
jacint@714
|
134 |
|
jacint@714
|
135 |
|
jacint@714
|
136 |
template<typename IntMap>
|
jacint@714
|
137 |
class TrickyReachedMap {
|
jacint@714
|
138 |
protected:
|
jacint@714
|
139 |
IntMap* map;
|
jacint@714
|
140 |
int* number_of_augmentations;
|
jacint@714
|
141 |
public:
|
jacint@714
|
142 |
TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) :
|
jacint@714
|
143 |
map(&_map), number_of_augmentations(&_number_of_augmentations) { }
|
jacint@714
|
144 |
void set(const Node& n, bool b) {
|
jacint@714
|
145 |
if (b)
|
jacint@714
|
146 |
map->set(n, *number_of_augmentations);
|
jacint@714
|
147 |
else
|
jacint@714
|
148 |
map->set(n, *number_of_augmentations-1);
|
jacint@714
|
149 |
}
|
jacint@714
|
150 |
bool operator[](const Node& n) const {
|
jacint@714
|
151 |
return (*map)[n]==*number_of_augmentations;
|
jacint@714
|
152 |
}
|
jacint@714
|
153 |
};
|
jacint@714
|
154 |
|
jacint@714
|
155 |
///Constructor
|
jacint@714
|
156 |
|
jacint@714
|
157 |
///\todo Document, please.
|
jacint@714
|
158 |
///
|
alpar@719
|
159 |
MaxFlowNoStack(const Graph& _G, Node _s, Node _t,
|
alpar@719
|
160 |
const CapMap& _capacity, FlowMap& _flow) :
|
jacint@714
|
161 |
g(&_G), s(_s), t(_t), capacity(&_capacity),
|
jacint@714
|
162 |
flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0),
|
jacint@714
|
163 |
status(AFTER_NOTHING), number_of_augmentations(0) { }
|
jacint@714
|
164 |
|
jacint@714
|
165 |
///Runs a maximum flow algorithm.
|
jacint@714
|
166 |
|
jacint@714
|
167 |
///Runs a preflow algorithm, which is the fastest maximum flow
|
jacint@714
|
168 |
///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
|
jacint@714
|
169 |
///\pre The starting flow must be
|
jacint@714
|
170 |
/// - a constant zero flow if \c fe is \c ZERO_FLOW,
|
jacint@714
|
171 |
/// - an arbitary flow if \c fe is \c GEN_FLOW,
|
jacint@714
|
172 |
/// - an arbitary preflow if \c fe is \c PRE_FLOW,
|
jacint@714
|
173 |
/// - any map if \c fe is NO_FLOW.
|
jacint@714
|
174 |
void run(FlowEnum fe=ZERO_FLOW) {
|
jacint@714
|
175 |
preflow(fe);
|
jacint@714
|
176 |
}
|
jacint@714
|
177 |
|
jacint@714
|
178 |
|
jacint@714
|
179 |
///Runs a preflow algorithm.
|
jacint@714
|
180 |
|
jacint@714
|
181 |
///Runs a preflow algorithm. The preflow algorithms provide the
|
jacint@714
|
182 |
///fastest way to compute a maximum flow in a directed graph.
|
jacint@714
|
183 |
///\pre The starting flow must be
|
jacint@714
|
184 |
/// - a constant zero flow if \c fe is \c ZERO_FLOW,
|
jacint@714
|
185 |
/// - an arbitary flow if \c fe is \c GEN_FLOW,
|
jacint@714
|
186 |
/// - an arbitary preflow if \c fe is \c PRE_FLOW,
|
jacint@714
|
187 |
/// - any map if \c fe is NO_FLOW.
|
jacint@714
|
188 |
///
|
jacint@714
|
189 |
///\todo NO_FLOW should be the default flow.
|
jacint@714
|
190 |
void preflow(FlowEnum fe) {
|
jacint@714
|
191 |
preflowPhase1(fe);
|
jacint@714
|
192 |
preflowPhase2();
|
jacint@714
|
193 |
}
|
jacint@714
|
194 |
// Heuristics:
|
jacint@714
|
195 |
// 2 phase
|
jacint@714
|
196 |
// gap
|
jacint@714
|
197 |
// list 'level_list' on the nodes on level i implemented by hand
|
jacint@714
|
198 |
// stack 'active' on the active nodes on level i
|
jacint@714
|
199 |
// runs heuristic 'highest label' for H1*n relabels
|
jacint@714
|
200 |
// runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
|
jacint@714
|
201 |
// Parameters H0 and H1 are initialized to 20 and 1.
|
jacint@714
|
202 |
|
jacint@714
|
203 |
///Runs the first phase of the preflow algorithm.
|
jacint@714
|
204 |
|
jacint@714
|
205 |
///The preflow algorithm consists of two phases, this method runs the
|
jacint@714
|
206 |
///first phase. After the first phase the maximum flow value and a
|
jacint@714
|
207 |
///minimum value cut can already be computed, though a maximum flow
|
jacint@714
|
208 |
///is net yet obtained. So after calling this method \ref flowValue
|
jacint@714
|
209 |
///and \ref actMinCut gives proper results.
|
jacint@714
|
210 |
///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
|
jacint@714
|
211 |
///give minimum value cuts unless calling \ref preflowPhase2.
|
jacint@714
|
212 |
///\pre The starting flow must be
|
jacint@714
|
213 |
/// - a constant zero flow if \c fe is \c ZERO_FLOW,
|
jacint@714
|
214 |
/// - an arbitary flow if \c fe is \c GEN_FLOW,
|
jacint@714
|
215 |
/// - an arbitary preflow if \c fe is \c PRE_FLOW,
|
jacint@714
|
216 |
/// - any map if \c fe is NO_FLOW.
|
jacint@714
|
217 |
void preflowPhase1(FlowEnum fe);
|
jacint@714
|
218 |
|
jacint@714
|
219 |
///Runs the second phase of the preflow algorithm.
|
jacint@714
|
220 |
|
jacint@714
|
221 |
///The preflow algorithm consists of two phases, this method runs
|
jacint@714
|
222 |
///the second phase. After calling \ref preflowPhase1 and then
|
jacint@714
|
223 |
///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
|
jacint@714
|
224 |
///\ref minMinCut and \ref maxMinCut give proper results.
|
jacint@714
|
225 |
///\pre \ref preflowPhase1 must be called before.
|
jacint@714
|
226 |
void preflowPhase2();
|
jacint@714
|
227 |
|
jacint@714
|
228 |
/// Starting from a flow, this method searches for an augmenting path
|
jacint@714
|
229 |
/// according to the Edmonds-Karp algorithm
|
jacint@714
|
230 |
/// and augments the flow on if any.
|
jacint@714
|
231 |
/// The return value shows if the augmentation was succesful.
|
jacint@714
|
232 |
bool augmentOnShortestPath();
|
jacint@714
|
233 |
bool augmentOnShortestPath2();
|
jacint@714
|
234 |
|
jacint@714
|
235 |
/// Starting from a flow, this method searches for an augmenting blocking
|
jacint@714
|
236 |
/// flow according to Dinits' algorithm and augments the flow on if any.
|
jacint@714
|
237 |
/// The blocking flow is computed in a physically constructed
|
jacint@714
|
238 |
/// residual graph of type \c Mutablegraph.
|
jacint@714
|
239 |
/// The return value show sif the augmentation was succesful.
|
jacint@714
|
240 |
template<typename MutableGraph> bool augmentOnBlockingFlow();
|
jacint@714
|
241 |
|
jacint@714
|
242 |
/// The same as \c augmentOnBlockingFlow<MutableGraph> but the
|
jacint@714
|
243 |
/// residual graph is not constructed physically.
|
jacint@714
|
244 |
/// The return value shows if the augmentation was succesful.
|
jacint@714
|
245 |
bool augmentOnBlockingFlow2();
|
jacint@714
|
246 |
|
jacint@714
|
247 |
/// Returns the maximum value of a flow.
|
jacint@714
|
248 |
|
jacint@714
|
249 |
/// Returns the maximum value of a flow, by counting the
|
jacint@714
|
250 |
/// over-flow of the target node \ref t.
|
jacint@714
|
251 |
/// It can be called already after running \ref preflowPhase1.
|
jacint@714
|
252 |
Num flowValue() const {
|
jacint@714
|
253 |
Num a=0;
|
jacint@714
|
254 |
FOR_EACH_INC_LOC(InEdgeIt, e, *g, t) a+=(*flow)[e];
|
jacint@714
|
255 |
FOR_EACH_INC_LOC(OutEdgeIt, e, *g, t) a-=(*flow)[e];
|
jacint@714
|
256 |
return a;
|
jacint@714
|
257 |
//marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan
|
jacint@714
|
258 |
}
|
jacint@714
|
259 |
|
jacint@714
|
260 |
///Returns a minimum value cut after calling \ref preflowPhase1.
|
jacint@714
|
261 |
|
jacint@714
|
262 |
///After the first phase of the preflow algorithm the maximum flow
|
jacint@714
|
263 |
///value and a minimum value cut can already be computed. This
|
jacint@714
|
264 |
///method can be called after running \ref preflowPhase1 for
|
jacint@714
|
265 |
///obtaining a minimum value cut.
