deba@2040
|
1 |
/* -*- C++ -*-
|
deba@2040
|
2 |
*
|
deba@2040
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
deba@2040
|
4 |
*
|
alpar@2391
|
5 |
* Copyright (C) 2003-2007
|
deba@2040
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
deba@2040
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
deba@2040
|
8 |
*
|
deba@2040
|
9 |
* Permission to use, modify and distribute this software is granted
|
deba@2040
|
10 |
* provided that this copyright notice appears in all copies. For
|
deba@2040
|
11 |
* precise terms see the accompanying LICENSE file.
|
deba@2040
|
12 |
*
|
deba@2040
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
deba@2040
|
14 |
* express or implied, and with no claim as to its suitability for any
|
deba@2040
|
15 |
* purpose.
|
deba@2040
|
16 |
*
|
deba@2040
|
17 |
*/
|
deba@2040
|
18 |
|
deba@2040
|
19 |
#ifndef LEMON_BIPARTITE_MATCHING
|
deba@2040
|
20 |
#define LEMON_BIPARTITE_MATCHING
|
deba@2040
|
21 |
|
deba@2051
|
22 |
#include <functional>
|
deba@2051
|
23 |
|
deba@2051
|
24 |
#include <lemon/bin_heap.h>
|
deba@2051
|
25 |
#include <lemon/maps.h>
|
deba@2040
|
26 |
|
deba@2040
|
27 |
#include <iostream>
|
deba@2040
|
28 |
|
deba@2040
|
29 |
///\ingroup matching
|
deba@2040
|
30 |
///\file
|
deba@2040
|
31 |
///\brief Maximum matching algorithms in bipartite graphs.
|
deba@2462
|
32 |
///
|
deba@2462
|
33 |
///\note The pr_bipartite_matching.h file also contains algorithms to
|
deba@2462
|
34 |
///solve maximum cardinality bipartite matching problems.
|
deba@2040
|
35 |
|
deba@2040
|
36 |
namespace lemon {
|
deba@2040
|
37 |
|
deba@2040
|
38 |
/// \ingroup matching
|
deba@2040
|
39 |
///
|
deba@2040
|
40 |
/// \brief Bipartite Max Cardinality Matching algorithm
|
deba@2040
|
41 |
///
|
deba@2040
|
42 |
/// Bipartite Max Cardinality Matching algorithm. This class implements
|
deba@2051
|
43 |
/// the Hopcroft-Karp algorithm which has \f$ O(e\sqrt{n}) \f$ time
|
deba@2040
|
44 |
/// complexity.
|
deba@2462
|
45 |
///
|
deba@2462
|
46 |
/// \note In several cases the push-relabel based algorithms have
|
deba@2462
|
47 |
/// better runtime performance than the augmenting path based ones.
|
deba@2462
|
48 |
///
|
deba@2462
|
49 |
/// \see PrBipartiteMatching
|
deba@2040
|
50 |
template <typename BpUGraph>
|
deba@2040
|
51 |
class MaxBipartiteMatching {
|
deba@2040
|
52 |
protected:
|
deba@2040
|
53 |
|
deba@2040
|
54 |
typedef BpUGraph Graph;
|
deba@2040
|
55 |
|
deba@2040
|
56 |
typedef typename Graph::Node Node;
|
deba@2040
|
57 |
typedef typename Graph::ANodeIt ANodeIt;
|
deba@2040
|
58 |
typedef typename Graph::BNodeIt BNodeIt;
|
deba@2040
|
59 |
typedef typename Graph::UEdge UEdge;
|
deba@2040
|
60 |
typedef typename Graph::UEdgeIt UEdgeIt;
|
deba@2040
|
61 |
typedef typename Graph::IncEdgeIt IncEdgeIt;
|
deba@2040
|
62 |
|
deba@2040
|
63 |
typedef typename BpUGraph::template ANodeMap<UEdge> ANodeMatchingMap;
|
deba@2040
|
64 |
typedef typename BpUGraph::template BNodeMap<UEdge> BNodeMatchingMap;
|
deba@2040
|
65 |
|
deba@2040
|
66 |
|
deba@2040
|
67 |
public:
|
deba@2040
|
68 |
|
deba@2040
|
69 |
/// \brief Constructor.
|
deba@2040
|
70 |
///
|
deba@2040
|
71 |
/// Constructor of the algorithm.
|
deba@2466
|
72 |
MaxBipartiteMatching(const BpUGraph& graph)
|
deba@2466
|
73 |
: _matching(graph), _rmatching(graph), _reached(graph), _graph(&graph) {}
|
deba@2040
|
74 |
|
deba@2040
|
75 |
/// \name Execution control
|
deba@2040
|
76 |
/// The simplest way to execute the algorithm is to use
|
deba@2040
|
77 |
/// one of the member functions called \c run().
|
deba@2040
|
78 |
/// \n
|
deba@2040
|
79 |
/// If you need more control on the execution,
|
deba@2040
|
80 |
/// first you must call \ref init() or one alternative for it.
|
deba@2040
|
81 |
/// Finally \ref start() will perform the matching computation or
|
deba@2040
|
82 |
/// with step-by-step execution you can augment the solution.
|
deba@2040
|
83 |
|
deba@2040
|
84 |
/// @{
|
deba@2040
|
85 |
|
deba@2040
|
86 |
/// \brief Initalize the data structures.
|
deba@2040
|
87 |
///
|
deba@2040
|
88 |
/// It initalizes the data structures and creates an empty matching.
|
deba@2040
|
89 |
void init() {
|
deba@2466
|
90 |
for (ANodeIt it(*_graph); it != INVALID; ++it) {
|
deba@2466
|
91 |
_matching.set(it, INVALID);
|
deba@2040
|
92 |
}
|
deba@2466
|
93 |
for (BNodeIt it(*_graph); it != INVALID; ++it) {
|
deba@2466
|
94 |
_rmatching.set(it, INVALID);
|
deba@2466
|
95 |
_reached.set(it, -1);
|
deba@2040
|
96 |
}
|
deba@2466
|
97 |
_size = 0;
|
deba@2466
|
98 |
_phase = -1;
|
deba@2040
|
99 |
}
|
deba@2040
|
100 |
|
deba@2040
|
101 |
/// \brief Initalize the data structures.
|
deba@2040
|
102 |
///
|
deba@2040
|
103 |
/// It initalizes the data structures and creates a greedy
|
deba@2040
|
104 |
/// matching. From this matching sometimes it is faster to get
|
deba@2040
|
105 |
/// the matching than from the initial empty matching.
|
deba@2040
|
106 |
void greedyInit() {
|
deba@2466
|
107 |
_size = 0;
|
deba@2466
|
108 |
for (BNodeIt it(*_graph); it != INVALID; ++it) {
|
deba@2466
|
109 |
_rmatching.set(it, INVALID);
|
deba@2466
|
110 |
_reached.set(it, 0);
|
deba@2040
|
111 |
}
|
deba@2466
|
112 |
for (ANodeIt it(*_graph); it != INVALID; ++it) {
|
deba@2466
|
113 |
_matching[it] = INVALID;
|
deba@2466
|
114 |
for (IncEdgeIt jt(*_graph, it); jt != INVALID; ++jt) {
|
deba@2466
|
115 |
if (_rmatching[_graph->bNode(jt)] == INVALID) {
|
deba@2466
|
116 |
_matching.set(it, jt);
|
deba@2466
|
117 |
_rmatching.set(_graph->bNode(jt), jt);
|
deba@2466
|
118 |
_reached.set(it, -1);
|
deba@2466
|
119 |
++_size;
|
deba@2040
|
120 |
break;
|
deba@2040
|
121 |
}
|
deba@2040
|
122 |
}
|
deba@2040
|
123 |
}
|
deba@2466
|
124 |
_phase = 0;
|
deba@2040
|
125 |
}
|
deba@2040
|
126 |
|
deba@2040
|
127 |
/// \brief Initalize the data structures with an initial matching.
|
deba@2040
|
128 |
///
|
deba@2040
|
129 |
/// It initalizes the data structures with an initial matching.
|
deba@2040
|
130 |
template <typename MatchingMap>
|
deba@2386
|
131 |
void matchingInit(const MatchingMap& mm) {
|
deba@2466
|
132 |
for (ANodeIt it(*_graph); it != INVALID; ++it) {
|
deba@2466
|
133 |
_matching.set(it, INVALID);
|
deba@2040
|
134 |
}
|
deba@2466
|
135 |
for (BNodeIt it(*_graph); it != INVALID; ++it) {
|
deba@2466
|
136 |
_rmatching.set(it, INVALID);
|
deba@2466
|
137 |
_reached.set(it, 0);
|
deba@2040
|
138 |
}
|
deba@2466
|
139 |
_size = 0;
|
deba@2466
|
140 |
for (UEdgeIt it(*_graph); it != INVALID; ++it) {
|
deba@2386
|
141 |
if (mm[it]) {
|
deba@2466
|
142 |
++_size;
|
deba@2466
|
143 |
_matching.set(_graph->aNode(it), it);
|
deba@2466
|
144 |
_rmatching.set(_graph->bNode(it), it);
|
deba@2466
|
145 |
_reached.set(it, 0);
|
deba@2040
|
146 |
}
|
deba@2040
|
147 |
}
|
deba@2466
|
148 |
_phase = 0;
|
deba@2040
|
149 |
}
|
deba@2040
|
150 |
|
deba@2040
|
151 |
/// \brief Initalize the data structures with an initial matching.
|
deba@2040
|
152 |
///
|
deba@2040
|
153 |
/// It initalizes the data structures with an initial matching.
|
deba@2040
|
154 |
/// \return %True when the given map contains really a matching.
|
deba@2040
|
155 |
template <typename MatchingMap>
|
deba@2466
|
156 |
bool checkedMatchingInit(const MatchingMap& mm) {
|
deba@2466
|
157 |
for (ANodeIt it(*_graph); it != INVALID; ++it) {
|
deba@2466
|
158 |
_matching.set(it, INVALID);
|
deba@2040
|
159 |
}
|
deba@2466
|
160 |
for (BNodeIt it(*_graph); it != INVALID; ++it) {
|
deba@2466
|
161 |
_rmatching.set(it, INVALID);
|
deba@2466
|
162 |
_reached.set(it, 0);
|
deba@2040
|
163 |
}
|
deba@2466
|
164 |
_size = 0;
|
deba@2466
|
165 |
for (UEdgeIt it(*_graph); it != INVALID; ++it) {
|
deba@2386
|
166 |
if (mm[it]) {
|
deba@2466
|
167 |
++_size;
|
deba@2466
|
168 |
if (_matching[_graph->aNode(it)] != INVALID) {
|
deba@2040
|
169 |
return false;
|
deba@2040
|
170 |
}
|
deba@2466
|
171 |
_matching.set(_graph->aNode(it), it);
|
deba@2466
|
172 |
if (_matching[_graph->bNode(it)] != INVALID) {
|
deba@2040
|
173 |
return false;
|
deba@2040
|
174 |
}
|
deba@2466
|
175 |
_matching.set(_graph->bNode(it), it);
|
deba@2466
|
176 |
_reached.set(_graph->bNode(it), -1);
|
deba@2040
|
177 |
}
|
deba@2040
|
178 |
}
|
deba@2466
|
179 |
_phase = 0;
|
deba@2466
|
180 |
return true;
|
deba@2466
|
181 |
}
|
deba@2466
|
182 |
|
deba@2466
|
183 |
private:
|
deba@2466
|
184 |
|
deba@2466
|
185 |
bool _find_path(Node anode, int maxlevel,
|
deba@2466
|
186 |
typename Graph::template BNodeMap<int>& level) {
|
deba@2466
|
187 |
for (IncEdgeIt it(*_graph, anode); it != INVALID; ++it) {
|
deba@2466
|
188 |
Node bnode = _graph->bNode(it);
|
deba@2466
|
189 |
if (level[bnode] == maxlevel) {
|
deba@2466
|
190 |
level.set(bnode, -1);
|
deba@2466
|
191 |
if (maxlevel == 0) {
|
deba@2466
|
192 |
_matching.set(anode, it);
|
deba@2466
|
193 |
_rmatching.set(bnode, it);
|
deba@2466
|
194 |
return true;
|
deba@2466
|
195 |
} else {
|
deba@2466
|
196 |
Node nnode = _graph->aNode(_rmatching[bnode]);
|
deba@2466
|
197 |
if (_find_path(nnode, maxlevel - 1, level)) {
|
deba@2466
|
198 |
_matching.set(anode, it);
|
deba@2466
|
199 |
_rmatching.set(bnode, it);
|
deba@2466
|
200 |
return true;
|
deba@2466
|
201 |
}
|
deba@2466
|
202 |
}
|
deba@2466
|
203 |
}
|
deba@2466
|
204 |
}
|
deba@2040
|
205 |
return false;
|
deba@2040
|
206 |
}
|
deba@2040
|
207 |
|
deba@2466
|
208 |
public:
|
deba@2466
|
209 |
|
deba@2040
|
210 |
/// \brief An augmenting phase of the Hopcroft-Karp algorithm
|
deba@2040
|
211 |
///
|
deba@2040
|
212 |
/// It runs an augmenting phase of the Hopcroft-Karp
|
deba@2466
|
213 |
/// algorithm. This phase finds maximal edge disjoint augmenting
|
deba@2466
|
214 |
/// paths and augments on these paths. The algorithm consists at
|
deba@2466
|
215 |
/// most of \f$ O(\sqrt{n}) \f$ phase and one phase is \f$ O(e)
|
deba@2466
|
216 |
/// \f$ long.
