athos@610
|
1 |
// -*- c++ -*-
|
alpar@921
|
2 |
#ifndef LEMON_MINCOSTFLOW_H
|
alpar@921
|
3 |
#define LEMON_MINCOSTFLOW_H
|
athos@610
|
4 |
|
athos@610
|
5 |
///\ingroup galgs
|
athos@610
|
6 |
///\file
|
athos@645
|
7 |
///\brief An algorithm for finding the minimum cost flow of given value in an uncapacitated network
|
athos@611
|
8 |
|
alpar@921
|
9 |
#include <lemon/dijkstra.h>
|
alpar@921
|
10 |
#include <lemon/graph_wrapper.h>
|
alpar@921
|
11 |
#include <lemon/maps.h>
|
athos@610
|
12 |
#include <vector>
|
athos@657
|
13 |
#include <list>
|
athos@662
|
14 |
#include <values.h>
|
alpar@921
|
15 |
#include <lemon/for_each_macros.h>
|
alpar@921
|
16 |
#include <lemon/unionfind.h>
|
alpar@921
|
17 |
#include <lemon/bin_heap.h>
|
athos@662
|
18 |
#include <bfs_dfs.h>
|
athos@610
|
19 |
|
alpar@921
|
20 |
namespace lemon {
|
athos@610
|
21 |
|
athos@610
|
22 |
/// \addtogroup galgs
|
athos@610
|
23 |
/// @{
|
athos@610
|
24 |
|
athos@661
|
25 |
///\brief Implementation of an algorithm for solving the minimum cost general
|
athos@661
|
26 |
/// flow problem in an uncapacitated network
|
athos@610
|
27 |
///
|
athos@610
|
28 |
///
|
alpar@921
|
29 |
/// The class \ref lemon::MinCostFlow "MinCostFlow" implements
|
athos@633
|
30 |
/// an algorithm for solving the following general minimum cost flow problem>
|
athos@633
|
31 |
///
|
athos@633
|
32 |
///
|
athos@633
|
33 |
///
|
athos@633
|
34 |
/// \warning It is assumed here that the problem has a feasible solution
|
athos@633
|
35 |
///
|
athos@661
|
36 |
/// The range of the cost (weight) function is nonnegative reals but
|
athos@610
|
37 |
/// the range of capacity function is the set of nonnegative integers.
|
athos@610
|
38 |
/// It is not a polinomial time algorithm for counting the minimum cost
|
athos@610
|
39 |
/// maximal flow, since it counts the minimum cost flow for every value 0..M
|
athos@610
|
40 |
/// where \c M is the value of the maximal flow.
|
athos@610
|
41 |
///
|
athos@610
|
42 |
///\author Attila Bernath
|
athos@661
|
43 |
template <typename Graph, typename CostMap, typename SupplyDemandMap>
|
athos@633
|
44 |
class MinCostFlow {
|
athos@610
|
45 |
|
athos@661
|
46 |
typedef typename CostMap::ValueType Cost;
|
athos@610
|
47 |
|
athos@633
|
48 |
|
athos@635
|
49 |
typedef typename SupplyDemandMap::ValueType SupplyDemand;
|
athos@610
|
50 |
|
athos@610
|
51 |
typedef typename Graph::Node Node;
|
athos@610
|
52 |
typedef typename Graph::NodeIt NodeIt;
|
athos@610
|
53 |
typedef typename Graph::Edge Edge;
|
athos@610
|
54 |
typedef typename Graph::OutEdgeIt OutEdgeIt;
|
athos@661
|
55 |
typedef typename Graph::template EdgeMap<SupplyDemand> FlowMap;
|
athos@661
|
56 |
typedef ConstMap<Edge,SupplyDemand> ConstEdgeMap;
|
athos@610
|
57 |
|
athos@610
|
58 |