|
jacint@714
|
266 |
/// \warning Gives proper result only right after calling \ref
|
jacint@714
|
267 |
/// preflowPhase1.
|
jacint@714
|
268 |
/// \todo We have to make some status variable which shows the
|
jacint@714
|
269 |
/// actual state
|
jacint@714
|
270 |
/// of the class. This enables us to determine which methods are valid
|
jacint@714
|
271 |
/// for MinCut computation
|
jacint@714
|
272 |
template<typename _CutMap>
|
jacint@714
|
273 |
void actMinCut(_CutMap& M) const {
|
jacint@714
|
274 |
NodeIt v;
|
jacint@714
|
275 |
switch (status) {
|
jacint@714
|
276 |
case AFTER_PRE_FLOW_PHASE_1:
|
jacint@714
|
277 |
for(g->first(v); g->valid(v); g->next(v)) {
|
jacint@714
|
278 |
if (level[v] < n) {
|
jacint@714
|
279 |
M.set(v, false);
|
jacint@714
|
280 |
} else {
|
jacint@714
|
281 |
M.set(v, true);
|
jacint@714
|
282 |
}
|
jacint@714
|
283 |
}
|
jacint@714
|
284 |
break;
|
jacint@714
|
285 |
case AFTER_PRE_FLOW_PHASE_2:
|
jacint@714
|
286 |
case AFTER_NOTHING:
|
jacint@714
|
287 |
minMinCut(M);
|
jacint@714
|
288 |
break;
|
jacint@714
|
289 |
case AFTER_AUGMENTING:
|
jacint@714
|
290 |
for(g->first(v); g->valid(v); g->next(v)) {
|
jacint@714
|
291 |
if (level[v]) {
|
jacint@714
|
292 |
M.set(v, true);
|
jacint@714
|
293 |
} else {
|
jacint@714
|
294 |
M.set(v, false);
|
jacint@714
|
295 |
}
|
jacint@714
|
296 |
}
|
jacint@714
|
297 |
break;
|
jacint@714
|
298 |
case AFTER_FAST_AUGMENTING:
|
jacint@714
|
299 |
for(g->first(v); g->valid(v); g->next(v)) {
|
jacint@714
|
300 |
if (level[v]==number_of_augmentations) {
|
jacint@714
|
301 |
M.set(v, true);
|
jacint@714
|
302 |
} else {
|
jacint@714
|
303 |
M.set(v, false);
|
jacint@714
|
304 |
}
|
jacint@714
|
305 |
}
|
jacint@714
|
306 |
break;
|
jacint@714
|
307 |
}
|
jacint@714
|
308 |
}
|
jacint@714
|
309 |
|
jacint@714
|
310 |
///Returns the inclusionwise minimum of the minimum value cuts.
|
jacint@714
|
311 |
|
jacint@714
|
312 |
///Sets \c M to the characteristic vector of the minimum value cut
|
jacint@714
|
313 |
///which is inclusionwise minimum. It is computed by processing
|
jacint@714
|
314 |
///a bfs from the source node \c s in the residual graph.
|
jacint@714
|
315 |
///\pre M should be a node map of bools initialized to false.
|
jacint@714
|
316 |
///\pre \c flow must be a maximum flow.
|
jacint@714
|
317 |
template<typename _CutMap>
|
jacint@714
|
318 |
void minMinCut(_CutMap& M) const {
|
jacint@714
|
319 |
std::queue<Node> queue;
|
jacint@714
|
320 |
|
jacint@714
|
321 |
M.set(s,true);
|
jacint@714
|
322 |
queue.push(s);
|
jacint@714
|
323 |
|
jacint@714
|
324 |
while (!queue.empty()) {
|
jacint@714
|
325 |
Node w=queue.front();
|
jacint@714
|
326 |
queue.pop();
|
jacint@714
|
327 |
|
jacint@714
|
328 |
OutEdgeIt e;
|
jacint@714
|
329 |
for(g->first(e,w) ; g->valid(e); g->next(e)) {
|
jacint@714
|
330 |
Node v=g->head(e);
|
jacint@714
|
331 |
if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
|
jacint@714
|
332 |
queue.push(v);
|
jacint@714
|
333 |
M.set(v, true);
|
jacint@714
|
334 |
}
|
jacint@714
|
335 |
}
|
jacint@714
|
336 |
|
jacint@714
|
337 |
InEdgeIt f;
|
jacint@714
|
338 |
for(g->first(f,w) ; g->valid(f); g->next(f)) {
|
jacint@714
|
339 |
Node v=g->tail(f);
|
jacint@714
|
340 |
if (!M[v] && (*flow)[f] > 0 ) {
|
jacint@714
|
341 |
queue.push(v);
|
jacint@714
|
342 |
M.set(v, true);
|
jacint@714
|
343 |
}
|
jacint@714
|
344 |
}
|
jacint@714
|
345 |
}
|
jacint@714
|
346 |
}
|
jacint@714
|
347 |
|
jacint@714
|
348 |
///Returns the inclusionwise maximum of the minimum value cuts.
|
jacint@714
|
349 |
|
jacint@714
|
350 |
///Sets \c M to the characteristic vector of the minimum value cut
|
jacint@714
|
351 |
///which is inclusionwise maximum. It is computed by processing a
|
jacint@714
|
352 |
///backward bfs from the target node \c t in the residual graph.
|
jacint@714
|
353 |
///\pre M should be a node map of bools initialized to false.
|
jacint@714
|
354 |
///\pre \c flow must be a maximum flow.
|
jacint@714
|
355 |
template<typename _CutMap>
|
jacint@714
|
356 |
void maxMinCut(_CutMap& M) const {
|
jacint@714
|
357 |
|
jacint@714
|
358 |
NodeIt v;
|
jacint@714
|
359 |
for(g->first(v) ; g->valid(v); g->next(v)) {
|
jacint@714
|
360 |
M.set(v, true);
|
jacint@714
|
361 |
}
|
jacint@714
|
362 |
|
jacint@714
|
363 |
std::queue<Node> queue;
|
jacint@714
|
364 |
|
jacint@714
|
365 |
M.set(t,false);
|
jacint@714
|
366 |
queue.push(t);
|
jacint@714
|
367 |
|
jacint@714
|
368 |
while (!queue.empty()) {
|
jacint@714
|
369 |
Node w=queue.front();
|
jacint@714
|
370 |
queue.pop();
|
jacint@714
|
371 |
|
jacint@714
|
372 |
InEdgeIt e;
|
jacint@714
|
373 |
for(g->first(e,w) ; g->valid(e); g->next(e)) {
|
jacint@714
|
374 |
Node v=g->tail(e);
|
jacint@714
|
375 |
if (M[v] && (*flow)[e] < (*capacity)[e] ) {
|
jacint@714
|
376 |
queue.push(v);
|
jacint@714
|
377 |
M.set(v, false);
|
jacint@714
|
378 |
}
|
jacint@714
|
379 |
}
|
jacint@714
|
380 |
|
jacint@714
|
381 |
OutEdgeIt f;
|
jacint@714
|
382 |
for(g->first(f,w) ; g->valid(f); g->next(f)) {
|
jacint@714
|
383 |
Node v=g->head(f);
|
jacint@714
|
384 |
if (M[v] && (*flow)[f] > 0 ) {
|
jacint@714
|
385 |
queue.push(v);
|
jacint@714
|
386 |
M.set(v, false);
|
jacint@714
|
387 |
}
|
jacint@714
|
388 |
}
|
jacint@714
|
389 |
}
|
jacint@714
|
390 |
}
|
jacint@714
|
391 |
|
jacint@714
|
392 |
///Returns a minimum value cut.
|
jacint@714
|
393 |
|
jacint@714
|
394 |
///Sets \c M to the characteristic vector of a minimum value cut.
|
jacint@714
|
395 |
///\pre M should be a node map of bools initialized to false.
|
jacint@714
|
396 |
///\pre \c flow must be a maximum flow.
|
jacint@714
|
397 |
template<typename CutMap>
|
jacint@714
|
398 |
void minCut(CutMap& M) const { minMinCut(M); }
|
jacint@714
|
399 |
|
jacint@714
|
400 |
///Resets the source node to \c _s.
|
jacint@714
|
401 |
|
jacint@714
|
402 |
///Resets the source node to \c _s.
|
jacint@714
|
403 |
///
|
jacint@714
|
404 |
void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; }
|
jacint@714
|
405 |
|
jacint@714
|
406 |
///Resets the target node to \c _t.
|
jacint@714
|
407 |
|
jacint@714
|
408 |
///Resets the target node to \c _t.
|
jacint@714
|
409 |
///
|
jacint@714
|
410 |
void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
|
jacint@714
|
411 |
|
jacint@714
|
412 |
/// Resets the edge map of the capacities to _cap.
|
jacint@714
|
413 |
|
jacint@714
|
414 |
/// Resets the edge map of the capacities to _cap.
