alpar@2353
|
1 |
/* -*- C++ -*-
|
alpar@2353
|
2 |
*
|
alpar@2391
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
alpar@2391
|
4 |
*
|
alpar@2553
|
5 |
* Copyright (C) 2003-2008
|
alpar@2391
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@2353
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@2353
|
8 |
*
|
alpar@2353
|
9 |
* Permission to use, modify and distribute this software is granted
|
alpar@2353
|
10 |
* provided that this copyright notice appears in all copies. For
|
alpar@2353
|
11 |
* precise terms see the accompanying LICENSE file.
|
alpar@2353
|
12 |
*
|
alpar@2353
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@2353
|
14 |
* express or implied, and with no claim as to its suitability for any
|
alpar@2353
|
15 |
* purpose.
|
alpar@2353
|
16 |
*
|
alpar@2353
|
17 |
*/
|
alpar@2353
|
18 |
|
deba@2462
|
19 |
#ifndef LEMON_PR_BIPARTITE_MATCHING
|
deba@2462
|
20 |
#define LEMON_PR_BIPARTITE_MATCHING
|
alpar@2353
|
21 |
|
alpar@2353
|
22 |
#include <lemon/graph_utils.h>
|
alpar@2353
|
23 |
#include <lemon/iterable_maps.h>
|
alpar@2353
|
24 |
#include <iostream>
|
alpar@2353
|
25 |
#include <queue>
|
alpar@2353
|
26 |
#include <lemon/elevator.h>
|
alpar@2353
|
27 |
|
alpar@2353
|
28 |
///\ingroup matching
|
alpar@2353
|
29 |
///\file
|
alpar@2353
|
30 |
///\brief Push-prelabel maximum matching algorithms in bipartite graphs.
|
alpar@2353
|
31 |
///
|
alpar@2353
|
32 |
namespace lemon {
|
alpar@2353
|
33 |
|
deba@2462
|
34 |
///Max cardinality matching algorithm based on push-relabel principle
|
alpar@2353
|
35 |
|
deba@2462
|
36 |
///\ingroup matching
|
deba@2462
|
37 |
///Bipartite Max Cardinality Matching algorithm. This class uses the
|
deba@2462
|
38 |
///push-relabel principle which in several cases has better runtime
|
deba@2462
|
39 |
///performance than the augmenting path solutions.
|
deba@2462
|
40 |
///
|
deba@2462
|
41 |
///\author Alpar Juttner
|
deba@2462
|
42 |
template<class Graph>
|
deba@2462
|
43 |
class PrBipartiteMatching {
|
alpar@2353
|
44 |
typedef typename Graph::Node Node;
|
alpar@2353
|
45 |
typedef typename Graph::ANodeIt ANodeIt;
|
alpar@2353
|
46 |
typedef typename Graph::BNodeIt BNodeIt;
|
alpar@2353
|
47 |
typedef typename Graph::UEdge UEdge;
|
deba@2462
|
48 |
typedef typename Graph::UEdgeIt UEdgeIt;
|
alpar@2353
|
49 |
typedef typename Graph::IncEdgeIt IncEdgeIt;
|
alpar@2353
|
50 |
|
alpar@2353
|
51 |
const Graph &_g;
|
alpar@2353
|
52 |
int _node_num;
|
deba@2462
|
53 |
int _matching_size;
|
deba@2462
|
54 |
int _empty_level;
|
deba@2462
|
55 |
|
deba@2462
|
56 |
typename Graph::template ANodeMap<typename Graph::UEdge> _matching;
|
alpar@2353
|
57 |
Elevator<Graph,typename Graph::BNode> _levels;
|
alpar@2353
|
58 |
typename Graph::template BNodeMap<int> _cov;
|
alpar@2353
|
59 |
|
alpar@2353
|
60 |
public:
|
deba@2462
|
61 |
|
deba@2466
|
62 |
/// Constructor
|
deba@2466
|
63 |
|
deba@2466
|
64 |
/// Constructor
|
deba@2466
|
65 |
///
|
deba@2462
|
66 |
PrBipartiteMatching(const Graph &g) :
|
alpar@2353
|
67 |
_g(g),
|
alpar@2353
|
68 |
_node_num(countBNodes(g)),
|
deba@2462
|
69 |
_matching(g),
|
alpar@2353
|
70 |
_levels(g,_node_num),
|
alpar@2353
|
71 |
_cov(g,0)
|
alpar@2353
|
72 |
{
|
alpar@2353
|
73 |
}
|
alpar@2353
|
74 |
|
deba@2462
|
75 |
/// \name Execution control
|
deba@2462
|
76 |
/// The simplest way to execute the algorithm is to use one of the
|
deba@2462
|
77 |
/// member functions called \c run(). \n
|
deba@2462
|
78 |
/// If you need more control on the execution, first
|
deba@2462
|
79 |
/// you must call \ref init() and then one variant of the start()
|
deba@2462
|
80 |
/// member.