// typedef ConstMap<Edge,int> ConstMap;
|
athos@610
|
59 |
|
athos@661
|
60 |
typedef ResGraphWrapper<const Graph,int,ConstEdgeMap,FlowMap> ResGraph;
|
athos@661
|
61 |
typedef typename ResGraph::Edge ResGraphEdge;
|
athos@610
|
62 |
|
athos@661
|
63 |
class ModCostMap {
|
athos@661
|
64 |
//typedef typename ResGraph::template NodeMap<Cost> NodeMap;
|
athos@661
|
65 |
typedef typename Graph::template NodeMap<Cost> NodeMap;
|
athos@661
|
66 |
const ResGraph& res_graph;
|
athos@610
|
67 |
// const EdgeIntMap& rev;
|
athos@661
|
68 |
const CostMap &ol;
|
athos@610
|
69 |
const NodeMap &pot;
|
athos@610
|
70 |
public :
|
athos@661
|
71 |
typedef typename CostMap::KeyType KeyType;
|
athos@661
|
72 |
typedef typename CostMap::ValueType ValueType;
|
athos@610
|
73 |
|
athos@661
|
74 |
ValueType operator[](typename ResGraph::Edge e) const {
|
athos@659
|
75 |
if (res_graph.forward(e))
|
alpar@986
|
76 |
return ol[e]-(pot[res_graph.target(e)]-pot[res_graph.source(e)]);
|
athos@610
|
77 |
else
|
alpar@986
|
78 |
return -ol[e]-(pot[res_graph.target(e)]-pot[res_graph.source(e)]);
|
athos@610
|
79 |
}
|
athos@610
|
80 |
|
athos@661
|
81 |
ModCostMap(const ResGraph& _res_graph,
|
athos@661
|
82 |
const CostMap &o, const NodeMap &p) :
|
athos@659
|
83 |
res_graph(_res_graph), /*rev(_rev),*/ ol(o), pot(p){};
|
athos@661
|
84 |
};//ModCostMap
|
athos@610
|
85 |
|
athos@610
|
86 |
|
athos@610
|
87 |
protected:
|
athos@610
|
88 |
|
athos@610
|
89 |
//Input
|
athos@659
|
90 |
const Graph& graph;
|
athos@661
|
91 |
const CostMap& cost;
|
athos@635
|
92 |
const SupplyDemandMap& supply_demand;//supply or demand of nodes
|
athos@610
|
93 |
|
athos@610
|
94 |
|
athos@610
|
95 |
//auxiliary variables
|
athos@610
|
96 |
|
athos@610
|
97 |
//To store the flow
|
athos@661
|
98 |
FlowMap flow;
|
athos@662
|
99 |
//To store the potential (dual variables)
|
athos@662
|
100 |
typedef typename Graph::template NodeMap<Cost> PotentialMap;
|
athos@662
|
101 |
PotentialMap potential;
|
athos@610
|
102 |
|
athos@610
|
103 |
|
athos@661
|
104 |
Cost total_cost;
|
athos@610
|
105 |
|
athos@610
|
106 |
|
athos@610
|
107 |
public :
|
athos@610
|
108 |
|
athos@610
|
109 |
|
athos@662
|
110 |
MinCostFlow(Graph& _graph, CostMap& _cost, SupplyDemandMap& _supply_demand):
|
athos@662
|
111 |
graph(_graph),
|
athos@662
|
112 |
cost(_cost),
|
athos@662
|
113 |
supply_demand(_supply_demand),
|
athos@662
|
114 |
flow(_graph),
|
athos@672
|
115 |
potential(_graph){ }
|
athos@610
|
116 |
|
athos@610
|
117 |
|
athos@610
|
118 |
///Runs the algorithm.
|
athos@610
|
119 |
|
athos@610
|
120 |
///Runs the algorithm.
|
athos@635
|
121 |
|
athos@610
|
122 |
///\todo May be it does make sense to be able to start with a nonzero
|
athos@610
|
123 |
/// feasible primal-dual solution pair as well.