|
deba@2040
|
217 |
bool augment() {
|
deba@2040
|
218 |
|
deba@2466
|
219 |
++_phase;
|
deba@2466
|
220 |
|
deba@2466
|
221 |
typename Graph::template BNodeMap<int> _level(*_graph, -1);
|
deba@2466
|
222 |
typename Graph::template ANodeMap<bool> _found(*_graph, false);
|
deba@2040
|
223 |
|
deba@2466
|
224 |
std::vector<Node> queue, aqueue;
|
deba@2466
|
225 |
for (BNodeIt it(*_graph); it != INVALID; ++it) {
|
deba@2466
|
226 |
if (_rmatching[it] == INVALID) {
|
deba@2040
|
227 |
queue.push_back(it);
|
deba@2466
|
228 |
_reached.set(it, _phase);
|
deba@2466
|
229 |
_level.set(it, 0);
|
deba@2040
|
230 |
}
|
deba@2040
|
231 |
}
|
deba@2040
|
232 |
|
deba@2040
|
233 |
bool success = false;
|
deba@2040
|
234 |
|
deba@2466
|
235 |
int level = 0;
|
deba@2040
|
236 |
while (!success && !queue.empty()) {
|
deba@2466
|
237 |
std::vector<Node> nqueue;
|
deba@2386
|
238 |
for (int i = 0; i < int(queue.size()); ++i) {
|
deba@2466
|
239 |
Node bnode = queue[i];
|
deba@2466
|
240 |
for (IncEdgeIt jt(*_graph, bnode); jt != INVALID; ++jt) {
|
deba@2466
|
241 |
Node anode = _graph->aNode(jt);
|
deba@2466
|
242 |
if (_matching[anode] == INVALID) {
|
deba@2466
|
243 |
|
deba@2466
|
244 |
if (!_found[anode]) {
|
deba@2466
|
245 |
if (_find_path(anode, level, _level)) {
|
deba@2466
|
246 |
++_size;
|
deba@2466
|
247 |
}
|
deba@2466
|
248 |
_found.set(anode, true);
|
deba@2466
|
249 |
}
|
deba@2040
|
250 |
success = true;
|
deba@2040
|
251 |
} else {
|
deba@2466
|
252 |
Node nnode = _graph->bNode(_matching[anode]);
|
deba@2466
|
253 |
if (_reached[nnode] != _phase) {
|
deba@2466
|
254 |
_reached.set(nnode, _phase);
|
deba@2466
|
255 |
nqueue.push_back(nnode);
|
deba@2466
|
256 |
_level.set(nnode, level + 1);
|
deba@2040
|
257 |
}
|
deba@2040
|
258 |
}
|
deba@2040
|
259 |
}
|
deba@2040
|
260 |
}
|
deba@2466
|
261 |
++level;
|
deba@2466
|
262 |
queue.swap(nqueue);
|
deba@2040
|
263 |
}
|
deba@2466
|
264 |
|
deba@2040
|
265 |
return success;
|
deba@2040
|
266 |
}
|
deba@2466
|
267 |
private:
|
deba@2466
|
268 |
|
deba@2466
|
269 |
void _find_path_bfs(Node anode,
|
deba@2466
|
270 |
typename Graph::template ANodeMap<UEdge>& pred) {
|
deba@2466
|
271 |
while (true) {
|
deba@2466
|
272 |
UEdge uedge = pred[anode];
|
deba@2466
|
273 |
Node bnode = _graph->bNode(uedge);
|
deba@2040
|
274 |
|
deba@2466
|
275 |
UEdge nedge = _rmatching[bnode];
|
deba@2466
|
276 |
|
deba@2466
|
277 |
_matching.set(anode, uedge);
|
deba@2466
|
278 |
_rmatching.set(bnode, uedge);
|
deba@2466
|
279 |
|
deba@2466
|
280 |
if (nedge == INVALID) break;
|
deba@2466
|
281 |
anode = _graph->aNode(nedge);
|
deba@2466
|
282 |
}
|
deba@2466
|
283 |
}
|
deba@2466
|
284 |
|
deba@2466
|
285 |
public:
|
deba@2466
|
286 |
|
deba@2466
|
287 |
/// \brief An augmenting phase with single path augementing
|
deba@2040
|
288 |
///
|
deba@2466
|
289 |
/// This phase finds only one augmenting paths and augments on
|
deba@2466
|
290 |
/// these paths. The algorithm consists at most of \f$ O(n) \f$
|
deba@2466
|
291 |
/// phase and one phase is \f$ O(e) \f$ long.
|
deba@2466
|
292 |
bool simpleAugment() {
|
deba@2466
|
293 |
++_phase;
|
deba@2466
|
294 |
|
deba@2466
|
295 |
typename Graph::template ANodeMap<UEdge> _pred(*_graph);
|
deba@2040
|
296 |
|
deba@2466
|
297 |
std::vector<Node> queue, aqueue;
|
deba@2466
|
298 |
for (BNodeIt it(*_graph); it != INVALID; ++it) {
|
deba@2466
|
299 |
if (_rmatching[it] == INVALID) {
|
deba@2040
|
300 |
queue.push_back(it);
|
deba@2466
|
301 |
_reached.set(it, _phase);
|
deba@2040
|
302 |
}
|
deba@2040
|
303 |
}
|
deba@2040
|
304 |
|
deba@2466
|
305 |
bool success = false;
|
deba@2466
|
306 |
|
deba@2466
|
307 |
int level = 0;
|
deba@2466
|
308 |
while (!success && !queue.empty()) {
|
deba@2466
|
309 |
std::vector<Node> nqueue;
|
deba@2386
|
310 |
for (int i = 0; i < int(queue.size()); ++i) {
|
deba@2466
|
311 |
Node bnode = queue[i];
|
deba@2466
|
312 |
for (IncEdgeIt jt(*_graph, bnode); jt != INVALID; ++jt) {
|
deba@2466
|
313 |
Node anode = _graph->aNode(jt);
|
deba@2466
|
314 |
if (_matching[anode] == INVALID) {
|
deba@2466
|
315 |
_pred.set(anode, jt);
|
deba@2466
|
316 |
_find_path_bfs(anode, _pred);
|
deba@2466
|
317 |
++_size;
|
deba@2466
|
318 |
return true;
|
deba@2040
|
319 |
} else {
|
deba@2466
|
320 |
Node nnode = _graph->bNode(_matching[anode]);
|
deba@2466
|
321 |
if (_reached[nnode] != _phase) {
|
deba@2466
|
322 |
_pred.set(anode, jt);
|
deba@2466
|
323 |
_reached.set(nnode, _phase);
|
deba@2466
|
324 |
nqueue.push_back(nnode);
|
deba@2040
|
325 |
}
|
deba@2040
|
326 |
}
|
deba@2040
|
327 |
}
|
deba@2040
|
328 |
}
|
deba@2466
|
329 |
++level;
|
deba@2466
|
330 |
queue.swap(nqueue);
|
deba@2040
|
331 |
}
|
deba@2040
|
332 |
|
deba@2466
|
333 |
return success;
|
deba@2040
|
334 |
}
|
deba@2040
|
335 |
|
deba@2466
|
336 |
|
deba@2466
|
337 |
|
deba@2040
|
338 |
/// \brief Starts the algorithm.
|
deba@2040
|
339 |
///
|
deba@2040
|
340 |
/// Starts the algorithm. It runs augmenting phases until the optimal
|
deba@2040
|
341 |
/// solution reached.
|
deba@2040
|
342 |
void start() {
|
deba@2040
|
343 |
while (augment()) {}
|
deba@2040
|
344 |
}
|
deba@2040
|
345 |
|
deba@2040
|
346 |
/// \brief Runs the algorithm.
|
deba@2040
|
347 |
///
|
deba@2040
|
348 |
/// It just initalize the algorithm and then start it.
|
deba@2040
|
349 |
void run() {
|
deba@2058
|
350 |
greedyInit();
|
deba@2040
|
351 |
start();
|
deba@2040
|
352 |
}
|
deba@2040
|
353 |
|
deba@2040
|
354 |
/// @}
|
deba@2040
|
355 |
|
deba@2040
|
356 |
/// \name Query Functions
|
deba@2040
|
357 |
/// The result of the %Matching algorithm can be obtained using these
|
deba@2040
|
358 |
/// functions.\n
|
deba@2040
|
359 |
/// Before the use of these functions,
|
deba@2040
|
360 |
/// either run() or start() must be called.
|
deba@2040
|
361 |
|
deba@2040
|
362 |
///@{
|
deba@2040
|
363 |
|
deba@2466
|
364 |
/// \brief Return true if the given uedge is in the matching.
|
deba@2466
|
365 |
///
|
deba@2466
|
366 |
/// It returns true if the given uedge is in the matching.
|
deba@2466
|
367 |
bool matchingEdge(const UEdge& edge) const {
|
deba@2466
|
368 |
return _matching[_graph->aNode(edge)] == edge;
|
deba@2466
|
369 |
}
|
deba@2466
|
370 |
|
deba@2466
|
371 |
/// \brief Returns the matching edge from the node.
|
deba@2466
|
372 |
///
|
deba@2466
|
373 |
/// Returns the matching edge from the node. If there is not such
|
deba@2466
|
374 |
/// edge it gives back \c INVALID.
|
deba@2466
|
375 |
/// \note If the parameter node is a B-node then the running time is
|
deba@2466
|
376 |
/// propotional to the degree of the node.
|
deba@2466
|
377 |
UEdge matchingEdge(const Node& node) const {
|
deba@2466
|
378 |
if (_graph->aNode(node)) {
|
deba@2466
|
379 |
return _matching[node];
|
deba@2466
|
380 |
} else {
|
deba@2466
|
381 |
return _rmatching[node];
|
deba@2466
|
382 |
}
|
deba@2466
|
383 |
}
|
deba@2466
|
384 |
|
deba@2462
|
385 |
/// \brief Set true all matching uedge in the map.
|
deba@2462
|
386 |
///
|
deba@2462
|
387 |
/// Set true all matching uedge in the map. It does not change the
|
deba@2462
|
388 |
/// value mapped to the other uedges.
|
deba@2462
|
389 |
/// \return The number of the matching edges.
|
deba@2462
|
390 |
template <typename MatchingMap>
|
deba@2462
|
391 |
int quickMatching(MatchingMap& mm) const {
|
deba@2466
|
392 |
for (ANodeIt it(*_graph); it != INVALID; ++it) {
|
deba@2466
|
393 |
if (_matching[it] != INVALID) {
|
deba@2466
|
394 |
mm.set(_matching[it], true);
|
deba@2462
|
395 |
}
|
deba@2462
|
396 |
}
|
deba@2466
|
397 |
return _size;
|
deba@2462
|
398 |
}
|
deba@2462
|
399 |
|
deba@2462
|
400 |
/// \brief Set true all matching uedge in the map and the others to false.
|
deba@2462
|
401 |
///
|
deba@2462
|
402 |
/// Set true all matching uedge in the map and the others to false.
|
deba@2462
|
403 |
/// \return The number of the matching edges.
|
deba@2462
|
404 |
template <typename MatchingMap>
|
deba@2462
|
405 |
int matching(MatchingMap& mm) const {
|
deba@2466
|
406 |
for (UEdgeIt it(*_graph); it != INVALID; ++it) {
|
deba@2466
|
407 |
mm.set(it, it == _matching[_graph->aNode(it)]);
|
deba@2462
|
408 |
}
|
deba@2466
|
409 |
return _size;
|
deba@2462
|
410 |
}
|
deba@2462
|
411 |
|
deba@2463
|
412 |
///Gives back the matching in an ANodeMap.
|
deba@2463
|
413 |
|
deba@2463
|
414 |
///Gives back the matching in an ANodeMap. The parameter should
|
deba@2463
|
415 |
///be a write ANodeMap of UEdge values.
|
deba@2463
|
416 |
///\return The number of the matching edges.
|
deba@2463
|
417 |
template<class MatchingMap>
|
deba@2463
|
418 |
int aMatching(MatchingMap& mm) const {
|
deba@2466
|
419 |
for (ANodeIt it(*_graph); it != INVALID; ++it) {
|
deba@2466
|
420 |
mm.set(it, _matching[it]);
|
deba@2463
|
421 |
}
|
deba@2466
|
422 |
return _size;
|
deba@2463
|
423 |
}
|
deba@2463
|
424 |
|
deba@2463
|
425 |
///Gives back the matching in a BNodeMap.
|
deba@2463
|
426 |
|
deba@2463
|
427 |
///Gives back the matching in a BNodeMap. The parameter should
|
deba@2463
|
428 |
///be a write BNodeMap of UEdge values.
|
deba@2463
|
429 |
///\return The number of the matching edges.
|
deba@2463
|
430 |
template<class MatchingMap>
|
deba@2463
|
431 |
int bMatching(MatchingMap& mm) const {
|
deba@2466
|
432 |
for (BNodeIt it(*_graph); it != INVALID; ++it) {
|
deba@2466
|
433 |
mm.set(it, _rmatching[it]);
|
deba@2463
|
434 |
}
|
deba@2466
|
435 |
return _size;
|
deba@2462
|
436 |
}
|
deba@2462
|
437 |
|
deba@2462
|
438 |
/// \brief Returns a minimum covering of the nodes.
|
deba@2040
|
439 |
///
|
deba@2040
|
440 |
/// The minimum covering set problem is the dual solution of the
|
deba@2462
|
441 |
/// maximum bipartite matching. It provides a solution for this
|
deba@2040
|
442 |
/// problem what is proof of the optimality of the matching.
|
deba@2040
|
443 |
/// \return The size of the cover set.
