lemon/bipartite_matching.h
author ladanyi
Fri, 14 Apr 2006 18:53:56 +0000
changeset 2055 ec3f86917e42
parent 2040 c7bd55c0d820
child 2058 0b1fc1566fdb
permissions -rw-r--r--
po update
deba@2040
     1
/* -*- C++ -*-
deba@2040
     2
 *
deba@2040
     3
 * This file is a part of LEMON, a generic C++ optimization library
deba@2040
     4
 *
deba@2040
     5
 * Copyright (C) 2003-2006
deba@2040
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@2040
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@2040
     8
 *
deba@2040
     9
 * Permission to use, modify and distribute this software is granted
deba@2040
    10
 * provided that this copyright notice appears in all copies. For
deba@2040
    11
 * precise terms see the accompanying LICENSE file.
deba@2040
    12
 *
deba@2040
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@2040
    14
 * express or implied, and with no claim as to its suitability for any
deba@2040
    15
 * purpose.
deba@2040
    16
 *
deba@2040
    17
 */
deba@2040
    18
deba@2040
    19
#ifndef LEMON_BIPARTITE_MATCHING
deba@2040
    20
#define LEMON_BIPARTITE_MATCHING
deba@2040
    21
deba@2051
    22
#include <functional>
deba@2051
    23
deba@2051
    24
#include <lemon/bin_heap.h>
deba@2051
    25
#include <lemon/maps.h>
deba@2040
    26
deba@2040
    27
#include <iostream>
deba@2040
    28
deba@2040
    29
///\ingroup matching
deba@2040
    30
///\file
deba@2040
    31
///\brief Maximum matching algorithms in bipartite graphs.
deba@2040
    32
deba@2040
    33
namespace lemon {
deba@2040
    34
deba@2040
    35
  /// \ingroup matching
deba@2040
    36
  ///
deba@2040
    37
  /// \brief Bipartite Max Cardinality Matching algorithm
deba@2040
    38
  ///
deba@2040
    39
  /// Bipartite Max Cardinality Matching algorithm. This class implements
deba@2051
    40
  /// the Hopcroft-Karp algorithm which has \f$ O(e\sqrt{n}) \f$ time
deba@2040
    41
  /// complexity.
deba@2040
    42
  template <typename BpUGraph>
deba@2040
    43
  class MaxBipartiteMatching {
deba@2040
    44
  protected:
deba@2040
    45
deba@2040
    46
    typedef BpUGraph Graph;
deba@2040
    47
deba@2040
    48
    typedef typename Graph::Node Node;
deba@2040
    49
    typedef typename Graph::ANodeIt ANodeIt;
deba@2040
    50
    typedef typename Graph::BNodeIt BNodeIt;
deba@2040
    51
    typedef typename Graph::UEdge UEdge;
deba@2040
    52
    typedef typename Graph::UEdgeIt UEdgeIt;
deba@2040
    53
    typedef typename Graph::IncEdgeIt IncEdgeIt;
deba@2040
    54
deba@2040
    55
    typedef typename BpUGraph::template ANodeMap<UEdge> ANodeMatchingMap;
deba@2040
    56
    typedef typename BpUGraph::template BNodeMap<UEdge> BNodeMatchingMap;
deba@2040
    57
deba@2040
    58
deba@2040
    59
  public:
deba@2040
    60
deba@2040
    61
    /// \brief Constructor.
deba@2040
    62
    ///
deba@2040
    63
    /// Constructor of the algorithm. 
deba@2040
    64
    MaxBipartiteMatching(const BpUGraph& _graph) 
deba@2040
    65
      : anode_matching(_graph), bnode_matching(_graph), graph(&_graph) {}
deba@2040
    66
deba@2040
    67
    /// \name Execution control
deba@2040
    68
    /// The simplest way to execute the algorithm is to use
deba@2040
    69
    /// one of the member functions called \c run().
deba@2040
    70
    /// \n
deba@2040
    71
    /// If you need more control on the execution,
deba@2040
    72
    /// first you must call \ref init() or one alternative for it.
deba@2040
    73
    /// Finally \ref start() will perform the matching computation or
deba@2040
    74
    /// with step-by-step execution you can augment the solution.
deba@2040
    75
deba@2040
    76
    /// @{
deba@2040
    77
deba@2040
    78
    /// \brief Initalize the data structures.
deba@2040
    79
    ///
deba@2040
    80
    /// It initalizes the data structures and creates an empty matching.
deba@2040
    81
    void init() {
deba@2040
    82
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2040
    83
        anode_matching[it] = INVALID;
deba@2040
    84
      }
deba@2040
    85
      for (BNodeIt it(*graph); it != INVALID; ++it) {
deba@2040
    86
        bnode_matching[it] = INVALID;
deba@2040
    87
      }
deba@2051
    88
      matching_size = 0;
deba@2040
    89
    }
deba@2040
    90
deba@2040
    91
    /// \brief Initalize the data structures.
deba@2040
    92
    ///
deba@2040
    93
    /// It initalizes the data structures and creates a greedy
deba@2040
    94
    /// matching.  From this matching sometimes it is faster to get
deba@2040
    95
    /// the matching than from the initial empty matching.
deba@2040
    96
    void greedyInit() {
deba@2051
    97
      matching_size = 0;
deba@2040
    98
      for (BNodeIt it(*graph); it != INVALID; ++it) {
deba@2040
    99
        bnode_matching[it] = INVALID;
deba@2040
   100
      }
deba@2040
   101
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2040
   102
        anode_matching[it] = INVALID;
deba@2040
   103
        for (IncEdgeIt jt(*graph, it); jt != INVALID; ++jt) {
deba@2040
   104
          if (bnode_matching[graph->bNode(jt)] == INVALID) {
deba@2040
   105
            anode_matching[it] = jt;
deba@2040
   106
            bnode_matching[graph->bNode(jt)] = jt;
deba@2051
   107
            ++matching_size;
deba@2040
   108
            break;
deba@2040
   109
          }
deba@2040
   110
        }
deba@2040
   111
      }
deba@2040
   112
    }
deba@2040
   113
deba@2040
   114
    /// \brief Initalize the data structures with an initial matching.
deba@2040
   115
    ///
deba@2040
   116
    /// It initalizes the data structures with an initial matching.
deba@2040
   117
    template <typename MatchingMap>
deba@2040
   118
    void matchingInit(const MatchingMap& matching) {
deba@2040
   119
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2040
   120
        anode_matching[it] = INVALID;
deba@2040
   121
      }
deba@2040
   122
      for (BNodeIt it(*graph); it != INVALID; ++it) {
deba@2040
   123
        bnode_matching[it] = INVALID;
deba@2040
   124
      }
deba@2051
   125
      matching_size = 0;
deba@2040
   126
      for (UEdgeIt it(*graph); it != INVALID; ++it) {
deba@2040
   127
        if (matching[it]) {
deba@2051
   128
          ++matching_size;
deba@2040
   129
          anode_matching[graph->aNode(it)] = it;
deba@2040
   130
          bnode_matching[graph->bNode(it)] = it;
deba@2040
   131
        }
deba@2040
   132
      }
deba@2040
   133
    }
deba@2040
   134
deba@2040
   135
    /// \brief Initalize the data structures with an initial matching.
deba@2040
   136
    ///
deba@2040
   137
    /// It initalizes the data structures with an initial matching.
deba@2040
   138
    /// \return %True when the given map contains really a matching.
deba@2040
   139
    template <typename MatchingMap>
deba@2040
   140
    void checkedMatchingInit(const MatchingMap& matching) {
deba@2040
   141
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2040
   142
        anode_matching[it] = INVALID;
deba@2040
   143
      }
deba@2040
   144
      for (BNodeIt it(*graph); it != INVALID; ++it) {
deba@2040
   145
        bnode_matching[it] = INVALID;
deba@2040
   146
      }
deba@2051
   147
      matching_size = 0;
deba@2040
   148
      for (UEdgeIt it(*graph); it != INVALID; ++it) {
deba@2040
   149
        if (matching[it]) {
deba@2051
   150
          ++matching_size;
deba@2040
   151
          if (anode_matching[graph->aNode(it)] != INVALID) {
deba@2040
   152
            return false;
deba@2040
   153
          }
deba@2040
   154
          anode_matching[graph->aNode(it)] = it;
deba@2040
   155
          if (bnode_matching[graph->aNode(it)] != INVALID) {
deba@2040
   156
            return false;
deba@2040
   157
          }
deba@2040
   158
          bnode_matching[graph->bNode(it)] = it;
deba@2040
   159
        }
deba@2040
   160
      }
deba@2040
   161
      return false;
deba@2040
   162
    }
deba@2040
   163
deba@2040
   164
    /// \brief An augmenting phase of the Hopcroft-Karp algorithm
deba@2040
   165
    ///
deba@2040
   166
    /// It runs an augmenting phase of the Hopcroft-Karp
deba@2040
   167
    /// algorithm. The phase finds maximum count of edge disjoint
deba@2040
   168
    /// augmenting paths and augments on these paths. The algorithm
deba@2040
   169
    /// consists at most of \f$ O(\sqrt{n}) \f$ phase and one phase is
deba@2040
   170
    /// \f$ O(e) \f$ long.
deba@2040
   171
    bool augment() {
deba@2040
   172
deba@2040
   173
      typename Graph::template ANodeMap<bool> areached(*graph, false);
deba@2040
   174
      typename Graph::template BNodeMap<bool> breached(*graph, false);
deba@2040
   175
deba@2040
   176
      typename Graph::template BNodeMap<UEdge> bpred(*graph, INVALID);
deba@2040
   177
deba@2040
   178
      std::vector<Node> queue, bqueue;
deba@2040
   179
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2040
   180
        if (anode_matching[it] == INVALID) {
deba@2040
   181
          queue.push_back(it);
deba@2040
   182
          areached[it] = true;
deba@2040
   183
        }
deba@2040
   184
      }
deba@2040
   185
deba@2040
   186
      bool success = false;
deba@2040
   187
deba@2040
   188
      while (!success && !queue.empty()) {
deba@2040
   189
        std::vector<Node> newqueue;
deba@2040
   190
        for (int i = 0; i < (int)queue.size(); ++i) {
deba@2040
   191
          Node anode = queue[i];
deba@2040
   192
          for (IncEdgeIt jt(*graph, anode); jt != INVALID; ++jt) {
deba@2040
   193
            Node bnode = graph->bNode(jt);
deba@2040
   194
            if (breached[bnode]) continue;
deba@2040
   195
            breached[bnode] = true;
deba@2040
   196
            bpred[bnode] = jt;
deba@2040
   197
            if (bnode_matching[bnode] == INVALID) {
deba@2040
   198
              bqueue.push_back(bnode);
deba@2040
   199
              success = true;
deba@2040
   200
            } else {           
deba@2040
   201
              Node newanode = graph->aNode(bnode_matching[bnode]);
deba@2040
   202
              if (!areached[newanode]) {
deba@2040
   203
                areached[newanode] = true;
deba@2040
   204
                newqueue.push_back(newanode);
deba@2040
   205
              }
deba@2040
   206
            }
deba@2040
   207
          }
deba@2040
   208
        }
deba@2040
   209
        queue.swap(newqueue);
deba@2040
   210
      }
deba@2040
   211
deba@2040
   212
      if (success) {
deba@2040
   213
deba@2040
   214
        typename Graph::template ANodeMap<bool> aused(*graph, false);
deba@2040
   215
        