|
athos@659
|
124 |
void run() {
|
athos@610
|
125 |
|
athos@672
|
126 |
//To store excess-deficit values
|
athos@672
|
127 |
SupplyDemandMap excess_deficit(graph);
|
athos@672
|
128 |
|
athos@610
|
129 |
//Resetting variables from previous runs
|
athos@661
|
130 |
//total_cost = 0;
|
athos@635
|
131 |
|
athos@672
|
132 |
|
athos@635
|
133 |
typedef typename Graph::template NodeMap<int> HeapMap;
|
athos@662
|
134 |
typedef BinHeap< Node, SupplyDemand, typename Graph::template NodeMap<int>,
|
athos@635
|
135 |
std::greater<SupplyDemand> > HeapType;
|
athos@635
|
136 |
|
athos@635
|
137 |
//A heap for the excess nodes
|
athos@659
|
138 |
HeapMap excess_nodes_map(graph,-1);
|
athos@635
|
139 |
HeapType excess_nodes(excess_nodes_map);
|
athos@635
|
140 |
|
athos@635
|
141 |
//A heap for the deficit nodes
|
athos@659
|
142 |
HeapMap deficit_nodes_map(graph,-1);
|
athos@635
|
143 |
HeapType deficit_nodes(deficit_nodes_map);
|
athos@635
|
144 |
|
athos@657
|
145 |
//A container to store nonabundant arcs
|
athos@662
|
146 |
std::list<Edge> nonabundant_arcs;
|
athos@659
|
147 |
|
athos@659
|
148 |
|
athos@659
|
149 |
FOR_EACH_LOC(typename Graph::EdgeIt, e, graph){
|
athos@610
|
150 |
flow.set(e,0);
|
athos@657
|
151 |
nonabundant_arcs.push_back(e);
|
athos@610
|
152 |
}
|
athos@633
|
153 |
|
athos@633
|
154 |
//Initial value for delta
|
athos@635
|
155 |
SupplyDemand delta = 0;
|
athos@635
|
156 |
|
athos@657
|
157 |
typedef UnionFindEnum<Node, Graph::template NodeMap> UFE;
|
athos@657
|
158 |
|
athos@657
|
159 |
//A union-find structure to store the abundant components
|
athos@662
|
160 |
typename UFE::MapType abund_comp_map(graph);
|
athos@657
|
161 |
UFE abundant_components(abund_comp_map);
|
athos@657
|
162 |
|
athos@657
|
163 |
|
athos@657
|
164 |
|
athos@659
|
165 |
FOR_EACH_LOC(typename Graph::NodeIt, n, graph){
|
athos@635
|
166 |
excess_deficit.set(n,supply_demand[n]);
|
athos@635
|
167 |
//A supply node
|
athos@635
|
168 |
if (excess_deficit[n] > 0){
|
athos@635
|
169 |
excess_nodes.push(n,excess_deficit[n]);
|
athos@633
|
170 |
}
|
athos@635
|
171 |
//A demand node
|
athos@635
|
172 |
if (excess_deficit[n] < 0){
|
athos@635
|
173 |
deficit_nodes.push(n, - excess_deficit[n]);
|
athos@635
|
174 |
}
|
athos@635
|
175 |
//Finding out starting value of delta
|
athos@635
|
176 |
if (delta < abs(excess_deficit[n])){
|
athos@635
|
177 |
delta = abs(excess_deficit[n]);
|
athos@635
|
178 |
}
|
athos@633
|
179 |
//Initialize the copy of the Dijkstra potential to zero
|
athos@610
|
180 |
potential.set(n,0);
|
athos@657
|
181 |
//Every single point is an abundant component initially
|
athos@657
|
182 |
abundant_components.insert(n);
|
athos@610
|
183 |
}
|
athos@610
|
184 |
|
athos@635
|
185 |
//It'll be allright as an initial value, though this value
|
athos@635
|
186 |
//can be the maximum deficit here
|
athos@635
|
187 |
SupplyDemand max_excess = delta;
|
athos@610
|
188 |
|
athos@661
|
189 |
///\bug This is a serious cheat here, before we have an uncapacitated ResGraph
|
athos@662
|
190 |
ConstEdgeMap const_inf_map(MAXINT);
|
athos@661