|
deba@2040
|
444 |
template <typename CoverMap>
|
deba@2058
|
445 |
int coverSet(CoverMap& covering) const {
|
deba@2040
|
446 |
|
deba@2466
|
447 |
int size = 0;
|
deba@2466
|
448 |
for (ANodeIt it(*_graph); it != INVALID; ++it) {
|
deba@2466
|
449 |
bool cn = _matching[it] != INVALID &&
|
deba@2466
|
450 |
_reached[_graph->bNode(_matching[it])] == _phase;
|
deba@2466
|
451 |
covering.set(it, cn);
|
deba@2466
|
452 |
if (cn) ++size;
|
deba@2040
|
453 |
}
|
deba@2466
|
454 |
for (BNodeIt it(*_graph); it != INVALID; ++it) {
|
deba@2466
|
455 |
bool cn = _reached[it] != _phase;
|
deba@2466
|
456 |
covering.set(it, cn);
|
deba@2466
|
457 |
if (cn) ++size;
|
deba@2040
|
458 |
}
|
deba@2040
|
459 |
return size;
|
deba@2040
|
460 |
}
|
deba@2040
|
461 |
|
deba@2462
|
462 |
/// \brief Gives back a barrier on the A-nodes
|
deba@2466
|
463 |
///
|
deba@2462
|
464 |
/// The barrier is s subset of the nodes on the same side of the
|
deba@2462
|
465 |
/// graph, which size minus its neighbours is exactly the
|
deba@2462
|
466 |
/// unmatched nodes on the A-side.
|
deba@2462
|
467 |
/// \retval barrier A WriteMap on the ANodes with bool value.
|
deba@2462
|
468 |
template <typename BarrierMap>
|
deba@2462
|
469 |
void aBarrier(BarrierMap& barrier) const {
|
deba@2462
|
470 |
|
deba@2466
|
471 |
for (ANodeIt it(*_graph); it != INVALID; ++it) {
|
deba@2466
|
472 |
barrier.set(it, _matching[it] == INVALID ||
|
deba@2466
|
473 |
_reached[_graph->bNode(_matching[it])] != _phase);
|
deba@2040
|
474 |
}
|
deba@2040
|
475 |
}
|
deba@2040
|
476 |
|
deba@2462
|
477 |
/// \brief Gives back a barrier on the B-nodes
|
deba@2466
|
478 |
///
|
deba@2462
|
479 |
/// The barrier is s subset of the nodes on the same side of the
|
deba@2462
|
480 |
/// graph, which size minus its neighbours is exactly the
|
deba@2462
|
481 |
/// unmatched nodes on the B-side.
|
deba@2462
|
482 |
/// \retval barrier A WriteMap on the BNodes with bool value.
|
deba@2462
|
483 |
template <typename BarrierMap>
|
deba@2462
|
484 |
void bBarrier(BarrierMap& barrier) const {
|
deba@2462
|
485 |
|
deba@2466
|
486 |
for (BNodeIt it(*_graph); it != INVALID; ++it) {
|
deba@2466
|
487 |
barrier.set(it, _reached[it] == _phase);
|
deba@2462
|
488 |
}
|
deba@2466
|
489 |
}
|
deba@2462
|
490 |
|
deba@2466
|
491 |
/// \brief Gives back the number of the matching edges.
|
deba@2466
|
492 |
///
|
deba@2466
|
493 |
/// Gives back the number of the matching edges.
|
deba@2466
|
494 |
int matchingSize() const {
|
deba@2466
|
495 |
return _size;
|
deba@2040
|
496 |
}
|
deba@2040
|
497 |
|
deba@2040
|
498 |
/// @}
|
deba@2040
|
499 |
|
deba@2040
|
500 |
private:
|
deba@2040
|
501 |
|
deba@2466
|
502 |
typename BpUGraph::template ANodeMap<UEdge> _matching;
|
deba@2466
|
503 |
typename BpUGraph::template BNodeMap<UEdge> _rmatching;
|
deba@2040
|
504 |
|
deba@2466
|
505 |
typename BpUGraph::template BNodeMap<int> _reached;
|
deba@2466
|
506 |
|
deba@2466
|
507 |
int _phase;
|
deba@2466
|
508 |
const Graph *_graph;
|
deba@2466
|
509 |
|
deba@2466
|
510 |
int _size;
|
deba@2051
|
511 |
|
deba@2051
|
512 |
};
|
deba@2051
|
513 |
|
deba@2058
|
514 |
/// \ingroup matching
|
deba@2058
|
515 |
///
|
deba@2058
|
516 |
/// \brief Maximum cardinality bipartite matching
|
deba@2058
|
517 |
///
|
deba@2058
|
518 |
/// This function calculates the maximum cardinality matching
|
deba@2058
|
519 |
/// in a bipartite graph. It gives back the matching in an undirected
|
deba@2058
|
520 |
/// edge map.
|
deba@2058
|
521 |
///
|
deba@2058
|
522 |
/// \param graph The bipartite graph.
|
deba@2463
|
523 |
/// \return The size of the matching.
|
deba@2463
|
524 |
template <typename BpUGraph>
|
deba@2463
|
525 |
int maxBipartiteMatching(const BpUGraph& graph) {
|
deba@2463
|
526 |
MaxBipartiteMatching<BpUGraph> bpmatching(graph);
|
deba@2463
|
527 |
bpmatching.run();
|
deba@2463
|
528 |
return bpmatching.matchingSize();
|
deba@2463
|
529 |
}
|
deba@2463
|
530 |
|
deba@2463
|
531 |
/// \ingroup matching
|
deba@2463
|
532 |
///
|
deba@2463
|
533 |
/// \brief Maximum cardinality bipartite matching
|
deba@2463
|
534 |
///
|
deba@2463
|
535 |
/// This function calculates the maximum cardinality matching
|
deba@2463
|
536 |
/// in a bipartite graph. It gives back the matching in an undirected
|
deba@2463
|
537 |
/// edge map.
|
deba@2463
|
538 |
///
|
deba@2463
|
539 |
/// \param graph The bipartite graph.
|
deba@2463
|
540 |
/// \retval matching The ANodeMap of UEdges which will be set to covered
|
deba@2463
|
541 |
/// matching undirected edge.
|
deba@2058
|
542 |
/// \return The size of the matching.
|
deba@2058
|
543 |
template <typename BpUGraph, typename MatchingMap>
|
deba@2058
|
544 |
int maxBipartiteMatching(const BpUGraph& graph, MatchingMap& matching) {
|
deba@2058
|
545 |
MaxBipartiteMatching<BpUGraph> bpmatching(graph);
|
deba@2058
|
546 |
bpmatching.run();
|
deba@2463
|
547 |
bpmatching.aMatching(matching);
|
deba@2463
|
548 |
return bpmatching.matchingSize();
|
deba@2463
|
549 |
}
|
deba@2463
|
550 |
|
deba@2463
|
551 |
/// \ingroup matching
|
deba@2463
|
552 |
///
|
deba@2463
|
553 |
/// \brief Maximum cardinality bipartite matching
|
deba@2463
|
554 |
///
|
deba@2463
|
555 |
/// This function calculates the maximum cardinality matching
|
deba@2463
|
556 |
/// in a bipartite graph. It gives back the matching in an undirected
|
deba@2463
|
557 |
/// edge map.
|
deba@2463
|
558 |
///
|
deba@2463
|
559 |
/// \param graph The bipartite graph.
|
deba@2463
|
560 |
/// \retval matching The ANodeMap of UEdges which will be set to covered
|
deba@2463
|
561 |
/// matching undirected edge.
|
deba@2463
|
562 |
/// \retval barrier The BNodeMap of bools which will be set to a barrier
|
deba@2463
|
563 |
/// of the BNode-set.
|
deba@2463
|
564 |
/// \return The size of the matching.
|
deba@2463
|
565 |
template <typename BpUGraph, typename MatchingMap, typename BarrierMap>
|
deba@2463
|
566 |
int maxBipartiteMatching(const BpUGraph& graph,
|
deba@2463
|
567 |
MatchingMap& matching, BarrierMap& barrier) {
|
deba@2463
|
568 |
MaxBipartiteMatching<BpUGraph> bpmatching(graph);
|
deba@2463
|
569 |
bpmatching.run();
|
deba@2463
|
570 |
bpmatching.aMatching(matching);
|
deba@2463
|
571 |
bpmatching.bBarrier(barrier);
|
deba@2058
|
572 |
return bpmatching.matchingSize();
|
deba@2058
|
573 |
}
|
deba@2058
|
574 |
|
deba@2051
|
575 |
/// \brief Default traits class for weighted bipartite matching algoritms.
|
deba@2051
|
576 |
///
|
deba@2051
|
577 |
/// Default traits class for weighted bipartite matching algoritms.
|
deba@2051
|
578 |
/// \param _BpUGraph The bipartite undirected graph type.
|
deba@2051
|
579 |
/// \param _WeightMap Type of weight map.
|
deba@2051
|
580 |
template <typename _BpUGraph, typename _WeightMap>
|
deba@2051
|
581 |
struct WeightedBipartiteMatchingDefaultTraits {
|
deba@2051
|
582 |
/// \brief The type of the weight of the undirected edges.
|
deba@2051
|
583 |
typedef typename _WeightMap::Value Value;
|
deba@2051
|
584 |
|
deba@2051
|
585 |
/// The undirected bipartite graph type the algorithm runs on.
|
deba@2051
|
586 |
typedef _BpUGraph BpUGraph;
|
deba@2051
|
587 |
|
deba@2051
|
588 |
/// The map of the edges weights
|
deba@2051
|
589 |
typedef _WeightMap WeightMap;
|
deba@2051
|
590 |
|
deba@2051
|
591 |
/// \brief The cross reference type used by heap.
|
deba@2051
|
592 |
///
|
deba@2051
|
593 |
/// The cross reference type used by heap.
|
deba@2051
|
594 |
/// Usually it is \c Graph::NodeMap<int>.
|
deba@2051
|
595 |
typedef typename BpUGraph::template NodeMap<int> HeapCrossRef;
|
deba@2051
|
596 |
|
deba@2051
|
597 |
/// \brief Instantiates a HeapCrossRef.
|
deba@2051
|
598 |
///
|
deba@2051
|
599 |
/// This function instantiates a \ref HeapCrossRef.
|
deba@2051
|
600 |
/// \param graph is the graph, to which we would like to define the
|
deba@2051
|
601 |
/// HeapCrossRef.
|
deba@2051
|
602 |
static HeapCrossRef *createHeapCrossRef(const BpUGraph &graph) {
|
deba@2051
|
603 |
return new HeapCrossRef(graph);
|
deba@2051
|
604 |
}
|
deba@2051
|
605 |
|
deba@2051
|
606 |
/// \brief The heap type used by weighted matching algorithms.
|
deba@2051
|
607 |
///
|
deba@2051
|
608 |
/// The heap type used by weighted matching algorithms. It should
|
deba@2051
|
609 |
/// minimize the priorities and the heap's key type is the graph's
|
deba@2051
|
610 |
/// anode graph's node.
|
deba@2051
|
611 |
///
|
deba@2051
|
612 |
/// \sa BinHeap
|
mqrelly@2263
|
613 |
typedef BinHeap<Value, HeapCrossRef> Heap;
|
deba@2051
|
614 |
|
deba@2051
|
615 |
/// \brief Instantiates a Heap.
|
deba@2051
|
616 |
///
|
deba@2051
|
617 |
/// This function instantiates a \ref Heap.
|
deba@2051
|
618 |
/// \param crossref The cross reference of the heap.
|
deba@2051
|
619 |
static Heap *createHeap(HeapCrossRef& crossref) {
|
deba@2051
|
620 |
return new Heap(crossref);
|
deba@2051
|
621 |
}
|
deba@2051
|
622 |
|
deba@2051
|
623 |
};
|
deba@2051
|
624 |
|
deba@2051
|
625 |
|
deba@2051
|
626 |
/// \ingroup matching
|
deba@2051
|
627 |
///
|
deba@2051
|
628 |
/// \brief Bipartite Max Weighted Matching algorithm
|
deba@2051
|
629 |
///
|
deba@2051
|
630 |
/// This class implements the bipartite Max Weighted Matching
|
deba@2051
|
631 |
/// algorithm. It uses the successive shortest path algorithm to
|
deba@2051
|
632 |
/// calculate the maximum weighted matching in the bipartite
|
deba@2051
|
633 |
/// graph. The algorithm can be used also to calculate the maximum
|
deba@2051
|
634 |
/// cardinality maximum weighted matching. The time complexity
|
deba@2051
|
635 |
/// of the algorithm is \f$ O(ne\log(n)) \f$ with the default binary
|
deba@2051
|
636 |
/// heap implementation but this can be improved to
|
deba@2051
|
637 |
/// \f$ O(n^2\log(n)+ne) \f$ if we use fibonacci heaps.
|
deba@2051
|
638 |
///
|
deba@2051
|
639 |
/// The algorithm also provides a potential function on the nodes
|
deba@2051
|
640 |
/// which a dual solution of the matching algorithm and it can be
|
deba@2051
|
641 |
/// used to proof the optimality of the given pimal solution.
|
deba@2051
|
642 |
#ifdef DOXYGEN
|
deba@2051
|
643 |
template <typename _BpUGraph, typename _WeightMap, typename _Traits>
|
deba@2051
|
644 |
#else
|
deba@2051
|
645 |
template <typename _BpUGraph,
|
deba@2051
|
646 |
typename _WeightMap = typename _BpUGraph::template UEdgeMap<int>,
|
deba@2051
|
647 |
typename _Traits = WeightedBipartiteMatchingDefaultTraits<_BpUGraph, _WeightMap> >
|
deba@2051
|
648 |
#endif
|
deba@2051
|
649 |
class MaxWeightedBipartiteMatching {
|
deba@2051
|
650 |
public:
|
deba@2051
|
651 |
|
deba@2051
|
652 |
typedef _Traits Traits;
|
deba@2051
|
653 |
typedef typename Traits::BpUGraph BpUGraph;
|
deba@2051
|
654 |
typedef typename Traits::WeightMap WeightMap;
|
deba@2051
|
655 |
typedef typename Traits::Value Value;
|
deba@2051
|
656 |
|
deba@2051
|
657 |
protected:
|
deba@2051
|
658 |
|
deba@2051
|
659 |
typedef typename Traits::HeapCrossRef HeapCrossRef;
|
deba@2051
|
660 |
typedef typename Traits::Heap Heap;
|
deba@2051
|
661 |
|
deba@2051
|
662 |
|
deba@2051
|
663 |
typedef typename BpUGraph::Node Node;
|
deba@2051
|
664 |
typedef typename BpUGraph::ANodeIt ANodeIt;
|
deba@2051
|
665 |
typedef typename BpUGraph::BNodeIt BNodeIt;
|
deba@2051
|
666 |
typedef typename BpUGraph::UEdge UEdge;
|
deba@2051
|
667 |
typedef typename BpUGraph::UEdgeIt UEdgeIt;
|
deba@2051
|
668 |
typedef typename BpUGraph::IncEdgeIt IncEdgeIt;
|
deba@2051
|
669 |
|
deba@2051
|
670 |
typedef typename BpUGraph::template ANodeMap<UEdge> ANodeMatchingMap;
|
deba@2051
|
671 |
typedef typename BpUGraph::template BNodeMap<UEdge> BNodeMatchingMap;
|
deba@2051
|
672 |
|
deba@2051
|
673 |
typedef typename BpUGraph::template ANodeMap<Value> ANodePotentialMap;
|
deba@2051
|
674 |
typedef typename BpUGraph::template BNodeMap<Value> BNodePotentialMap;
|
deba@2051
|
675 |
|
deba@2051
|
676 |
|
deba@2051
|
677 |
public:
|
deba@2051
|
678 |
|
deba@2051
|
679 |
/// \brief \ref Exception for uninitialized parameters.
