lemon/graph_utils.h
author deba
Sun, 30 Sep 2007 19:14:33 +0000
changeset 2480 eecaeab41472
parent 2474 e6368948d5f7
child 2485 88aa7870756a
permissions -rw-r--r--
Planarity checking and embedding
klao@946
     1
/* -*- C++ -*-
klao@946
     2
 *
alpar@1956
     3
 * This file is a part of LEMON, a generic C++ optimization library
alpar@1956
     4
 *
alpar@2391
     5
 * Copyright (C) 2003-2007
alpar@1956
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
klao@946
     8
 *
klao@946
     9
 * Permission to use, modify and distribute this software is granted
klao@946
    10
 * provided that this copyright notice appears in all copies. For
klao@946
    11
 * precise terms see the accompanying LICENSE file.
klao@946
    12
 *
klao@946
    13
 * This software is provided "AS IS" with no warranty of any kind,
klao@946
    14
 * express or implied, and with no claim as to its suitability for any
klao@946
    15
 * purpose.
klao@946
    16
 *
klao@946
    17
 */
klao@946
    18
klao@946
    19
#ifndef LEMON_GRAPH_UTILS_H
klao@946
    20
#define LEMON_GRAPH_UTILS_H
klao@946
    21
klao@946
    22
#include <iterator>
deba@1419
    23
#include <vector>
alpar@1402
    24
#include <map>
deba@1695
    25
#include <cmath>
alpar@2235
    26
#include <algorithm>
klao@946
    27
deba@1993
    28
#include <lemon/bits/invalid.h>
deba@1993
    29
#include <lemon/bits/utility.h>
deba@1413
    30
#include <lemon/maps.h>
deba@1993
    31
#include <lemon/bits/traits.h>
deba@1990
    32
alpar@1459
    33
#include <lemon/bits/alteration_notifier.h>
deba@1990
    34
#include <lemon/bits/default_map.h>
klao@946
    35
alpar@947
    36
///\ingroup gutils
klao@946
    37
///\file
alpar@947
    38
///\brief Graph utilities.
klao@946
    39
klao@946
    40
namespace lemon {
klao@946
    41
deba@1267
    42
  /// \addtogroup gutils
deba@1267
    43
  /// @{
alpar@947
    44
alpar@1756
    45
  ///Creates convenience typedefs for the graph types and iterators
alpar@1756
    46
alpar@1756
    47
  ///This \c \#define creates convenience typedefs for the following types
alpar@1756
    48
  ///of \c Graph: \c Node,  \c NodeIt, \c Edge, \c EdgeIt, \c InEdgeIt,
deba@2031
    49
  ///\c OutEdgeIt
alpar@1756
    50
  ///\note If \c G it a template parameter, it should be used in this way.
alpar@1756
    51
  ///\code
alpar@1756
    52
  ///  GRAPH_TYPEDEFS(typename G)
alpar@1756
    53
  ///\endcode
alpar@1756
    54
  ///
alpar@1756
    55
  ///\warning There are no typedefs for the graph maps because of the lack of
alpar@1756
    56
  ///template typedefs in C++.
alpar@1804
    57
#define GRAPH_TYPEDEFS(Graph)				\
alpar@1804
    58
  typedef Graph::     Node      Node;			\
alpar@1804
    59
    typedef Graph::   NodeIt    NodeIt;			\
alpar@1804
    60
    typedef Graph::   Edge      Edge;			\
alpar@1804
    61
    typedef Graph::   EdgeIt    EdgeIt;			\
alpar@1804
    62
    typedef Graph:: InEdgeIt  InEdgeIt;			\
alpar@1811
    63
    typedef Graph::OutEdgeIt OutEdgeIt;			
deba@2031
    64
alpar@1756
    65
  ///Creates convenience typedefs for the undirected graph types and iterators
alpar@1756
    66
alpar@1756
    67
  ///This \c \#define creates the same convenience typedefs as defined by
alpar@1756
    68
  ///\ref GRAPH_TYPEDEFS(Graph) and three more, namely it creates
klao@1909
    69
  ///\c UEdge, \c UEdgeIt, \c IncEdgeIt,
alpar@1756
    70
  ///
alpar@1756
    71
  ///\note If \c G it a template parameter, it should be used in this way.