|
191 |
|
athos@633
|
192 |
//We need a residual graph which is uncapacitated
|
athos@661
|
193 |
ResGraph res_graph(graph, const_inf_map, flow);
|
athos@659
|
194 |
|
athos@659
|
195 |
//An EdgeMap to tell which arcs are abundant
|
athos@662
|
196 |
typename Graph::template EdgeMap<bool> abundant_arcs(graph);
|
athos@610
|
197 |
|
athos@659
|
198 |
//Let's construct the sugraph consisting only of the abundant edges
|
athos@659
|
199 |
typedef ConstMap< typename Graph::Node, bool > ConstNodeMap;
|
athos@672
|
200 |
|
athos@659
|
201 |
ConstNodeMap const_true_map(true);
|
athos@662
|
202 |
typedef SubGraphWrapper< const Graph, ConstNodeMap,
|
athos@662
|
203 |
typename Graph::template EdgeMap<bool> >
|
athos@659
|
204 |
AbundantGraph;
|
athos@659
|
205 |
AbundantGraph abundant_graph(graph, const_true_map, abundant_arcs );
|
athos@659
|
206 |
|
athos@659
|
207 |
//Let's construct the residual graph for the abundant graph
|
athos@662
|
208 |
typedef ResGraphWrapper<const AbundantGraph,int,ConstEdgeMap,FlowMap>
|
athos@659
|
209 |
ResAbGraph;
|
athos@659
|
210 |
//Again uncapacitated
|
athos@661
|
211 |
ResAbGraph res_ab_graph(abundant_graph, const_inf_map, flow);
|
athos@659
|
212 |
|
athos@659
|
213 |
//We need things for the bfs
|
athos@662
|
214 |
typename ResAbGraph::template NodeMap<bool> bfs_reached(res_ab_graph);
|
athos@662
|
215 |
typename ResAbGraph::template NodeMap<typename ResAbGraph::Edge>
|
athos@659
|
216 |
bfs_pred(res_ab_graph);
|
athos@662
|
217 |
NullMap<typename ResAbGraph::Node, int> bfs_dist_dummy;
|
athos@671
|
218 |
//Teszt celbol:
|
athos@671
|
219 |
//BfsIterator<ResAbGraph, typename ResAbGraph::template NodeMap<bool> >
|
athos@671
|
220 |
//izebize(res_ab_graph, bfs_reached);
|
athos@659
|
221 |
//We want to run bfs-es (more) on this graph 'res_ab_graph'
|
athos@671
|
222 |
Bfs < const ResAbGraph ,
|
athos@662
|
223 |
typename ResAbGraph::template NodeMap<bool>,
|
athos@662
|
224 |
typename ResAbGraph::template NodeMap<typename ResAbGraph::Edge>,
|
athos@659
|
225 |
NullMap<typename ResAbGraph::Node, int> >
|
athos@659
|
226 |
bfs(res_ab_graph, bfs_reached, bfs_pred, bfs_dist_dummy);
|
athos@662
|
227 |
/*This is what Marci wants for a bfs
|
athos@662
|
228 |
template <typename Graph,
|
athos@662
|
229 |
typename ReachedMap=typename Graph::template NodeMap<bool>,
|
athos@662
|
230 |
typename PredMap
|
athos@662
|
231 |
=typename Graph::template NodeMap<typename Graph::Edge>,
|
athos@662
|
232 |
typename DistMap=typename Graph::template NodeMap<int> >
|
athos@662
|
233 |
class Bfs : public BfsIterator<Graph, ReachedMap> {
|
athos@662
|
234 |
|
athos@662
|
235 |
*/
|
athos@610
|
236 |
|
athos@661
|
237 |
ModCostMap mod_cost(res_graph, cost, potential);
|
athos@610
|
238 |
|
athos@661
|
239 |
Dijkstra<ResGraph, ModCostMap> dijkstra(res_graph, mod_cost);
|
athos@610
|
240 |
|
athos@671
|
241 |
//We will use the number of the nodes of the graph often
|
athos@671
|
242 |
int number_of_nodes = graph.nodeNum();
|
athos@633
|
243 |
|
athos@635
|
244 |
while (max_excess > 0){
|
athos@635
|
245 |
|
athos@657
|
246 |