|
jacint@714
|
415 |
///
|
alpar@719
|
416 |
void resetCap(const CapMap& _cap)
|
alpar@719
|
417 |
{ capacity=&_cap; status=AFTER_NOTHING; }
|
jacint@714
|
418 |
|
jacint@714
|
419 |
/// Resets the edge map of the flows to _flow.
|
jacint@714
|
420 |
|
jacint@714
|
421 |
/// Resets the edge map of the flows to _flow.
|
jacint@714
|
422 |
///
|
jacint@714
|
423 |
void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
|
jacint@714
|
424 |
|
jacint@714
|
425 |
|
jacint@714
|
426 |
private:
|
jacint@714
|
427 |
|
jacint@714
|
428 |
int push(Node w, NNMap& next, VecFirst& first) {
|
jacint@714
|
429 |
|
jacint@714
|
430 |
int lev=level[w];
|
jacint@714
|
431 |
Num exc=excess[w];
|
jacint@714
|
432 |
int newlevel=n; //bound on the next level of w
|
jacint@714
|
433 |
|
jacint@714
|
434 |
OutEdgeIt e;
|
jacint@714
|
435 |
for(g->first(e,w); g->valid(e); g->next(e)) {
|
jacint@714
|
436 |
|
jacint@714
|
437 |
if ( (*flow)[e] >= (*capacity)[e] ) continue;
|
jacint@714
|
438 |
Node v=g->head(e);
|
jacint@714
|
439 |
|
jacint@714
|
440 |
if( lev > level[v] ) { //Push is allowed now
|
jacint@714
|
441 |
|
jacint@714
|
442 |
if ( excess[v]<=0 && v!=t && v!=s ) {
|
jacint@714
|
443 |
next.set(v,first[level[v]]);
|
jacint@714
|
444 |
first[level[v]]=v;
|
jacint@714
|
445 |
// int lev_v=level[v];
|
jacint@714
|
446 |
//active[lev_v].push(v);
|
jacint@714
|
447 |
}
|
jacint@714
|
448 |
|
jacint@714
|
449 |
Num cap=(*capacity)[e];
|
jacint@714
|
450 |
Num flo=(*flow)[e];
|
jacint@714
|
451 |
Num remcap=cap-flo;
|
jacint@714
|
452 |
|
jacint@714
|
453 |
if ( remcap >= exc ) { //A nonsaturating push.
|
jacint@714
|
454 |
|
jacint@714
|
455 |
flow->set(e, flo+exc);
|
jacint@714
|
456 |
excess.set(v, excess[v]+exc);
|
jacint@714
|
457 |
exc=0;
|
jacint@714
|
458 |
break;
|
jacint@714
|
459 |
|
jacint@714
|
460 |
} else { //A saturating push.
|
jacint@714
|
461 |
flow->set(e, cap);
|
jacint@714
|
462 |
excess.set(v, excess[v]+remcap);
|
jacint@714
|
463 |
exc-=remcap;
|
jacint@714
|
464 |
}
|
jacint@714
|
465 |
} else if ( newlevel > level[v] ) newlevel = level[v];
|
jacint@714
|
466 |
} //for out edges wv
|
jacint@714
|
467 |
|
jacint@714
|
468 |
if ( exc > 0 ) {
|
jacint@714
|
469 |
InEdgeIt e;
|
jacint@714
|
470 |
for(g->first(e,w); g->valid(e); g->next(e)) {
|
jacint@714
|
471 |
|
jacint@714
|
472 |
if( (*flow)[e] <= 0 ) continue;
|
jacint@714
|
473 |
Node v=g->tail(e);
|
jacint@714
|
474 |
|
jacint@714
|
475 |
if( lev > level[v] ) { //Push is allowed now
|
jacint@714
|
476 |
|
jacint@714
|
477 |
if ( excess[v]<=0 && v!=t && v!=s ) {
|
jacint@714
|
478 |
next.set(v,first[level[v]]);
|
jacint@714
|
479 |
first[level[v]]=v;
|
jacint@714
|
480 |
//int lev_v=level[v];
|
jacint@714
|
481 |
//active[lev_v].push(v);
|
jacint@714
|
482 |
}
|
jacint@714
|
483 |
|
jacint@714
|
484 |
Num flo=(*flow)[e];
|
jacint@714
|
485 |
|
jacint@714
|
486 |
if ( flo >= exc ) { //A nonsaturating push.
|
jacint@714
|
487 |
|
jacint@714
|
488 |
flow->set(e, flo-exc);
|
jacint@714
|
489 |
excess.set(v, excess[v]+exc);
|
jacint@714
|
490 |
exc=0;
|
jacint@714
|
491 |
break;
|
jacint@714
|
492 |
} else { //A saturating push.
|
jacint@714
|
493 |
|
jacint@714
|
494 |
excess.set(v, excess[v]+flo);
|
jacint@714
|
495 |
exc-=flo;
|
jacint@714
|
496 |
flow->set(e,0);
|
jacint@714
|
497 |
}
|
jacint@714
|
498 |
} else if ( newlevel > level[v] ) newlevel = level[v];
|
jacint@714
|
499 |
} //for in edges vw
|
jacint@714
|
500 |
|
jacint@714
|
501 |
} // if w still has excess after the out edge for cycle
|
jacint@714
|
502 |
|
jacint@714
|
503 |
excess.set(w, exc);
|
jacint@714
|
504 |
|
jacint@714
|
505 |
return newlevel;
|
jacint@714
|
506 |
}
|
jacint@714
|
507 |
|
jacint@714
|
508 |
|
jacint@714
|
509 |
void preflowPreproc(FlowEnum fe, NNMap& next, VecFirst& first,
|
jacint@714
|
510 |
VecNode& level_list, NNMap& left, NNMap& right)
|
jacint@714
|
511 |
{
|
jacint@714
|
512 |
std::queue<Node> bfs_queue;
|
jacint@714
|
513 |
|
jacint@714
|
514 |
switch (fe) {
|
jacint@714
|
515 |
case NO_FLOW: //flow is already set to const zero in this case
|
jacint@714
|
516 |
case ZERO_FLOW:
|
jacint@714
|
517 |
{
|
jacint@714
|
518 |
//Reverse_bfs from t, to find the starting level.
|
jacint@714
|
519 |
level.set(t,0);
|
jacint@714
|
520 |
bfs_queue.push(t);
|
jacint@714
|
521 |
|
jacint@714
|
522 |
while (!bfs_queue.empty()) {
|
jacint@714
|
523 |
|
jacint@714
|
524 |
Node v=bfs_queue.front();
|
jacint@714
|
525 |
bfs_queue.pop();
|
jacint@714
|
526 |
int l=level[v]+1;
|
jacint@714
|
527 |
|
jacint@714
|
528 |
InEdgeIt e;
|
jacint@714
|
529 |
for(g->first(e,v); g->valid(e); g->next(e)) {
|
jacint@714
|
530 |
Node w=g->tail(e);
|
jacint@714
|
531 |
if ( level[w] == n && w != s ) {
|
jacint@714
|
532 |
bfs_queue.push(w);
|
jacint@714
|
533 |
Node z=level_list[l];
|
jacint@714
|
534 |
if ( g->valid(z) ) left.set(z,w);
|
jacint@714
|
535 |
right.set(w,z);
|
jacint@714
|
536 |
level_list[l]=w;
|
jacint@714
|
537 |
level.set(w, l);
|
jacint@714
|
538 |
}
|
jacint@714
|
539 |
}
|
jacint@714
|
540 |
}
|
jacint@714
|
541 |
|
jacint@714
|
542 |
//the starting flow
|
jacint@714
|
543 |
OutEdgeIt e;
|
jacint@714
|
544 |
for(g->first(e,s); g->valid(e); g->next(e))
|
jacint@714
|
545 |
{
|
jacint@714
|
546 |
Num c=(*capacity)[e];
|
jacint@714
|
547 |
if ( c <= 0 ) continue;
|
jacint@714
|
548 |
Node w=g->head(e);
|
jacint@714
|
549 |
if ( level[w] < n ) {
|
jacint@714
|
550 |
if ( excess[w] <= 0 && w!=t )
|
jacint@714
|
551 |
{
|
jacint@714
|
552 |
next.set(w,first[level[w]]);
|
jacint@714
|
553 |
first[level[w]]=w;
|
jacint@714
|
554 |
//active[level[w]].push(w);
|
jacint@714
|
555 |
}
|
jacint@714
|
556 |
flow->set(e, c);
|
jacint@714
|
557 |
excess.set(w, excess[w]+c);
|
jacint@714
|
558 |
}
|
jacint@714
|
559 |
}
|
jacint@714
|
560 |
break;
|
jacint@714
|
561 |
}
|
jacint@714
|
562 |
|
jacint@714
|
563 |
case GEN_FLOW:
|
jacint@714
|
564 |
case PRE_FLOW:
|
jacint@714
|
565 |
{
|
jacint@714
|
566 |
//Reverse_bfs from t in the residual graph,
|
jacint@714
|
567 |
//to find the starting level.