alpar@1756
    72
  ///\code
deba@1992
    73
  ///  UGRAPH_TYPEDEFS(typename G)
alpar@1756
    74
  ///\endcode
alpar@1756
    75
  ///
alpar@1756
    76
  ///\warning There are no typedefs for the graph maps because of the lack of
alpar@1756
    77
  ///template typedefs in C++.
deba@1992
    78
#define UGRAPH_TYPEDEFS(Graph)				\
alpar@1804
    79
  GRAPH_TYPEDEFS(Graph)						\
klao@1909
    80
    typedef Graph:: UEdge   UEdge;			\
klao@1909
    81
    typedef Graph:: UEdgeIt UEdgeIt;			\
alpar@1811
    82
    typedef Graph:: IncEdgeIt   IncEdgeIt;		       
alpar@1756
    83
deba@2031
    84
  ///\brief Creates convenience typedefs for the bipartite undirected graph 
deba@2031
    85
  ///types and iterators
deba@2031
    86
deba@2031
    87
  ///This \c \#define creates the same convenience typedefs as defined by
deba@2031
    88
  ///\ref UGRAPH_TYPEDEFS(Graph) and two more, namely it creates
deba@2031
    89
  ///\c ANodeIt, \c BNodeIt, 
deba@2031
    90
  ///
deba@2031
    91
  ///\note If \c G it a template parameter, it should be used in this way.
deba@2031
    92
  ///\code
deba@2031
    93
  ///  BPUGRAPH_TYPEDEFS(typename G)
deba@2031
    94
  ///\endcode
deba@2031
    95
  ///
deba@2031
    96
  ///\warning There are no typedefs for the graph maps because of the lack of
deba@2031
    97
  ///template typedefs in C++.
deba@2031
    98
#define BPUGRAPH_TYPEDEFS(Graph)            \
deba@2031
    99
  UGRAPH_TYPEDEFS(Graph)                    \
deba@2286
   100
    typedef Graph::ANode ANode;             \
deba@2286
   101
    typedef Graph::BNode BNode;             \
deba@2031
   102
    typedef Graph::ANodeIt ANodeIt;	    \
deba@2031
   103
    typedef Graph::BNodeIt BNodeIt;
alpar@1756
   104
klao@946
   105
  /// \brief Function to count the items in the graph.
klao@946
   106
  ///
athos@1540
   107
  /// This function counts the items (nodes, edges etc) in the graph.
klao@946
   108
  /// The complexity of the function is O(n) because
klao@946
   109
  /// it iterates on all of the items.
klao@946
   110
deba@2020
   111
  template <typename Graph, typename Item>
klao@977
   112
  inline int countItems(const Graph& g) {
deba@2020
   113
    typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
klao@946
   114
    int num = 0;
klao@977
   115
    for (ItemIt it(g); it != INVALID; ++it) {
klao@946
   116
      ++num;
klao@946
   117
    }
klao@946
   118
    return num;
klao@946
   119
  }
klao@946
   120
klao@977
   121
  // Node counting:
klao@977
   122
deba@2020
   123
  namespace _graph_utils_bits {
deba@2020
   124
    
deba@2020
   125
    template <typename Graph, typename Enable = void>
deba@2020
   126
    struct CountNodesSelector {
deba@2020
   127
      static int count(const Graph &g) {
deba@2020
   128
        return countItems<Graph, typename Graph::Node>(g);
deba@2020
   129
      }
deba@2020
   130
    };
klao@977
   131
deba@2020
   132
    template <typename Graph>
deba@2020
   133
    struct CountNodesSelector<
deba@2020
   134
      Graph, typename 
deba@2020
   135
      enable_if<typename Graph::NodeNumTag, void>::type> 
deba@2020
   136
    {
deba@2020
   137
      static int count(const Graph &g) {
deba@2020
   138
        return g.nodeNum();
deba@2020
   139
      }
deba@2020
   140
    };    
klao@977
   141
  }
klao@977
   142
klao@946
   143
  /// \brief Function to count the nodes in the graph.
klao@946
   144
  ///
klao@946
   145
  /// This function counts the nodes in the graph.
klao@946
   146
  /// The complexity of the function is O(n) but for some
athos@1526
   147
  /// graph structures it is specialized to run in O(1).
klao@977
   148
  ///
kpeter@2474
   149
  /// \todo Refer how to specialize it.