deba@2040
   216
        for (int i = 0; i < (int)bqueue.size(); ++i) {
deba@2040
   217
          Node bnode = bqueue[i];
deba@2040
   218
deba@2040
   219
          bool used = false;
deba@2040
   220
deba@2040
   221
          while (bnode != INVALID) {
deba@2040
   222
            UEdge uedge = bpred[bnode];
deba@2040
   223
            Node anode = graph->aNode(uedge);
deba@2040
   224
            
deba@2040
   225
            if (aused[anode]) {
deba@2040
   226
              used = true;
deba@2040
   227
              break;
deba@2040
   228
            }
deba@2040
   229
            
deba@2040
   230
            bnode = anode_matching[anode] != INVALID ? 
deba@2040
   231
              graph->bNode(anode_matching[anode]) : INVALID;
deba@2040
   232
            
deba@2040
   233
          }
deba@2040
   234
          
deba@2040
   235
          if (used) continue;
deba@2040
   236
deba@2040
   237
          bnode = bqueue[i];
deba@2040
   238
          while (bnode != INVALID) {
deba@2040
   239
            UEdge uedge = bpred[bnode];
deba@2040
   240
            Node anode = graph->aNode(uedge);
deba@2040
   241
            
deba@2040
   242
            bnode_matching[bnode] = uedge;
deba@2040
   243
deba@2040
   244
            bnode = anode_matching[anode] != INVALID ? 
deba@2040
   245
              graph->bNode(anode_matching[anode]) : INVALID;
deba@2040
   246
            
deba@2040
   247
            anode_matching[anode] = uedge;
deba@2040
   248
deba@2040
   249
            aused[anode] = true;
deba@2040
   250
          }
deba@2051
   251
          ++matching_size;
deba@2040
   252
deba@2040
   253
        }
deba@2040
   254
      }
deba@2040
   255
      return success;
deba@2040
   256
    }
deba@2040
   257
deba@2040
   258
    /// \brief An augmenting phase of the Ford-Fulkerson algorithm
deba@2040
   259
    ///
deba@2040
   260
    /// It runs an augmenting phase of the Ford-Fulkerson
deba@2040
   261
    /// algorithm. The phase finds only one augmenting path and 
deba@2040
   262
    /// augments only on this paths. The algorithm consists at most 
deba@2040
   263
    /// of \f$ O(n) \f$ simple phase and one phase is at most 
deba@2040
   264
    /// \f$ O(e) \f$ long.
deba@2040
   265
    bool simpleAugment() {
deba@2040
   266
deba@2040
   267
      typename Graph::template ANodeMap<bool> areached(*graph, false);
deba@2040
   268
      typename Graph::template BNodeMap<bool> breached(*graph, false);
deba@2040
   269
deba@2040
   270
      typename Graph::template BNodeMap<UEdge> bpred(*graph, INVALID);
deba@2040
   271
deba@2040
   272
      std::vector<Node> queue;
deba@2040
   273
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2040
   274
        if (anode_matching[it] == INVALID) {
deba@2040
   275
          queue.push_back(it);
deba@2040
   276
          areached[it] = true;
deba@2040
   277
        }
deba@2040
   278
      }
deba@2040
   279
deba@2040
   280
      while (!queue.empty()) {
deba@2040
   281
        std::vector<Node> newqueue;
deba@2040
   282
        for (int i = 0; i < (int)queue.size(); ++i) {
deba@2040
   283
          Node anode = queue[i];
deba@2040
   284
          for (IncEdgeIt jt(*graph, anode); jt != INVALID; ++jt) {
deba@2040
   285
            Node bnode = graph->bNode(jt);
deba@2040
   286
            if (breached[bnode]) continue;
deba@2040
   287
            breached[bnode] = true;
deba@2040
   288
            bpred[bnode] = jt;
deba@2040
   289
            if (bnode_matching[bnode] == INVALID) {
deba@2040
   290
              while (bnode != INVALID) {
deba@2040
   291
                UEdge uedge = bpred[bnode];
deba@2040
   292
                anode = graph->aNode(uedge);
deba@2040
   293
                
deba@2040
   294
                bnode_matching[bnode] = uedge;
deba@2040
   295
                
deba@2040
   296
                bnode = anode_matching[anode] != INVALID ? 
deba@2040
   297
                  graph->bNode(anode_matching[anode]) : INVALID;
deba@2040
   298
                
deba@2040
   299
                anode_matching[anode] = uedge;
deba@2040
   300
                
deba@2040
   301
              }
deba@2051
   302
              ++matching_size;
deba@2040
   303
              return true;
deba@2040
   304
            } else {           
deba@2040
   305
              Node newanode = graph->aNode(bnode_matching[bnode]);
deba@2040
   306
              if (!areached[newanode]) {
deba@2040
   307
                areached[newanode] = true;
deba@2040
   308
                newqueue.push_back(newanode);
deba@2040
   309
              }
deba@2040
   310
            }
deba@2040
   311
          }
deba@2040
   312
        }
deba@2040
   313
        queue.swap(newqueue);
deba@2040
   314
      }
deba@2040
   315
      
deba@2040
   316
      return false;
deba@2040
   317
    }
deba@2040
   318
deba@2040
   319
    /// \brief Starts the algorithm.
deba@2040
   320
    ///
deba@2040
   321
    /// Starts the algorithm. It runs augmenting phases until the optimal
deba@2040
   322
    /// solution reached.
deba@2040
   323
    void start() {
deba@2040
   324
      while (augment()) {}
deba@2040
   325
    }
deba@2040
   326
deba@2040
   327
    /// \brief Runs the algorithm.
deba@2040
   328
    ///
deba@2040
   329
    /// It just initalize the algorithm and then start it.
deba@2040
   330
    void run() {
deba@2040
   331
      init();
deba@2040
   332
      start();
deba@2040
   333
    }
deba@2040
   334
deba@2040
   335
    /// @}
deba@2040
   336
deba@2040
   337
    /// \name Query Functions
deba@2040
   338
    /// The result of the %Matching algorithm can be obtained using these
deba@2040
   339
    /// functions.\n
deba@2040
   340
    /// Before the use of these functions,
deba@2040
   341
    /// either run() or start() must be called.
deba@2040
   342
    
deba@2040
   343
    ///@{
deba@2040
   344
deba@2040
   345
    /// \brief Returns an minimum covering of the nodes.
deba@2040
   346
    ///
deba@2040
   347
    /// The minimum covering set problem is the dual solution of the
deba@2040
   348
    /// maximum bipartite matching. It provides an solution for this
deba@2040
   349
    /// problem what is proof of the optimality of the matching.
deba@2040
   350
    /// \return The size of the cover set.
deba@2040
   351
    template <typename CoverMap>
deba@2040
   352
    int coverSet(CoverMap& covering) {
deba@2040
   353
deba@2040
   354
      typename Graph::template ANodeMap<bool> areached(*graph, false);
deba@2040
   355
      typename Graph::template BNodeMap<bool> breached(*graph, false);
deba@2040
   356
      