|
deba@2462
|
81 |
|
deba@2462
|
82 |
/// @{
|
deba@2462
|
83 |
|
deba@2462
|
84 |
///Initialize the data structures
|
deba@2462
|
85 |
|
deba@2462
|
86 |
///This function constructs a prematching first, which is a
|
deba@2462
|
87 |
///regular matching on the A-side of the graph, but on the B-side
|
deba@2462
|
88 |
///each node could cover more matching edges. After that, the
|
deba@2462
|
89 |
///B-nodes which multiple matched, will be pushed into the lowest
|
deba@2462
|
90 |
///level of the Elevator. The remaning B-nodes will be pushed to
|
deba@2462
|
91 |
///the consequent levels respect to a Bfs on following graph: the
|
deba@2462
|
92 |
///nodes are the B-nodes of the original bipartite graph and two
|
deba@2462
|
93 |
///nodes are adjacent if a node can pass over a matching edge to
|
deba@2462
|
94 |
///an other node. The source of the Bfs are the lowest level
|
deba@2462
|
95 |
///nodes. Last, the reached B-nodes without covered matching edge
|
deba@2462
|
96 |
///becomes active.
|
deba@2462
|
97 |
void init() {
|
deba@2462
|
98 |
_matching_size=0;
|
deba@2462
|
99 |
_empty_level=_node_num;
|
alpar@2353
|
100 |
for(ANodeIt n(_g);n!=INVALID;++n)
|
alpar@2353
|
101 |
if((_matching[n]=IncEdgeIt(_g,n))!=INVALID)
|
deba@2462
|
102 |
++_cov[_g.bNode(_matching[n])];
|
alpar@2353
|
103 |
|
alpar@2353
|
104 |
std::queue<Node> q;
|
alpar@2353
|
105 |
_levels.initStart();
|
alpar@2353
|
106 |
for(BNodeIt n(_g);n!=INVALID;++n)
|
alpar@2353
|
107 |
if(_cov[n]>1) {
|
alpar@2353
|
108 |
_levels.initAddItem(n);
|
alpar@2353
|
109 |
q.push(n);
|
alpar@2353
|
110 |
}
|
alpar@2353
|
111 |
int hlev=0;
|
alpar@2353
|
112 |
while(!q.empty()) {
|
alpar@2353
|
113 |
Node n=q.front();
|
alpar@2353
|
114 |
q.pop();
|
alpar@2353
|
115 |
int nlev=_levels[n]+1;
|
alpar@2353
|
116 |
for(IncEdgeIt e(_g,n);e!=INVALID;++e) {
|
alpar@2353
|
117 |
Node m=_g.runningNode(e);
|
alpar@2353
|
118 |
if(e==_matching[m]) {
|
alpar@2353
|
119 |
for(IncEdgeIt f(_g,m);f!=INVALID;++f) {
|
alpar@2353
|
120 |
Node r=_g.runningNode(f);
|
alpar@2353
|
121 |
if(_levels[r]>nlev) {
|
alpar@2353
|
122 |
for(;nlev>hlev;hlev++)
|
alpar@2353
|
123 |
_levels.initNewLevel();
|
alpar@2353
|
124 |
_levels.initAddItem(r);
|
alpar@2353
|
125 |
q.push(r);
|
alpar@2353
|
126 |
}
|
alpar@2353
|
127 |
}
|
alpar@2353
|
128 |
}
|
alpar@2353
|
129 |
}
|
alpar@2353
|
130 |
}
|
alpar@2353
|
131 |
_levels.initFinish();
|
alpar@2353
|
132 |
for(BNodeIt n(_g);n!=INVALID;++n)
|
alpar@2353
|
133 |
if(_cov[n]<1&&_levels[n]<_node_num)
|
alpar@2353
|
134 |
_levels.activate(n);
|
alpar@2353
|
135 |
}
|
alpar@2353
|
136 |
|
deba@2462
|
137 |
///Start the main phase of the algorithm
|
alpar@2353
|
138 |
|
deba@2462
|
139 |
///This algorithm calculates the maximum matching with the
|
deba@2462
|
140 |
///push-relabel principle. This function should be called just
|
deba@2462
|
141 |
///after the init() function which already set the initial
|
deba@2462
|
142 |
///prematching, the level function on the B-nodes and the active,
|
deba@2462
|
143 |
///ie. unmatched B-nodes.
|
deba@2462
|
144 |
///
|
deba@2462
|
145 |
///The algorithm always takes highest active B-node, and it try to
|
deba@2462
|
146 |
///find a B-node which is eligible to pass over one of it's
|
deba@2462
|
147 |
///matching edge. This condition holds when the B-node is one
|
deba@2462
|
148 |
///level lower, and the opposite node of it's matching edge is
|
deba@2462
|
149 |
///adjacent to the highest active node. In this case the current
|
deba@2462
|
150 |
///node steals the matching edge and becomes inactive. If there is
|
deba@2462
|
151 |
///not eligible node then the highest active node should be lift
|
deba@2462
|
152 |
///to the next proper level.