klao@946
   150
klao@946
   151
  template <typename Graph>
klao@977
   152
  inline int countNodes(const Graph& g) {
deba@2020
   153
    return _graph_utils_bits::CountNodesSelector<Graph>::count(g);
klao@977
   154
  }
klao@977
   155
deba@2029
   156
  namespace _graph_utils_bits {
deba@2029
   157
    
deba@2029
   158
    template <typename Graph, typename Enable = void>
deba@2029
   159
    struct CountANodesSelector {
deba@2029
   160
      static int count(const Graph &g) {
deba@2029
   161
        return countItems<Graph, typename Graph::ANode>(g);
deba@2029
   162
      }
deba@2029
   163
    };
deba@2029
   164
deba@2029
   165
    template <typename Graph>
deba@2029
   166
    struct CountANodesSelector<
deba@2029
   167
      Graph, typename 
deba@2029
   168
      enable_if<typename Graph::NodeNumTag, void>::type> 
deba@2029
   169
    {
deba@2029
   170
      static int count(const Graph &g) {
deba@2186
   171
        return g.aNodeNum();
deba@2029
   172
      }
deba@2029
   173
    };    
deba@2029
   174
  }
deba@2029
   175
deba@2029
   176
  /// \brief Function to count the anodes in the graph.
deba@2029
   177
  ///
deba@2029
   178
  /// This function counts the anodes in the graph.
deba@2029
   179
  /// The complexity of the function is O(an) but for some
deba@2029
   180
  /// graph structures it is specialized to run in O(1).
deba@2029
   181
  ///
kpeter@2474
   182
  /// \todo Refer how to specialize it.
deba@2029
   183
deba@2029
   184
  template <typename Graph>
deba@2029
   185
  inline int countANodes(const Graph& g) {
deba@2029
   186
    return _graph_utils_bits::CountANodesSelector<Graph>::count(g);
deba@2029
   187
  }
deba@2029
   188
deba@2029
   189
  namespace _graph_utils_bits {
deba@2029
   190
    
deba@2029
   191
    template <typename Graph, typename Enable = void>
deba@2029
   192
    struct CountBNodesSelector {
deba@2029
   193
      static int count(const Graph &g) {
deba@2029
   194
        return countItems<Graph, typename Graph::BNode>(g);
deba@2029
   195
      }
deba@2029
   196
    };
deba@2029
   197
deba@2029
   198
    template <typename Graph>
deba@2029
   199
    struct CountBNodesSelector<
deba@2029
   200
      Graph, typename 
deba@2029
   201
      enable_if<typename Graph::NodeNumTag, void>::type> 
deba@2029
   202
    {
deba@2029
   203
      static int count(const Graph &g) {
deba@2186
   204
        return g.bNodeNum();
deba@2029
   205
      }
deba@2029
   206
    };    
deba@2029
   207
  }
deba@2029
   208
deba@2029
   209
  /// \brief Function to count the bnodes in the graph.
deba@2029
   210
  ///
deba@2029
   211
  /// This function counts the bnodes in the graph.
deba@2029
   212
  /// The complexity of the function is O(bn) but for some
deba@2029
   213
  /// graph structures it is specialized to run in O(1).
deba@2029
   214
  ///
kpeter@2474
   215
  /// \todo Refer how to specialize it.
deba@2029
   216
deba@2029
   217
  template <typename Graph>
deba@2029
   218
  inline int countBNodes(const Graph& g) {
deba@2029
   219
    return _graph_utils_bits::CountBNodesSelector<Graph>::count(g);
deba@2029
   220
  }
deba@2029
   221
deba@2020
   222
klao@977
   223
  // Edge counting:
klao@977
   224
deba@2020
   225
  namespace _graph_utils_bits {
deba@2020
   226
    
deba@2020
   227
    template <typename Graph, typename Enable = void>
deba@2020
   228
    struct CountEdgesSelector {
deba@2020
   229
      static int count(const Graph &g) {
deba@2020
   230
        return countItems<Graph, typename Graph::Edge>(g);
deba@2020
   231
      }
deba@2020
   232
    };
klao@977
   233
deba@2020
   234
    template <typename Graph>
deba@2020
   235
    struct CountEdgesSelector<
deba@2020
   236
      Graph, 
deba@2020
   237
      typename enable_if<typename Graph::EdgeNumTag, void>::type> 
deba@2020
   238
    {
deba@2020
   239
      static int count(const Graph &g) {
deba@2020
   240
        return g.edgeNum();
deba@2020
   241
      }
deba@2020
   242
    };    
klao@946
   243
  }
klao@946
   244
klao@946
   245
  /// \brief Function to count the edges in the graph.