|
deba@2051
|
680 |
///
|
deba@2051
|
681 |
/// This error represents problems in the initialization
|
deba@2051
|
682 |
/// of the parameters of the algorithms.
|
deba@2051
|
683 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
deba@2051
|
684 |
public:
|
alpar@2151
|
685 |
virtual const char* what() const throw() {
|
deba@2051
|
686 |
return "lemon::MaxWeightedBipartiteMatching::UninitializedParameter";
|
deba@2051
|
687 |
}
|
deba@2051
|
688 |
};
|
deba@2051
|
689 |
|
deba@2051
|
690 |
///\name Named template parameters
|
deba@2051
|
691 |
|
deba@2051
|
692 |
///@{
|
deba@2051
|
693 |
|
deba@2051
|
694 |
template <class H, class CR>
|
deba@2051
|
695 |
struct DefHeapTraits : public Traits {
|
deba@2051
|
696 |
typedef CR HeapCrossRef;
|
deba@2051
|
697 |
typedef H Heap;
|
deba@2051
|
698 |
static HeapCrossRef *createHeapCrossRef(const BpUGraph &) {
|
deba@2051
|
699 |
throw UninitializedParameter();
|
deba@2051
|
700 |
}
|
deba@2051
|
701 |
static Heap *createHeap(HeapCrossRef &) {
|
deba@2051
|
702 |
throw UninitializedParameter();
|
deba@2051
|
703 |
}
|
deba@2051
|
704 |
};
|
deba@2051
|
705 |
|
deba@2051
|
706 |
/// \brief \ref named-templ-param "Named parameter" for setting heap
|
deba@2051
|
707 |
/// and cross reference type
|
deba@2051
|
708 |
///
|
deba@2051
|
709 |
/// \ref named-templ-param "Named parameter" for setting heap and cross
|
deba@2051
|
710 |
/// reference type
|
deba@2051
|
711 |
template <class H, class CR = typename BpUGraph::template NodeMap<int> >
|
deba@2051
|
712 |
struct DefHeap
|
deba@2051
|
713 |
: public MaxWeightedBipartiteMatching<BpUGraph, WeightMap,
|
deba@2051
|
714 |
DefHeapTraits<H, CR> > {
|
deba@2051
|
715 |
typedef MaxWeightedBipartiteMatching<BpUGraph, WeightMap,
|
deba@2051
|
716 |
DefHeapTraits<H, CR> > Create;
|
deba@2051
|
717 |
};
|
deba@2051
|
718 |
|
deba@2051
|
719 |
template <class H, class CR>
|
deba@2051
|
720 |
struct DefStandardHeapTraits : public Traits {
|
deba@2051
|
721 |
typedef CR HeapCrossRef;
|
deba@2051
|
722 |
typedef H Heap;
|
deba@2051
|
723 |
static HeapCrossRef *createHeapCrossRef(const BpUGraph &graph) {
|
deba@2051
|
724 |
return new HeapCrossRef(graph);
|
deba@2051
|
725 |
}
|
deba@2051
|
726 |
static Heap *createHeap(HeapCrossRef &crossref) {
|
deba@2051
|
727 |
return new Heap(crossref);
|
deba@2051
|
728 |
}
|
deba@2051
|
729 |
};
|
deba@2051
|
730 |
|
deba@2051
|
731 |
/// \brief \ref named-templ-param "Named parameter" for setting heap and
|
deba@2051
|
732 |
/// cross reference type with automatic allocation
|
deba@2051
|
733 |
///
|
deba@2051
|
734 |
/// \ref named-templ-param "Named parameter" for setting heap and cross
|
deba@2051
|
735 |
/// reference type. It can allocate the heap and the cross reference
|
deba@2051
|
736 |
/// object if the cross reference's constructor waits for the graph as
|
deba@2051
|
737 |
/// parameter and the heap's constructor waits for the cross reference.
|
deba@2051
|
738 |
template <class H, class CR = typename BpUGraph::template NodeMap<int> >
|
deba@2051
|
739 |
struct DefStandardHeap
|
deba@2051
|
740 |
: public MaxWeightedBipartiteMatching<BpUGraph, WeightMap,
|
deba@2051
|
741 |
DefStandardHeapTraits<H, CR> > {
|
deba@2051
|
742 |
typedef MaxWeightedBipartiteMatching<BpUGraph, WeightMap,
|
deba@2051
|
743 |
DefStandardHeapTraits<H, CR> >
|
deba@2051
|
744 |
Create;
|
deba@2051
|
745 |
};
|
deba@2051
|
746 |
|
deba@2051
|
747 |
///@}
|
deba@2051
|
748 |
|
deba@2051
|
749 |
|
deba@2051
|
750 |
/// \brief Constructor.
|
deba@2051
|
751 |
///
|
deba@2051
|
752 |
/// Constructor of the algorithm.
|
deba@2051
|
753 |
MaxWeightedBipartiteMatching(const BpUGraph& _graph,
|
deba@2051
|
754 |
const WeightMap& _weight)
|
deba@2051
|
755 |
: graph(&_graph), weight(&_weight),
|
deba@2051
|
756 |
anode_matching(_graph), bnode_matching(_graph),
|
deba@2051
|
757 |
anode_potential(_graph), bnode_potential(_graph),
|
deba@2051
|
758 |
_heap_cross_ref(0), local_heap_cross_ref(false),
|
deba@2051
|
759 |
_heap(0), local_heap(0) {}
|
deba@2051
|
760 |
|
deba@2051
|
761 |
/// \brief Destructor.
|
deba@2051
|
762 |
///
|
deba@2051
|
763 |
/// Destructor of the algorithm.
|
deba@2051
|
764 |
~MaxWeightedBipartiteMatching() {
|
deba@2051
|
765 |
destroyStructures();
|
deba@2051
|
766 |
}
|
deba@2051
|
767 |
|
deba@2051
|
768 |
/// \brief Sets the heap and the cross reference used by algorithm.
|
deba@2051
|
769 |
///
|
deba@2051
|
770 |
/// Sets the heap and the cross reference used by algorithm.
|
deba@2051
|
771 |
/// If you don't use this function before calling \ref run(),
|
deba@2051
|
772 |
/// it will allocate one. The destuctor deallocates this
|
deba@2051
|
773 |
/// automatically allocated map, of course.
|
deba@2051
|
774 |
/// \return \c (*this)
|
deba@2386
|
775 |
MaxWeightedBipartiteMatching& heap(Heap& hp, HeapCrossRef &cr) {
|
deba@2051
|
776 |
if(local_heap_cross_ref) {
|
deba@2051
|
777 |
delete _heap_cross_ref;
|
deba@2051
|
778 |
local_heap_cross_ref = false;
|
deba@2051
|
779 |
}
|
deba@2386
|
780 |
_heap_cross_ref = &cr;
|
deba@2051
|
781 |
if(local_heap) {
|
deba@2051
|
782 |
delete _heap;
|
deba@2051
|
783 |
local_heap = false;
|
deba@2051
|
784 |
}
|
deba@2386
|
785 |
_heap = &hp;
|
deba@2051
|
786 |
return *this;
|
deba@2051
|
787 |
}
|
deba@2051
|
788 |
|
deba@2051
|
789 |
/// \name Execution control
|
deba@2051
|
790 |
/// The simplest way to execute the algorithm is to use
|
deba@2051
|
791 |
/// one of the member functions called \c run().
|
deba@2051
|
792 |
/// \n
|
deba@2051
|
793 |
/// If you need more control on the execution,
|
deba@2051
|
794 |
/// first you must call \ref init() or one alternative for it.
|
deba@2051
|
795 |
/// Finally \ref start() will perform the matching computation or
|
deba@2051
|
796 |
/// with step-by-step execution you can augment the solution.
|
deba@2051
|
797 |
|
deba@2051
|
798 |
/// @{
|
deba@2051
|
799 |
|
deba@2051
|
800 |
/// \brief Initalize the data structures.
|
deba@2051
|
801 |
///
|
deba@2051
|
802 |
/// It initalizes the data structures and creates an empty matching.
|
deba@2051
|
803 |
void init() {
|
deba@2051
|
804 |
initStructures();
|
deba@2051
|
805 |
for (ANodeIt it(*graph); it != INVALID; ++it) {
|
deba@2051
|
806 |
anode_matching[it] = INVALID;
|
deba@2051
|
807 |
anode_potential[it] = 0;
|
deba@2051
|
808 |
}
|
deba@2051
|
809 |
for (BNodeIt it(*graph); it != INVALID; ++it) {
|
deba@2051
|
810 |
bnode_matching[it] = INVALID;
|
deba@2051
|
811 |
bnode_potential[it] = 0;
|
deba@2051
|
812 |
for (IncEdgeIt jt(*graph, it); jt != INVALID; ++jt) {
|
deba@2058
|
813 |
if ((*weight)[jt] > bnode_potential[it]) {
|
deba@2058
|
814 |
bnode_potential[it] = (*weight)[jt];
|
deba@2051
|
815 |
}
|
deba@2051
|
816 |
}
|
deba@2051
|
817 |
}
|
deba@2051
|
818 |
matching_value = 0;
|
deba@2051
|
819 |
matching_size = 0;
|
deba@2051
|
820 |
}
|
deba@2051
|
821 |
|
deba@2051
|
822 |
|
deba@2051
|
823 |
/// \brief An augmenting phase of the weighted matching algorithm
|
deba@2051
|
824 |
///
|
deba@2051
|
825 |
/// It runs an augmenting phase of the weighted matching
|
alpar@2352
|
826 |
/// algorithm. This phase finds the best augmenting path and
|
deba@2051
|
827 |
/// augments only on this paths.
|
deba@2051
|
828 |
///
|
deba@2051
|
829 |
/// The algorithm consists at most
|
deba@2051
|
830 |
/// of \f$ O(n) \f$ phase and one phase is \f$ O(n\log(n)+e) \f$
|
deba@2051
|
831 |
/// long with Fibonacci heap or \f$ O((n+e)\log(n)) \f$ long
|
deba@2051
|
832 |
/// with binary heap.
|
deba@2051
|
833 |
/// \param decrease If the given parameter true the matching value
|
deba@2051
|
834 |
/// can be decreased in the augmenting phase. If we would like
|
deba@2051
|
835 |
/// to calculate the maximum cardinality maximum weighted matching
|
deba@2051
|
836 |
/// then we should let the algorithm to decrease the matching
|
deba@2051
|
837 |
/// value in order to increase the number of the matching edges.