|
jacint@714
|
568 |
level.set(t,0);
|
jacint@714
|
569 |
bfs_queue.push(t);
|
jacint@714
|
570 |
|
jacint@714
|
571 |
while (!bfs_queue.empty()) {
|
jacint@714
|
572 |
|
jacint@714
|
573 |
Node v=bfs_queue.front();
|
jacint@714
|
574 |
bfs_queue.pop();
|
jacint@714
|
575 |
int l=level[v]+1;
|
jacint@714
|
576 |
|
jacint@714
|
577 |
InEdgeIt e;
|
jacint@714
|
578 |
for(g->first(e,v); g->valid(e); g->next(e)) {
|
jacint@714
|
579 |
if ( (*capacity)[e] <= (*flow)[e] ) continue;
|
jacint@714
|
580 |
Node w=g->tail(e);
|
jacint@714
|
581 |
if ( level[w] == n && w != s ) {
|
jacint@714
|
582 |
bfs_queue.push(w);
|
jacint@714
|
583 |
Node z=level_list[l];
|
jacint@714
|
584 |
if ( g->valid(z) ) left.set(z,w);
|
jacint@714
|
585 |
right.set(w,z);
|
jacint@714
|
586 |
level_list[l]=w;
|
jacint@714
|
587 |
level.set(w, l);
|
jacint@714
|
588 |
}
|
jacint@714
|
589 |
}
|
jacint@714
|
590 |
|
jacint@714
|
591 |
OutEdgeIt f;
|
jacint@714
|
592 |
for(g->first(f,v); g->valid(f); g->next(f)) {
|
jacint@714
|
593 |
if ( 0 >= (*flow)[f] ) continue;
|
jacint@714
|
594 |
Node w=g->head(f);
|
jacint@714
|
595 |
if ( level[w] == n && w != s ) {
|
jacint@714
|
596 |
bfs_queue.push(w);
|
jacint@714
|
597 |
Node z=level_list[l];
|
jacint@714
|
598 |
if ( g->valid(z) ) left.set(z,w);
|
jacint@714
|
599 |
right.set(w,z);
|
jacint@714
|
600 |
level_list[l]=w;
|
jacint@714
|
601 |
level.set(w, l);
|
jacint@714
|
602 |
}
|
jacint@714
|
603 |
}
|
jacint@714
|
604 |
}
|
jacint@714
|
605 |
|
jacint@714
|
606 |
|
jacint@714
|
607 |
//the starting flow
|
jacint@714
|
608 |
OutEdgeIt e;
|
jacint@714
|
609 |
for(g->first(e,s); g->valid(e); g->next(e))
|
jacint@714
|
610 |
{
|
jacint@714
|
611 |
Num rem=(*capacity)[e]-(*flow)[e];
|
jacint@714
|
612 |
if ( rem <= 0 ) continue;
|
jacint@714
|
613 |
Node w=g->head(e);
|
jacint@714
|
614 |
if ( level[w] < n ) {
|
jacint@714
|
615 |
if ( excess[w] <= 0 && w!=t )
|
jacint@714
|
616 |
{
|
jacint@714
|
617 |
next.set(w,first[level[w]]);
|
jacint@714
|
618 |
first[level[w]]=w;
|
jacint@714
|
619 |
//active[level[w]].push(w);
|
jacint@714
|
620 |
}
|
jacint@714
|
621 |
flow->set(e, (*capacity)[e]);
|
jacint@714
|
622 |
excess.set(w, excess[w]+rem);
|
jacint@714
|
623 |
}
|
jacint@714
|
624 |
}
|
jacint@714
|
625 |
|
jacint@714
|
626 |
InEdgeIt f;
|
jacint@714
|
627 |
for(g->first(f,s); g->valid(f); g->next(f))
|
jacint@714
|
628 |
{
|
jacint@714
|
629 |
if ( (*flow)[f] <= 0 ) continue;
|
jacint@714
|
630 |
Node w=g->tail(f);
|
jacint@714
|
631 |
if ( level[w] < n ) {
|
jacint@714
|
632 |
if ( excess[w] <= 0 && w!=t )
|
jacint@714
|
633 |
{
|
jacint@714
|
634 |
next.set(w,first[level[w]]);
|
jacint@714
|
635 |
first[level[w]]=w;
|
jacint@714
|
636 |
//active[level[w]].push(w);
|
jacint@714
|
637 |
}
|
jacint@714
|
638 |
excess.set(w, excess[w]+(*flow)[f]);
|
jacint@714
|
639 |
flow->set(f, 0);
|
jacint@714
|
640 |
}
|
jacint@714
|
641 |
}
|
jacint@714
|
642 |
break;
|
jacint@714
|
643 |
} //case PRE_FLOW
|
jacint@714
|
644 |
}
|
jacint@714
|
645 |
} //preflowPreproc
|
jacint@714
|
646 |
|
jacint@714
|
647 |
|
jacint@714
|
648 |
|
jacint@714
|
649 |
void relabel(Node w, int newlevel, NNMap& next, VecFirst& first,
|
jacint@714
|
650 |
VecNode& level_list, NNMap& left,
|
jacint@714
|
651 |
NNMap& right, int& b, int& k, bool what_heur )
|
jacint@714
|
652 |
{
|
jacint@714
|
653 |
|
jacint@714
|
654 |
Num lev=level[w];
|
jacint@714
|
655 |
|
jacint@714
|
656 |
Node right_n=right[w];
|
jacint@714
|
657 |
Node left_n=left[w];
|
jacint@714
|
658 |
|
jacint@714
|
659 |
//unlacing starts
|
jacint@714
|
660 |
if ( g->valid(right_n) ) {
|
jacint@714
|
661 |
if ( g->valid(left_n) ) {
|
jacint@714
|
662 |
right.set(left_n, right_n);
|
jacint@714
|
663 |
left.set(right_n, left_n);
|
jacint@714
|
664 |
} else {
|
jacint@714
|
665 |
level_list[lev]=right_n;
|
jacint@714
|
666 |
left.set(right_n, INVALID);
|
jacint@714
|
667 |
}
|
jacint@714
|
668 |
} else {
|
jacint@714
|
669 |
if ( g->valid(left_n) ) {
|
jacint@714
|
670 |
right.set(left_n, INVALID);
|
jacint@714
|
671 |
} else {
|
jacint@714
|
672 |
level_list[lev]=INVALID;
|
jacint@714
|
673 |
}
|
jacint@714
|
674 |
}
|
jacint@714
|
675 |
//unlacing ends
|
jacint@714
|
676 |
|
jacint@714
|
677 |
if ( !g->valid(level_list[lev]) ) {
|
jacint@714
|
678 |
|
jacint@714
|
679 |
//gapping starts
|
jacint@714
|
680 |
for (int i=lev; i!=k ; ) {
|
jacint@714
|
681 |
Node v=level_list[++i];
|
jacint@714
|
682 |
while ( g->valid(v) ) {
|
jacint@714
|
683 |
level.set(v,n);
|
jacint@714
|
684 |
v=right[v];
|
jacint@714
|
685 |
}
|
jacint@714
|
686 |
level_list[i]=INVALID;
|
jacint@714
|
687 |
if ( !what_heur ) first[i]=INVALID;
|
jacint@714
|
688 |
/*{
|
jacint@714
|
689 |
while ( !active[i].empty() ) {
|
jacint@714
|
690 |
active[i].pop(); //FIXME: ezt szebben kene
|
jacint@714
|
691 |
}
|
jacint@714
|
692 |
}*/
|
jacint@714
|
693 |
}
|
jacint@714
|
694 |
|
jacint@714
|
695 |
level.set(w,n);
|
jacint@714
|
696 |
b=lev-1;
|
jacint@714
|
697 |
k=b;
|
jacint@714
|
698 |
//gapping ends
|
jacint@714
|
699 |
|
jacint@714
|
700 |
} else {
|
jacint@714
|
701 |
|
jacint@714
|
702 |
if ( newlevel == n ) level.set(w,n);
|
jacint@714
|
703 |
else {
|
jacint@714
|
704 |
level.set(w,++newlevel);
|
jacint@714
|
705 |
next.set(w,first[newlevel]);
|
jacint@714
|
706 |
first[newlevel]=w;
|
jacint@714
|
707 |
// active[newlevel].push(w);
|
jacint@714
|
708 |
if ( what_heur ) b=newlevel;
|
jacint@714
|
709 |
if ( k < newlevel ) ++k; //now k=newlevel
|
jacint@714
|
710 |
Node z=level_list[newlevel];
|
jacint@714
|
711 |
if ( g->valid(z) ) left.set(z,w);
|
jacint@714
|
712 |
right.set(w,z);
|
jacint@714
|
713 |
left.set(w,INVALID);
|
jacint@714
|
714 |
level_list[newlevel]=w;
|
jacint@714
|
715 |
}
|
jacint@714
|
716 |
}
|
jacint@714
|
717 |
|
jacint@714
|
718 |
} //relabel
|
jacint@714
|
719 |
|
jacint@714
|
720 |
|
jacint@714
|
721 |
template<typename MapGraphWrapper>
|
jacint@714
|
722 |
class DistanceMap {
|
jacint@714
|
723 |
protected:
|
jacint@714
|
724 |
const MapGraphWrapper* g;
|
jacint@714
|
725 |
typename MapGraphWrapper::template NodeMap<int> dist;
|
jacint@714
|
726 |
public:
|
jacint@714
|
727 |
DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
|
jacint@714
|
728 |
void set(const typename MapGraphWrapper::Node& n, int a) {
|
jacint@714
|
729 |
dist.set(n, a);
|
jacint@714
|
730 |
}
|
jacint@714
|
731 |
int operator[](const typename MapGraphWrapper::Node& n) const {
|
jacint@714
|
732 |
return dist[n];
|
jacint@714
|
733 |
}
|
jacint@714
|
734 |
// int get(const typename MapGraphWrapper::Node& n) const {
|
jacint@714
|
735 |
// return dist[n]; }
|
jacint@714
|
736 |
// bool get(const typename MapGraphWrapper::Edge& e) const {
|
jacint@714
|
737 |
// return (dist.get(g->tail(e))<dist.get(g->head(e))); }
|
jacint@714
|
738 |
bool operator[](const typename MapGraphWrapper::Edge& e) const {
|
jacint@714
|
739 |
return (dist[g->tail(e)]<dist[g->head(e)]);
|
jacint@714
|
740 |
}
|
jacint@714
|
741 |
};
|
jacint@714
|
742 |
|
jacint@714
|
743 |
};
|
jacint@714
|
744 |
|
jacint@714
|
745 |
|
jacint@714
|
746 |
template <typename Graph, typename Num, typename CapMap, typename FlowMap>
|
jacint@714
|
747 |
void MaxFlowNoStack<Graph, Num, CapMap, FlowMap>::preflowPhase1(FlowEnum fe)
|
jacint@714
|
748 |
{
|
jacint@714
|
749 |
|
jacint@714
|
750 |
int heur0=(int)(H0*n); //time while running 'bound decrease'
|
jacint@714
|
751 |
int heur1=(int)(H1*n); //time while running 'highest label'
|
jacint@714
|
752 |
int heur=heur1; //starting time interval (#of relabels)
|
jacint@714
|
753 |
int numrelabel=0;
|
jacint@714
|
754 |
|
jacint@714
|
755 |
bool what_heur=1;
|
jacint@714
|
756 |
//It is 0 in case 'bound decrease' and 1 in case 'highest label'
|
jacint@714
|
757 |
|
jacint@714
|
758 |
bool end=false;
|
jacint@714
|
759 |
//Needed for 'bound decrease', true means no active nodes are above bound
|
jacint@714
|
760 |
//b.