klao@946
   246
  ///
klao@946
   247
  /// This function counts the edges in the graph.
klao@946
   248
  /// The complexity of the function is O(e) but for some
athos@1526
   249
  /// graph structures it is specialized to run in O(1).
klao@977
   250
klao@946
   251
  template <typename Graph>
klao@977
   252
  inline int countEdges(const Graph& g) {
deba@2020
   253
    return _graph_utils_bits::CountEdgesSelector<Graph>::count(g);
klao@946
   254
  }
klao@946
   255
klao@1053
   256
  // Undirected edge counting:
deba@2020
   257
  namespace _graph_utils_bits {
deba@2020
   258
    
deba@2020
   259
    template <typename Graph, typename Enable = void>
deba@2020
   260
    struct CountUEdgesSelector {
deba@2020
   261
      static int count(const Graph &g) {
deba@2020
   262
        return countItems<Graph, typename Graph::UEdge>(g);
deba@2020
   263
      }
deba@2020
   264
    };
klao@1053
   265
deba@2020
   266
    template <typename Graph>
deba@2020
   267
    struct CountUEdgesSelector<
deba@2020
   268
      Graph, 
deba@2020
   269
      typename enable_if<typename Graph::EdgeNumTag, void>::type> 
deba@2020
   270
    {
deba@2020
   271
      static int count(const Graph &g) {
deba@2020
   272
        return g.uEdgeNum();
deba@2020
   273
      }
deba@2020
   274
    };    
klao@1053
   275
  }
klao@1053
   276
athos@1526
   277
  /// \brief Function to count the undirected edges in the graph.
klao@946
   278
  ///
athos@1526
   279
  /// This function counts the undirected edges in the graph.
klao@946
   280
  /// The complexity of the function is O(e) but for some
athos@1540
   281
  /// graph structures it is specialized to run in O(1).
klao@1053
   282
klao@946
   283
  template <typename Graph>
klao@1909
   284
  inline int countUEdges(const Graph& g) {
deba@2020
   285
    return _graph_utils_bits::CountUEdgesSelector<Graph>::count(g);
deba@2020
   286
klao@946
   287
  }
klao@946
   288
klao@977
   289
klao@946
   290
  template <typename Graph, typename DegIt>
klao@946
   291
  inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
klao@946
   292
    int num = 0;
klao@946
   293
    for (DegIt it(_g, _n); it != INVALID; ++it) {
klao@946
   294
      ++num;
klao@946
   295
    }
klao@946
   296
    return num;
klao@946
   297
  }
alpar@967
   298
deba@1531
   299
  /// \brief Function to count the number of the out-edges from node \c n.
deba@1531
   300
  ///
deba@1531
   301
  /// This function counts the number of the out-edges from node \c n
deba@1531
   302
  /// in the graph.  
deba@1531
   303
  template <typename Graph>
deba@1531
   304
  inline int countOutEdges(const Graph& _g,  const typename Graph::Node& _n) {
deba@1531
   305
    return countNodeDegree<Graph, typename Graph::OutEdgeIt>(_g, _n);
deba@1531
   306
  }
deba@1531
   307
deba@1531
   308
  /// \brief Function to count the number of the in-edges to node \c n.
deba@1531
   309
  ///
deba@1531
   310
  /// This function counts the number of the in-edges to node \c n
deba@1531
   311
  /// in the graph.  
deba@1531
   312
  template <typename Graph>
deba@1531
   313
  inline int countInEdges(const Graph& _g,  const typename Graph::Node& _n) {
deba@1531
   314
    return countNodeDegree<Graph, typename Graph::InEdgeIt>(_g, _n);
deba@1531
   315
  }
deba@1531
   316
deba@1704
   317
  /// \brief Function to count the number of the inc-edges to node \c n.
deba@1679
   318
  ///
deba@1704
   319
  /// This function counts the number of the inc-edges to node \c n
deba@1679
   320
  /// in the graph.  