deba@2040
   357
      std::vector<Node> queue;
deba@2040
   358
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2040
   359
        if (anode_matching[it] == INVALID) {
deba@2040
   360
          queue.push_back(it);
deba@2040
   361
        }
deba@2040
   362
      }
deba@2040
   363
deba@2040
   364
      while (!queue.empty()) {
deba@2040
   365
        std::vector<Node> newqueue;
deba@2040
   366
        for (int i = 0; i < (int)queue.size(); ++i) {
deba@2040
   367
          Node anode = queue[i];
deba@2040
   368
          for (IncEdgeIt jt(*graph, anode); jt != INVALID; ++jt) {
deba@2040
   369
            Node bnode = graph->bNode(jt);
deba@2040
   370
            if (breached[bnode]) continue;
deba@2040
   371
            breached[bnode] = true;
deba@2040
   372
            if (bnode_matching[bnode] != INVALID) {
deba@2040
   373
              Node newanode = graph->aNode(bnode_matching[bnode]);
deba@2040
   374
              if (!areached[newanode]) {
deba@2040
   375
                areached[newanode] = true;
deba@2040
   376
                newqueue.push_back(newanode);
deba@2040
   377
              }
deba@2040
   378
            }
deba@2040
   379
          }
deba@2040
   380
        }
deba@2040
   381
        queue.swap(newqueue);
deba@2040
   382
      }
deba@2040
   383
deba@2040
   384
      int size = 0;
deba@2040
   385
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2040
   386
        covering[it] = !areached[it] && anode_matching[it] != INVALID;
deba@2040
   387
        if (!areached[it] && anode_matching[it] != INVALID) {
deba@2040
   388
          ++size;
deba@2040
   389
        }
deba@2040
   390
      }
deba@2040
   391
      for (BNodeIt it(*graph); it != INVALID; ++it) {
deba@2040
   392
        covering[it] = breached[it];
deba@2040
   393
        if (breached[it]) {
deba@2040
   394
          ++size;
deba@2040
   395
        }
deba@2040
   396
      }
deba@2040
   397
      return size;
deba@2040
   398
    }
deba@2040
   399
deba@2040
   400
    /// \brief Set true all matching uedge in the map.
deba@2040
   401
    /// 
deba@2040
   402
    /// Set true all matching uedge in the map. It does not change the
deba@2040
   403
    /// value mapped to the other uedges.
deba@2040
   404
    /// \return The number of the matching edges.
deba@2040
   405
    template <typename MatchingMap>
deba@2040
   406
    int quickMatching(MatchingMap& matching) {
deba@2040
   407
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2040
   408
        if (anode_matching[it] != INVALID) {
deba@2040
   409
          matching[anode_matching[it]] = true;
deba@2040
   410
        }
deba@2040
   411
      }
deba@2051
   412
      return matching_size;
deba@2040
   413
    }
deba@2040
   414
deba@2040
   415
    /// \brief Set true all matching uedge in the map and the others to false.
deba@2040
   416
    /// 
deba@2040
   417
    /// Set true all matching uedge in the map and the others to false.
deba@2040
   418
    /// \return The number of the matching edges.
deba@2040
   419
    template <typename MatchingMap>
deba@2040
   420
    int matching(MatchingMap& matching) {
deba@2040
   421
      for (UEdgeIt it(*graph); it != INVALID; ++it) {
deba@2040
   422
        matching[it] = it == anode_matching[graph->aNode(it)];
deba@2040
   423
      }
deba@2051
   424
      return matching_size;
deba@2040
   425
    }
deba@2040
   426
deba@2040
   427
deba@2040
   428
    /// \brief Return true if the given uedge is in the matching.
deba@2040
   429
    /// 
deba@2040
   430
    /// It returns true if the given uedge is in the matching.
deba@2040
   431
    bool matchingEdge(const UEdge& edge) {
deba@2040
   432
      return anode_matching[graph->aNode(edge)] == edge;
deba@2040
   433
    }
deba@2040
   434
deba@2040
   435
    /// \brief Returns the matching edge from the node.
deba@2040
   436
    /// 
deba@2040
   437
    /// Returns the matching edge from the node. If there is not such
deba@2040
   438
    /// edge it gives back \c INVALID.
deba@2040
   439
    UEdge matchingEdge(const Node& node) {
deba@2040
   440
      if (graph->aNode(node)) {
deba@2040
   441
        return anode_matching[node];
deba@2040
   442
      } else {
deba@2040
   443
        return bnode_matching[node];
deba@2040
   444
      }
deba@2040
   445
    }
deba@2040
   446
deba@2040
   447
    /// \brief Gives back the number of the matching edges.
deba@2040
   448
    ///
deba@2040
   449
    /// Gives back the number of the matching edges.
deba@2051
   450
    int matchingSize() const {
deba@2051
   451
      return matching_size;
deba@2040
   452
    }
deba@2040
   453
deba@2040
   454
    /// @}
deba@2040
   455
deba@2040
   456
  private:
deba@2040
   457
deba@2040
   458
    ANodeMatchingMap anode_matching;
deba@2040
   459
    BNodeMatchingMap bnode_matching;
deba@2040
   460
    const Graph *graph;
deba@2040
   461
deba@2051
   462
    int matching_size;
deba@2051
   463
  
deba@2051
   464
  };
deba@2051
   465
deba@2051
   466
  /// \brief Default traits class for weighted bipartite matching algoritms.
deba@2051
   467
  ///
deba@2051
   468
  /// Default traits class for weighted bipartite matching algoritms.
deba@2051
   469
  /// \param _BpUGraph The bipartite undirected graph type.
deba@2051
   470
  /// \param _WeightMap Type of weight map.
deba@2051
   471
  template <typename _BpUGraph, typename _WeightMap>
deba@2051
   472
  struct WeightedBipartiteMatchingDefaultTraits {
deba@2051
   473
    /// \brief The type of the weight of the undirected edges.
deba@2051
   474
    typedef typename _WeightMap::Value Value;
deba@2051
   475
deba@2051
   476
    /// The undirected bipartite graph type the algorithm runs on. 
deba@2051
   477
    typedef _BpUGraph BpUGraph;
deba@2051
   478
deba@2051
   479
    /// The map of the edges weights
deba@2051
   480
    typedef _WeightMap WeightMap;
deba@2051
   481
deba@2051
   482
    /// \brief The cross reference type used by heap.
deba@2051
   483
    ///
deba@2051
   484
    /// The cross reference type used by heap.
deba@2051
   485
    /// Usually it is \c Graph::NodeMap<int>.
deba@2051
   486
    typedef typename BpUGraph::template NodeMap<int> HeapCrossRef;
deba@2051
   487
deba@2051
   488
    /// \brief Instantiates a HeapCrossRef.
deba@2051
   489
    ///
deba@2051
   490
    /// This function instantiates a \ref HeapCrossRef. 
deba@2051
   491
    /// \param graph is the graph, to which we would like to define the 
deba@2051
   492
    /// HeapCrossRef.
deba@2051
   493
    static HeapCrossRef *createHeapCrossRef(const BpUGraph &graph) {
deba@2051
   494
      return new HeapCrossRef(graph);
deba@2051
   495
    }
deba@2051
   496
    
deba@2051
   497
    /// \brief The heap type used by weighted matching algorithms.
deba@2051
   498
    ///
deba@2051
   499
    /// The heap type used by weighted matching algorithms. It should
deba@2051
   500
    /// minimize the priorities and the heap's key type is the graph's
deba@2051
   501
    /// anode graph's node.
deba@2051
   502
    ///
deba@2051
   503
    /// \sa BinHeap
deba@2051
   504
    typedef BinHeap<typename BpUGraph::Node, Value, HeapCrossRef> Heap;
deba@2051
   505
    
deba@2051
   506
    /// \brief Instantiates a Heap.
deba@2051
   507
    ///
deba@2051
   508
    /// This function instantiates a \ref Heap. 
deba@2051
   509
    /// \param crossref The cross reference of the heap.
deba@2051
   510
    static Heap *createHeap(HeapCrossRef& crossref) {
deba@2051
   511
      return new Heap(crossref);
deba@2051
   512
    }
deba@2051
   513
deba@2051
   514
  };
deba@2051
   515
deba@2051
   516
deba@2051
   517
  /// \ingroup matching
deba@2051
   518
  ///
deba@2051
   519
  /// \brief Bipartite Max Weighted Matching algorithm
deba@2051
   520
  ///
deba@2051
   521
  /// This class implements the bipartite Max Weighted Matching
deba@2051
   522
  /// algorithm.  It uses the successive shortest path algorithm to
deba@2051
   523
  /// calculate the maximum weighted matching in the bipartite
deba@2051
   524
  /// graph. The algorithm can be used also to calculate the maximum
deba@2051
   525
  /// cardinality maximum weighted matching. The time complexity
deba@2051
   526
  /// of the algorithm is \f$ O(ne\log(n)) \f$ with the default binary
deba@2051
   527
  /// heap implementation but this can be improved to 
deba@2051
   528
  /// \f$ O(n^2\log(n)+ne) \f$ if we use fibonacci heaps.
deba@2051
   529
  ///
deba@2051
   530
  /// The algorithm also provides a potential function on the nodes
deba@2051
   531
  /// which a dual solution of the matching algorithm and it can be
deba@2051
   532
  /// used to proof the optimality of the given pimal solution.
deba@2051
   533
#ifdef DOXYGEN
deba@2051
   534
  template <typename _BpUGraph, typename _WeightMap, typename _Traits>
deba@2051
   535
#else
deba@2051
   536
  template <typename _BpUGraph, 
deba@2051
   537
            typename _WeightMap = typename _BpUGraph::template UEdgeMap<int>,
deba@2051
   538
            typename _Traits = WeightedBipartiteMatchingDefaultTraits<_BpUGraph, _WeightMap> >
deba@2051
   539
#endif
deba@2051
   540
  class MaxWeightedBipartiteMatching {
deba@2051
   541
  public:
deba@2051
   542
deba@2051
   543
    typedef _Traits Traits;
deba@2051
   544
    typedef typename Traits::BpUGraph BpUGraph;
deba@2051
   545
    typedef typename Traits::WeightMap WeightMap;
deba@2051
   546
    typedef typename Traits::Value Value;
deba@2051
   547
deba@2051
   548
  protected:
deba@2051
   549
deba@2051
   550
    typedef typename Traits::HeapCrossRef HeapCrossRef;
deba@2051
   551
    typedef typename Traits::Heap Heap; 
deba@2051
   552
deba@2051
   553
    