|
deba@2462
|
153 |
///
|
deba@2462
|
154 |
///The nodes should not lift higher than the number of the
|
deba@2462
|
155 |
///B-nodes, if a node reach this level it remains unmatched. If
|
deba@2462
|
156 |
///during the execution one level becomes empty the nodes above it
|
deba@2462
|
157 |
///can be deactivated and lift to the highest level.
|
deba@2462
|
158 |
void start() {
|
alpar@2353
|
159 |
Node act;
|
alpar@2353
|
160 |
Node bact=INVALID;
|
alpar@2353
|
161 |
Node last_activated=INVALID;
|
alpar@2353
|
162 |
while((act=_levels.highestActive())!=INVALID) {
|
alpar@2353
|
163 |
last_activated=INVALID;
|
alpar@2353
|
164 |
int actlevel=_levels[act];
|
alpar@2353
|
165 |
|
alpar@2353
|
166 |
UEdge bedge=INVALID;
|
alpar@2353
|
167 |
int nlevel=_node_num;
|
alpar@2353
|
168 |
{
|
alpar@2353
|
169 |
int nnlevel;
|
alpar@2353
|
170 |
for(IncEdgeIt tbedge(_g,act);
|
alpar@2353
|
171 |
tbedge!=INVALID && nlevel>=actlevel;
|
alpar@2353
|
172 |
++tbedge)
|
alpar@2353
|
173 |
if((nnlevel=_levels[_g.bNode(_matching[_g.runningNode(tbedge)])])<
|
alpar@2353
|
174 |
nlevel)
|
alpar@2353
|
175 |
{
|
alpar@2353
|
176 |
nlevel=nnlevel;
|
alpar@2353
|
177 |
bedge=tbedge;
|
alpar@2353
|
178 |
}
|
alpar@2353
|
179 |
}
|
alpar@2353
|
180 |
if(nlevel<_node_num) {
|
alpar@2353
|
181 |
if(nlevel>=actlevel)
|
deba@2512
|
182 |
_levels.liftHighestActive(nlevel+1);
|
alpar@2353
|
183 |
bact=_g.bNode(_matching[_g.aNode(bedge)]);
|
alpar@2353
|
184 |
if(--_cov[bact]<1) {
|
alpar@2353
|
185 |
_levels.activate(bact);
|
alpar@2353
|
186 |
last_activated=bact;
|
alpar@2353
|
187 |
}
|
alpar@2353
|
188 |
_matching[_g.aNode(bedge)]=bedge;
|
alpar@2353
|
189 |
_cov[act]=1;
|
alpar@2353
|
190 |
_levels.deactivate(act);
|
alpar@2353
|
191 |
}
|
alpar@2353
|
192 |
else {
|
deba@2512
|
193 |
_levels.liftHighestActiveToTop();
|
alpar@2353
|
194 |
}
|
alpar@2353
|
195 |
|
deba@2512
|
196 |
if(_levels.emptyLevel(actlevel))
|
deba@2462
|
197 |
_levels.liftToTop(actlevel);
|
alpar@2353
|
198 |
}
|
deba@2462
|
199 |
|
deba@2466
|
200 |
for(ANodeIt n(_g);n!=INVALID;++n) {
|
deba@2466
|
201 |
if (_matching[n]==INVALID)continue;
|
deba@2466
|
202 |
if (_cov[_g.bNode(_matching[n])]>1) {
|
deba@2462
|
203 |
_cov[_g.bNode(_matching[n])]--;
|
deba@2462
|
204 |
_matching[n]=INVALID;
|
deba@2466
|
205 |
} else {
|
deba@2466
|
206 |
++_matching_size;
|
deba@2462
|
207 |
}
|
deba@2466
|
208 |
}
|
alpar@2353
|
209 |
}
|
deba@2462
|
210 |
|
deba@2462
|
211 |
///Start the algorithm to find a perfect matching
|
deba@2462
|
212 |
|
deba@2462
|
213 |
///This function is close to identical to the simple start()
|
deba@2462
|
214 |
///member function but it calculates just perfect matching.
|
deba@2462
|
215 |
///However, the perfect property is only checked on the B-side of
|
deba@2462
|
216 |
///the graph
|
deba@2462
|
217 |
///
|
deba@2462
|
218 |
///The main difference between the two function is the handling of
|
deba@2462
|
219 |
///the empty levels. The simple start() function let the nodes
|
deba@2462
|
220 |
///above the empty levels unmatched while this variant if it find
|
deba@2462
|
221 |
///an empty level immediately terminates and gives back false
|
deba@2462
|
222 |
///return value.