//Reset delta if still too big
|
athos@657
|
247 |
if (8*number_of_nodes*max_excess <= delta){
|
athos@657
|
248 |
delta = max_excess;
|
athos@657
|
249 |
|
athos@657
|
250 |
}
|
athos@657
|
251 |
|
athos@645
|
252 |
/*
|
athos@645
|
253 |
* Beginning of the delta scaling phase
|
athos@645
|
254 |
*/
|
athos@635
|
255 |
//Merge and stuff
|
athos@657
|
256 |
{
|
athos@657
|
257 |
SupplyDemand buf=8*number_of_nodes*delta;
|
athos@662
|
258 |
typename std::list<Edge>::iterator i = nonabundant_arcs.begin();
|
athos@657
|
259 |
while ( i != nonabundant_arcs.end() ){
|
athos@671
|
260 |
if (flow[*i]>=buf){
|
alpar@986
|
261 |
Node a = abundant_components.find(res_graph.target(*i));
|
alpar@986
|
262 |
Node b = abundant_components.find(res_graph.source(*i));
|
athos@657
|
263 |
//Merge
|
athos@657
|
264 |
if (a != b){
|
athos@657
|
265 |
abundant_components.join(a,b);
|
athos@659
|
266 |
//We want to push the smaller
|
athos@659
|
267 |
//Which has greater absolut value excess/deficit
|
athos@659
|
268 |
Node root=(abs(excess_deficit[a])>abs(excess_deficit[b]))?a:b;
|
athos@659
|
269 |
//Which is the other
|
athos@659
|
270 |
Node non_root = ( a == root ) ? b : a ;
|
athos@659
|
271 |
abundant_components.makeRep(root);
|
athos@659
|
272 |
SupplyDemand qty_to_augment = abs(excess_deficit[non_root]);
|
athos@659
|
273 |
//Push the positive value
|
athos@659
|
274 |
if (excess_deficit[non_root] < 0)
|
athos@659
|
275 |
swap(root, non_root);
|
athos@659
|
276 |
//If the non_root node has excess/deficit at all
|
athos@659
|
277 |
if (qty_to_augment>0){
|
athos@659
|
278 |
//Find path and augment
|
athos@671
|
279 |
bfs.run(typename AbundantGraph::Node(non_root));
|
athos@659
|
280 |
//root should be reached
|
athos@659
|
281 |
|
athos@659
|
282 |
//Augmenting on the found path
|
athos@659
|
283 |
Node n=root;
|
athos@659
|
284 |
ResGraphEdge e;
|
athos@659
|
285 |
while (n!=non_root){
|
athos@671
|
286 |
e = bfs_pred[n];
|
alpar@986
|
287 |
n = res_graph.source(e);
|
athos@659
|
288 |
res_graph.augment(e,qty_to_augment);
|
athos@659
|
289 |
}
|
athos@659
|
290 |
|
athos@659
|
291 |
//We know that non_root had positive excess
|
athos@671
|
292 |
excess_nodes.set(non_root,
|
athos@671
|
293 |
excess_nodes[non_root] - qty_to_augment);
|
athos@659
|
294 |
//But what about root node
|
athos@659
|
295 |
//It might have been positive and so became larger
|
athos@659
|
296 |
if (excess_deficit[root]>0){
|
athos@671
|
297 |
excess_nodes.set(root,
|
athos@671
|
298 |
excess_nodes[root] + qty_to_augment);
|
athos@659
|
299 |
}
|
athos@659
|
300 |
else{
|
athos@659
|
301 |
//Or negative but not turned into positive
|
athos@671
|
302 |
deficit_nodes.set(root,
|
athos@671
|
303 |
deficit_nodes[root] - qty_to_augment);
|
athos@659
|
304 |
}
|
athos@659
|
305 |
|
athos@659
|
306 |
//Update the excess_deficit map
|
athos@659
|
307 |
excess_deficit[non_root] -= qty_to_augment;
|
athos@659
|
308 |
excess_deficit[root] += qty_to_augment;
|
athos@659
|
309 |
|
athos@659
|
310 |
|
athos@659
|
311 |
}
|
athos@657
|
312 |
}
|
athos@657
|
313 |
//What happens to i?