deba@1679
   321
  template <typename Graph>
deba@1679
   322
  inline int countIncEdges(const Graph& _g,  const typename Graph::Node& _n) {
deba@1679
   323
    return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n);
deba@1679
   324
  }
deba@1679
   325
deba@2020
   326
  namespace _graph_utils_bits {
deba@2020
   327
    
deba@2020
   328
    template <typename Graph, typename Enable = void>
deba@2020
   329
    struct FindEdgeSelector {
deba@2020
   330
      typedef typename Graph::Node Node;
deba@2020
   331
      typedef typename Graph::Edge Edge;
deba@2020
   332
      static Edge find(const Graph &g, Node u, Node v, Edge e) {
deba@2020
   333
        if (e == INVALID) {
deba@2020
   334
          g.firstOut(e, u);
deba@2020
   335
        } else {
deba@2020
   336
          g.nextOut(e);
deba@2020
   337
        }
deba@2020
   338
        while (e != INVALID && g.target(e) != v) {
deba@2020
   339
          g.nextOut(e);
deba@2020
   340
        }
deba@2020
   341
        return e;
deba@2020
   342
      }
deba@2020
   343
    };
deba@1531
   344
deba@2020
   345
    template <typename Graph>
deba@2020
   346
    struct FindEdgeSelector<
deba@2020
   347
      Graph, 
deba@2020
   348
      typename enable_if<typename Graph::FindEdgeTag, void>::type> 
deba@2020
   349
    {
deba@2020
   350
      typedef typename Graph::Node Node;
deba@2020
   351
      typedef typename Graph::Edge Edge;
deba@2020
   352
      static Edge find(const Graph &g, Node u, Node v, Edge prev) {
deba@2020
   353
        return g.findEdge(u, v, prev);
deba@2020
   354
      }
deba@2020
   355
    };    
deba@1565
   356
  }
deba@1565
   357
deba@1565
   358
  /// \brief Finds an edge between two nodes of a graph.
deba@1565
   359
  ///
alpar@967
   360
  /// Finds an edge from node \c u to node \c v in graph \c g.
alpar@967
   361
  ///
alpar@967
   362
  /// If \c prev is \ref INVALID (this is the default value), then
alpar@967
   363
  /// it finds the first edge from \c u to \c v. Otherwise it looks for
alpar@967
   364
  /// the next edge from \c u to \c v after \c prev.
alpar@967
   365
  /// \return The found edge or \ref INVALID if there is no such an edge.
alpar@967
   366
  ///
alpar@967
   367
  /// Thus you can iterate through each edge from \c u to \c v as it follows.
alpar@1946
   368
  ///\code
alpar@967
   369
  /// for(Edge e=findEdge(g,u,v);e!=INVALID;e=findEdge(g,u,v,e)) {
alpar@967
   370
  ///   ...
alpar@967
   371
  /// }
alpar@1946
   372
  ///\endcode
alpar@2155
   373
  ///
alpar@2235
   374
  ///\sa EdgeLookUp
kpeter@2476
   375
  ///\sa AllEdgeLookUp
alpar@2155
   376
  ///\sa ConEdgeIt
alpar@967
   377
  template <typename Graph>
deba@2286
   378
  inline typename Graph::Edge 
deba@2286
   379
  findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
deba@2286
   380
           typename Graph::Edge prev = INVALID) {
deba@2020
   381
    return _graph_utils_bits::FindEdgeSelector<Graph>::find(g, u, v, prev);
alpar@967
   382
  }
deba@1531
   383
deba@1565
   384
  /// \brief Iterator for iterating on edges connected the same nodes.
deba@1565
   385
  ///
deba@1565
   386
  /// Iterator for iterating on edges connected the same nodes. It is 
deba@1565
   387
  /// higher level interface for the findEdge() function. You can
alpar@1591
   388
  /// use it the following way:
alpar@1946
   389
  ///\code
deba@1565
   390
  /// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
deba@1565
   391
  ///   ...