|
deba@2462
|
223 |
bool startPerfect() {
|
deba@2462
|
224 |
Node act;
|
deba@2462
|
225 |
Node bact=INVALID;
|
deba@2462
|
226 |
Node last_activated=INVALID;
|
deba@2462
|
227 |
while((act=_levels.highestActive())!=INVALID) {
|
deba@2462
|
228 |
last_activated=INVALID;
|
deba@2462
|
229 |
int actlevel=_levels[act];
|
deba@2462
|
230 |
|
deba@2462
|
231 |
UEdge bedge=INVALID;
|
deba@2462
|
232 |
int nlevel=_node_num;
|
deba@2462
|
233 |
{
|
deba@2462
|
234 |
int nnlevel;
|
deba@2462
|
235 |
for(IncEdgeIt tbedge(_g,act);
|
deba@2462
|
236 |
tbedge!=INVALID && nlevel>=actlevel;
|
deba@2462
|
237 |
++tbedge)
|
deba@2462
|
238 |
if((nnlevel=_levels[_g.bNode(_matching[_g.runningNode(tbedge)])])<
|
deba@2462
|
239 |
nlevel)
|
deba@2462
|
240 |
{
|
deba@2462
|
241 |
nlevel=nnlevel;
|
deba@2462
|
242 |
bedge=tbedge;
|
deba@2462
|
243 |
}
|
deba@2462
|
244 |
}
|
deba@2462
|
245 |
if(nlevel<_node_num) {
|
deba@2462
|
246 |
if(nlevel>=actlevel)
|
deba@2512
|
247 |
_levels.liftHighestActive(nlevel+1);
|
deba@2462
|
248 |
bact=_g.bNode(_matching[_g.aNode(bedge)]);
|
deba@2462
|
249 |
if(--_cov[bact]<1) {
|
deba@2462
|
250 |
_levels.activate(bact);
|
deba@2462
|
251 |
last_activated=bact;
|
deba@2462
|
252 |
}
|
deba@2462
|
253 |
_matching[_g.aNode(bedge)]=bedge;
|
deba@2462
|
254 |
_cov[act]=1;
|
deba@2462
|
255 |
_levels.deactivate(act);
|
deba@2462
|
256 |
}
|
deba@2462
|
257 |
else {
|
deba@2512
|
258 |
_levels.liftHighestActiveToTop();
|
deba@2462
|
259 |
}
|
deba@2462
|
260 |
|
deba@2512
|
261 |
if(_levels.emptyLevel(actlevel))
|
deba@2462
|
262 |
_empty_level=actlevel;
|
deba@2462
|
263 |
return false;
|
deba@2462
|
264 |
}
|
deba@2466
|
265 |
_matching_size = _node_num;
|
deba@2462
|
266 |
return true;
|
deba@2462
|
267 |
}
|
deba@2462
|
268 |
|
deba@2462
|
269 |
///Runs the algorithm
|
deba@2462
|
270 |
|
deba@2462
|
271 |
///Just a shortcut for the next code:
|
deba@2462
|
272 |
///\code
|
deba@2462
|
273 |
/// init();
|
deba@2462
|
274 |
/// start();
|
deba@2462
|
275 |
///\endcode
|
deba@2462
|
276 |
void run() {
|
deba@2462
|
277 |
init();
|
deba@2462
|
278 |
start();
|
deba@2462
|
279 |
}
|
deba@2462
|
280 |
|
deba@2462
|
281 |
///Runs the algorithm to find a perfect matching
|
deba@2462
|
282 |
|
deba@2462
|
283 |
///Just a shortcut for the next code:
|
deba@2462
|
284 |
///\code
|
deba@2462
|
285 |
/// init();
|
deba@2462
|
286 |
/// startPerfect();
|
deba@2462
|
287 |
///\endcode
|
deba@2462
|
288 |
///
|
deba@2462
|
289 |
///\note If the two nodesets of the graph have different size then
|
deba@2462
|
290 |
///this algorithm checks the perfect property on the B-side.
|
deba@2462
|
291 |
bool runPerfect() {
|
deba@2462
|
292 |
init();
|
deba@2462
|
293 |
return startPerfect();
|
deba@2462
|
294 |
}
|
deba@2462
|
295 |
|
deba@2462
|
296 |
///Runs the algorithm to find a perfect matching
|
deba@2462
|
297 |
|
deba@2462
|
298 |
///Just a shortcut for the next code:
|
deba@2462
|
299 |
///\code
|
deba@2462
|
300 |
/// init();
|
deba@2462
|
301 |
/// startPerfect();
|
deba@2462
|
302 |
///\endcode
|
deba@2462
|
303 |
///
|
deba@2462
|
304 |
///\note It checks that the size of the two nodesets are equal.
|
deba@2462
|
305 |
bool checkedRunPerfect() {
|
deba@2462
|
306 |
if (countANodes(_g) != _node_num) return false;
|
deba@2462
|
307 |
init();
|
deba@2462
|
308 |
return startPerfect();
|
deba@2462
|
309 |
}
|
deba@2462
|
310 |
|
deba@2462
|
311 |
///@}
|
deba@2462
|
312 |
|
deba@2462
|
313 |
/// \name Query Functions
|
deba@2462
|
314 |
/// The result of the %Matching algorithm can be obtained using these
|
deba@2462
|
315 |
/// functions.\n
|
deba@2462
|
316 |
/// Before the use of these functions,
|
deba@2462
|
317 |
/// either run() or start() must be called.
|
deba@2462
|
318 |
///@{
|
deba@2462
|
319 |
|
deba@2463
|
320 |
///Set true all matching uedge in the map.