|
deba@2051
|
838 |
bool augment(bool decrease = false) {
|
deba@2051
|
839 |
|
deba@2051
|
840 |
typename BpUGraph::template BNodeMap<Value> bdist(*graph);
|
deba@2051
|
841 |
typename BpUGraph::template BNodeMap<UEdge> bpred(*graph, INVALID);
|
deba@2051
|
842 |
|
deba@2051
|
843 |
Node bestNode = INVALID;
|
deba@2051
|
844 |
Value bestValue = 0;
|
deba@2051
|
845 |
|
deba@2051
|
846 |
_heap->clear();
|
deba@2051
|
847 |
for (ANodeIt it(*graph); it != INVALID; ++it) {
|
deba@2051
|
848 |
(*_heap_cross_ref)[it] = Heap::PRE_HEAP;
|
deba@2051
|
849 |
}
|
deba@2051
|
850 |
|
deba@2051
|
851 |
for (ANodeIt it(*graph); it != INVALID; ++it) {
|
deba@2051
|
852 |
if (anode_matching[it] == INVALID) {
|
deba@2051
|
853 |
_heap->push(it, 0);
|
deba@2051
|
854 |
}
|
deba@2051
|
855 |
}
|
deba@2051
|
856 |
|
deba@2051
|
857 |
Value bdistMax = 0;
|
deba@2051
|
858 |
while (!_heap->empty()) {
|
deba@2051
|
859 |
Node anode = _heap->top();
|
deba@2051
|
860 |
Value avalue = _heap->prio();
|
deba@2051
|
861 |
_heap->pop();
|
deba@2051
|
862 |
for (IncEdgeIt jt(*graph, anode); jt != INVALID; ++jt) {
|
deba@2051
|
863 |
if (jt == anode_matching[anode]) continue;
|
deba@2051
|
864 |
Node bnode = graph->bNode(jt);
|
deba@2058
|
865 |
Value bvalue = avalue - (*weight)[jt] +
|
deba@2058
|
866 |
anode_potential[anode] + bnode_potential[bnode];
|
deba@2051
|
867 |
if (bpred[bnode] == INVALID || bvalue < bdist[bnode]) {
|
deba@2051
|
868 |
bdist[bnode] = bvalue;
|
deba@2051
|
869 |
bpred[bnode] = jt;
|
deba@2051
|
870 |
}
|
deba@2051
|
871 |
if (bvalue > bdistMax) {
|
deba@2051
|
872 |
bdistMax = bvalue;
|
deba@2051
|
873 |
}
|
deba@2051
|
874 |
if (bnode_matching[bnode] != INVALID) {
|
deba@2051
|
875 |
Node newanode = graph->aNode(bnode_matching[bnode]);
|
deba@2051
|
876 |
switch (_heap->state(newanode)) {
|
deba@2051
|
877 |
case Heap::PRE_HEAP:
|
deba@2051
|
878 |
_heap->push(newanode, bvalue);
|
deba@2051
|
879 |
break;
|
deba@2051
|
880 |
case Heap::IN_HEAP:
|
deba@2051
|
881 |
if (bvalue < (*_heap)[newanode]) {
|
deba@2051
|
882 |
_heap->decrease(newanode, bvalue);
|
deba@2051
|
883 |
}
|
deba@2051
|
884 |
break;
|
deba@2051
|
885 |
case Heap::POST_HEAP:
|
deba@2051
|
886 |
break;
|
deba@2051
|
887 |
}
|
deba@2051
|
888 |
} else {
|
deba@2051
|
889 |
if (bestNode == INVALID ||
|
deba@2058
|
890 |
bnode_potential[bnode] - bvalue > bestValue) {
|
deba@2058
|
891 |
bestValue = bnode_potential[bnode] - bvalue;
|
deba@2051
|
892 |
bestNode = bnode;
|
deba@2051
|
893 |
}
|
deba@2051
|
894 |
}
|
deba@2051
|
895 |
}
|
deba@2051
|
896 |
}
|
deba@2051
|
897 |
|
deba@2051
|
898 |
if (bestNode == INVALID || (!decrease && bestValue < 0)) {
|
deba@2051
|
899 |
return false;
|
deba@2051
|
900 |
}
|
deba@2051
|
901 |
|
deba@2051
|
902 |
matching_value += bestValue;
|
deba@2051
|
903 |
++matching_size;
|
deba@2051
|
904 |
|
deba@2051
|
905 |
for (BNodeIt it(*graph); it != INVALID; ++it) {
|
deba@2051
|
906 |
if (bpred[it] != INVALID) {
|
deba@2058
|
907 |
bnode_potential[it] -= bdist[it];
|
deba@2051
|
908 |
} else {
|
deba@2058
|
909 |
bnode_potential[it] -= bdistMax;
|
deba@2051
|
910 |
}
|
deba@2051
|
911 |
}
|
deba@2051
|
912 |
for (ANodeIt it(*graph); it != INVALID; ++it) {
|
deba@2051
|
913 |
if (anode_matching[it] != INVALID) {
|
deba@2051
|
914 |
Node bnode = graph->bNode(anode_matching[it]);
|
deba@2051
|
915 |
if (bpred[bnode] != INVALID) {
|
deba@2051
|
916 |
anode_potential[it] += bdist[bnode];
|
deba@2051
|
917 |
} else {
|
deba@2051
|
918 |
anode_potential[it] += bdistMax;
|
deba@2051
|
919 |
}
|
deba@2051
|
920 |
}
|
deba@2051
|
921 |
}
|
deba@2051
|
922 |
|
deba@2051
|
923 |
while (bestNode != INVALID) {
|
deba@2051
|
924 |
UEdge uedge = bpred[bestNode];
|
deba@2051
|
925 |
Node anode = graph->aNode(uedge);
|
deba@2051
|
926 |
|
deba@2051
|
927 |
bnode_matching[bestNode] = uedge;
|
deba@2051
|
928 |
if (anode_matching[anode] != INVALID) {
|
deba@2051
|
929 |
bestNode = graph->bNode(anode_matching[anode]);
|
deba@2051
|
930 |
} else {
|
deba@2051
|
931 |
bestNode = INVALID;
|
deba@2051
|
932 |
}
|
deba@2051
|
933 |
anode_matching[anode] = uedge;
|
deba@2051
|
934 |
}
|
deba@2051
|
935 |
|
deba@2051
|
936 |
|
deba@2051
|
937 |
return true;
|
deba@2051
|
938 |
}
|
deba@2051
|
939 |
|
deba@2051
|
940 |
/// \brief Starts the algorithm.
|
deba@2051
|
941 |
///
|
deba@2051
|
942 |
/// Starts the algorithm. It runs augmenting phases until the
|
deba@2051
|
943 |
/// optimal solution reached.
|
deba@2051
|
944 |
///
|
deba@2051
|
945 |
/// \param maxCardinality If the given value is true it will
|
deba@2051
|
946 |
/// calculate the maximum cardinality maximum matching instead of
|
deba@2051
|
947 |
/// the maximum matching.
|
deba@2051
|
948 |
void start(bool maxCardinality = false) {
|
deba@2051
|
949 |
while (augment(maxCardinality)) {}
|
deba@2051
|
950 |
}
|
deba@2051
|
951 |
|
deba@2051
|
952 |
/// \brief Runs the algorithm.
|
deba@2051
|
953 |
///
|
deba@2051
|
954 |
/// It just initalize the algorithm and then start it.
|
deba@2051
|
955 |
///
|
deba@2051
|
956 |
/// \param maxCardinality If the given value is true it will
|
deba@2051
|
957 |
/// calculate the maximum cardinality maximum matching instead of
|
deba@2051
|
958 |
/// the maximum matching.
|
deba@2051
|
959 |
void run(bool maxCardinality = false) {
|
deba@2051
|
960 |
init();
|
deba@2051
|
961 |
start(maxCardinality);
|
deba@2051
|
962 |
}
|
deba@2051
|
963 |
|
deba@2051
|
964 |
/// @}
|
deba@2051
|
965 |
|
deba@2051
|
966 |
/// \name Query Functions
|
deba@2051
|
967 |
/// The result of the %Matching algorithm can be obtained using these
|
deba@2051
|
968 |
/// functions.\n
|
deba@2051
|
969 |
/// Before the use of these functions,
|
deba@2051
|
970 |
/// either run() or start() must be called.
|
deba@2051
|
971 |
|
deba@2051
|
972 |
///@{
|
deba@2051
|
973 |
|
deba@2051
|
974 |
/// \brief Gives back the potential in the NodeMap
|
deba@2051
|
975 |
///
|
deba@2058
|
976 |
/// Gives back the potential in the NodeMap. The matching is optimal
|
deba@2058
|
977 |
/// with the current number of edges if \f$ \pi(a) + \pi(b) - w(ab) = 0 \f$
|
deba@2058
|
978 |
/// for each matching edges and \f$ \pi(a) + \pi(b) - w(ab) \ge 0 \f$
|
deba@2058
|
979 |
/// for each edges.
|
deba@2051
|
980 |
template <typename PotentialMap>
|
deba@2386
|
981 |
void potential(PotentialMap& pt) const {
|
deba@2051
|
982 |
for (ANodeIt it(*graph); it != INVALID; ++it) {
|
deba@2463
|
983 |
pt.set(it, anode_potential[it]);
|
deba@2051
|
984 |
}
|
deba@2051
|
985 |
for (BNodeIt it(*graph); it != INVALID; ++it) {
|
deba@2463
|
986 |
pt.set(it, bnode_potential[it]);
|
deba@2051
|
987 |
}
|
deba@2051
|
988 |
}
|
deba@2051
|
989 |
|
deba@2051
|
990 |
/// \brief Set true all matching uedge in the map.
|
deba@2051
|
991 |
///
|
deba@2051
|
992 |
/// Set true all matching uedge in the map. It does not change the
|
deba@2051
|
993 |
/// value mapped to the other uedges.
|
deba@2051
|
994 |
/// \return The number of the matching edges.
|
deba@2051
|
995 |
template <typename MatchingMap>
|
deba@2386
|
996 |
int quickMatching(MatchingMap& mm) const {
|
deba@2051
|
997 |
for (ANodeIt it(*graph); it != INVALID; ++it) {
|
deba@2051
|
998 |
if (anode_matching[it] != INVALID) {
|
deba@2463
|
999 |
mm.set(anode_matching[it], true);
|
deba@2051
|
1000 |
}
|
deba@2051
|
1001 |
}
|
deba@2051
|
1002 |
return matching_size;
|
deba@2051
|
1003 |
}
|
deba@2051
|
1004 |
|
deba@2051
|
1005 |
/// \brief Set true all matching uedge in the map and the others to false.
|
deba@2051
|
1006 |
///
|
deba@2051
|
1007 |
/// Set true all matching uedge in the map and the others to false.
|
deba@2051
|
1008 |
/// \return The number of the matching edges.
|
deba@2051
|
1009 |
template <typename MatchingMap>
|
deba@2386
|
1010 |
int matching(MatchingMap& mm) const {
|
deba@2051
|
1011 |
for (UEdgeIt it(*graph); it != INVALID; ++it) {
|
deba@2463
|
1012 |
mm.set(it, it == anode_matching[graph->aNode(it)]);
|
deba@2463
|
1013 |
}
|
deba@2463
|
1014 |
return matching_size;
|
deba@2463
|
1015 |
}
|
deba@2463
|
1016 |
|
deba@2463
|
1017 |
///Gives back the matching in an ANodeMap.
|
deba@2463
|
1018 |
|
deba@2463
|
1019 |
///Gives back the matching in an ANodeMap. The parameter should
|
deba@2463
|
1020 |
///be a write ANodeMap of UEdge values.
|
deba@2463
|
1021 |
///\return The number of the matching edges.
|
deba@2463
|
1022 |
template<class MatchingMap>
|
deba@2463
|
1023 |
int aMatching(MatchingMap& mm) const {
|
deba@2463
|
1024 |
for (ANodeIt it(*graph); it != INVALID; ++it) {
|
deba@2463
|
1025 |
mm.set(it, anode_matching[it]);
|
deba@2463
|
1026 |
}
|
deba@2463
|
1027 |
return matching_size;
|
deba@2463
|
1028 |
}
|
deba@2463
|
1029 |
|
deba@2463
|
1030 |
///Gives back the matching in a BNodeMap.
|
deba@2463
|
1031 |
|
deba@2463
|
1032 |
///Gives back the matching in a BNodeMap. The parameter should
|
deba@2463
|
1033 |
///be a write BNodeMap of UEdge values.
|
deba@2463
|
1034 |
///\return The number of the matching edges.
|
deba@2463
|
1035 |
template<class MatchingMap>
|
deba@2463
|
1036 |
int bMatching(MatchingMap& mm) const {
|
deba@2463
|
1037 |
for (BNodeIt it(*graph); it != INVALID; ++it) {
|
deba@2463
|
1038 |
mm.set(it, bnode_matching[it]);
|
deba@2051
|
1039 |
}
|
deba@2051
|
1040 |
return matching_size;
|
deba@2051
|
1041 |
}
|
deba@2051
|
1042 |
|
deba@2051
|
1043 |
|
deba@2051
|
1044 |
/// \brief Return true if the given uedge is in the matching.
|
deba@2051
|
1045 |
///
|
deba@2051
|
1046 |
/// It returns true if the given uedge is in the matching.
|
deba@2058
|
1047 |
bool matchingEdge(const UEdge& edge) const {
|
deba@2051
|
1048 |
return anode_matching[graph->aNode(edge)] == edge;
|
deba@2051
|
1049 |
}
|
deba@2051
|
1050 |
|
deba@2051
|
1051 |
/// \brief Returns the matching edge from the node.
|
deba@2051
|
1052 |
///
|
deba@2051
|
1053 |
/// Returns the matching edge from the node. If there is not such
|
deba@2051
|
1054 |
/// edge it gives back \c INVALID.
|
deba@2058
|
1055 |
UEdge matchingEdge(const Node& node) const {
|
deba@2051
|
1056 |
if (graph->aNode(node)) {
|
deba@2051
|
1057 |
return anode_matching[node];
|
deba@2051
|
1058 |
} else {
|
deba@2051
|
1059 |
return bnode_matching[node];
|
deba@2051
|
1060 |
}
|
deba@2051
|
1061 |
}
|
deba@2051
|
1062 |
|
deba@2051
|
1063 |
/// \brief Gives back the sum of weights of the matching edges.
|
deba@2051
|
1064 |
///
|
deba@2051
|
1065 |
/// Gives back the sum of weights of the matching edges.
|
deba@2051
|
1066 |
Value matchingValue() const {
|
deba@2051
|
1067 |
return matching_value;
|
deba@2051
|
1068 |
}
|
deba@2051
|
1069 |
|
deba@2051
|
1070 |
/// \brief Gives back the number of the matching edges.
|
deba@2051
|
1071 |
///
|
deba@2051
|
1072 |
/// Gives back the number of the matching edges.