deba@2051
   554
    typedef typename BpUGraph::Node Node;
deba@2051
   555
    typedef typename BpUGraph::ANodeIt ANodeIt;
deba@2051
   556
    typedef typename BpUGraph::BNodeIt BNodeIt;
deba@2051
   557
    typedef typename BpUGraph::UEdge UEdge;
deba@2051
   558
    typedef typename BpUGraph::UEdgeIt UEdgeIt;
deba@2051
   559
    typedef typename BpUGraph::IncEdgeIt IncEdgeIt;
deba@2051
   560
deba@2051
   561
    typedef typename BpUGraph::template ANodeMap<UEdge> ANodeMatchingMap;
deba@2051
   562
    typedef typename BpUGraph::template BNodeMap<UEdge> BNodeMatchingMap;
deba@2051
   563
deba@2051
   564
    typedef typename BpUGraph::template ANodeMap<Value> ANodePotentialMap;
deba@2051
   565
    typedef typename BpUGraph::template BNodeMap<Value> BNodePotentialMap;
deba@2051
   566
deba@2051
   567
deba@2051
   568
  public:
deba@2051
   569
deba@2051
   570
    /// \brief \ref Exception for uninitialized parameters.
deba@2051
   571
    ///
deba@2051
   572
    /// This error represents problems in the initialization
deba@2051
   573
    /// of the parameters of the algorithms.
deba@2051
   574
    class UninitializedParameter : public lemon::UninitializedParameter {
deba@2051
   575
    public:
deba@2051
   576
      virtual const char* exceptionName() const {
deba@2051
   577
	return "lemon::MaxWeightedBipartiteMatching::UninitializedParameter";
deba@2051
   578
      }
deba@2051
   579
    };
deba@2051
   580
deba@2051
   581
    ///\name Named template parameters
deba@2051
   582
deba@2051
   583
    ///@{
deba@2051
   584
deba@2051
   585
    template <class H, class CR>
deba@2051
   586
    struct DefHeapTraits : public Traits {
deba@2051
   587
      typedef CR HeapCrossRef;
deba@2051
   588
      typedef H Heap;
deba@2051
   589
      static HeapCrossRef *createHeapCrossRef(const BpUGraph &) {
deba@2051
   590
	throw UninitializedParameter();
deba@2051
   591
      }
deba@2051
   592
      static Heap *createHeap(HeapCrossRef &) {
deba@2051
   593
	throw UninitializedParameter();
deba@2051
   594
      }
deba@2051
   595
    };
deba@2051
   596
deba@2051
   597
    /// \brief \ref named-templ-param "Named parameter" for setting heap 
deba@2051
   598
    /// and cross reference type
deba@2051
   599
    ///
deba@2051
   600
    /// \ref named-templ-param "Named parameter" for setting heap and cross 
deba@2051
   601
    /// reference type
deba@2051
   602
    template <class H, class CR = typename BpUGraph::template NodeMap<int> >
deba@2051
   603
    struct DefHeap
deba@2051
   604
      : public MaxWeightedBipartiteMatching<BpUGraph, WeightMap, 
deba@2051
   605
                                            DefHeapTraits<H, CR> > { 
deba@2051
   606
      typedef MaxWeightedBipartiteMatching<BpUGraph, WeightMap, 
deba@2051
   607
                                           DefHeapTraits<H, CR> > Create;
deba@2051
   608
    };
deba@2051
   609
deba@2051
   610
    template <class H, class CR>
deba@2051
   611
    struct DefStandardHeapTraits : public Traits {
deba@2051
   612
      typedef CR HeapCrossRef;
deba@2051
   613
      typedef H Heap;
deba@2051
   614
      static HeapCrossRef *createHeapCrossRef(const BpUGraph &graph) {
deba@2051
   615
	return new HeapCrossRef(graph);
deba@2051
   616
      }
deba@2051
   617
      static Heap *createHeap(HeapCrossRef &crossref) {
deba@2051
   618
	return new Heap(crossref);
deba@2051
   619
      }
deba@2051
   620
    };
deba@2051
   621
deba@2051
   622
    /// \brief \ref named-templ-param "Named parameter" for setting heap and 
deba@2051
   623
    /// cross reference type with automatic allocation
deba@2051
   624
    ///
deba@2051
   625
    /// \ref named-templ-param "Named parameter" for setting heap and cross 
deba@2051
   626
    /// reference type. It can allocate the heap and the cross reference 
deba@2051
   627
    /// object if the cross reference's constructor waits for the graph as 
deba@2051
   628
    /// parameter and the heap's constructor waits for the cross reference.
deba@2051
   629
    template <class H, class CR = typename BpUGraph::template NodeMap<int> >
deba@2051
   630
    struct DefStandardHeap
deba@2051
   631
      : public MaxWeightedBipartiteMatching<BpUGraph, WeightMap, 
deba@2051
   632
                                            DefStandardHeapTraits<H, CR> > { 
deba@2051
   633
      typedef MaxWeightedBipartiteMatching<BpUGraph, WeightMap, 
deba@2051
   634
                                           DefStandardHeapTraits<H, CR> > 
deba@2051
   635
      Create;
deba@2051
   636
    };
deba@2051
   637
deba@2051
   638
    ///@}
deba@2051
   639
deba@2051
   640
deba@2051
   641
    /// \brief Constructor.
deba@2051
   642
    ///
deba@2051
   643
    /// Constructor of the algorithm. 
deba@2051
   644
    MaxWeightedBipartiteMatching(const BpUGraph& _graph, 
deba@2051
   645
                                 const WeightMap& _weight) 
deba@2051
   646
      : graph(&_graph), weight(&_weight),
deba@2051
   647
        anode_matching(_graph), bnode_matching(_graph),
deba@2051
   648
        anode_potential(_graph), bnode_potential(_graph),
deba@2051
   649
        _heap_cross_ref(0), local_heap_cross_ref(false),
deba@2051
   650
        _heap(0), local_heap(0) {}
deba@2051
   651
deba@2051
   652
    /// \brief Destructor.
deba@2051
   653
    ///
deba@2051
   654
    /// Destructor of the algorithm.
deba@2051
   655
    ~MaxWeightedBipartiteMatching() {
deba@2051
   656
      destroyStructures();
deba@2051
   657
    }
deba@2051
   658
deba@2051
   659
    /// \brief Sets the heap and the cross reference used by algorithm.
deba@2051
   660
    ///
deba@2051
   661
    /// Sets the heap and the cross reference used by algorithm.
deba@2051
   662
    /// If you don't use this function before calling \ref run(),
deba@2051
   663
    /// it will allocate one. The destuctor deallocates this
deba@2051
   664
    /// automatically allocated map, of course.
deba@2051
   665
    /// \return \c (*this)
deba@2051
   666
    MaxWeightedBipartiteMatching& heap(Heap& heap, HeapCrossRef &crossRef) {
deba@2051
   667
      if(local_heap_cross_ref) {
deba@2051
   668
	delete _heap_cross_ref;
deba@2051
   669
	local_heap_cross_ref = false;
deba@2051
   670
      }
deba@2051
   671
      _heap_cross_ref = &crossRef;
deba@2051
   672
      if(local_heap) {
deba@2051
   673
	delete _heap;
deba@2051
   674
	local_heap = false;
deba@2051
   675
      }
deba@2051
   676
      _heap = &heap;
deba@2051
   677
      return *this;
deba@2051
   678
    }
deba@2051
   679
deba@2051
   680
    /// \name Execution control
deba@2051
   681
    /// The simplest way to execute the algorithm is to use
deba@2051
   682
    /// one of the member functions called \c run().
deba@2051
   683
    /// \n
deba@2051
   684
    /// If you need more control on the execution,
deba@2051
   685
    /// first you must call \ref init() or one alternative for it.
deba@2051
   686
    /// Finally \ref start() will perform the matching computation or
deba@2051
   687
    /// with step-by-step execution you can augment the solution.
deba@2051
   688
deba@2051
   689
    /// @{
deba@2051
   690
deba@2051
   691
    /// \brief Initalize the data structures.
deba@2051
   692
    ///
deba@2051
   693
    /// It initalizes the data structures and creates an empty matching.
deba@2051
   694
    void init() {
deba@2051
   695
      initStructures();
deba@2051
   696
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2051
   697
        anode_matching[it] = INVALID;
deba@2051
   698
        anode_potential[it] = 0;
deba@2051
   699
      }
deba@2051
   700
      for (BNodeIt it(*graph); it != INVALID; ++it) {
deba@2051
   701
        bnode_matching[it] = INVALID;
deba@2051
   702
        bnode_potential[it] = 0;
deba@2051
   703
        for (IncEdgeIt jt(*graph, it); jt != INVALID; ++jt) {
deba@2051
   704
          if (-(*weight)[jt] <= bnode_potential[it]) {
deba@2051
   705
            bnode_potential[it] = -(*weight)[jt];
deba@2051
   706
          }
deba@2051
   707
        }
deba@2051
   708
      }
deba@2051
   709
      matching_value = 0;
deba@2051
   710
      matching_size = 0;
deba@2051
   711
    }
deba@2051
   712
deba@2051
   713
deba@2051
   714
    /// \brief An augmenting phase of the weighted matching algorithm
deba@2051
   715
    ///
deba@2051
   716
    /// It runs an augmenting phase of the weighted matching 
deba@2051
   717
    /// algorithm. The phase finds the best augmenting path and 
deba@2051
   718
    /// augments only on this paths. 
deba@2051
   719
    ///
deba@2051
   720
    /// The algorithm consists at most 
deba@2051
   721
    /// of \f$ O(n) \f$ phase and one phase is \f$ O(n\log(n)+e) \f$ 
deba@2051
   722
    /// long with Fibonacci heap or \f$ O((n+e)\log(n)) \f$ long 
deba@2051
   723
    /// with binary heap.
deba@2051
   724
    /// \param decrease If the given parameter true the matching value
deba@2051
   725
    /// can be decreased in the augmenting phase. If we would like
deba@2051
   726
    /// to calculate the maximum cardinality maximum weighted matching
deba@2051
   727
    /// then we should let the algorithm to decrease the matching
deba@2051
   728
    /// value in order to increase the number of the matching edges.
deba@2051
   729
    bool augment(bool decrease = false) {
deba@2051
   730
deba@2051
   731
      typename BpUGraph::template BNodeMap<Value> bdist(*graph);
deba@2051
   732
      typename BpUGraph::template BNodeMap<UEdge> bpred(*graph, INVALID);
deba@2051
   733
deba@2051
   734
      Node bestNode = INVALID;
deba@2051
   735
      Value bestValue = 0;
deba@2051
   736
deba@2051
   737
      _heap->clear();
deba@2051
   738
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2051
   739
        (*_heap_cross_ref)[it] = Heap::PRE_HEAP;
deba@2051
   740
      }
deba@2051
   741
deba@2051
   742
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2051
   743
        if (anode_matching[it] == INVALID) {
deba@2051
   744
          _heap->push(it, 0);
deba@2051
   745
        }
deba@2051
   746
      }
deba@2051
   747
deba@2051
   748
      Value bdistMax = 0;
deba@2051
   749
      while (!_heap->empty()) {
deba@2051
   750
        Node anode = _heap->top();
deba@2051
   751
        Value avalue = _heap->prio();
deba@2051
   752
        _heap->pop();
deba@2051
   753
        for (IncEdgeIt jt(*graph, anode); jt != INVALID; ++jt) {
deba@2051
   754
          if (jt == anode_matching[anode]) continue;
deba@2051
   755
          Node bnode = graph->bNode(jt);
deba@2051
   756
          Value bvalue = avalue + anode_potential[anode] - 
deba@2051
   757
            bnode_potential[bnode] - (*weight)[jt];
deba@2051
   758
          if (bpred[bnode] == INVALID || bvalue < bdist[bnode]) {
deba@2051
   759
            bdist[bnode] = bvalue;
deba@2051
   760
            bpred[bnode] = jt;
deba@2051
   761
          }
deba@2051
   762
          if (bvalue > bdistMax) {
deba@2051
   763
            bdistMax = bvalue;
deba@2051
   764
          }
deba@2051
   765
          if (bnode_matching[bnode] != INVALID) {
deba@2051
   766
            Node newanode = graph->aNode(bnode_matching[bnode]);
deba@2051
   767
            switch (_heap->state(newanode)) {
deba@2051
   768
            case Heap::PRE_HEAP:
deba@2051
   769
              _heap->push(newanode, bvalue);
deba@2051
   770
              break;
deba@2051
   771
            case Heap::IN_HEAP:
deba@2051
   772
              if (bvalue < (*_heap)[newanode]) {
deba@2051
   773
                _heap->decrease(newanode, bvalue);
deba@2051
   774
              }
deba@2051
   775
              break;
deba@2051
   776
            case Heap::POST_HEAP:
deba@2051
   777
              break;
deba@2051
   778
            }
deba@2051
   779
          } else {
deba@2051
   780
            if (bestNode == INVALID || 
deba@2051
   781
                - bvalue - bnode_potential[bnode] > bestValue) {
deba@2051
   782
              bestValue = - bvalue - bnode_potential[bnode];
deba@2051
   783
              bestNode = bnode;
deba@2051
   784
            }
deba@2051
   785
          }
deba@2051
   786
        }
deba@2051
   787
      }
deba@2051
   788
deba@2051
   789
      if (bestNode == INVALID || (!decrease && bestValue < 0)) {
deba@2051
   790
        return false;
deba@2051
   791
      }
deba@2051
   792
deba@2051
   793
      matching_value += bestValue;
deba@2051
   794
      ++matching_size;
deba@2051
   795
deba@2051
   796
      for (BNodeIt it(*graph); it != INVALID; ++it) {
deba@2051
   797
        if (bpred[it] != INVALID) {
deba@2051
   798
          bnode_potential[it] += bdist[it];
deba@2051
   799
        } else {
deba@2051
   800
          bnode_potential[it] += bdistMax;
deba@2051
   801
        }
deba@2051
   802
      }
deba@2051
   803
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2051
   804
        if (anode_matching[it] != INVALID) {
deba@2051
   805
          Node bnode = graph->bNode(anode_matching[it]);
deba@2051
   806
          if (bpred[bnode] != INVALID) {
deba@2051
   807
            anode_potential[it] += bdist[bnode];
deba@2051
   808
          } else {
deba@2051
   809
            anode_potential[it] += bdistMax;
deba@2051
   810
          }
deba@2051
   811
        }
deba@2051
   812
      }
deba@2051
   813
deba@2051
   814
      while (bestNode != INVALID) {
deba@2051
   815
        UEdge uedge = bpred[bestNode];
deba@2051
   816
        Node anode = graph->aNode(uedge);
deba@2051
   817
        