|
deba@2463
|
321 |
|
deba@2463
|
322 |
///Set true all matching uedge in the map. It does not change the
|
deba@2463
|
323 |
///value mapped to the other uedges.
|
deba@2463
|
324 |
///\return The number of the matching edges.
|
deba@2462
|
325 |
template <typename MatchingMap>
|
deba@2462
|
326 |
int quickMatching(MatchingMap& mm) const {
|
deba@2462
|
327 |
for (ANodeIt n(_g);n!=INVALID;++n) {
|
deba@2462
|
328 |
if (_matching[n]!=INVALID) mm.set(_matching[n],true);
|
deba@2462
|
329 |
}
|
deba@2462
|
330 |
return _matching_size;
|
deba@2462
|
331 |
}
|
deba@2462
|
332 |
|
deba@2463
|
333 |
///Set true all matching uedge in the map and the others to false.
|
deba@2462
|
334 |
|
deba@2462
|
335 |
///Set true all matching uedge in the map and the others to false.
|
deba@2462
|
336 |
///\return The number of the matching edges.
|
deba@2462
|
337 |
template<class MatchingMap>
|
deba@2462
|
338 |
int matching(MatchingMap& mm) const {
|
deba@2462
|
339 |
for (UEdgeIt e(_g);e!=INVALID;++e) {
|
deba@2462
|
340 |
mm.set(e,e==_matching[_g.aNode(e)]);
|
deba@2462
|
341 |
}
|
deba@2462
|
342 |
return _matching_size;
|
deba@2462
|
343 |
}
|
deba@2462
|
344 |
|
deba@2463
|
345 |
///Gives back the matching in an ANodeMap.
|
deba@2463
|
346 |
|
deba@2463
|
347 |
///Gives back the matching in an ANodeMap. The parameter should
|
deba@2463
|
348 |
///be a write ANodeMap of UEdge values.
|
deba@2463
|
349 |
///\return The number of the matching edges.
|
deba@2463
|
350 |
template<class MatchingMap>
|
deba@2463
|
351 |
int aMatching(MatchingMap& mm) const {
|
deba@2463
|
352 |
for (ANodeIt n(_g);n!=INVALID;++n) {
|
deba@2463
|
353 |
mm.set(n,_matching[n]);
|
deba@2463
|
354 |
}
|
deba@2463
|
355 |
return _matching_size;
|
deba@2463
|
356 |
}
|
deba@2463
|
357 |
|
deba@2463
|
358 |
///Gives back the matching in a BNodeMap.
|
deba@2463
|
359 |
|
deba@2463
|
360 |
///Gives back the matching in a BNodeMap. The parameter should
|
deba@2463
|
361 |
///be a write BNodeMap of UEdge values.
|
deba@2463
|
362 |
///\return The number of the matching edges.
|
deba@2463
|
363 |
template<class MatchingMap>
|
deba@2463
|
364 |
int bMatching(MatchingMap& mm) const {
|
deba@2463
|
365 |
for (BNodeIt n(_g);n!=INVALID;++n) {
|
deba@2463
|
366 |
mm.set(n,INVALID);
|
deba@2463
|
367 |
}
|
deba@2463
|
368 |
for (ANodeIt n(_g);n!=INVALID;++n) {
|
deba@2463
|
369 |
if (_matching[n]!=INVALID)
|
deba@2463
|
370 |
mm.set(_g.bNode(_matching[n]),_matching[n]);
|
deba@2463
|
371 |
}
|
deba@2463
|
372 |
return _matching_size;
|
deba@2463
|
373 |
}
|
deba@2463
|
374 |
|
deba@2462
|
375 |
|
deba@2462
|
376 |
///Returns true if the given uedge is in the matching.
|
deba@2462
|
377 |
|
deba@2462
|
378 |
///It returns true if the given uedge is in the matching.
|
deba@2462
|
379 |
///
|
deba@2462
|
380 |
bool matchingEdge(const UEdge& e) const {
|
deba@2462
|
381 |
return _matching[_g.aNode(e)]==e;
|
deba@2462
|
382 |
}
|
deba@2462
|
383 |
|
deba@2462
|
384 |
///Returns the matching edge from the node.
|
deba@2462
|
385 |
|
deba@2462
|
386 |
///Returns the matching edge from the node. If there is not such
|
deba@2462
|
387 |
///edge it gives back \c INVALID.
|
deba@2462
|
388 |
///\note If the parameter node is a B-node then the running time is
|
deba@2462
|
389 |
///propotional to the degree of the node.
|
deba@2462
|
390 |
UEdge matchingEdge(const Node& n) const {
|
deba@2462
|
391 |
if (_g.aNode(n)) {
|
deba@2462
|
392 |
return _matching[n];
|
deba@2462
|
393 |
} else {
|
deba@2462
|
394 |
for (IncEdgeIt e(_g,n);e!=INVALID;++e)
|
deba@2462
|
395 |
if (e==_matching[_g.aNode(e)]) return e;
|
deba@2462
|
396 |
return INVALID;
|
deba@2462
|
397 |
}
|
deba@2462
|
398 |
}
|
deba@2462
|
399 |
|
deba@2462
|
400 |
///Gives back the number of the matching edges.