|
deba@2051
|
1073 |
int matchingSize() const {
|
deba@2051
|
1074 |
return matching_size;
|
deba@2051
|
1075 |
}
|
deba@2051
|
1076 |
|
deba@2051
|
1077 |
/// @}
|
deba@2051
|
1078 |
|
deba@2051
|
1079 |
private:
|
deba@2051
|
1080 |
|
deba@2051
|
1081 |
void initStructures() {
|
deba@2051
|
1082 |
if (!_heap_cross_ref) {
|
deba@2051
|
1083 |
local_heap_cross_ref = true;
|
deba@2051
|
1084 |
_heap_cross_ref = Traits::createHeapCrossRef(*graph);
|
deba@2051
|
1085 |
}
|
deba@2051
|
1086 |
if (!_heap) {
|
deba@2051
|
1087 |
local_heap = true;
|
deba@2051
|
1088 |
_heap = Traits::createHeap(*_heap_cross_ref);
|
deba@2051
|
1089 |
}
|
deba@2051
|
1090 |
}
|
deba@2051
|
1091 |
|
deba@2051
|
1092 |
void destroyStructures() {
|
deba@2051
|
1093 |
if (local_heap_cross_ref) delete _heap_cross_ref;
|
deba@2051
|
1094 |
if (local_heap) delete _heap;
|
deba@2051
|
1095 |
}
|
deba@2051
|
1096 |
|
deba@2051
|
1097 |
|
deba@2051
|
1098 |
private:
|
deba@2051
|
1099 |
|
deba@2051
|
1100 |
const BpUGraph *graph;
|
deba@2051
|
1101 |
const WeightMap* weight;
|
deba@2051
|
1102 |
|
deba@2051
|
1103 |
ANodeMatchingMap anode_matching;
|
deba@2051
|
1104 |
BNodeMatchingMap bnode_matching;
|
deba@2051
|
1105 |
|
deba@2051
|
1106 |
ANodePotentialMap anode_potential;
|
deba@2051
|
1107 |
BNodePotentialMap bnode_potential;
|
deba@2051
|
1108 |
|
deba@2051
|
1109 |
Value matching_value;
|
deba@2051
|
1110 |
int matching_size;
|
deba@2051
|
1111 |
|
deba@2051
|
1112 |
HeapCrossRef *_heap_cross_ref;
|
deba@2051
|
1113 |
bool local_heap_cross_ref;
|
deba@2051
|
1114 |
|
deba@2051
|
1115 |
Heap *_heap;
|
deba@2051
|
1116 |
bool local_heap;
|
deba@2051
|
1117 |
|
deba@2051
|
1118 |
};
|
deba@2051
|
1119 |
|
deba@2058
|
1120 |
/// \ingroup matching
|
deba@2058
|
1121 |
///
|
deba@2058
|
1122 |
/// \brief Maximum weighted bipartite matching
|
deba@2058
|
1123 |
///
|
deba@2058
|
1124 |
/// This function calculates the maximum weighted matching
|
deba@2058
|
1125 |
/// in a bipartite graph. It gives back the matching in an undirected
|
deba@2058
|
1126 |
/// edge map.
|
deba@2058
|
1127 |
///
|
deba@2058
|
1128 |
/// \param graph The bipartite graph.
|
deba@2058
|
1129 |
/// \param weight The undirected edge map which contains the weights.
|
deba@2058
|
1130 |
/// \retval matching The undirected edge map which will be set to
|
deba@2058
|
1131 |
/// the matching.
|
deba@2058
|
1132 |
/// \return The value of the matching.
|
deba@2058
|
1133 |
template <typename BpUGraph, typename WeightMap, typename MatchingMap>
|
deba@2058
|
1134 |
typename WeightMap::Value
|
deba@2058
|
1135 |
maxWeightedBipartiteMatching(const BpUGraph& graph, const WeightMap& weight,
|
deba@2058
|
1136 |
MatchingMap& matching) {
|
deba@2058
|
1137 |
MaxWeightedBipartiteMatching<BpUGraph, WeightMap>
|
deba@2058
|
1138 |
bpmatching(graph, weight);
|
deba@2058
|
1139 |
bpmatching.run();
|
deba@2058
|
1140 |
bpmatching.matching(matching);
|
deba@2058
|
1141 |
return bpmatching.matchingValue();
|
deba@2058
|
1142 |
}
|
deba@2058
|
1143 |
|
deba@2058
|
1144 |
/// \ingroup matching
|
deba@2058
|
1145 |
///
|
deba@2058
|
1146 |
/// \brief Maximum weighted maximum cardinality bipartite matching
|
deba@2058
|
1147 |
///
|
deba@2058
|
1148 |
/// This function calculates the maximum weighted of the maximum cardinality
|
deba@2058
|
1149 |
/// matchings of a bipartite graph. It gives back the matching in an
|
deba@2058
|
1150 |
/// undirected edge map.
|
deba@2058
|
1151 |
///
|
deba@2058
|
1152 |
/// \param graph The bipartite graph.
|
deba@2058
|
1153 |
/// \param weight The undirected edge map which contains the weights.
|
deba@2058
|
1154 |
/// \retval matching The undirected edge map which will be set to
|
deba@2058
|
1155 |
/// the matching.
|
deba@2058
|
1156 |
/// \return The value of the matching.
|
deba@2058
|
1157 |
template <typename BpUGraph, typename WeightMap, typename MatchingMap>
|
deba@2058
|
1158 |
typename WeightMap::Value
|
deba@2058
|
1159 |
maxWeightedMaxBipartiteMatching(const BpUGraph& graph,
|
deba@2058
|
1160 |
const WeightMap& weight,
|
deba@2058
|
1161 |
MatchingMap& matching) {
|
deba@2058
|
1162 |
MaxWeightedBipartiteMatching<BpUGraph, WeightMap>
|
deba@2058
|
1163 |
bpmatching(graph, weight);
|
deba@2058
|
1164 |
bpmatching.run(true);
|
deba@2058
|
1165 |
bpmatching.matching(matching);
|
deba@2058
|
1166 |
return bpmatching.matchingValue();
|
deba@2058
|
1167 |
}
|
deba@2058
|
1168 |
|
deba@2051
|
1169 |
/// \brief Default traits class for minimum cost bipartite matching
|
deba@2051
|
1170 |
/// algoritms.
|
deba@2051
|
1171 |
///
|
deba@2051
|
1172 |
/// Default traits class for minimum cost bipartite matching
|
deba@2051
|
1173 |
/// algoritms.
|
deba@2051
|
1174 |
///
|
deba@2051
|
1175 |
/// \param _BpUGraph The bipartite undirected graph
|
deba@2051
|
1176 |
/// type.
|
deba@2051
|
1177 |
///
|
deba@2051
|
1178 |
/// \param _CostMap Type of cost map.
|
deba@2051
|
1179 |
template <typename _BpUGraph, typename _CostMap>
|
deba@2051
|
1180 |
struct MinCostMaxBipartiteMatchingDefaultTraits {
|
deba@2051
|
1181 |
/// \brief The type of the cost of the undirected edges.
|
deba@2051
|
1182 |
typedef typename _CostMap::Value Value;
|
deba@2051
|
1183 |
|
deba@2051
|
1184 |
/// The undirected bipartite graph type the algorithm runs on.
|
deba@2051
|
1185 |
typedef _BpUGraph BpUGraph;
|
deba@2051
|
1186 |
|
deba@2051
|
1187 |
/// The map of the edges costs
|
deba@2051
|
1188 |
typedef _CostMap CostMap;
|
deba@2051
|
1189 |
|
deba@2051
|
1190 |
/// \brief The cross reference type used by heap.
|
deba@2051
|
1191 |
///
|
deba@2051
|
1192 |
/// The cross reference type used by heap.
|
deba@2051
|
1193 |
/// Usually it is \c Graph::NodeMap<int>.
|
deba@2051
|
1194 |
typedef typename BpUGraph::template NodeMap<int> HeapCrossRef;
|
deba@2051
|
1195 |
|
deba@2051
|
1196 |
/// \brief Instantiates a HeapCrossRef.
|
deba@2051
|
1197 |
///
|
deba@2051
|
1198 |
/// This function instantiates a \ref HeapCrossRef.
|
deba@2051
|
1199 |
/// \param graph is the graph, to which we would like to define the
|
deba@2051
|
1200 |
/// HeapCrossRef.
|
deba@2051
|
1201 |
static HeapCrossRef *createHeapCrossRef(const BpUGraph &graph) {
|
deba@2051
|
1202 |
return new HeapCrossRef(graph);
|
deba@2051
|
1203 |
}
|
deba@2051
|
1204 |
|
deba@2051
|
1205 |
/// \brief The heap type used by costed matching algorithms.
|
deba@2051
|
1206 |
///
|
deba@2051
|
1207 |
/// The heap type used by costed matching algorithms. It should
|
deba@2051
|
1208 |
/// minimize the priorities and the heap's key type is the graph's
|
deba@2051
|
1209 |
/// anode graph's node.
|
deba@2051
|
1210 |
///
|
deba@2051
|
1211 |
/// \sa BinHeap
|
deba@2269
|
1212 |
typedef BinHeap<Value, HeapCrossRef> Heap;
|
deba@2051
|
1213 |
|
deba@2051
|
1214 |
/// \brief Instantiates a Heap.
|
deba@2051
|
1215 |
///
|
deba@2051
|
1216 |
/// This function instantiates a \ref Heap.
|
deba@2051
|
1217 |
/// \param crossref The cross reference of the heap.
|
deba@2051
|
1218 |
static Heap *createHeap(HeapCrossRef& crossref) {
|
deba@2051
|
1219 |
return new Heap(crossref);
|
deba@2051
|
1220 |
}
|
deba@2051
|
1221 |
|
deba@2051
|
1222 |
};
|
deba@2051
|
1223 |
|
deba@2051
|
1224 |
|
deba@2051
|
1225 |
/// \ingroup matching
|
deba@2051
|
1226 |
///
|
deba@2051
|
1227 |
/// \brief Bipartite Min Cost Matching algorithm
|
deba@2051
|
1228 |
///
|
deba@2051
|
1229 |
/// This class implements the bipartite Min Cost Matching algorithm.
|
deba@2051
|
1230 |
/// It uses the successive shortest path algorithm to calculate the
|
deba@2051
|
1231 |
/// minimum cost maximum matching in the bipartite graph. The time
|
deba@2051
|
1232 |
/// complexity of the algorithm is \f$ O(ne\log(n)) \f$ with the
|
deba@2051
|
1233 |
/// default binary heap implementation but this can be improved to
|
deba@2051
|
1234 |
/// \f$ O(n^2\log(n)+ne) \f$ if we use fibonacci heaps.
|
deba@2051
|
1235 |
///
|
deba@2051
|
1236 |
/// The algorithm also provides a potential function on the nodes
|
deba@2051
|
1237 |
/// which a dual solution of the matching algorithm and it can be
|
deba@2051
|
1238 |
/// used to proof the optimality of the given pimal solution.
|
deba@2051
|
1239 |
#ifdef DOXYGEN
|
deba@2051
|
1240 |
template <typename _BpUGraph, typename _CostMap, typename _Traits>
|
deba@2051
|
1241 |
#else
|
deba@2051
|
1242 |
template <typename _BpUGraph,
|
deba@2051
|
1243 |
typename _CostMap = typename _BpUGraph::template UEdgeMap<int>,
|
deba@2051
|
1244 |
typename _Traits = MinCostMaxBipartiteMatchingDefaultTraits<_BpUGraph, _CostMap> >
|
deba@2051
|
1245 |
#endif
|
deba@2051
|
1246 |
class MinCostMaxBipartiteMatching {
|
deba@2051
|
1247 |
public:
|
deba@2051
|
1248 |
|
deba@2051
|
1249 |
typedef _Traits Traits;
|
deba@2051
|
1250 |
typedef typename Traits::BpUGraph BpUGraph;
|
deba@2051
|
1251 |
typedef typename Traits::CostMap CostMap;
|
deba@2051
|
1252 |
typedef typename Traits::Value Value;
|
deba@2051
|
1253 |
|
deba@2051
|
1254 |
protected:
|
deba@2051
|
1255 |
|
deba@2051
|
1256 |
typedef typename Traits::HeapCrossRef HeapCrossRef;
|
deba@2051
|
1257 |
typedef typename Traits::Heap Heap;
|
deba@2051
|
1258 |
|
deba@2051
|
1259 |
|
deba@2051
|
1260 |
typedef typename BpUGraph::Node Node;
|
deba@2051
|
1261 |
typedef typename BpUGraph::ANodeIt ANodeIt;
|
deba@2051
|
1262 |
typedef typename BpUGraph::BNodeIt BNodeIt;
|
deba@2051
|
1263 |
typedef typename BpUGraph::UEdge UEdge;
|
deba@2051
|
1264 |
typedef typename BpUGraph::UEdgeIt UEdgeIt;
|
deba@2051
|
1265 |
typedef typename BpUGraph::IncEdgeIt IncEdgeIt;
|
deba@2051
|
1266 |
|
deba@2051
|
1267 |
typedef typename BpUGraph::template ANodeMap<UEdge> ANodeMatchingMap;
|
deba@2051
|
1268 |
typedef typename BpUGraph::template BNodeMap<UEdge> BNodeMatchingMap;
|
deba@2051
|
1269 |
|
deba@2051
|
1270 |
typedef typename BpUGraph::template ANodeMap<Value> ANodePotentialMap;
|
deba@2051
|
1271 |
typedef typename BpUGraph::template BNodeMap<Value> BNodePotentialMap;
|
deba@2051
|
1272 |
|
deba@2051
|
1273 |
|
deba@2051
|
1274 |
public:
|
deba@2051
|
1275 |
|
deba@2051
|
1276 |
/// \brief \ref Exception for uninitialized parameters.
|
deba@2051
|
1277 |
///
|
deba@2051
|
1278 |
/// This error represents problems in the initialization
|
deba@2051
|
1279 |
/// of the parameters of the algorithms.