deba@2051
   818
        bnode_matching[bestNode] = uedge;
deba@2051
   819
        if (anode_matching[anode] != INVALID) {
deba@2051
   820
          bestNode = graph->bNode(anode_matching[anode]);
deba@2051
   821
        } else {
deba@2051
   822
          bestNode = INVALID;
deba@2051
   823
        }
deba@2051
   824
        anode_matching[anode] = uedge;
deba@2051
   825
      }
deba@2051
   826
deba@2051
   827
deba@2051
   828
      return true;
deba@2051
   829
    }
deba@2051
   830
deba@2051
   831
    /// \brief Starts the algorithm.
deba@2051
   832
    ///
deba@2051
   833
    /// Starts the algorithm. It runs augmenting phases until the
deba@2051
   834
    /// optimal solution reached.
deba@2051
   835
    ///
deba@2051
   836
    /// \param maxCardinality If the given value is true it will
deba@2051
   837
    /// calculate the maximum cardinality maximum matching instead of
deba@2051
   838
    /// the maximum matching.
deba@2051
   839
    void start(bool maxCardinality = false) {
deba@2051
   840
      while (augment(maxCardinality)) {}
deba@2051
   841
    }
deba@2051
   842
deba@2051
   843
    /// \brief Runs the algorithm.
deba@2051
   844
    ///
deba@2051
   845
    /// It just initalize the algorithm and then start it.
deba@2051
   846
    ///
deba@2051
   847
    /// \param maxCardinality If the given value is true it will
deba@2051
   848
    /// calculate the maximum cardinality maximum matching instead of
deba@2051
   849
    /// the maximum matching.
deba@2051
   850
    void run(bool maxCardinality = false) {
deba@2051
   851
      init();
deba@2051
   852
      start(maxCardinality);
deba@2051
   853
    }
deba@2051
   854
deba@2051
   855
    /// @}
deba@2051
   856
deba@2051
   857
    /// \name Query Functions
deba@2051
   858
    /// The result of the %Matching algorithm can be obtained using these
deba@2051
   859
    /// functions.\n
deba@2051
   860
    /// Before the use of these functions,
deba@2051
   861
    /// either run() or start() must be called.
deba@2051
   862
    
deba@2051
   863
    ///@{
deba@2051
   864
deba@2051
   865
    /// \brief Gives back the potential in the NodeMap
deba@2051
   866
    ///
deba@2051
   867
    /// Gives back the potential in the NodeMap. The potential
deba@2051
   868
    /// is feasible if \f$ \pi(a) - \pi(b) - w(ab) = 0 \f$ for
deba@2051
   869
    /// each matching edges and \f$ \pi(a) - \pi(b) - w(ab) \ge 0 \f$
deba@2051
   870
    /// for each edges.
deba@2051
   871
    template <typename PotentialMap>
deba@2051
   872
    void potential(PotentialMap& potential) {
deba@2051
   873
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2051
   874
        potential[it] = anode_potential[it];
deba@2051
   875
      }
deba@2051
   876
      for (BNodeIt it(*graph); it != INVALID; ++it) {
deba@2051
   877
        potential[it] = bnode_potential[it];
deba@2051
   878
      }
deba@2051
   879
    }
deba@2051
   880
deba@2051
   881
    /// \brief Set true all matching uedge in the map.
deba@2051
   882
    /// 
deba@2051
   883
    /// Set true all matching uedge in the map. It does not change the
deba@2051
   884
    /// value mapped to the other uedges.
deba@2051
   885
    /// \return The number of the matching edges.
deba@2051
   886
    template <typename MatchingMap>
deba@2051
   887
    int quickMatching(MatchingMap& matching) {
deba@2051
   888
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2051
   889
        if (anode_matching[it] != INVALID) {
deba@2051
   890
          matching[anode_matching[it]] = true;
deba@2051
   891
        }
deba@2051
   892
      }
deba@2051
   893
      return matching_size;
deba@2051
   894
    }
deba@2051
   895
deba@2051
   896
    /// \brief Set true all matching uedge in the map and the others to false.
deba@2051
   897
    /// 
deba@2051
   898
    /// Set true all matching uedge in the map and the others to false.
deba@2051
   899
    /// \return The number of the matching edges.
deba@2051
   900
    template <typename MatchingMap>
deba@2051
   901
    int matching(MatchingMap& matching) {
deba@2051
   902
      for (UEdgeIt it(*graph); it != INVALID; ++it) {
deba@2051
   903
        matching[it] = it == anode_matching[graph->aNode(it)];
deba@2051
   904
      }
deba@2051
   905
      return matching_size;
deba@2051
   906
    }
deba@2051
   907
deba@2051
   908
deba@2051
   909
    /// \brief Return true if the given uedge is in the matching.
deba@2051
   910
    /// 
deba@2051
   911
    /// It returns true if the given uedge is in the matching.
deba@2051
   912
    bool matchingEdge(const UEdge& edge) {
deba@2051
   913
      return anode_matching[graph->aNode(edge)] == edge;
deba@2051
   914
    }
deba@2051
   915
deba@2051
   916
    /// \brief Returns the matching edge from the node.
deba@2051
   917
    /// 
deba@2051
   918
    /// Returns the matching edge from the node. If there is not such
deba@2051
   919
    /// edge it gives back \c INVALID.
deba@2051
   920
    UEdge matchingEdge(const Node& node) {
deba@2051
   921
      if (graph->aNode(node)) {
deba@2051
   922
        return anode_matching[node];
deba@2051
   923
      } else {
deba@2051
   924
        return bnode_matching[node];
deba@2051
   925
      }
deba@2051
   926
    }
deba@2051
   927
deba@2051
   928
    /// \brief Gives back the sum of weights of the matching edges.
deba@2051
   929
    ///
deba@2051
   930
    /// Gives back the sum of weights of the matching edges.
deba@2051
   931
    Value matchingValue() const {
deba@2051
   932
      return matching_value;
deba@2051
   933
    }
deba@2051
   934
deba@2051
   935
    /// \brief Gives back the number of the matching edges.
deba@2051
   936
    ///
deba@2051
   937
    /// Gives back the number of the matching edges.
deba@2051
   938
    int matchingSize() const {
deba@2051
   939
      return matching_size;
deba@2051
   940
    }
deba@2051
   941
deba@2051
   942
    /// @}
deba@2051
   943
deba@2051
   944
  private:
deba@2051
   945
deba@2051
   946
    void initStructures() {
deba@2051
   947
      if (!_heap_cross_ref) {
deba@2051
   948
	local_heap_cross_ref = true;
deba@2051
   949
	_heap_cross_ref = Traits::createHeapCrossRef(*graph);
deba@2051
   950
      }
deba@2051
   951
      if (!_heap) {
deba@2051
   952
	local_heap = true;
deba@2051
   953
	_heap = Traits::createHeap(*_heap_cross_ref);
deba@2051
   954
      }
deba@2051
   955
    }
deba@2051
   956
deba@2051
   957
    void destroyStructures() {
deba@2051
   958
      if (local_heap_cross_ref) delete _heap_cross_ref;
deba@2051
   959
      if (local_heap) delete _heap;
deba@2051
   960
    }
deba@2051
   961
deba@2051
   962
deba@2051
   963
  private:
deba@2051
   964
    