|
deba@2462
|
401 |
|
deba@2462
|
402 |
///Gives back the number of the matching edges.
|
deba@2462
|
403 |
int matchingSize() const {
|
deba@2462
|
404 |
return _matching_size;
|
deba@2462
|
405 |
}
|
deba@2462
|
406 |
|
deba@2462
|
407 |
///Gives back a barrier on the A-nodes
|
deba@2462
|
408 |
|
deba@2462
|
409 |
///The barrier is s subset of the nodes on the same side of the
|
deba@2462
|
410 |
///graph. If we tried to find a perfect matching and it failed
|
deba@2462
|
411 |
///then the barrier size will be greater than its neighbours. If
|
deba@2462
|
412 |
///the maximum matching searched then the barrier size minus its
|
deba@2462
|
413 |
///neighbours will be exactly the unmatched nodes on the A-side.
|
deba@2462
|
414 |
///\retval bar A WriteMap on the ANodes with bool value.
|
deba@2462
|
415 |
template<class BarrierMap>
|
deba@2462
|
416 |
void aBarrier(BarrierMap &bar) const
|
alpar@2353
|
417 |
{
|
alpar@2353
|
418 |
for(ANodeIt n(_g);n!=INVALID;++n)
|
deba@2462
|
419 |
bar.set(n,_matching[n]==INVALID ||
|
deba@2462
|
420 |
_levels[_g.bNode(_matching[n])]<_empty_level);
|
alpar@2353
|
421 |
}
|
deba@2462
|
422 |
|
deba@2462
|
423 |
///Gives back a barrier on the B-nodes
|
deba@2462
|
424 |
|
deba@2462
|
425 |
///The barrier is s subset of the nodes on the same side of the
|
deba@2462
|
426 |
///graph. If we tried to find a perfect matching and it failed
|
deba@2462
|
427 |
///then the barrier size will be greater than its neighbours. If
|
deba@2462
|
428 |
///the maximum matching searched then the barrier size minus its
|
deba@2462
|
429 |
///neighbours will be exactly the unmatched nodes on the B-side.
|
deba@2462
|
430 |
///\retval bar A WriteMap on the BNodes with bool value.
|
deba@2462
|
431 |
template<class BarrierMap>
|
deba@2462
|
432 |
void bBarrier(BarrierMap &bar) const
|
alpar@2353
|
433 |
{
|
deba@2462
|
434 |
for(BNodeIt n(_g);n!=INVALID;++n) bar.set(n,_levels[n]>=_empty_level);
|
deba@2462
|
435 |
}
|
deba@2462
|
436 |
|
deba@2462
|
437 |
///Returns a minimum covering of the nodes.
|
deba@2462
|
438 |
|
deba@2462
|
439 |
///The minimum covering set problem is the dual solution of the
|
deba@2462
|
440 |
///maximum bipartite matching. It provides a solution for this
|
deba@2462
|
441 |
///problem what is proof of the optimality of the matching.
|
deba@2462
|
442 |
///\param covering NodeMap of bool values, the nodes of the cover
|
deba@2462
|
443 |
///set will set true while the others false.
|
deba@2462
|
444 |
///\return The size of the cover set.
|
deba@2462
|
445 |
///\note This function can be called just after the algorithm have
|
deba@2462
|
446 |
///already found a matching.
|
deba@2462
|
447 |
template<class CoverMap>
|
deba@2462
|
448 |
int coverSet(CoverMap& covering) const {
|
deba@2462
|
449 |
int ret=0;
|
deba@2462
|
450 |
for(BNodeIt n(_g);n!=INVALID;++n) {
|
deba@2462
|
451 |
if (_levels[n]<_empty_level) { covering.set(n,true); ++ret; }
|
deba@2462
|
452 |
else covering.set(n,false);
|
deba@2462
|
453 |
}
|
deba@2462
|
454 |
for(ANodeIt n(_g);n!=INVALID;++n) {
|
deba@2462
|
455 |
if (_matching[n]!=INVALID &&
|
deba@2462
|
456 |
_levels[_g.bNode(_matching[n])]>=_empty_level)
|
deba@2462
|
457 |
{ covering.set(n,true); ++ret; }
|
deba@2462
|
458 |
else covering.set(n,false);
|
deba@2462
|
459 |
}
|
deba@2462
|
460 |
return ret;
|
deba@2462
|
461 |
}
|
deba@2462
|
462 |
|
deba@2462
|
463 |
|
deba@2462
|
464 |
/// @}
|
deba@2462
|
465 |
|
alpar@2353
|
466 |
};
|
alpar@2353
|
467 |
|
alpar@2353
|
468 |
|
alpar@2353
|
469 |
///Maximum cardinality of the matchings in a bipartite graph
|
alpar@2353
|
470 |
|
alpar@2353
|
471 |
///\ingroup matching
|
alpar@2353
|
472 |
///This function finds the maximum cardinality of the matchings
|
alpar@2353
|
473 |
///in a bipartite graph \c g.