|
deba@2051
|
1280 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
deba@2051
|
1281 |
public:
|
alpar@2151
|
1282 |
virtual const char* what() const throw() {
|
deba@2051
|
1283 |
return "lemon::MinCostMaxBipartiteMatching::UninitializedParameter";
|
deba@2051
|
1284 |
}
|
deba@2051
|
1285 |
};
|
deba@2051
|
1286 |
|
deba@2051
|
1287 |
///\name Named template parameters
|
deba@2051
|
1288 |
|
deba@2051
|
1289 |
///@{
|
deba@2051
|
1290 |
|
deba@2051
|
1291 |
template <class H, class CR>
|
deba@2051
|
1292 |
struct DefHeapTraits : public Traits {
|
deba@2051
|
1293 |
typedef CR HeapCrossRef;
|
deba@2051
|
1294 |
typedef H Heap;
|
deba@2051
|
1295 |
static HeapCrossRef *createHeapCrossRef(const BpUGraph &) {
|
deba@2051
|
1296 |
throw UninitializedParameter();
|
deba@2051
|
1297 |
}
|
deba@2051
|
1298 |
static Heap *createHeap(HeapCrossRef &) {
|
deba@2051
|
1299 |
throw UninitializedParameter();
|
deba@2051
|
1300 |
}
|
deba@2051
|
1301 |
};
|
deba@2051
|
1302 |
|
deba@2051
|
1303 |
/// \brief \ref named-templ-param "Named parameter" for setting heap
|
deba@2051
|
1304 |
/// and cross reference type
|
deba@2051
|
1305 |
///
|
deba@2051
|
1306 |
/// \ref named-templ-param "Named parameter" for setting heap and cross
|
deba@2051
|
1307 |
/// reference type
|
deba@2051
|
1308 |
template <class H, class CR = typename BpUGraph::template NodeMap<int> >
|
deba@2051
|
1309 |
struct DefHeap
|
deba@2051
|
1310 |
: public MinCostMaxBipartiteMatching<BpUGraph, CostMap,
|
deba@2051
|
1311 |
DefHeapTraits<H, CR> > {
|
deba@2051
|
1312 |
typedef MinCostMaxBipartiteMatching<BpUGraph, CostMap,
|
deba@2051
|
1313 |
DefHeapTraits<H, CR> > Create;
|
deba@2051
|
1314 |
};
|
deba@2051
|
1315 |
|
deba@2051
|
1316 |
template <class H, class CR>
|
deba@2051
|
1317 |
struct DefStandardHeapTraits : public Traits {
|
deba@2051
|
1318 |
typedef CR HeapCrossRef;
|
deba@2051
|
1319 |
typedef H Heap;
|
deba@2051
|
1320 |
static HeapCrossRef *createHeapCrossRef(const BpUGraph &graph) {
|
deba@2051
|
1321 |
return new HeapCrossRef(graph);
|
deba@2051
|
1322 |
}
|
deba@2051
|
1323 |
static Heap *createHeap(HeapCrossRef &crossref) {
|
deba@2051
|
1324 |
return new Heap(crossref);
|
deba@2051
|
1325 |
}
|
deba@2051
|
1326 |
};
|
deba@2051
|
1327 |
|
deba@2051
|
1328 |
/// \brief \ref named-templ-param "Named parameter" for setting heap and
|
deba@2051
|
1329 |
/// cross reference type with automatic allocation
|
deba@2051
|
1330 |
///
|
deba@2051
|
1331 |
/// \ref named-templ-param "Named parameter" for setting heap and cross
|
deba@2051
|
1332 |
/// reference type. It can allocate the heap and the cross reference
|
deba@2051
|
1333 |
/// object if the cross reference's constructor waits for the graph as
|
deba@2051
|
1334 |
/// parameter and the heap's constructor waits for the cross reference.
|
deba@2051
|
1335 |
template <class H, class CR = typename BpUGraph::template NodeMap<int> >
|
deba@2051
|
1336 |
struct DefStandardHeap
|
deba@2051
|
1337 |
: public MinCostMaxBipartiteMatching<BpUGraph, CostMap,
|
deba@2051
|
1338 |
DefStandardHeapTraits<H, CR> > {
|
deba@2051
|
1339 |
typedef MinCostMaxBipartiteMatching<BpUGraph, CostMap,
|
deba@2051
|
1340 |
DefStandardHeapTraits<H, CR> >
|
deba@2051
|
1341 |
Create;
|
deba@2051
|
1342 |
};
|
deba@2051
|
1343 |
|
deba@2051
|
1344 |
///@}
|
deba@2051
|
1345 |
|
deba@2051
|
1346 |
|
deba@2051
|
1347 |
/// \brief Constructor.
|
deba@2051
|
1348 |
///
|
deba@2051
|
1349 |
/// Constructor of the algorithm.
|
deba@2051
|
1350 |
MinCostMaxBipartiteMatching(const BpUGraph& _graph,
|
deba@2051
|
1351 |
const CostMap& _cost)
|
deba@2051
|
1352 |
: graph(&_graph), cost(&_cost),
|
deba@2051
|
1353 |
anode_matching(_graph), bnode_matching(_graph),
|
deba@2051
|
1354 |
anode_potential(_graph), bnode_potential(_graph),
|
deba@2051
|
1355 |
_heap_cross_ref(0), local_heap_cross_ref(false),
|
deba@2051
|
1356 |
_heap(0), local_heap(0) {}
|
deba@2051
|
1357 |
|
deba@2051
|
1358 |
/// \brief Destructor.
|
deba@2051
|
1359 |
///
|
deba@2051
|
1360 |
/// Destructor of the algorithm.
|
deba@2051
|
1361 |
~MinCostMaxBipartiteMatching() {
|
deba@2051
|
1362 |
destroyStructures();
|
deba@2051
|
1363 |
}
|
deba@2051
|
1364 |
|
deba@2051
|
1365 |
/// \brief Sets the heap and the cross reference used by algorithm.
|
deba@2051
|
1366 |
///
|
deba@2051
|
1367 |
/// Sets the heap and the cross reference used by algorithm.
|
deba@2051
|
1368 |
/// If you don't use this function before calling \ref run(),
|
deba@2051
|
1369 |
/// it will allocate one. The destuctor deallocates this
|
deba@2051
|
1370 |
/// automatically allocated map, of course.
|
deba@2051
|
1371 |
/// \return \c (*this)
|
deba@2386
|
1372 |
MinCostMaxBipartiteMatching& heap(Heap& hp, HeapCrossRef &cr) {
|
deba@2051
|
1373 |
if(local_heap_cross_ref) {
|
deba@2051
|
1374 |
delete _heap_cross_ref;
|
deba@2051
|
1375 |
local_heap_cross_ref = false;
|
deba@2051
|
1376 |
}
|
deba@2386
|
1377 |
_heap_cross_ref = &cr;
|
deba@2051
|
1378 |
if(local_heap) {
|
deba@2051
|
1379 |
delete _heap;
|
deba@2051
|
1380 |
local_heap = false;
|
deba@2051
|
1381 |
}
|
deba@2386
|
1382 |
_heap = &hp;
|
deba@2051
|
1383 |
return *this;
|
deba@2051
|
1384 |
}
|
deba@2051
|
1385 |
|
deba@2051
|
1386 |
/// \name Execution control
|
deba@2051
|
1387 |
/// The simplest way to execute the algorithm is to use
|
deba@2051
|
1388 |
/// one of the member functions called \c run().
|
deba@2051
|
1389 |
/// \n
|
deba@2051
|
1390 |
/// If you need more control on the execution,
|
deba@2051
|
1391 |
/// first you must call \ref init() or one alternative for it.
|
deba@2051
|
1392 |
/// Finally \ref start() will perform the matching computation or
|
deba@2051
|
1393 |
/// with step-by-step execution you can augment the solution.
|
deba@2051
|
1394 |
|
deba@2051
|
1395 |
/// @{
|
deba@2051
|
1396 |
|
deba@2051
|
1397 |
/// \brief Initalize the data structures.
|
deba@2051
|
1398 |
///
|
deba@2051
|
1399 |
/// It initalizes the data structures and creates an empty matching.
|
deba@2051
|
1400 |
void init() {
|
deba@2051
|
1401 |
initStructures();
|
deba@2051
|
1402 |
for (ANodeIt it(*graph); it != INVALID; ++it) {
|
deba@2051
|
1403 |
anode_matching[it] = INVALID;
|
deba@2051
|
1404 |
anode_potential[it] = 0;
|
deba@2051
|
1405 |
}
|
deba@2051
|
1406 |
for (BNodeIt it(*graph); it != INVALID; ++it) {
|
deba@2051
|
1407 |
bnode_matching[it] = INVALID;
|
deba@2051
|
1408 |
bnode_potential[it] = 0;
|
deba@2051
|
1409 |
}
|
deba@2051
|
1410 |
matching_cost = 0;
|
deba@2051
|
1411 |
matching_size = 0;
|
deba@2051
|
1412 |
}
|
deba@2051
|
1413 |
|
deba@2051
|
1414 |
|
deba@2051
|
1415 |
/// \brief An augmenting phase of the costed matching algorithm
|
deba@2051
|
1416 |
///
|
deba@2051
|
1417 |
/// It runs an augmenting phase of the matching algorithm. The
|
deba@2051
|
1418 |
/// phase finds the best augmenting path and augments only on this
|
deba@2051
|
1419 |
/// paths.
|
deba@2051
|
1420 |
///
|
deba@2051
|
1421 |
/// The algorithm consists at most
|
deba@2051
|
1422 |
/// of \f$ O(n) \f$ phase and one phase is \f$ O(n\log(n)+e) \f$
|
deba@2051
|
1423 |
/// long with Fibonacci heap or \f$ O((n+e)\log(n)) \f$ long
|
deba@2051
|
1424 |
/// with binary heap.
|
deba@2051
|
1425 |
bool augment() {
|
deba@2051
|
1426 |
|
deba@2051
|
1427 |
typename BpUGraph::template BNodeMap<Value> bdist(*graph);
|
deba@2051
|
1428 |
typename BpUGraph::template BNodeMap<UEdge> bpred(*graph, INVALID);
|
deba@2051
|
1429 |
|
deba@2051
|
1430 |
Node bestNode = INVALID;
|
deba@2051
|
1431 |
Value bestValue = 0;
|
deba@2051
|
1432 |
|
deba@2051
|
1433 |
_heap->clear();
|
deba@2051
|
1434 |
for (ANodeIt it(*graph); it != INVALID; ++it) {
|
deba@2051
|
1435 |
(*_heap_cross_ref)[it] = Heap::PRE_HEAP;
|
deba@2051
|
1436 |
}
|
deba@2051
|
1437 |
|
deba@2051
|
1438 |
for (ANodeIt it(*graph); it != INVALID; ++it) {
|
deba@2051
|
1439 |
if (anode_matching[it] == INVALID) {
|
deba@2051
|
1440 |
_heap->push(it, 0);
|
deba@2051
|
1441 |
}
|
deba@2051
|
1442 |
}
|
deba@2136
|
1443 |
Value bdistMax = 0;
|
deba@2051
|
1444 |
|
deba@2051
|
1445 |
while (!_heap->empty()) {
|
deba@2051
|
1446 |
Node anode = _heap->top();
|
deba@2051
|
1447 |
Value avalue = _heap->prio();
|
deba@2051
|
1448 |
_heap->pop();
|
deba@2051
|
1449 |
for (IncEdgeIt jt(*graph, anode); jt != INVALID; ++jt) {
|
deba@2051
|
1450 |
if (jt == anode_matching[anode]) continue;
|
deba@2051
|
1451 |
Node bnode = graph->bNode(jt);
|
deba@2051
|
1452 |
Value bvalue = avalue + (*cost)[jt] +
|
deba@2051
|
1453 |
anode_potential[anode] - bnode_potential[bnode];
|
deba@2051
|
1454 |
if (bpred[bnode] == INVALID || bvalue < bdist[bnode]) {
|
deba@2051
|
1455 |
bdist[bnode] = bvalue;
|
deba@2051
|
1456 |
bpred[bnode] = jt;
|
deba@2051
|
1457 |
}
|
deba@2136
|
1458 |
if (bvalue > bdistMax) {
|
deba@2136
|
1459 |
bdistMax = bvalue;
|
deba@2136
|
1460 |
}
|
deba@2051
|
1461 |
if (bnode_matching[bnode] != INVALID) {
|
deba@2051
|
1462 |
Node newanode = graph->aNode(bnode_matching[bnode]);
|
deba@2051
|
1463 |
switch (_heap->state(newanode)) {
|
deba@2051
|
1464 |
case Heap::PRE_HEAP:
|
deba@2051
|
1465 |
_heap->push(newanode, bvalue);
|
deba@2051
|
1466 |
break;
|
deba@2051
|
1467 |
case Heap::IN_HEAP:
|
deba@2051
|
1468 |
if (bvalue < (*_heap)[newanode]) {
|
deba@2051
|
1469 |
_heap->decrease(newanode, bvalue);
|
deba@2051
|
1470 |
}
|
deba@2051
|
1471 |
break;
|
deba@2051
|
1472 |
case Heap::POST_HEAP:
|
deba@2051
|
1473 |
break;
|
deba@2051
|
1474 |
}
|
deba@2051
|
1475 |
} else {
|
deba@2051
|
1476 |
if (bestNode == INVALID ||
|
deba@2051
|
1477 |
bvalue + bnode_potential[bnode] < bestValue) {
|
deba@2051
|
1478 |
bestValue = bvalue + bnode_potential[bnode];
|
deba@2051
|
1479 |
bestNode = bnode;
|
deba@2051
|
1480 |
}
|
deba@2051
|
1481 |
}
|
deba@2051
|
1482 |
}
|
deba@2051
|
1483 |
}
|
deba@2051
|
1484 |
|
deba@2051
|
1485 |
if (bestNode == INVALID) {
|
deba@2051
|
1486 |
return false;
|
deba@2051
|
1487 |
}
|
deba@2051
|
1488 |
|
deba@2051
|
1489 |
matching_cost += bestValue;
|
deba@2051
|
1490 |
++matching_size;
|
deba@2051
|
1491 |
|
deba@2051
|
1492 |
for (BNodeIt it(*graph); it != INVALID; ++it) {
|
deba@2051
|
1493 |
if (bpred[it] != INVALID) {
|
deba@2051
|
1494 |
bnode_potential[it] += bdist[it];
|
deba@2136
|
1495 |
} else {
|
deba@2136
|
1496 |
bnode_potential[it] += bdistMax;
|
deba@2051
|
1497 |
}
|
deba@2051
|
1498 |
}
|
deba@2051
|
1499 |
for (ANodeIt it(*graph); it != INVALID; ++it) {
|
deba@2051
|
1500 |
if (anode_matching[it] != INVALID) {
|
deba@2051
|
1501 |
Node bnode = graph->bNode(anode_matching[it]);
|
deba@2051
|
1502 |
if (bpred[bnode] != INVALID) {
|
deba@2051
|
1503 |
anode_potential[it] += bdist[bnode];
|
deba@2136
|
1504 |
} else {
|
deba@2136
|
1505 |
anode_potential[it] += bdistMax;
|
deba@2051
|
1506 |
}
|
deba@2051
|
1507 |
}
|
deba@2051
|
1508 |
}
|
deba@2051
|
1509 |
|
deba@2051
|
1510 |
while (bestNode != INVALID) {
|
deba@2051
|
1511 |
UEdge uedge = bpred[bestNode];
|
deba@2051
|
1512 |
Node anode = graph->aNode(uedge);
|
deba@2051
|
1513 |
|
deba@2051
|
1514 |
bnode_matching[bestNode] = uedge;
|
deba@2051
|
1515 |
if (anode_matching[anode] != INVALID) {
|
deba@2051
|
1516 |
bestNode = graph->bNode(anode_matching[anode]);
|
deba@2051
|
1517 |
} else {
|
deba@2051
|
1518 |
bestNode = INVALID;
|
deba@2051
|
1519 |
}
|
deba@2051
|
1520 |
anode_matching[anode] = uedge;
|
deba@2051
|
1521 |
}
|
deba@2051
|
1522 |
|
deba@2051
|
1523 |
|
deba@2051
|
1524 |
return true;
|
deba@2051
|
1525 |
}
|
deba@2051
|
1526 |
|
deba@2051
|
1527 |
/// \brief Starts the algorithm.