deba@2051
   965
    const BpUGraph *graph;
deba@2051
   966
    const WeightMap* weight;
deba@2051
   967
deba@2051
   968
    ANodeMatchingMap anode_matching;
deba@2051
   969
    BNodeMatchingMap bnode_matching;
deba@2051
   970
deba@2051
   971
    ANodePotentialMap anode_potential;
deba@2051
   972
    BNodePotentialMap bnode_potential;
deba@2051
   973
deba@2051
   974
    Value matching_value;
deba@2051
   975
    int matching_size;
deba@2051
   976
deba@2051
   977
    HeapCrossRef *_heap_cross_ref;
deba@2051
   978
    bool local_heap_cross_ref;
deba@2051
   979
deba@2051
   980
    Heap *_heap;
deba@2051
   981
    bool local_heap;
deba@2051
   982
  
deba@2051
   983
  };
deba@2051
   984
deba@2051
   985
  /// \brief Default traits class for minimum cost bipartite matching
deba@2051
   986
  /// algoritms.
deba@2051
   987
  ///
deba@2051
   988
  /// Default traits class for minimum cost bipartite matching
deba@2051
   989
  /// algoritms.  
deba@2051
   990
  ///
deba@2051
   991
  /// \param _BpUGraph The bipartite undirected graph
deba@2051
   992
  /// type.  
deba@2051
   993
  ///
deba@2051
   994
  /// \param _CostMap Type of cost map.
deba@2051
   995
  template <typename _BpUGraph, typename _CostMap>
deba@2051
   996
  struct MinCostMaxBipartiteMatchingDefaultTraits {
deba@2051
   997
    /// \brief The type of the cost of the undirected edges.
deba@2051
   998
    typedef typename _CostMap::Value Value;
deba@2051
   999
deba@2051
  1000
    /// The undirected bipartite graph type the algorithm runs on. 
deba@2051
  1001
    typedef _BpUGraph BpUGraph;
deba@2051
  1002
deba@2051
  1003
    /// The map of the edges costs
deba@2051
  1004
    typedef _CostMap CostMap;
deba@2051
  1005
deba@2051
  1006
    /// \brief The cross reference type used by heap.
deba@2051
  1007
    ///
deba@2051
  1008
    /// The cross reference type used by heap.
deba@2051
  1009
    /// Usually it is \c Graph::NodeMap<int>.
deba@2051
  1010
    typedef typename BpUGraph::template NodeMap<int> HeapCrossRef;
deba@2051
  1011
deba@2051
  1012
    /// \brief Instantiates a HeapCrossRef.
deba@2051
  1013
    ///
deba@2051
  1014
    /// This function instantiates a \ref HeapCrossRef. 
deba@2051
  1015
    /// \param graph is the graph, to which we would like to define the 
deba@2051
  1016
    /// HeapCrossRef.
deba@2051
  1017
    static HeapCrossRef *createHeapCrossRef(const BpUGraph &graph) {
deba@2051
  1018
      return new HeapCrossRef(graph);
deba@2051
  1019
    }
deba@2051
  1020
    
deba@2051
  1021
    /// \brief The heap type used by costed matching algorithms.
deba@2051
  1022
    ///
deba@2051
  1023
    /// The heap type used by costed matching algorithms. It should
deba@2051
  1024
    /// minimize the priorities and the heap's key type is the graph's
deba@2051
  1025
    /// anode graph's node.
deba@2051
  1026
    ///
deba@2051
  1027
    /// \sa BinHeap
deba@2051
  1028
    typedef BinHeap<typename BpUGraph::Node, Value, HeapCrossRef> Heap;
deba@2051
  1029
    
deba@2051
  1030
    /// \brief Instantiates a Heap.
deba@2051
  1031
    ///
deba@2051
  1032
    /// This function instantiates a \ref Heap. 
deba@2051
  1033
    /// \param crossref The cross reference of the heap.
deba@2051
  1034
    static Heap *createHeap(HeapCrossRef& crossref) {
deba@2051
  1035
      return new Heap(crossref);
deba@2051
  1036
    }
deba@2051
  1037
deba@2051
  1038
  };
deba@2051
  1039
deba@2051
  1040
deba@2051
  1041
  /// \ingroup matching
deba@2051
  1042
  ///
deba@2051
  1043
  /// \brief Bipartite Min Cost Matching algorithm
deba@2051
  1044
  ///
deba@2051
  1045
  /// This class implements the bipartite Min Cost Matching algorithm.
deba@2051
  1046
  /// It uses the successive shortest path algorithm to calculate the
deba@2051
  1047
  /// minimum cost maximum matching in the bipartite graph. The time
deba@2051
  1048
  /// complexity of the algorithm is \f$ O(ne\log(n)) \f$ with the
deba@2051
  1049
  /// default binary heap implementation but this can be improved to
deba@2051
  1050
  /// \f$ O(n^2\log(n)+ne) \f$ if we use fibonacci heaps.
deba@2051
  1051
  ///
deba@2051
  1052
  /// The algorithm also provides a potential function on the nodes
deba@2051
  1053
  /// which a dual solution of the matching algorithm and it can be
deba@2051
  1054
  /// used to proof the optimality of the given pimal solution.
deba@2051
  1055
#ifdef DOXYGEN
deba@2051
  1056
  template <typename _BpUGraph, typename _CostMap, typename _Traits>
deba@2051
  1057
#else
deba@2051
  1058
  template <typename _BpUGraph, 
deba@2051
  1059
            typename _CostMap = typename _BpUGraph::template UEdgeMap<int>,
deba@2051
  1060
            typename _Traits = MinCostMaxBipartiteMatchingDefaultTraits<_BpUGraph, _CostMap> >
deba@2051
  1061
#endif
deba@2051
  1062
  class MinCostMaxBipartiteMatching {
deba@2051
  1063
  public:
deba@2051
  1064
deba@2051
  1065
    typedef _Traits Traits;
deba@2051
  1066
    typedef typename Traits::BpUGraph BpUGraph;
deba@2051
  1067
    typedef typename Traits::CostMap CostMap;
deba@2051
  1068
    typedef typename Traits::Value Value;
deba@2051
  1069
deba@2051
  1070
  protected:
deba@2051
  1071
deba@2051
  1072
    typedef typename Traits::HeapCrossRef HeapCrossRef;
deba@2051
  1073
    typedef typename Traits::Heap Heap; 
deba@2051
  1074
deba@2051
  1075
    