|
alpar@2353
|
474 |
///\param g An undirected bipartite graph.
|
alpar@2353
|
475 |
///\return The cardinality of the maximum matching.
|
alpar@2353
|
476 |
///
|
alpar@2353
|
477 |
///\note The the implementation is based
|
alpar@2353
|
478 |
///on the push-relabel principle.
|
alpar@2353
|
479 |
template<class Graph>
|
deba@2462
|
480 |
int prBipartiteMatching(const Graph &g)
|
alpar@2353
|
481 |
{
|
deba@2462
|
482 |
PrBipartiteMatching<Graph> bpm(g);
|
deba@2462
|
483 |
return bpm.matchingSize();
|
alpar@2353
|
484 |
}
|
alpar@2353
|
485 |
|
alpar@2353
|
486 |
///Maximum cardinality matching in a bipartite graph
|
alpar@2353
|
487 |
|
alpar@2353
|
488 |
///\ingroup matching
|
alpar@2353
|
489 |
///This function finds a maximum cardinality matching
|
alpar@2353
|
490 |
///in a bipartite graph \c g.
|
alpar@2353
|
491 |
///\param g An undirected bipartite graph.
|
deba@2463
|
492 |
///\retval matching A write ANodeMap of value type \c UEdge.
|
deba@2463
|
493 |
/// The found edges will be returned in this map,
|
deba@2463
|
494 |
/// i.e. for an \c ANode \c n the edge <tt>matching[n]</tt> is the one
|
deba@2463
|
495 |
/// that covers the node \c n.
|
alpar@2353
|
496 |
///\return The cardinality of the maximum matching.
|
alpar@2353
|
497 |
///
|
alpar@2353
|
498 |
///\note The the implementation is based
|
alpar@2353
|
499 |
///on the push-relabel principle.
|
alpar@2353
|
500 |
template<class Graph,class MT>
|
deba@2462
|
501 |
int prBipartiteMatching(const Graph &g,MT &matching)
|
alpar@2353
|
502 |
{
|
deba@2462
|
503 |
PrBipartiteMatching<Graph> bpm(g);
|
deba@2462
|
504 |
bpm.run();
|
deba@2463
|
505 |
bpm.aMatching(matching);
|
deba@2462
|
506 |
return bpm.matchingSize();
|
alpar@2353
|
507 |
}
|
alpar@2353
|
508 |
|
alpar@2353
|
509 |
///Maximum cardinality matching in a bipartite graph
|
alpar@2353
|
510 |
|
alpar@2353
|
511 |
///\ingroup matching
|
alpar@2353
|
512 |
///This function finds a maximum cardinality matching
|
alpar@2353
|
513 |
///in a bipartite graph \c g.
|
alpar@2353
|
514 |
///\param g An undirected bipartite graph.
|
deba@2463
|
515 |
///\retval matching A write ANodeMap of value type \c UEdge.
|
deba@2463
|
516 |
/// The found edges will be returned in this map,
|
deba@2463
|
517 |
/// i.e. for an \c ANode \c n the edge <tt>matching[n]</tt> is the one
|
deba@2463
|
518 |
/// that covers the node \c n.
|
alpar@2353
|
519 |
///\retval barrier A \c bool WriteMap on the BNodes. The map will be set
|
alpar@2353
|
520 |
/// exactly once for each BNode. The nodes with \c true value represent
|
alpar@2353
|
521 |
/// a barrier \e B, i.e. the cardinality of \e B minus the number of its
|
alpar@2353
|
522 |
/// neighbor is equal to the number of the <tt>BNode</tt>s minus the
|
alpar@2353
|
523 |
/// cardinality of the maximum matching.
|
alpar@2353
|
524 |
///\return The cardinality of the maximum matching.
|
alpar@2353
|
525 |
///
|
alpar@2353
|
526 |
///\note The the implementation is based
|
alpar@2353
|
527 |
///on the push-relabel principle.
|
alpar@2353
|
528 |
template<class Graph,class MT, class GT>
|
deba@2462
|
529 |
int prBipartiteMatching(const Graph &g,MT &matching,GT &barrier)
|
alpar@2353
|
530 |
{
|
deba@2462
|
531 |
PrBipartiteMatching<Graph> bpm(g);
|
deba@2462
|
532 |
bpm.run();
|
deba@2463
|
533 |
bpm.aMatching(matching);
|
deba@2462
|
534 |
bpm.bBarrier(barrier);
|
deba@2462
|
535 |
return bpm.matchingSize();
|
alpar@2353
|
536 |
}
|
alpar@2353
|
537 |
|
alpar@2353
|
538 |
///Perfect matching in a bipartite graph
|
alpar@2353
|
539 |
|
alpar@2353
|
540 |
///\ingroup matching
|
alpar@2353
|
541 |
///This function checks whether the bipartite graph \c g
|
alpar@2353
|
542 |
///has a perfect matching.