|
athos@659
|
314 |
//Marci and Zsolt says I shouldn't do such things
|
athos@659
|
315 |
nonabundant_arcs.erase(i++);
|
athos@671
|
316 |
abundant_arcs[*i] = true;
|
athos@657
|
317 |
}
|
athos@657
|
318 |
else
|
athos@657
|
319 |
++i;
|
athos@657
|
320 |
}
|
athos@657
|
321 |
}
|
athos@657
|
322 |
|
athos@635
|
323 |
|
athos@635
|
324 |
Node s = excess_nodes.top();
|
athos@672
|
325 |
max_excess = excess_nodes[s];
|
athos@635
|
326 |
Node t = deficit_nodes.top();
|
athos@659
|
327 |
if (max_excess < deficit_nodes[t]){
|
athos@659
|
328 |
max_excess = deficit_nodes[t];
|
athos@635
|
329 |
}
|
athos@635
|
330 |
|
athos@635
|
331 |
|
athos@662
|
332 |
while(max_excess > (number_of_nodes-1)*delta/number_of_nodes){
|
athos@659
|
333 |
|
athos@635
|
334 |
|
athos@635
|
335 |
//s es t valasztasa
|
athos@659
|
336 |
|
athos@635
|
337 |
//Dijkstra part
|
athos@635
|
338 |
dijkstra.run(s);
|
athos@659
|
339 |
|
athos@635
|
340 |
/*We know from theory that t can be reached
|
athos@635
|
341 |
if (!dijkstra.reached(t)){
|
athos@635
|
342 |
//There are no k paths from s to t
|
athos@635
|
343 |
break;
|
athos@635
|
344 |
};
|
athos@635
|
345 |
*/
|
athos@635
|
346 |
|
athos@635
|
347 |
//We have to change the potential
|
athos@661
|
348 |
FOR_EACH_LOC(typename ResGraph::NodeIt, n, res_graph){
|
athos@635
|
349 |
potential[n] += dijkstra.distMap()[n];
|
athos@635
|
350 |
}
|
athos@635
|
351 |
|
athos@635
|
352 |
|
athos@635
|
353 |
//Augmenting on the sortest path
|
athos@635
|
354 |
Node n=t;
|
athos@635
|
355 |
ResGraphEdge e;
|
athos@635
|
356 |
while (n!=s){
|
athos@635
|
357 |
e = dijkstra.pred(n);
|
athos@635
|
358 |
n = dijkstra.predNode(n);
|
athos@635
|
359 |
res_graph.augment(e,delta);
|
athos@635
|
360 |
/*
|
athos@661
|
361 |
//Let's update the total cost
|
athos@635
|
362 |
if (res_graph.forward(e))
|
athos@661
|
363 |
total_cost += cost[e];
|
athos@635
|
364 |
else
|
athos@661
|
365 |
total_cost -= cost[e];
|
athos@635
|
366 |
*/
|
athos@635
|
367 |
}
|
athos@659
|
368 |
|
athos@659
|
369 |
//Update the excess_deficit map
|
athos@659
|
370 |
excess_deficit[s] -= delta;
|
athos@659
|
371 |
excess_deficit[t] += delta;
|
athos@659
|
372 |
|
athos@635
|
373 |
|
athos@635
|
374 |
//Update the excess_nodes heap
|
athos@672
|
375 |
if (delta > excess_nodes[s]){
|
athos@635
|
376 |
if (delta > excess_nodes[s])
|
athos@635
|
377 |
deficit_nodes.push(s,delta - excess_nodes[s]);
|
athos@635
|
378 |
excess_nodes.pop();
|
athos@635
|
379 |
|
athos@635
|
380 |
}
|
athos@635
|
381 |
else{
|
athos@671
|
382 |
excess_nodes.set(s, excess_nodes[s] - delta);
|
athos@635
|
383 |
}
|
athos@635
|
384 |
//Update the deficit_nodes heap
|
athos@672
|
385 |
if (delta > deficit_nodes[t]){
|
athos@635
|
386 |