deba@2051
  1076
    typedef typename BpUGraph::Node Node;
deba@2051
  1077
    typedef typename BpUGraph::ANodeIt ANodeIt;
deba@2051
  1078
    typedef typename BpUGraph::BNodeIt BNodeIt;
deba@2051
  1079
    typedef typename BpUGraph::UEdge UEdge;
deba@2051
  1080
    typedef typename BpUGraph::UEdgeIt UEdgeIt;
deba@2051
  1081
    typedef typename BpUGraph::IncEdgeIt IncEdgeIt;
deba@2051
  1082
deba@2051
  1083
    typedef typename BpUGraph::template ANodeMap<UEdge> ANodeMatchingMap;
deba@2051
  1084
    typedef typename BpUGraph::template BNodeMap<UEdge> BNodeMatchingMap;
deba@2051
  1085
deba@2051
  1086
    typedef typename BpUGraph::template ANodeMap<Value> ANodePotentialMap;
deba@2051
  1087
    typedef typename BpUGraph::template BNodeMap<Value> BNodePotentialMap;
deba@2051
  1088
deba@2051
  1089
deba@2051
  1090
  public:
deba@2051
  1091
deba@2051
  1092
    /// \brief \ref Exception for uninitialized parameters.
deba@2051
  1093
    ///
deba@2051
  1094
    /// This error represents problems in the initialization
deba@2051
  1095
    /// of the parameters of the algorithms.
deba@2051
  1096
    class UninitializedParameter : public lemon::UninitializedParameter {
deba@2051
  1097
    public:
deba@2051
  1098
      virtual const char* exceptionName() const {
deba@2051
  1099
	return "lemon::MinCostMaxBipartiteMatching::UninitializedParameter";
deba@2051
  1100
      }
deba@2051
  1101
    };
deba@2051
  1102
deba@2051
  1103
    ///\name Named template parameters
deba@2051
  1104
deba@2051
  1105
    ///@{
deba@2051
  1106
deba@2051
  1107
    template <class H, class CR>
deba@2051
  1108
    struct DefHeapTraits : public Traits {
deba@2051
  1109
      typedef CR HeapCrossRef;
deba@2051
  1110
      typedef H Heap;
deba@2051
  1111
      static HeapCrossRef *createHeapCrossRef(const BpUGraph &) {
deba@2051
  1112
	throw UninitializedParameter();
deba@2051
  1113
      }
deba@2051
  1114
      static Heap *createHeap(HeapCrossRef &) {
deba@2051
  1115
	throw UninitializedParameter();
deba@2051
  1116
      }
deba@2051
  1117
    };
deba@2051
  1118
deba@2051
  1119
    /// \brief \ref named-templ-param "Named parameter" for setting heap 
deba@2051
  1120
    /// and cross reference type
deba@2051
  1121
    ///
deba@2051
  1122
    /// \ref named-templ-param "Named parameter" for setting heap and cross 
deba@2051
  1123
    /// reference type
deba@2051
  1124
    template <class H, class CR = typename BpUGraph::template NodeMap<int> >
deba@2051
  1125
    struct DefHeap
deba@2051
  1126
      : public MinCostMaxBipartiteMatching<BpUGraph, CostMap, 
deba@2051
  1127
                                            DefHeapTraits<H, CR> > { 
deba@2051
  1128
      typedef MinCostMaxBipartiteMatching<BpUGraph, CostMap, 
deba@2051
  1129
                                           DefHeapTraits<H, CR> > Create;
deba@2051
  1130
    };
deba@2051
  1131
deba@2051
  1132
    template <class H, class CR>
deba@2051
  1133
    struct DefStandardHeapTraits : public Traits {
deba@2051
  1134
      typedef CR HeapCrossRef;
deba@2051
  1135
      typedef H Heap;
deba@2051
  1136
      static HeapCrossRef *createHeapCrossRef(const BpUGraph &graph) {
deba@2051
  1137
	return new HeapCrossRef(graph);
deba@2051
  1138
      }
deba@2051
  1139
      static Heap *createHeap(HeapCrossRef &crossref) {
deba@2051
  1140
	return new Heap(crossref);
deba@2051
  1141
      }
deba@2051
  1142
    };
deba@2051
  1143
deba@2051
  1144
    /// \brief \ref named-templ-param "Named parameter" for setting heap and 
deba@2051
  1145
    /// cross reference type with automatic allocation
deba@2051
  1146
    ///
deba@2051
  1147
    /// \ref named-templ-param "Named parameter" for setting heap and cross 
deba@2051
  1148
    /// reference type. It can allocate the heap and the cross reference 
deba@2051
  1149
    /// object if the cross reference's constructor waits for the graph as 
deba@2051
  1150
    /// parameter and the heap's constructor waits for the cross reference.
deba@2051
  1151
    template <class H, class CR = typename BpUGraph::template NodeMap<int> >
deba@2051
  1152
    struct DefStandardHeap
deba@2051
  1153
      : public MinCostMaxBipartiteMatching<BpUGraph, CostMap, 
deba@2051
  1154
                                            DefStandardHeapTraits<H, CR> > { 
deba@2051
  1155
      typedef MinCostMaxBipartiteMatching<BpUGraph, CostMap, 
deba@2051
  1156
                                           DefStandardHeapTraits<H, CR> > 
deba@2051
  1157
      Create;
deba@2051
  1158
    };
deba@2051
  1159
deba@2051
  1160
    ///@}
deba@2051
  1161
deba@2051
  1162
deba@2051
  1163
    /// \brief Constructor.
deba@2051
  1164
    ///
deba@2051
  1165
    /// Constructor of the algorithm. 
deba@2051
  1166
    MinCostMaxBipartiteMatching(const BpUGraph& _graph, 
deba@2051
  1167
                                 const CostMap& _cost) 
deba@2051
  1168
      : graph(&_graph), cost(&_cost),
deba@2051
  1169
        anode_matching(_graph), bnode_matching(_graph),
deba@2051
  1170
        anode_potential(_graph), bnode_potential(_graph),
deba@2051
  1171
        _heap_cross_ref(0), local_heap_cross_ref(false),
deba@2051
  1172
        _heap(0), local_heap(0) {}
deba@2051
  1173
deba@2051
  1174
    /// \brief Destructor.
deba@2051
  1175
    ///
deba@2051
  1176
    /// Destructor of the algorithm.
deba@2051
  1177
    ~MinCostMaxBipartiteMatching() {
deba@2051
  1178
      destroyStructures();
deba@2051
  1179
    }
deba@2051
  1180
deba@2051
  1181
    /// \brief Sets the heap and the cross reference used by algorithm.
deba@2051
  1182
    ///
deba@2051
  1183
    /// Sets the heap and the cross reference used by algorithm.
deba@2051
  1184
    /// If you don't use this function before calling \ref run(),
deba@2051
  1185
    /// it will allocate one. The destuctor deallocates this
deba@2051
  1186
    /// automatically allocated map, of course.
deba@2051
  1187
    /// \return \c (*this)
deba@2051
  1188
    MinCostMaxBipartiteMatching& heap(Heap& heap, HeapCrossRef &crossRef) {
deba@2051
  1189
      if(local_heap_cross_ref) {
deba@2051
  1190
	delete _heap_cross_ref;
deba@2051
  1191
	local_heap_cross_ref = false;
deba@2051
  1192
      }
deba@2051
  1193
      _heap_cross_ref = &crossRef;
deba@2051
  1194
      if(local_heap) {
deba@2051
  1195
	delete _heap;
deba@2051
  1196
	local_heap = false;
deba@2051
  1197
      }
deba@2051
  1198
      _heap = &heap;
deba@2051
  1199
      return *this;
deba@2051
  1200
    }
deba@2051
  1201
deba@2051
  1202
    /// \name Execution control
deba@2051
  1203
    /// The simplest way to execute the algorithm is to use
deba@2051
  1204
    /// one of the member functions called \c run().
deba@2051
  1205
    /// \n
deba@2051
  1206
    /// If you need more control on the execution,
deba@2051
  1207
    /// first you must call \ref init() or one alternative for it.
deba@2051
  1208
    /// Finally \ref start() will perform the matching computation or
deba@2051
  1209
    /// with step-by-step execution you can augment the solution.
deba@2051
  1210
deba@2051
  1211
    /// @{
deba@2051
  1212
deba@2051
  1213
    /// \brief Initalize the data structures.
deba@2051
  1214
    ///
deba@2051
  1215
    /// It initalizes the data structures and creates an empty matching.
deba@2051
  1216
    void init() {
deba@2051
  1217
      initStructures();
deba@2051
  1218
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2051
  1219
        anode_matching[it] = INVALID;
deba@2051
  1220
        anode_potential[it] = 0;
deba@2051
  1221
      }
deba@2051
  1222
      for (BNodeIt it(*graph); it != INVALID; ++it) {
deba@2051
  1223
        bnode_matching[it] = INVALID;
deba@2051
  1224
        bnode_potential[it] = 0;
deba@2051
  1225
      }
deba@2051
  1226
      matching_cost = 0;
deba@2051
  1227
      matching_size = 0;
deba@2051
  1228
    }
deba@2051
  1229
deba@2051
  1230
deba@2051
  1231
    /// \brief An augmenting phase of the costed matching algorithm
deba@2051
  1232
    ///
deba@2051
  1233
    /// It runs an augmenting phase of the matching algorithm. The
deba@2051
  1234
    /// phase finds the best augmenting path and augments only on this
deba@2051
  1235
    /// paths.
deba@2051
  1236
    ///
deba@2051
  1237
    /// The algorithm consists at most 
deba@2051
  1238
    /// of \f$ O(n) \f$ phase and one phase is \f$ O(n\log(n)+e) \f$ 
deba@2051
  1239
    /// long with Fibonacci heap or \f$ O((n+e)\log(n)) \f$ long 
deba@2051
  1240
    /// with binary heap.
deba@2051
  1241
    bool augment() {
deba@2051
  1242
deba@2051
  1243
      typename BpUGraph::template BNodeMap<Value> bdist(*graph);
deba@2051
  1244
      typename BpUGraph::template BNodeMap<UEdge> bpred(*graph, INVALID);
deba@2051
  1245
deba@2051
  1246
      Node bestNode = INVALID;
deba@2051
  1247
      Value bestValue = 0;
deba@2051
  1248
deba@2051
  1249
      _heap->clear();
deba@2051
  1250
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2051
  1251
        (*_heap_cross_ref)[it] = Heap::PRE_HEAP;
deba@2051
  1252
      }
deba@2051
  1253
deba@2051
  1254
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2051
  1255
        if (anode_matching[it] == INVALID) {
deba@2051
  1256
          _heap->push(it, 0);
deba@2051
  1257
        }
deba@2051
  1258
      }
deba@2051
  1259
deba@2051
  1260
      while (!_heap->empty()) {
deba@2051
  1261
        Node anode = _heap->top();
deba@2051
  1262
        Value avalue = _heap->prio();
deba@2051
  1263
        _heap->pop();
deba@2051
  1264
        for (IncEdgeIt jt(*graph, anode); jt != INVALID; ++jt) {
deba@2051
  1265
          if (jt == anode_matching[anode]) continue;
deba@2051
  1266
          Node bnode = graph->bNode(jt);
deba@2051
  1267
          Value bvalue = avalue + (*cost)[jt] + 
deba@2051
  1268
            anode_potential[anode] - bnode_potential[bnode];
deba@2051
  1269
          if (bpred[bnode] == INVALID || bvalue < bdist[bnode]) {
deba@2051
  1270
            bdist[bnode] = bvalue;
deba@2051
  1271
            bpred[bnode] = jt;
deba@2051
  1272
          }
deba@2051
  1273
          if (bnode_matching[bnode] != INVALID) {
deba@2051
  1274
            Node newanode = graph->aNode(bnode_matching[bnode]);
deba@2051
  1275
            switch (_heap->state(newanode)) {
deba@2051
  1276
            case Heap::PRE_HEAP:
deba@2051
  1277
              _heap->push(newanode, bvalue);
deba@2051
  1278
              break;
deba@2051
  1279
            case Heap::IN_HEAP:
deba@2051
  1280
              if (bvalue < (*_heap)[newanode]) {
deba@2051
  1281
                _heap->decrease(newanode, bvalue);
deba@2051
  1282
              }
deba@2051
  1283
              break;
deba@2051
  1284
            case Heap::POST_HEAP:
deba@2051
  1285
              break;
deba@2051
  1286
            }
deba@2051
  1287
          } else {
deba@2051
  1288
            if (bestNode == INVALID || 
deba@2051
  1289
                bvalue + bnode_potential[bnode] < bestValue) {
deba@2051
  1290
              bestValue = bvalue + bnode_potential[bnode];
deba@2051
  1291
              bestNode = bnode;
deba@2051
  1292
            }
deba@2051
  1293
          }
deba@2051
  1294
        }
deba@2051
  1295
      }
deba@2051
  1296
deba@2051
  1297
      if (bestNode == INVALID) {
deba@2051
  1298
        return false;
deba@2051
  1299
      }
deba@2051
  1300
deba@2051
  1301
      matching_cost += bestValue;
deba@2051
  1302
      ++matching_size;
deba@2051
  1303
deba@2051
  1304
      for (BNodeIt it(*graph); it != INVALID; ++it) {
deba@2051
  1305
        if (bpred[it] != INVALID) {
deba@2051
  1306
          bnode_potential[it] += bdist[it];
deba@2051
  1307
        }
deba@2051
  1308
      }
deba@2051
  1309
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2051
  1310
        if (anode_matching[it] != INVALID) {
deba@2051
  1311
          Node bnode = graph->bNode(anode_matching[it]);
deba@2051
  1312
          if (bpred[bnode] != INVALID) {
deba@2051
  1313
            anode_potential[it] += bdist[bnode];
deba@2051
  1314
          }
deba@2051
  1315
        }
deba@2051
  1316
      }
deba@2051
  1317
deba@2051
  1318
      while (bestNode != INVALID) {
deba@2051
  1319
        UEdge uedge = bpred[bestNode];
deba@2051
  1320
        Node anode = graph->aNode(uedge);
deba@2051
  1321
        