|
jacint@714
|
761 |
|
jacint@714
|
762 |
int k=n-2; //bound on the highest level under n containing a node
|
jacint@714
|
763 |
int b=k; //bound on the highest level under n of an active node
|
jacint@714
|
764 |
|
jacint@714
|
765 |
VecFirst first(n, INVALID);
|
jacint@714
|
766 |
NNMap next(*g, INVALID); //maybe INVALID is not needed
|
jacint@714
|
767 |
// VecStack active(n);
|
jacint@714
|
768 |
|
jacint@714
|
769 |
NNMap left(*g, INVALID);
|
jacint@714
|
770 |
NNMap right(*g, INVALID);
|
jacint@714
|
771 |
VecNode level_list(n,INVALID);
|
jacint@714
|
772 |
//List of the nodes in level i<n, set to n.
|
jacint@714
|
773 |
|
jacint@714
|
774 |
NodeIt v;
|
jacint@714
|
775 |
for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
|
jacint@714
|
776 |
//setting each node to level n
|
jacint@714
|
777 |
|
jacint@714
|
778 |
if ( fe == NO_FLOW ) {
|
jacint@714
|
779 |
EdgeIt e;
|
jacint@714
|
780 |
for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0);
|
jacint@714
|
781 |
}
|
jacint@714
|
782 |
|
jacint@714
|
783 |
switch (fe) { //computing the excess
|
jacint@714
|
784 |
case PRE_FLOW:
|
jacint@714
|
785 |
{
|
jacint@714
|
786 |
NodeIt v;
|
jacint@714
|
787 |
for(g->first(v); g->valid(v); g->next(v)) {
|
jacint@714
|
788 |
Num exc=0;
|
jacint@714
|
789 |
|
jacint@714
|
790 |
InEdgeIt e;
|
jacint@714
|
791 |
for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
|
jacint@714
|
792 |
OutEdgeIt f;
|
jacint@714
|
793 |
for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
|
jacint@714
|
794 |
|
jacint@714
|
795 |
excess.set(v,exc);
|
jacint@714
|
796 |
|
jacint@714
|
797 |
//putting the active nodes into the stack
|
jacint@714
|
798 |
int lev=level[v];
|
jacint@714
|
799 |
if ( exc > 0 && lev < n && v != t )
|
jacint@714
|
800 |
{
|
jacint@714
|
801 |
next.set(v,first[lev]);
|
jacint@714
|
802 |
first[lev]=v;
|
jacint@714
|
803 |
}
|
jacint@714
|
804 |
// active[lev].push(v);
|
jacint@714
|
805 |
}
|
jacint@714
|
806 |
break;
|
jacint@714
|
807 |
}
|
jacint@714
|
808 |
case GEN_FLOW:
|
jacint@714
|
809 |
{
|
jacint@714
|
810 |
NodeIt v;
|
jacint@714
|
811 |
for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
|
jacint@714
|
812 |
|
jacint@714
|
813 |
Num exc=0;
|
jacint@714
|
814 |
InEdgeIt e;
|
jacint@714
|
815 |
for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
|
jacint@714
|
816 |
OutEdgeIt f;
|
jacint@714
|
817 |
for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
|
jacint@714
|
818 |
excess.set(t,exc);
|
jacint@714
|
819 |
break;
|
jacint@714
|
820 |
}
|
jacint@714
|
821 |
case ZERO_FLOW:
|
jacint@714
|
822 |
case NO_FLOW:
|
jacint@714
|
823 |
{
|
jacint@714
|
824 |
NodeIt v;
|
jacint@714
|
825 |
for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
|
jacint@714
|
826 |
break;
|
jacint@714
|
827 |
}
|
jacint@714
|
828 |
}
|
jacint@714
|
829 |
|
jacint@714
|
830 |
preflowPreproc(fe, next, first,/*active*/ level_list, left, right);
|
jacint@714
|
831 |
//End of preprocessing
|
jacint@714
|
832 |
|
jacint@714
|
833 |
|
jacint@714
|
834 |
//Push/relabel on the highest level active nodes.