if (delta > deficit_nodes[t])
|
athos@635
|
387 |
excess_nodes.push(t,delta - deficit_nodes[t]);
|
athos@635
|
388 |
deficit_nodes.pop();
|
athos@635
|
389 |
|
athos@635
|
390 |
}
|
athos@635
|
391 |
else{
|
athos@671
|
392 |
deficit_nodes.set(t, deficit_nodes[t] - delta);
|
athos@635
|
393 |
}
|
athos@635
|
394 |
//Dijkstra part ends here
|
athos@659
|
395 |
|
athos@659
|
396 |
//Choose s and t again
|
athos@659
|
397 |
s = excess_nodes.top();
|
athos@659
|
398 |
max_excess = excess_nodes[s];
|
athos@659
|
399 |
t = deficit_nodes.top();
|
athos@659
|
400 |
if (max_excess < deficit_nodes[t]){
|
athos@659
|
401 |
max_excess = deficit_nodes[t];
|
athos@659
|
402 |
}
|
athos@659
|
403 |
|
athos@633
|
404 |
}
|
athos@633
|
405 |
|
athos@633
|
406 |
/*
|
athos@635
|
407 |
* End of the delta scaling phase
|
athos@635
|
408 |
*/
|
athos@633
|
409 |
|
athos@635
|
410 |
//Whatever this means
|
athos@635
|
411 |
delta = delta / 2;
|
athos@635
|
412 |
|
athos@635
|
413 |
/*This is not necessary here
|
athos@635
|
414 |
//Update the max_excess
|
athos@635
|
415 |
max_excess = 0;
|
athos@659
|
416 |
FOR_EACH_LOC(typename Graph::NodeIt, n, graph){
|
athos@635
|
417 |
if (max_excess < excess_deficit[n]){
|
athos@635
|
418 |
max_excess = excess_deficit[n];
|
athos@610
|
419 |
}
|
athos@610
|
420 |
}
|
athos@633
|
421 |
*/
|
athos@657
|
422 |
|
athos@610
|
423 |
|
athos@635
|
424 |
}//while(max_excess > 0)
|
athos@610
|
425 |
|
athos@610
|
426 |
|
athos@671
|
427 |
//return i;
|
athos@610
|
428 |
}
|
athos@610
|
429 |
|
athos@610
|
430 |
|
athos@610
|
431 |
|
athos@610
|
432 |
|
athos@661
|
433 |
///This function gives back the total cost of the found paths.
|
athos@610
|
434 |
///Assumes that \c run() has been run and nothing changed since then.
|
athos@661
|
435 |
Cost totalCost(){
|
athos@661
|
436 |
return total_cost;
|
athos@610
|
437 |
}
|
athos@610
|
438 |
|
athos@610
|
439 |
///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must
|
athos@610
|
440 |
///be called before using this function.
|
athos@662
|
441 |
const FlowMap &getFlow() const { return flow;}
|
athos@610
|
442 |
|
athos@610
|
443 |
///Returns a const reference to the NodeMap \c potential (the dual solution).
|
athos@610
|
444 |
/// \pre \ref run() must be called before using this function.
|
athos@662
|
445 |
const PotentialMap &getPotential() const { return potential;}
|
athos@610
|
446 |
|
athos@610
|
447 |
///This function checks, whether the given solution is optimal
|
athos@610
|
448 |
///Running after a \c run() should return with true
|
athos@672
|
449 |
///In this "state of the art" this only checks optimality, doesn't bother with feasibility
|
athos@610
|
450 |
///
|
athos@610
|
451 |
///\todo Is this OK here?