|
alpar@2353
|
543 |
///\param g An undirected bipartite graph.
|
alpar@2353
|
544 |
///\return \c true iff \c g has a perfect matching.
|
alpar@2353
|
545 |
///
|
alpar@2353
|
546 |
///\note The the implementation is based
|
alpar@2353
|
547 |
///on the push-relabel principle.
|
alpar@2353
|
548 |
template<class Graph>
|
deba@2462
|
549 |
bool prPerfectBipartiteMatching(const Graph &g)
|
alpar@2353
|
550 |
{
|
deba@2462
|
551 |
PrBipartiteMatching<Graph> bpm(g);
|
deba@2462
|
552 |
return bpm.runPerfect();
|
alpar@2353
|
553 |
}
|
alpar@2353
|
554 |
|
alpar@2353
|
555 |
///Perfect matching in a bipartite graph
|
alpar@2353
|
556 |
|
alpar@2353
|
557 |
///\ingroup matching
|
alpar@2353
|
558 |
///This function finds a perfect matching in a bipartite graph \c g.
|
alpar@2353
|
559 |
///\param g An undirected bipartite graph.
|
deba@2463
|
560 |
///\retval matching A write ANodeMap of value type \c UEdge.
|
deba@2463
|
561 |
/// The found edges will be returned in this map,
|
deba@2463
|
562 |
/// i.e. for an \c ANode \c n the edge <tt>matching[n]</tt> is the one
|
deba@2463
|
563 |
/// that covers the node \c n.
|
deba@2462
|
564 |
/// The values are unchanged if the graph
|
alpar@2353
|
565 |
/// has no perfect matching.
|
alpar@2353
|
566 |
///\return \c true iff \c g has a perfect matching.
|
alpar@2353
|
567 |
///
|
alpar@2353
|
568 |
///\note The the implementation is based
|
alpar@2353
|
569 |
///on the push-relabel principle.
|
alpar@2353
|
570 |
template<class Graph,class MT>
|
deba@2462
|
571 |
bool prPerfectBipartiteMatching(const Graph &g,MT &matching)
|
alpar@2353
|
572 |
{
|
deba@2462
|
573 |
PrBipartiteMatching<Graph> bpm(g);
|
deba@2463
|
574 |
bool ret = bpm.checkedRunPerfect();
|
deba@2463
|
575 |
if (ret) bpm.aMatching(matching);
|
deba@2462
|
576 |
return ret;
|
alpar@2353
|
577 |
}
|
alpar@2353
|
578 |
|
alpar@2353
|
579 |
///Perfect matching in a bipartite graph
|
alpar@2353
|
580 |
|
alpar@2353
|
581 |
///\ingroup matching
|
alpar@2353
|
582 |
///This function finds a perfect matching in a bipartite graph \c g.
|
alpar@2353
|
583 |
///\param g An undirected bipartite graph.
|
deba@2463
|
584 |
///\retval matching A write ANodeMap of value type \c UEdge.
|
deba@2463
|
585 |
/// The found edges will be returned in this map,
|
deba@2463
|
586 |
/// i.e. for an \c ANode \c n the edge <tt>matching[n]</tt> is the one
|
deba@2463
|
587 |
/// that covers the node \c n.
|
deba@2462
|
588 |
/// The values are unchanged if the graph
|
alpar@2353
|
589 |
/// has no perfect matching.
|
alpar@2353
|
590 |
///\retval barrier A \c bool WriteMap on the BNodes. The map will only
|
alpar@2353
|
591 |
/// be set if \c g has no perfect matching. In this case it is set
|
alpar@2353
|
592 |
/// exactly once for each BNode. The nodes with \c true value represent
|
alpar@2353
|
593 |
/// a barrier, i.e. a subset \e B a of BNodes with the property that
|
deba@2462
|
594 |
/// the cardinality of \e B is greater than the number of its neighbors.
|
alpar@2353
|
595 |
///\return \c true iff \c g has a perfect matching.
|
alpar@2353
|
596 |
///
|
alpar@2353
|
597 |
///\note The the implementation is based
|
alpar@2353
|
598 |
///on the push-relabel principle.
|
alpar@2353
|
599 |
template<class Graph,class MT, class GT>
|
deba@2463
|
600 |
bool prPerfectBipartiteMatching(const Graph &g,MT &matching,GT &barrier)
|
alpar@2353
|
601 |
{
|
deba@2462
|
602 |
PrBipartiteMatching<Graph> bpm(g);
|
deba@2463
|
603 |
bool ret=bpm.checkedRunPerfect();
|
deba@2462
|
604 |
if(ret)
|
deba@2463
|
605 |
bpm.aMatching(matching);
|
deba@2462
|
606 |
else
|
deba@2462
|
607 |
bpm.bBarrier(barrier);
|
deba@2462
|
608 |
return ret;
|
alpar@2353
|
609 |
}
|
alpar@2353
|
610 |
}
|
alpar@2353
|
611 |
|
alpar@2353
|
612 |
#endif
|