|
jacint@714
|
835 |
while ( true ) {
|
jacint@714
|
836 |
if ( b == 0 ) {
|
jacint@714
|
837 |
if ( !what_heur && !end && k > 0 ) {
|
jacint@714
|
838 |
b=k;
|
jacint@714
|
839 |
end=true;
|
jacint@714
|
840 |
} else break;
|
jacint@714
|
841 |
}
|
jacint@714
|
842 |
|
jacint@714
|
843 |
if ( !g->valid(first[b])/*active[b].empty()*/ ) --b;
|
jacint@714
|
844 |
else {
|
jacint@714
|
845 |
end=false;
|
jacint@714
|
846 |
Node w=first[b];
|
jacint@714
|
847 |
first[b]=next[w];
|
jacint@714
|
848 |
/* Node w=active[b].top();
|
jacint@714
|
849 |
active[b].pop();*/
|
jacint@714
|
850 |
int newlevel=push(w,/*active*/next, first);
|
jacint@714
|
851 |
if ( excess[w] > 0 ) relabel(w, newlevel, /*active*/next, first, level_list,
|
jacint@714
|
852 |
left, right, b, k, what_heur);
|
jacint@714
|
853 |
|
jacint@714
|
854 |
++numrelabel;
|
jacint@714
|
855 |
if ( numrelabel >= heur ) {
|
jacint@714
|
856 |
numrelabel=0;
|
jacint@714
|
857 |
if ( what_heur ) {
|
jacint@714
|
858 |
what_heur=0;
|
jacint@714
|
859 |
heur=heur0;
|
jacint@714
|
860 |
end=false;
|
jacint@714
|
861 |
} else {
|
jacint@714
|
862 |
what_heur=1;
|
jacint@714
|
863 |
heur=heur1;
|
jacint@714
|
864 |
b=k;
|
jacint@714
|
865 |
}
|
jacint@714
|
866 |
}
|
jacint@714
|
867 |
}
|
jacint@714
|
868 |
}
|
jacint@714
|
869 |
|
jacint@714
|
870 |
status=AFTER_PRE_FLOW_PHASE_1;
|
jacint@714
|
871 |
}
|
jacint@714
|
872 |
|
jacint@714
|
873 |
|
jacint@714
|
874 |
|
jacint@714
|
875 |
template <typename Graph, typename Num, typename CapMap, typename FlowMap>
|
jacint@714
|
876 |
void MaxFlowNoStack<Graph, Num, CapMap, FlowMap>::preflowPhase2()
|
jacint@714
|
877 |
{
|
jacint@714
|
878 |
|
jacint@714
|
879 |
int k=n-2; //bound on the highest level under n containing a node
|
jacint@714
|
880 |
int b=k; //bound on the highest level under n of an active node
|
jacint@714
|
881 |
|
jacint@714
|
882 |
|
jacint@714
|
883 |
VecFirst first(n, INVALID);
|
jacint@714
|
884 |
NNMap next(*g, INVALID); //maybe INVALID is not needed
|
jacint@714
|
885 |
// VecStack active(n);
|
jacint@714
|
886 |
level.set(s,0);
|
jacint@714
|
887 |
std::queue<Node> bfs_queue;
|
jacint@714
|
888 |
bfs_queue.push(s);
|
jacint@714
|
889 |
|
jacint@714
|
890 |
while (!bfs_queue.empty()) {
|
jacint@714
|
891 |
|
jacint@714
|
892 |
Node v=bfs_queue.front();
|
jacint@714
|
893 |
bfs_queue.pop();
|
jacint@714
|
894 |
int l=level[v]+1;
|
jacint@714
|
895 |
|
jacint@714
|
896 |
InEdgeIt e;
|
jacint@714
|
897 |
for(g->first(e,v); g->valid(e); g->next(e)) {
|
jacint@714
|
898 |
if ( (*capacity)[e] <= (*flow)[e] ) continue;
|
jacint@714
|
899 |
Node u=g->tail(e);
|
jacint@714
|
900 |
if ( level[u] >= n ) {
|
jacint@714
|
901 |
bfs_queue.push(u);
|
jacint@714
|
902 |
level.set(u, l);
|
jacint@714
|
903 |
if ( excess[u] > 0 ) {
|
jacint@714
|
904 |
next.set(u,first[l]);
|
jacint@714
|
905 |
first[l]=u;
|
jacint@714
|
906 |
//active[l].push(u);
|
jacint@714
|
907 |
}
|
jacint@714
|
908 |
}
|
jacint@714
|
909 |
}
|
jacint@714
|
910 |
|
jacint@714
|
911 |
OutEdgeIt f;
|
jacint@714
|
912 |
for(g->first(f,v); g->valid(f); g->next(f)) {
|
jacint@714
|
913 |
if ( 0 >= (*flow)[f] ) continue;
|
jacint@714
|
914 |
Node u=g->head(f);
|
jacint@714
|
915 |
if ( level[u] >= n ) {
|
jacint@714
|
916 |
bfs_queue.push(u);
|
jacint@714
|
917 |
level.set(u, l);
|
jacint@714
|
918 |
if ( excess[u] > 0 ) {
|
jacint@714
|
919 |
next.set(u,first[l]);
|
jacint@714
|
920 |
first[l]=u;
|
jacint@714
|
921 |
//active[l].push(u);
|
jacint@714
|
922 |
}
|
jacint@714
|
923 |
}
|
jacint@714
|
924 |
}
|
jacint@714
|
925 |
}
|
jacint@714
|
926 |
b=n-2;
|
jacint@714
|
927 |
|
jacint@714
|
928 |
while ( true ) {
|
jacint@714
|
929 |
|
jacint@714
|
930 |
if ( b == 0 ) break;
|
jacint@714
|
931 |
|
jacint@714
|
932 |
if ( !g->valid(first[b])/*active[b].empty()*/ ) --b;
|
jacint@714
|
933 |
else {
|
jacint@714
|
934 |
|
jacint@714
|
935 |
Node w=first[b];
|
jacint@714
|
936 |
first[b]=next[w];
|
jacint@714
|
937 |
/* Node w=active[b].top();
|
jacint@714
|
938 |
active[b].pop();*/
|
jacint@714
|
939 |
int newlevel=push(w,next, first/*active*/);
|
jacint@714
|
940 |
|
jacint@714
|
941 |
//relabel
|
jacint@714
|
942 |
if ( excess[w] > 0 ) {
|
jacint@714
|
943 |
level.set(w,++newlevel);
|
jacint@714
|
944 |
next.set(w,first[newlevel]);
|
jacint@714
|
945 |
first[newlevel]=w;
|
jacint@714
|
946 |
//active[newlevel].push(w);
|
jacint@714
|
947 |
b=newlevel;
|
jacint@714
|
948 |
}
|
jacint@714
|
949 |
} // if stack[b] is nonempty
|
jacint@714
|
950 |
} // while(true)
|
jacint@714
|
951 |
|
jacint@714
|
952 |
status=AFTER_PRE_FLOW_PHASE_2;
|
jacint@714
|
953 |
}
|
jacint@714
|
954 |
|
jacint@714
|
955 |
|
jacint@714
|
956 |
|
jacint@714
|
957 |
template <typename Graph, typename Num, typename CapMap, typename FlowMap>
|
jacint@714
|
958 |
bool MaxFlowNoStack<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath()
|
jacint@714
|
959 |
{
|
jacint@714
|
960 |
ResGW res_graph(*g, *capacity, *flow);
|
jacint@714
|
961 |
bool _augment=false;
|
jacint@714
|
962 |
|
jacint@714
|
963 |
//ReachedMap level(res_graph);
|
jacint@714
|
964 |
FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
|
jacint@714
|
965 |
BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
|
jacint@714
|
966 |
bfs.pushAndSetReached(s);
|
jacint@714
|
967 |
|
jacint@714
|
968 |
typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
|
jacint@714
|
969 |
pred.set(s, INVALID);
|
jacint@714
|
970 |
|
jacint@714
|
971 |
typename ResGW::template NodeMap<Num> free(res_graph);
|
jacint@714
|
972 |
|
jacint@714
|
973 |
//searching for augmenting path
|
jacint@714
|
974 |
while ( !bfs.finished() ) {
|
jacint@714
|
975 |
ResGWOutEdgeIt e=bfs;
|
jacint@714
|
976 |
if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
|
jacint@714
|
977 |
Node v=res_graph.tail(e);
|
jacint@714
|
978 |
Node w=res_graph.head(e);
|
jacint@714
|
979 |
pred.set(w, e);
|
jacint@714
|
980 |
if (res_graph.valid(pred[v])) {
|
jacint@714
|
981 |
free.set(w, std::min(free[v], res_graph.resCap(e)));
|
jacint@714
|
982 |
} else {
|
jacint@714
|
983 |
free.set(w, res_graph.resCap(e));
|
jacint@714
|
984 |
}
|
jacint@714
|
985 |
if (res_graph.head(e)==t) { _augment=true; break; }
|
jacint@714
|
986 |
}
|
jacint@714
|
987 |
|
jacint@714
|
988 |
++bfs;
|
jacint@714
|
989 |
} //end of searching augmenting path
|
jacint@714
|
990 |
|
jacint@714
|
991 |
if (_augment) {
|
jacint@714
|
992 |
Node n=t;
|
jacint@714
|
993 |
Num augment_value=free[t];
|
jacint@714
|
994 |
while (res_graph.valid(pred[n])) {
|
jacint@714
|
995 |
ResGWEdge e=pred[n];
|
jacint@714
|
996 |
res_graph.augment(e, augment_value);
|
jacint@714
|
997 |
n=res_graph.tail(e);
|
jacint@714
|
998 |
}
|
jacint@714
|
999 |
}
|
jacint@714
|
1000 |
|
jacint@714
|
1001 |
status=AFTER_AUGMENTING;
|
jacint@714
|
1002 |
return _augment;
|
jacint@714
|
1003 |
}
|
jacint@714
|
1004 |
|
jacint@714
|
1005 |
|
jacint@714
|
1006 |
template <typename Graph, typename Num, typename CapMap, typename FlowMap>
|
jacint@714
|
1007 |
bool MaxFlowNoStack<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath2()
|
jacint@714
|
1008 |
{
|
jacint@714
|
1009 |
ResGW res_graph(*g, *capacity, *flow);
|
jacint@714
|
1010 |