deba@1565
   392
  /// }
alpar@1946
   393
  ///\endcode
alpar@2155
   394
  /// 
alpar@2155
   395
  ///\sa findEdge()
alpar@2235
   396
  ///\sa EdgeLookUp
kpeter@2474
   397
  ///\sa AllEdgeLookUp
deba@1565
   398
  ///
deba@1565
   399
  /// \author Balazs Dezso 
deba@1565
   400
  template <typename _Graph>
deba@1565
   401
  class ConEdgeIt : public _Graph::Edge {
deba@1565
   402
  public:
deba@1565
   403
deba@1565
   404
    typedef _Graph Graph;
deba@1565
   405
    typedef typename Graph::Edge Parent;
deba@1565
   406
deba@1565
   407
    typedef typename Graph::Edge Edge;
deba@1565
   408
    typedef typename Graph::Node Node;
deba@1565
   409
deba@1565
   410
    /// \brief Constructor.
deba@1565
   411
    ///
deba@1565
   412
    /// Construct a new ConEdgeIt iterating on the edges which
deba@1565
   413
    /// connects the \c u and \c v node.
deba@1565
   414
    ConEdgeIt(const Graph& g, Node u, Node v) : graph(g) {
deba@1565
   415
      Parent::operator=(findEdge(graph, u, v));
deba@1565
   416
    }
deba@1565
   417
deba@1565
   418
    /// \brief Constructor.
deba@1565
   419
    ///
deba@1565
   420
    /// Construct a new ConEdgeIt which continues the iterating from 
deba@1565
   421
    /// the \c e edge.
deba@1565
   422
    ConEdgeIt(const Graph& g, Edge e) : Parent(e), graph(g) {}
deba@1565
   423
    
deba@1565
   424
    /// \brief Increment operator.
deba@1565
   425
    ///
deba@1565
   426
    /// It increments the iterator and gives back the next edge.
deba@1565
   427
    ConEdgeIt& operator++() {
deba@1565
   428
      Parent::operator=(findEdge(graph, graph.source(*this), 
deba@1565
   429
				 graph.target(*this), *this));
deba@1565
   430
      return *this;
deba@1565
   431
    }
deba@1565
   432
  private:
deba@1565
   433
    const Graph& graph;
deba@1565
   434
  };
deba@1565
   435
deba@2020
   436
  namespace _graph_utils_bits {
deba@2020
   437
    
deba@2020
   438
    template <typename Graph, typename Enable = void>
deba@2020
   439
    struct FindUEdgeSelector {
deba@2020
   440
      typedef typename Graph::Node Node;
deba@2020
   441
      typedef typename Graph::UEdge UEdge;
deba@2020
   442
      static UEdge find(const Graph &g, Node u, Node v, UEdge e) {
deba@2020
   443
        bool b;
deba@2020
   444
        if (u != v) {
deba@2020
   445
          if (e == INVALID) {
deba@2031
   446
            g.firstInc(e, b, u);
deba@2020
   447
          } else {
deba@2020
   448
            b = g.source(e) == u;
deba@2020
   449
            g.nextInc(e, b);
deba@2020
   450
          }
deba@2064
   451
          while (e != INVALID && (b ? g.target(e) : g.source(e)) != v) {
deba@2020
   452
            g.nextInc(e, b);
deba@2020
   453
          }
deba@2020
   454
        } else {
deba@2020
   455
          if (e == INVALID) {
deba@2031
   456
            g.firstInc(e, b, u);
deba@2020
   457
          } else {
deba@2020
   458
            b = true;
deba@2020
   459
            g.nextInc(e, b);
deba@2020
   460
          }
deba@2020
   461
          while (e != INVALID && (!b || g.target(e) != v)) {
deba@2020
   462
            g.nextInc(e, b);
deba@2020
   463
          }
deba@2020
   464
        }
deba@2020
   465
        return e;
deba@2020
   466
      }
deba@2020
   467
    };
deba@1704
   468
deba@2020
   469
    template <typename Graph>
deba@2020
   470
    struct FindUEdgeSelector<
deba@2020
   471
      Graph, 
deba@2020
   472
      typename enable_if<typename Graph::FindEdgeTag, void>::type> 
deba@2020
   473
    {
deba@2020
   474
      typedef typename Graph::Node Node;
deba@2020
   475
      typedef typename Graph::UEdge UEdge;
deba@2020
   476
      static UEdge find(const Graph &g, Node u, Node v, UEdge prev) {
deba@2020
   477
        return g.findUEdge(u, v, prev);
deba@2020
   478
      }
deba@2020
   479
    };    
deba@1704
   480
  }
deba@1704
   481
klao@1909
   482
  /// \brief Finds an uedge between two nodes of a graph.