|
athos@610
|
452 |
bool checkComplementarySlackness(){
|
athos@661
|
453 |
Cost mod_pot;
|
athos@661
|
454 |
Cost fl_e;
|
athos@659
|
455 |
FOR_EACH_LOC(typename Graph::EdgeIt, e, graph){
|
athos@610
|
456 |
//C^{\Pi}_{i,j}
|
alpar@986
|
457 |
mod_pot = cost[e]-potential[graph.target(e)]+potential[graph.source(e)];
|
athos@610
|
458 |
fl_e = flow[e];
|
athos@610
|
459 |
// std::cout << fl_e << std::endl;
|
athos@672
|
460 |
if (mod_pot > 0 && fl_e != 0)
|
athos@672
|
461 |
return false;
|
athos@672
|
462 |
|
athos@610
|
463 |
}
|
athos@610
|
464 |
return true;
|
athos@610
|
465 |
}
|
athos@672
|
466 |
|
athos@672
|
467 |
/*
|
athos@672
|
468 |
//For testing purposes only
|
athos@672
|
469 |
//Lists the node_properties
|
athos@672
|
470 |
void write_property_vector(const SupplyDemandMap& a,
|
athos@672
|
471 |
char* prop_name="property"){
|
athos@672
|
472 |
FOR_EACH_LOC(typename Graph::NodeIt, i, graph){
|
athos@672
|
473 |
cout<<"Node id.: "<<graph.id(i)<<", "<<prop_name<<" value: "<<a[i]<<endl;
|
athos@672
|
474 |
}
|
athos@672
|
475 |
cout<<endl;
|
athos@672
|
476 |
}
|
athos@672
|
477 |
*/
|
athos@672
|
478 |
bool checkFeasibility(){
|
athos@672
|
479 |
SupplyDemandMap supdem(graph);
|
athos@672
|
480 |
FOR_EACH_LOC(typename Graph::EdgeIt, e, graph){
|
athos@672
|
481 |
|
athos@672
|
482 |
if ( flow[e] < 0){
|
athos@672
|
483 |
|
athos@672
|
484 |
return false;
|
athos@672
|
485 |
}
|
alpar@986
|
486 |
supdem[graph.source(e)] += flow[e];
|
alpar@986
|
487 |
supdem[graph.target(e)] -= flow[e];
|
athos@672
|
488 |
}
|
athos@672
|
489 |
//write_property_vector(supdem, "supdem");
|
athos@672
|
490 |
//write_property_vector(supply_demand, "supply_demand");
|
athos@672
|
491 |
|
athos@672
|
492 |
FOR_EACH_LOC(typename Graph::NodeIt, n, graph){
|
athos@672
|
493 |
|
athos@672
|
494 |
if ( supdem[n] != supply_demand[n]){
|
athos@672
|
495 |
//cout<<"Node id.: "<<graph.id(n)<<" : "<<supdem[n]<<", should be: "<<supply_demand[n]<<endl;
|
athos@672
|
496 |
return false;
|
athos@672
|
497 |
}
|
athos@672
|
498 |
}
|
athos@672
|
499 |
|
athos@672
|
500 |
return true;
|
athos@672
|
501 |
}
|
athos@672
|
502 |
|
athos@672
|
503 |
bool checkOptimality(){
|
athos@672
|
504 |
return checkFeasibility() && checkComplementarySlackness();
|
athos@672
|
505 |
}
|
athos@610
|
506 |
|
athos@633
|
507 |
}; //class MinCostFlow
|
athos@610
|
508 |
|
athos@610
|
509 |
///@}
|
athos@610
|
510 |
|
alpar@921
|
511 |
} //namespace lemon
|
athos@610
|
512 |
|
alpar@921
|
513 |
#endif //LEMON_MINCOSTFLOW_H
|