bool _augment=false;
|
jacint@714
|
1011 |
|
jacint@714
|
1012 |
if (status!=AFTER_FAST_AUGMENTING) {
|
jacint@714
|
1013 |
FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
|
jacint@714
|
1014 |
number_of_augmentations=1;
|
jacint@714
|
1015 |
} else {
|
jacint@714
|
1016 |
++number_of_augmentations;
|
jacint@714
|
1017 |
}
|
jacint@714
|
1018 |
TrickyReachedMap<ReachedMap>
|
jacint@714
|
1019 |
tricky_reached_map(level, number_of_augmentations);
|
jacint@714
|
1020 |
//ReachedMap level(res_graph);
|
jacint@714
|
1021 |
// FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
|
jacint@714
|
1022 |
BfsIterator<ResGW, TrickyReachedMap<ReachedMap> >
|
jacint@714
|
1023 |
bfs(res_graph, tricky_reached_map);
|
jacint@714
|
1024 |
bfs.pushAndSetReached(s);
|
jacint@714
|
1025 |
|
jacint@714
|
1026 |
typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
|
jacint@714
|
1027 |
pred.set(s, INVALID);
|
jacint@714
|
1028 |
|
jacint@714
|
1029 |
typename ResGW::template NodeMap<Num> free(res_graph);
|
jacint@714
|
1030 |
|
jacint@714
|
1031 |
//searching for augmenting path
|
jacint@714
|
1032 |
while ( !bfs.finished() ) {
|
jacint@714
|
1033 |
ResGWOutEdgeIt e=bfs;
|
jacint@714
|
1034 |
if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
|
jacint@714
|
1035 |
Node v=res_graph.tail(e);
|
jacint@714
|
1036 |
Node w=res_graph.head(e);
|
jacint@714
|
1037 |
pred.set(w, e);
|
jacint@714
|
1038 |
if (res_graph.valid(pred[v])) {
|
jacint@714
|
1039 |
free.set(w, std::min(free[v], res_graph.resCap(e)));
|
jacint@714
|
1040 |
} else {
|
jacint@714
|
1041 |
free.set(w, res_graph.resCap(e));
|
jacint@714
|
1042 |
}
|
jacint@714
|
1043 |
if (res_graph.head(e)==t) { _augment=true; break; }
|
jacint@714
|
1044 |
}
|
jacint@714
|
1045 |
|
jacint@714
|
1046 |
++bfs;
|
jacint@714
|
1047 |
} //end of searching augmenting path
|
jacint@714
|
1048 |
|
jacint@714
|
1049 |
if (_augment) {
|
jacint@714
|
1050 |
Node n=t;
|
jacint@714
|
1051 |
Num augment_value=free[t];
|
jacint@714
|
1052 |
while (res_graph.valid(pred[n])) {
|
jacint@714
|
1053 |
ResGWEdge e=pred[n];
|
jacint@714
|
1054 |
res_graph.augment(e, augment_value);
|
jacint@714
|
1055 |
n=res_graph.tail(e);
|
jacint@714
|
1056 |
}
|
jacint@714
|
1057 |
}
|
jacint@714
|
1058 |
|
jacint@714
|
1059 |
status=AFTER_FAST_AUGMENTING;
|
jacint@714
|
1060 |
return _augment;
|
jacint@714
|
1061 |
}
|
jacint@714
|
1062 |
|
jacint@714
|
1063 |
|
jacint@714
|
1064 |
template <typename Graph, typename Num, typename CapMap, typename FlowMap>
|
jacint@714
|
1065 |
template<typename MutableGraph>
|
jacint@714
|
1066 |
bool MaxFlowNoStack<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow()
|
jacint@714
|
1067 |
{
|
jacint@714
|
1068 |
typedef MutableGraph MG;
|
jacint@714
|
1069 |
bool _augment=false;
|
jacint@714
|
1070 |
|
jacint@714
|
1071 |
ResGW res_graph(*g, *capacity, *flow);
|
jacint@714
|
1072 |
|
jacint@714
|
1073 |
//bfs for distances on the residual graph
|
jacint@714
|
1074 |
//ReachedMap level(res_graph);
|
jacint@714
|
1075 |
FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
|
jacint@714
|
1076 |
BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
|
jacint@714
|
1077 |
bfs.pushAndSetReached(s);
|
jacint@714
|
1078 |
typename ResGW::template NodeMap<int>
|
jacint@714
|
1079 |
dist(res_graph); //filled up with 0's
|
jacint@714
|
1080 |
|
jacint@714
|
1081 |
//F will contain the physical copy of the residual graph
|
jacint@714
|
1082 |
//with the set of edges which are on shortest paths
|
jacint@714
|
1083 |
MG F;
|
jacint@714
|
1084 |
typename ResGW::template NodeMap<typename MG::Node>
|
jacint@714
|
1085 |
res_graph_to_F(res_graph);
|
jacint@714
|
1086 |
{
|
jacint@714
|
1087 |
typename ResGW::NodeIt n;
|
jacint@714
|
1088 |
for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
|
jacint@714
|
1089 |
res_graph_to_F.set(n, F.addNode());
|
jacint@714
|
1090 |
}
|
jacint@714
|
1091 |
}
|
jacint@714
|
1092 |
|
jacint@714
|
1093 |
typename MG::Node sF=res_graph_to_F[s];
|
jacint@714
|
1094 |
typename MG::Node tF=res_graph_to_F[t];
|
jacint@714
|
1095 |
typename MG::template EdgeMap<ResGWEdge> original_edge(F);
|
jacint@714
|
1096 |
typename MG::template EdgeMap<Num> residual_capacity(F);
|
jacint@714
|
1097 |
|
jacint@714
|
1098 |
while ( !bfs.finished() ) {
|
jacint@714
|
1099 |
ResGWOutEdgeIt e=bfs;
|
jacint@714
|
1100 |
if (res_graph.valid(e)) {
|
jacint@714
|
1101 |
if (bfs.isBNodeNewlyReached()) {
|
jacint@714
|
1102 |
dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
|
jacint@714
|
1103 |
typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
|
jacint@714
|
1104 |
res_graph_to_F[res_graph.head(e)]);
|
jacint@714
|
1105 |
original_edge.update();
|
jacint@714
|
1106 |
original_edge.set(f, e);
|
jacint@714
|
1107 |
residual_capacity.update();
|
jacint@714
|
1108 |
residual_capacity.set(f, res_graph.resCap(e));
|
jacint@714
|
1109 |
} else {
|
jacint@714
|
1110 |
if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) {
|
jacint@714
|
1111 |
typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
|
jacint@714
|
1112 |
res_graph_to_F[res_graph.head(e)]);
|
jacint@714
|
1113 |
original_edge.update();
|
jacint@714
|
1114 |
original_edge.set(f, e);
|
jacint@714
|
1115 |
residual_capacity.update();
|
jacint@714
|
1116 |
residual_capacity.set(f, res_graph.resCap(e));
|
jacint@714
|
1117 |
}
|
jacint@714
|
1118 |
}
|
jacint@714
|
1119 |
}
|
jacint@714
|
1120 |
++bfs;
|
jacint@714
|
1121 |
} //computing distances from s in the residual graph
|
jacint@714
|
1122 |
|
jacint@714
|
1123 |
bool __augment=true;
|
jacint@714
|
1124 |
|
jacint@714
|
1125 |
while (__augment) {
|
jacint@714
|
1126 |
__augment=false;
|
jacint@714
|
1127 |
//computing blocking flow with dfs
|
jacint@714
|
1128 |
DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
|
jacint@714
|
1129 |
typename MG::template NodeMap<typename MG::Edge> pred(F);
|
jacint@714
|
1130 |
pred.set(sF, INVALID);
|
jacint@714
|
1131 |
//invalid iterators for sources
|
jacint@714
|
1132 |
|
jacint@714
|
1133 |
typename MG::template NodeMap<Num> free(F);
|
jacint@714
|
1134 |
|
jacint@714
|
1135 |
dfs.pushAndSetReached(sF);
|
jacint@714
|
1136 |
while (!dfs.finished()) {
|
jacint@714
|
1137 |
++dfs;
|
jacint@714
|
1138 |
if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
|
jacint@714
|
1139 |
if (dfs.isBNodeNewlyReached()) {
|
jacint@714
|
1140 |
typename MG::Node v=F.aNode(dfs);
|
jacint@714
|
1141 |
typename MG::Node w=F.bNode(dfs);
|
jacint@714
|
1142 |
pred.set(w, dfs);
|
jacint@714
|
1143 |
if (F.valid(pred[v])) {
|
jacint@714
|
1144 |
free.set(w, std::min(free[v], residual_capacity[dfs]));
|
jacint@714
|
1145 |
} else {
|
jacint@714
|
1146 |
free.set(w, residual_capacity[dfs]);
|
jacint@714
|
1147 |
}
|
jacint@714
|
1148 |
if (w==tF) {
|
jacint@714
|
1149 |
__augment=true;
|
jacint@714
|
1150 |
_augment=true;
|
jacint@714
|
1151 |
break;
|
jacint@714
|
1152 |
}
|
jacint@714
|
1153 |
|
jacint@714
|
1154 |
} else {
|
jacint@714
|
1155 |
F.erase(/*typename MG::OutEdgeIt*/(dfs));
|
jacint@714
|
1156 |
}
|
jacint@714
|
1157 |
}
|
jacint@714
|
1158 |
}
|
jacint@714
|
1159 |
|
jacint@714
|
1160 |
if (__augment) {
|
jacint@714
|
1161 |