|
deba@2051
|
1528 |
///
|
deba@2051
|
1529 |
/// Starts the algorithm. It runs augmenting phases until the
|
deba@2051
|
1530 |
/// optimal solution reached.
|
deba@2051
|
1531 |
void start() {
|
deba@2051
|
1532 |
while (augment()) {}
|
deba@2051
|
1533 |
}
|
deba@2051
|
1534 |
|
deba@2051
|
1535 |
/// \brief Runs the algorithm.
|
deba@2051
|
1536 |
///
|
deba@2051
|
1537 |
/// It just initalize the algorithm and then start it.
|
deba@2051
|
1538 |
void run() {
|
deba@2051
|
1539 |
init();
|
deba@2051
|
1540 |
start();
|
deba@2051
|
1541 |
}
|
deba@2051
|
1542 |
|
deba@2051
|
1543 |
/// @}
|
deba@2051
|
1544 |
|
deba@2051
|
1545 |
/// \name Query Functions
|
deba@2051
|
1546 |
/// The result of the %Matching algorithm can be obtained using these
|
deba@2051
|
1547 |
/// functions.\n
|
deba@2051
|
1548 |
/// Before the use of these functions,
|
deba@2051
|
1549 |
/// either run() or start() must be called.
|
deba@2051
|
1550 |
|
deba@2051
|
1551 |
///@{
|
deba@2051
|
1552 |
|
deba@2051
|
1553 |
/// \brief Gives back the potential in the NodeMap
|
deba@2051
|
1554 |
///
|
deba@2463
|
1555 |
/// Gives back the potential in the NodeMap. The matching is optimal
|
deba@2463
|
1556 |
/// with the current number of edges if \f$ \pi(a) + \pi(b) - w(ab) = 0 \f$
|
deba@2463
|
1557 |
/// for each matching edges and \f$ \pi(a) + \pi(b) - w(ab) \ge 0 \f$
|
deba@2463
|
1558 |
/// for each edges.
|
deba@2051
|
1559 |
template <typename PotentialMap>
|
deba@2386
|
1560 |
void potential(PotentialMap& pt) const {
|
deba@2051
|
1561 |
for (ANodeIt it(*graph); it != INVALID; ++it) {
|
deba@2463
|
1562 |
pt.set(it, anode_potential[it]);
|
deba@2051
|
1563 |
}
|
deba@2051
|
1564 |
for (BNodeIt it(*graph); it != INVALID; ++it) {
|
deba@2463
|
1565 |
pt.set(it, bnode_potential[it]);
|
deba@2051
|
1566 |
}
|
deba@2051
|
1567 |
}
|
deba@2051
|
1568 |
|
deba@2051
|
1569 |
/// \brief Set true all matching uedge in the map.
|
deba@2051
|
1570 |
///
|
deba@2051
|
1571 |
/// Set true all matching uedge in the map. It does not change the
|
deba@2051
|
1572 |
/// value mapped to the other uedges.
|
deba@2051
|
1573 |
/// \return The number of the matching edges.
|
deba@2051
|
1574 |
template <typename MatchingMap>
|
deba@2386
|
1575 |
int quickMatching(MatchingMap& mm) const {
|
deba@2051
|
1576 |
for (ANodeIt it(*graph); it != INVALID; ++it) {
|
deba@2051
|
1577 |
if (anode_matching[it] != INVALID) {
|
deba@2463
|
1578 |
mm.set(anode_matching[it], true);
|
deba@2051
|
1579 |
}
|
deba@2051
|
1580 |
}
|
deba@2051
|
1581 |
return matching_size;
|
deba@2051
|
1582 |
}
|
deba@2051
|
1583 |
|
deba@2051
|
1584 |
/// \brief Set true all matching uedge in the map and the others to false.
|
deba@2051
|
1585 |
///
|
deba@2051
|
1586 |
/// Set true all matching uedge in the map and the others to false.
|
deba@2051
|
1587 |
/// \return The number of the matching edges.
|
deba@2051
|
1588 |
template <typename MatchingMap>
|
deba@2386
|
1589 |
int matching(MatchingMap& mm) const {
|
deba@2051
|
1590 |
for (UEdgeIt it(*graph); it != INVALID; ++it) {
|
deba@2463
|
1591 |
mm.set(it, it == anode_matching[graph->aNode(it)]);
|
deba@2051
|
1592 |
}
|
deba@2051
|
1593 |
return matching_size;
|
deba@2051
|
1594 |
}
|
deba@2051
|
1595 |
|
deba@2463
|
1596 |
/// \brief Gives back the matching in an ANodeMap.
|
deba@2463
|
1597 |
///
|
deba@2463
|
1598 |
/// Gives back the matching in an ANodeMap. The parameter should
|
deba@2463
|
1599 |
/// be a write ANodeMap of UEdge values.
|
deba@2463
|
1600 |
/// \return The number of the matching edges.
|
deba@2463
|
1601 |
template<class MatchingMap>
|
deba@2463
|
1602 |
int aMatching(MatchingMap& mm) const {
|
deba@2463
|
1603 |
for (ANodeIt it(*graph); it != INVALID; ++it) {
|
deba@2463
|
1604 |
mm.set(it, anode_matching[it]);
|
deba@2463
|
1605 |
}
|
deba@2463
|
1606 |
return matching_size;
|
deba@2463
|
1607 |
}
|
deba@2463
|
1608 |
|
deba@2463
|
1609 |
/// \brief Gives back the matching in a BNodeMap.
|
deba@2463
|
1610 |
///
|
deba@2463
|
1611 |
/// Gives back the matching in a BNodeMap. The parameter should
|
deba@2463
|
1612 |
/// be a write BNodeMap of UEdge values.
|
deba@2463
|
1613 |
/// \return The number of the matching edges.
|
deba@2463
|
1614 |
template<class MatchingMap>
|
deba@2463
|
1615 |
int bMatching(MatchingMap& mm) const {
|
deba@2463
|
1616 |
for (BNodeIt it(*graph); it != INVALID; ++it) {
|
deba@2463
|
1617 |
mm.set(it, bnode_matching[it]);
|
deba@2463
|
1618 |
}
|
deba@2463
|
1619 |
return matching_size;
|
deba@2463
|
1620 |
}
|
deba@2051
|
1621 |
|
deba@2051
|
1622 |
/// \brief Return true if the given uedge is in the matching.
|
deba@2051
|
1623 |
///
|
deba@2051
|
1624 |
/// It returns true if the given uedge is in the matching.
|
deba@2058
|
1625 |
bool matchingEdge(const UEdge& edge) const {
|
deba@2051
|
1626 |
return anode_matching[graph->aNode(edge)] == edge;
|
deba@2051
|
1627 |
}
|
deba@2051
|
1628 |
|
deba@2051
|
1629 |
/// \brief Returns the matching edge from the node.
|
deba@2051
|
1630 |
///
|
deba@2051
|
1631 |
/// Returns the matching edge from the node. If there is not such
|
deba@2051
|
1632 |
/// edge it gives back \c INVALID.
|
deba@2058
|
1633 |
UEdge matchingEdge(const Node& node) const {
|
deba@2051
|
1634 |
if (graph->aNode(node)) {
|
deba@2051
|
1635 |
return anode_matching[node];
|
deba@2051
|
1636 |
} else {
|
deba@2051
|
1637 |
return bnode_matching[node];
|
deba@2051
|
1638 |
}
|
deba@2051
|
1639 |
}
|
deba@2051
|
1640 |
|
deba@2051
|
1641 |
/// \brief Gives back the sum of costs of the matching edges.
|
deba@2051
|
1642 |
///
|
deba@2051
|
1643 |
/// Gives back the sum of costs of the matching edges.
|
deba@2051
|
1644 |
Value matchingCost() const {
|
deba@2051
|
1645 |
return matching_cost;
|
deba@2051
|
1646 |
}
|
deba@2051
|
1647 |
|
deba@2051
|
1648 |
/// \brief Gives back the number of the matching edges.
|
deba@2051
|
1649 |
///
|
deba@2051
|
1650 |
/// Gives back the number of the matching edges.
|
deba@2051
|
1651 |
int matchingSize() const {
|
deba@2051
|
1652 |
return matching_size;
|
deba@2051
|
1653 |
}
|
deba@2051
|
1654 |
|
deba@2051
|
1655 |
/// @}
|
deba@2051
|
1656 |
|
deba@2051
|
1657 |
private:
|
deba@2051
|
1658 |
|
deba@2051
|
1659 |
void initStructures() {
|
deba@2051
|
1660 |
if (!_heap_cross_ref) {
|
deba@2051
|
1661 |
local_heap_cross_ref = true;
|
deba@2051
|
1662 |
_heap_cross_ref = Traits::createHeapCrossRef(*graph);
|
deba@2051
|
1663 |
}
|
deba@2051
|
1664 |
if (!_heap) {
|
deba@2051
|
1665 |
local_heap = true;
|
deba@2051
|
1666 |
_heap = Traits::createHeap(*_heap_cross_ref);
|
deba@2051
|
1667 |
}
|
deba@2051
|
1668 |
}
|
deba@2051
|
1669 |
|
deba@2051
|
1670 |
void destroyStructures() {
|
deba@2051
|
1671 |
if (local_heap_cross_ref) delete _heap_cross_ref;
|
deba@2051
|
1672 |
if (local_heap) delete _heap;
|
deba@2051
|
1673 |
}
|
deba@2051
|
1674 |
|
deba@2051
|
1675 |
|
deba@2051
|
1676 |
private:
|
deba@2051
|
1677 |
|
deba@2051
|
1678 |
const BpUGraph *graph;
|
deba@2051
|
1679 |
const CostMap* cost;
|
deba@2051
|
1680 |
|
deba@2051
|
1681 |
ANodeMatchingMap anode_matching;
|
deba@2051
|
1682 |
BNodeMatchingMap bnode_matching;
|
deba@2051
|
1683 |
|
deba@2051
|
1684 |
ANodePotentialMap anode_potential;
|
deba@2051
|
1685 |
BNodePotentialMap bnode_potential;
|
deba@2051
|
1686 |
|
deba@2051
|
1687 |
Value matching_cost;
|
deba@2051
|
1688 |
int matching_size;
|
deba@2051
|
1689 |
|
deba@2051
|
1690 |
HeapCrossRef *_heap_cross_ref;
|
deba@2051
|
1691 |
bool local_heap_cross_ref;
|
deba@2051
|
1692 |
|
deba@2051
|
1693 |
Heap *_heap;
|
deba@2051
|
1694 |
bool local_heap;
|
deba@2040
|
1695 |
|
deba@2040
|
1696 |
};
|
deba@2040
|
1697 |
|
deba@2058
|
1698 |
/// \ingroup matching
|
deba@2058
|
1699 |
///
|
deba@2058
|
1700 |
/// \brief Minimum cost maximum cardinality bipartite matching
|
deba@2058
|
1701 |
///
|
deba@2463
|
1702 |
/// This function calculates the maximum cardinality matching with
|
deba@2463
|
1703 |
/// minimum cost of a bipartite graph. It gives back the matching in
|
deba@2463
|
1704 |
/// an undirected edge map.
|
deba@2058
|
1705 |
///
|
deba@2058
|
1706 |
/// \param graph The bipartite graph.
|
deba@2058
|
1707 |
/// \param cost The undirected edge map which contains the costs.
|
deba@2058
|
1708 |
/// \retval matching The undirected edge map which will be set to
|
deba@2058
|
1709 |
/// the matching.
|
deba@2058
|
1710 |
/// \return The cost of the matching.
|
deba@2058
|
1711 |
template <typename BpUGraph, typename CostMap, typename MatchingMap>
|
deba@2058
|
1712 |
typename CostMap::Value
|
deba@2058
|
1713 |
minCostMaxBipartiteMatching(const BpUGraph& graph,
|
deba@2058
|
1714 |
const CostMap& cost,
|
deba@2058
|
1715 |
MatchingMap& matching) {
|
deba@2058
|
1716 |
MinCostMaxBipartiteMatching<BpUGraph, CostMap>
|
deba@2058
|
1717 |
bpmatching(graph, cost);
|
deba@2058
|
1718 |
bpmatching.run();
|
deba@2058
|
1719 |
bpmatching.matching(matching);
|
deba@2058
|
1720 |
return bpmatching.matchingCost();
|
deba@2058
|
1721 |
}
|
deba@2058
|
1722 |
|
deba@2040
|
1723 |
}
|
deba@2040
|
1724 |
|
deba@2040
|
1725 |
#endif
|