deba@1704
   483
  ///
klao@1909
   484
  /// Finds an uedge from node \c u to node \c v in graph \c g.
deba@2020
   485
  /// If the node \c u and node \c v is equal then each loop edge
deba@2020
   486
  /// will be enumerated.
deba@1704
   487
  ///
deba@1704
   488
  /// If \c prev is \ref INVALID (this is the default value), then
deba@1704
   489
  /// it finds the first edge from \c u to \c v. Otherwise it looks for
deba@1704
   490
  /// the next edge from \c u to \c v after \c prev.
deba@1704
   491
  /// \return The found edge or \ref INVALID if there is no such an edge.
deba@1704
   492
  ///
deba@1704
   493
  /// Thus you can iterate through each edge from \c u to \c v as it follows.
alpar@1946
   494
  ///\code
klao@1909
   495
  /// for(UEdge e = findUEdge(g,u,v); e != INVALID; 
klao@1909
   496
  ///     e = findUEdge(g,u,v,e)) {
deba@1704
   497
  ///   ...
deba@1704
   498
  /// }
alpar@1946
   499
  ///\endcode
alpar@2155
   500
  ///
alpar@2155
   501
  ///\sa ConEdgeIt
alpar@2155
   502
deba@1704
   503
  template <typename Graph>
deba@2286
   504
  inline typename Graph::UEdge 
deba@2286
   505
  findUEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
deba@2286
   506
            typename Graph::UEdge p = INVALID) {
deba@2031
   507
    return _graph_utils_bits::FindUEdgeSelector<Graph>::find(g, u, v, p);
deba@1704
   508
  }
deba@1704
   509
klao@1909
   510
  /// \brief Iterator for iterating on uedges connected the same nodes.
deba@1704
   511
  ///
klao@1909
   512
  /// Iterator for iterating on uedges connected the same nodes. It is 
klao@1909
   513
  /// higher level interface for the findUEdge() function. You can
deba@1704
   514
  /// use it the following way:
alpar@1946
   515
  ///\code
klao@1909
   516
  /// for (ConUEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
deba@1704
   517
  ///   ...
deba@1704
   518
  /// }
alpar@1946
   519
  ///\endcode
deba@1704
   520
  ///
alpar@2155
   521
  ///\sa findUEdge()
alpar@2155
   522
  ///
deba@1704
   523
  /// \author Balazs Dezso 
deba@1704
   524
  template <typename _Graph>
klao@1909
   525
  class ConUEdgeIt : public _Graph::UEdge {
deba@1704
   526
  public:
deba@1704
   527
deba@1704
   528
    typedef _Graph Graph;
klao@1909
   529
    typedef typename Graph::UEdge Parent;
deba@1704
   530
klao@1909
   531
    typedef typename Graph::UEdge UEdge;
deba@1704
   532
    typedef typename Graph::Node Node;
deba@1704
   533
deba@1704
   534
    /// \brief Constructor.
deba@1704
   535
    ///
klao@1909
   536
    /// Construct a new ConUEdgeIt iterating on the edges which
deba@1704
   537
    /// connects the \c u and \c v node.
klao@1909
   538
    ConUEdgeIt(const Graph& g, Node u, Node v) : graph(g) {
klao@1909
   539
      Parent::operator=(findUEdge(graph, u, v));
deba@1704
   540
    }
deba@1704
   541
deba@1704
   542
    /// \brief Constructor.
deba@1704
   543
    ///
klao@1909
   544
    /// Construct a new ConUEdgeIt which continues the iterating from 
deba@1704
   545
    /// the \c e edge.
klao@1909
   546
    ConUEdgeIt(const Graph& g, UEdge e) : Parent(e), graph(g) {}
deba@1704
   547
    
deba@1704
   548
    /// \brief Increment operator.
deba@1704
   549
    ///
deba@1704
   550
    /// It increments the iterator and gives back the next edge.
klao@1909
   551
    ConUEdgeIt& operator++() {
klao@1909
   552
      Parent::operator=(findUEdge(graph, graph.source(*this), 
deba@1829
   553
				      graph.target(*this), *this));
deba@1704
   554
      return *this;
deba@1704
   555
    }
deba@1704
   556
  private:
deba@1704
   557
    const Graph& graph;
deba@1704
   558
  };
deba@1704
   559
athos@1540
   560
  /// \brief Copy a map.