typename MG::Node n=tF;
|
jacint@714
|
1162 |
Num augment_value=free[tF];
|
jacint@714
|
1163 |
while (F.valid(pred[n])) {
|
jacint@714
|
1164 |
typename MG::Edge e=pred[n];
|
jacint@714
|
1165 |
res_graph.augment(original_edge[e], augment_value);
|
jacint@714
|
1166 |
n=F.tail(e);
|
jacint@714
|
1167 |
if (residual_capacity[e]==augment_value)
|
jacint@714
|
1168 |
F.erase(e);
|
jacint@714
|
1169 |
else
|
jacint@714
|
1170 |
residual_capacity.set(e, residual_capacity[e]-augment_value);
|
jacint@714
|
1171 |
}
|
jacint@714
|
1172 |
}
|
jacint@714
|
1173 |
|
jacint@714
|
1174 |
}
|
jacint@714
|
1175 |
|
jacint@714
|
1176 |
status=AFTER_AUGMENTING;
|
jacint@714
|
1177 |
return _augment;
|
jacint@714
|
1178 |
}
|
jacint@714
|
1179 |
|
jacint@714
|
1180 |
|
jacint@714
|
1181 |
|
jacint@714
|
1182 |
|
jacint@714
|
1183 |
template <typename Graph, typename Num, typename CapMap, typename FlowMap>
|
jacint@714
|
1184 |
bool MaxFlowNoStack<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2()
|
jacint@714
|
1185 |
{
|
jacint@714
|
1186 |
bool _augment=false;
|
jacint@714
|
1187 |
|
jacint@714
|
1188 |
ResGW res_graph(*g, *capacity, *flow);
|
jacint@714
|
1189 |
|
jacint@714
|
1190 |
//ReachedMap level(res_graph);
|
jacint@714
|
1191 |
FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
|
jacint@714
|
1192 |
BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
|
jacint@714
|
1193 |
|
jacint@714
|
1194 |
bfs.pushAndSetReached(s);
|
jacint@714
|
1195 |
DistanceMap<ResGW> dist(res_graph);
|
jacint@714
|
1196 |
while ( !bfs.finished() ) {
|
jacint@714
|
1197 |
ResGWOutEdgeIt e=bfs;
|
jacint@714
|
1198 |
if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
|
jacint@714
|
1199 |
dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
|
jacint@714
|
1200 |
}
|
jacint@714
|
1201 |
++bfs;
|
jacint@714
|
1202 |
} //computing distances from s in the residual graph
|
jacint@714
|
1203 |
|
jacint@714
|
1204 |
//Subgraph containing the edges on some shortest paths
|
jacint@714
|
1205 |
ConstMap<typename ResGW::Node, bool> true_map(true);
|
jacint@714
|
1206 |
typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>,
|
jacint@714
|
1207 |
DistanceMap<ResGW> > FilterResGW;
|
jacint@714
|
1208 |
FilterResGW filter_res_graph(res_graph, true_map, dist);
|
jacint@714
|
1209 |
|
jacint@714
|
1210 |
//Subgraph, which is able to delete edges which are already
|
jacint@714
|
1211 |
//met by the dfs
|
jacint@714
|
1212 |
typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt>
|
jacint@714
|
1213 |
first_out_edges(filter_res_graph);
|
jacint@714
|
1214 |
typename FilterResGW::NodeIt v;
|
jacint@714
|
1215 |
for(filter_res_graph.first(v); filter_res_graph.valid(v);
|
jacint@714
|
1216 |
filter_res_graph.next(v))
|
jacint@714
|
1217 |
{
|
jacint@714
|
1218 |
typename FilterResGW::OutEdgeIt e;
|
jacint@714
|
1219 |
filter_res_graph.first(e, v);
|
jacint@714
|
1220 |
first_out_edges.set(v, e);
|
jacint@714
|
1221 |
}
|
jacint@714
|
1222 |
typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
|
jacint@714
|
1223 |
template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
|
jacint@714
|
1224 |
ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
|
jacint@714
|
1225 |
|
jacint@714
|
1226 |
bool __augment=true;
|
jacint@714
|
1227 |
|
jacint@714
|
1228 |
while (__augment) {
|
jacint@714
|
1229 |
|
jacint@714
|
1230 |
__augment=false;
|
jacint@714
|
1231 |
//computing blocking flow with dfs
|
jacint@714
|
1232 |
DfsIterator< ErasingResGW,
|
jacint@714
|
1233 |
typename ErasingResGW::template NodeMap<bool> >
|
jacint@714
|
1234 |
dfs(erasing_res_graph);
|
jacint@714
|
1235 |
typename ErasingResGW::
|
jacint@714
|
1236 |
template NodeMap<typename ErasingResGW::OutEdgeIt>
|
jacint@714
|
1237 |
pred(erasing_res_graph);
|
jacint@714
|
1238 |
pred.set(s, INVALID);
|
jacint@714
|
1239 |
//invalid iterators for sources
|
jacint@714
|
1240 |
|
jacint@714
|
1241 |
typename ErasingResGW::template NodeMap<Num>
|
jacint@714
|
1242 |
free1(erasing_res_graph);
|
jacint@714
|
1243 |
|
jacint@714
|
1244 |
dfs.pushAndSetReached
|
jacint@714
|
1245 |
///\bug hugo 0.2
|
jacint@714
|
1246 |
(typename ErasingResGW::Node
|
jacint@714
|
1247 |
(typename FilterResGW::Node
|
jacint@714
|
1248 |
(typename ResGW::Node(s)
|
jacint@714
|
1249 |
)
|
jacint@714
|
1250 |
)
|
jacint@714
|
1251 |
);
|
jacint@714
|
1252 |
while (!dfs.finished()) {
|
jacint@714
|
1253 |
++dfs;
|
jacint@714
|
1254 |
if (erasing_res_graph.valid(typename ErasingResGW::OutEdgeIt(dfs)))
|
jacint@714
|
1255 |
{
|
jacint@714
|
1256 |
if (dfs.isBNodeNewlyReached()) {
|
jacint@714
|
1257 |
|
jacint@714
|
1258 |
typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
|
jacint@714
|
1259 |
typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
|
jacint@714
|
1260 |
|
jacint@714
|
1261 |
pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
|
jacint@714
|
1262 |
if (erasing_res_graph.valid(pred[v])) {
|
jacint@714
|
1263 |
free1.set
|
jacint@714
|
1264 |
(w, std::min(free1[v], res_graph.resCap
|
jacint@714
|
1265 |
(typename ErasingResGW::OutEdgeIt(dfs))));
|
jacint@714
|
1266 |
} else {
|
jacint@714
|
1267 |
free1.set
|
jacint@714
|
1268 |
(w, res_graph.resCap
|
jacint@714
|
1269 |
(typename ErasingResGW::OutEdgeIt(dfs)));
|
jacint@714
|
1270 |
}
|
jacint@714
|
1271 |
|
jacint@714
|
1272 |
if (w==t) {
|
jacint@714
|
1273 |
__augment=true;
|
jacint@714
|
1274 |
_augment=true;
|
jacint@714
|
1275 |
break;
|
jacint@714
|
1276 |
}
|
jacint@714
|
1277 |
} else {
|
jacint@714
|
1278 |
erasing_res_graph.erase(dfs);
|
jacint@714
|
1279 |
}
|
jacint@714
|
1280 |
}
|
jacint@714
|
1281 |
}
|
jacint@714
|
1282 |
|
jacint@714
|
1283 |
if (__augment) {
|
jacint@714
|
1284 |
typename ErasingResGW::Node
|
jacint@714
|
1285 |
n=typename FilterResGW::Node(typename ResGW::Node(t));
|
jacint@714
|
1286 |
// typename ResGW::NodeMap<Num> a(res_graph);
|
jacint@714
|
1287 |
// typename ResGW::Node b;
|
jacint@714
|
1288 |
// Num j=a[b];
|
jacint@714
|
1289 |
// typename FilterResGW::NodeMap<Num> a1(filter_res_graph);
|
jacint@714
|
1290 |
// typename FilterResGW::Node b1;
|
jacint@714
|
1291 |
// Num j1=a1[b1];
|
jacint@714
|
1292 |
// typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);
|
jacint@714
|
1293 |
// typename ErasingResGW::Node b2;
|
jacint@714
|
1294 |
// Num j2=a2[b2];
|
jacint@714
|
1295 |
Num augment_value=free1[n];
|
jacint@714
|
1296 |
while (erasing_res_graph.valid(pred[n])) {
|
jacint@714
|
1297 |
typename ErasingResGW::OutEdgeIt e=pred[n];
|
jacint@714
|
1298 |
res_graph.augment(e, augment_value);
|
jacint@714
|
1299 |
n=erasing_res_graph.tail(e);
|
jacint@714
|
1300 |
if (res_graph.resCap(e)==0)
|
jacint@714
|
1301 |
erasing_res_graph.erase(e);
|
jacint@714
|
1302 |
}
|
jacint@714
|
1303 |
}
|
jacint@714
|
1304 |
|
jacint@714
|
1305 |
} //while (__augment)
|
jacint@714
|
1306 |
|
jacint@714
|
1307 |
status=AFTER_AUGMENTING;
|
jacint@714
|
1308 |
return _augment;
|
jacint@714
|
1309 |
}
|
jacint@714
|
1310 |
|
jacint@714
|
1311 |
|
jacint@714
|
1312 |
} //namespace hugo
|
jacint@714
|
1313 |
|
jacint@714
|
1314 |
#endif //HUGO_MAX_FLOW_H
|
jacint@714
|
1315 |
|
jacint@714
|
1316 |
|
jacint@714
|
1317 |
|
jacint@714
|
1318 |
|