deba@2051
  1322
        bnode_matching[bestNode] = uedge;
deba@2051
  1323
        if (anode_matching[anode] != INVALID) {
deba@2051
  1324
          bestNode = graph->bNode(anode_matching[anode]);
deba@2051
  1325
        } else {
deba@2051
  1326
          bestNode = INVALID;
deba@2051
  1327
        }
deba@2051
  1328
        anode_matching[anode] = uedge;
deba@2051
  1329
      }
deba@2051
  1330
deba@2051
  1331
deba@2051
  1332
      return true;
deba@2051
  1333
    }
deba@2051
  1334
deba@2051
  1335
    /// \brief Starts the algorithm.
deba@2051
  1336
    ///
deba@2051
  1337
    /// Starts the algorithm. It runs augmenting phases until the
deba@2051
  1338
    /// optimal solution reached.
deba@2051
  1339
    void start() {
deba@2051
  1340
      while (augment()) {}
deba@2051
  1341
    }
deba@2051
  1342
deba@2051
  1343
    /// \brief Runs the algorithm.
deba@2051
  1344
    ///
deba@2051
  1345
    /// It just initalize the algorithm and then start it.
deba@2051
  1346
    void run() {
deba@2051
  1347
      init();
deba@2051
  1348
      start();
deba@2051
  1349
    }
deba@2051
  1350
deba@2051
  1351
    /// @}
deba@2051
  1352
deba@2051
  1353
    /// \name Query Functions
deba@2051
  1354
    /// The result of the %Matching algorithm can be obtained using these
deba@2051
  1355
    /// functions.\n
deba@2051
  1356
    /// Before the use of these functions,
deba@2051
  1357
    /// either run() or start() must be called.
deba@2051
  1358
    
deba@2051
  1359
    ///@{
deba@2051
  1360
deba@2051
  1361
    /// \brief Gives back the potential in the NodeMap
deba@2051
  1362
    ///
deba@2051
  1363
    /// Gives back the potential in the NodeMap. The potential
deba@2051
  1364
    /// is feasible if \f$ \pi(a) - \pi(b) + w(ab) = 0 \f$ for
deba@2051
  1365
    /// each matching edges and \f$ \pi(a) - \pi(b) + w(ab) \ge 0 \f$
deba@2051
  1366
    /// for each edges.
deba@2051
  1367
    template <typename PotentialMap>
deba@2051
  1368
    void potential(PotentialMap& potential) {
deba@2051
  1369
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2051
  1370
        potential[it] = anode_potential[it];
deba@2051
  1371
      }
deba@2051
  1372
      for (BNodeIt it(*graph); it != INVALID; ++it) {
deba@2051
  1373
        potential[it] = bnode_potential[it];
deba@2051
  1374
      }
deba@2051
  1375
    }
deba@2051
  1376
deba@2051
  1377
    /// \brief Set true all matching uedge in the map.
deba@2051
  1378
    /// 
deba@2051
  1379
    /// Set true all matching uedge in the map. It does not change the
deba@2051
  1380
    /// value mapped to the other uedges.
deba@2051
  1381
    /// \return The number of the matching edges.
deba@2051
  1382
    template <typename MatchingMap>
deba@2051
  1383
    int quickMatching(MatchingMap& matching) {
deba@2051
  1384
      for (ANodeIt it(*graph); it != INVALID; ++it) {
deba@2051
  1385
        if (anode_matching[it] != INVALID) {
deba@2051
  1386
          matching[anode_matching[it]] = true;
deba@2051
  1387
        }
deba@2051
  1388
      }
deba@2051
  1389
      return matching_size;
deba@2051
  1390
    }
deba@2051
  1391
deba@2051
  1392
    /// \brief Set true all matching uedge in the map and the others to false.
deba@2051
  1393
    /// 
deba@2051
  1394
    /// Set true all matching uedge in the map and the others to false.
deba@2051
  1395
    /// \return The number of the matching edges.
deba@2051
  1396
    template <typename MatchingMap>
deba@2051
  1397
    int matching(MatchingMap& matching) {
deba@2051
  1398
      for (UEdgeIt it(*graph); it != INVALID; ++it) {
deba@2051
  1399
        matching[it] = it == anode_matching[graph->aNode(it)];
deba@2051
  1400
      }
deba@2051
  1401
      return matching_size;
deba@2051
  1402
    }
deba@2051
  1403
deba@2051
  1404
deba@2051
  1405
    /// \brief Return true if the given uedge is in the matching.
deba@2051
  1406
    /// 
deba@2051
  1407
    /// It returns true if the given uedge is in the matching.
deba@2051
  1408
    bool matchingEdge(const UEdge& edge) {
deba@2051
  1409
      return anode_matching[graph->aNode(edge)] == edge;
deba@2051
  1410
    }
deba@2051
  1411
deba@2051
  1412
    /// \brief Returns the matching edge from the node.
deba@2051
  1413
    /// 
deba@2051
  1414
    /// Returns the matching edge from the node. If there is not such
deba@2051
  1415
    /// edge it gives back \c INVALID.
deba@2051
  1416
    UEdge matchingEdge(const Node& node) {
deba@2051
  1417
      if (graph->aNode(node)) {
deba@2051
  1418
        return anode_matching[node];
deba@2051
  1419
      } else {
deba@2051
  1420
        return bnode_matching[node];
deba@2051
  1421
      }
deba@2051
  1422
    }
deba@2051
  1423
deba@2051
  1424
    /// \brief Gives back the sum of costs of the matching edges.
deba@2051
  1425
    ///
deba@2051
  1426
    /// Gives back the sum of costs of the matching edges.
deba@2051
  1427
    Value matchingCost() const {
deba@2051
  1428
      return matching_cost;
deba@2051
  1429
    }
deba@2051
  1430
deba@2051
  1431
    /// \brief Gives back the number of the matching edges.
deba@2051
  1432
    ///
deba@2051
  1433
    /// Gives back the number of the matching edges.
deba@2051
  1434
    int matchingSize() const {
deba@2051
  1435
      return matching_size;
deba@2051
  1436
    }
deba@2051
  1437
deba@2051
  1438
    /// @}
deba@2051
  1439
deba@2051
  1440
  private:
deba@2051
  1441
deba@2051
  1442
    void initStructures() {
deba@2051
  1443
      if (!_heap_cross_ref) {
deba@2051
  1444
	local_heap_cross_ref = true;
deba@2051
  1445
	_heap_cross_ref = Traits::createHeapCrossRef(*graph);
deba@2051
  1446
      }
deba@2051
  1447
      if (!_heap) {
deba@2051
  1448
	local_heap = true;
deba@2051
  1449
	_heap = Traits::createHeap(*_heap_cross_ref);
deba@2051
  1450
      }
deba@2051
  1451
    }
deba@2051
  1452
deba@2051
  1453
    void destroyStructures() {
deba@2051
  1454
      if (local_heap_cross_ref) delete _heap_cross_ref;
deba@2051
  1455
      if (local_heap) delete _heap;
deba@2051
  1456
    }
deba@2051
  1457
deba@2051
  1458
deba@2051
  1459
  private:
deba@2051
  1460
    
deba@2051
  1461
    const BpUGraph *graph;
deba@2051
  1462
    const CostMap* cost;
deba@2051
  1463
deba@2051
  1464
    ANodeMatchingMap anode_matching;
deba@2051
  1465
    BNodeMatchingMap bnode_matching;
deba@2051
  1466
deba@2051
  1467
    ANodePotentialMap anode_potential;
deba@2051
  1468
    BNodePotentialMap bnode_potential;
deba@2051
  1469
deba@2051
  1470
    Value matching_cost;
deba@2051
  1471
    int matching_size;
deba@2051
  1472
deba@2051
  1473
    HeapCrossRef *_heap_cross_ref;
deba@2051
  1474
    bool local_heap_cross_ref;
deba@2051
  1475
deba@2051
  1476
    Heap *_heap;
deba@2051
  1477
    bool local_heap;
deba@2040
  1478
  
deba@2040
  1479
  };
deba@2040
  1480
deba@2040
  1481
}
deba@2040
  1482
deba@2040
  1483
#endif