alpar@964
   561
  ///
alpar@1547
   562
  /// This function copies the \c source map to the \c target map. It uses the
athos@1540
   563
  /// given iterator to iterate on the data structure and it uses the \c ref
athos@1540
   564
  /// mapping to convert the source's keys to the target's keys.
deba@1531
   565
  template <typename Target, typename Source, 
deba@1531
   566
	    typename ItemIt, typename Ref>	    
deba@1531
   567
  void copyMap(Target& target, const Source& source, 
deba@1531
   568
	       ItemIt it, const Ref& ref) {
deba@1531
   569
    for (; it != INVALID; ++it) {
deba@1531
   570
      target[ref[it]] = source[it];
klao@946
   571
    }
klao@946
   572
  }
klao@946
   573
deba@1531
   574
  /// \brief Copy the source map to the target map.
deba@1531
   575
  ///
deba@1531
   576
  /// Copy the \c source map to the \c target map. It uses the given iterator
deba@1531
   577
  /// to iterate on the data structure.
deba@1830
   578
  template <typename Target, typename Source, typename ItemIt>	    
deba@1531
   579
  void copyMap(Target& target, const Source& source, ItemIt it) {
deba@1531
   580
    for (; it != INVALID; ++it) {
deba@1531
   581
      target[it] = source[it];
klao@946
   582
    }
klao@946
   583
  }
klao@946
   584
deba@2286
   585
  namespace _graph_utils_bits {
deba@2286
   586
deba@2286
   587
    template <typename Graph, typename Item, typename RefMap>
deba@2286
   588
    class MapCopyBase {
deba@2286
   589
    public:
deba@2286
   590
      virtual void copy(const Graph& source, const RefMap& refMap) = 0;
deba@2286
   591
      
deba@2286
   592
      virtual ~MapCopyBase() {}
deba@2286
   593
    };
deba@2286
   594
deba@2286
   595
    template <typename Graph, typename Item, typename RefMap, 
deba@2286
   596
              typename TargetMap, typename SourceMap>
deba@2286
   597
    class MapCopy : public MapCopyBase<Graph, Item, RefMap> {
deba@2286
   598
    public:
deba@2286
   599
deba@2286
   600
      MapCopy(TargetMap& tmap, const SourceMap& map) 
deba@2286
   601
        : _tmap(tmap), _map(map) {}
deba@2286
   602
      
deba@2286
   603
      virtual void copy(const Graph& graph, const RefMap& refMap) {
deba@2286
   604
        typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
deba@2286
   605
        for (ItemIt it(graph); it != INVALID; ++it) {
deba@2286
   606
          _tmap.set(refMap[it], _map[it]);
deba@2286
   607
        }
deba@2286
   608
      }
deba@2286
   609
deba@2286
   610
    private:
deba@2286
   611
      TargetMap& _tmap;
deba@2286
   612
      const SourceMap& _map;
deba@2286
   613
    };
deba@2286
   614
deba@2290
   615
    template <typename Graph, typename Item, typename RefMap, typename It>
deba@2290
   616
    class ItemCopy : public MapCopyBase<Graph, Item, RefMap> {
deba@2290
   617
    public:
deba@2290
   618
deba@2290
   619
      ItemCopy(It& it, const Item& item) : _it(it), _item(item) {}
deba@2290
   620
      
deba@2290
   621
      virtual void copy(const Graph&, const RefMap& refMap) {
deba@2290
   622
        _it = refMap[_item];
deba@2290
   623
      }
deba@2290
   624
deba@2290
   625
    private:
deba@2290
   626
      It& _it;
deba@2290
   627
      Item _item;
deba@2290
   628
    };
deba@2290
   629
deba@2286
   630
    template <typename Graph, typename Item, typename RefMap, typename Ref>
deba@2286
   631
    class RefCopy : public MapCopyBase<Graph, Item, RefMap> {
deba@2286
   632
    public:
deba@2286
   633
deba@2286
   634
      RefCopy(Ref& map) : _map(map) {}
deba@2286
   635
      
deba@2286
   636
      virtual void copy(const Graph& graph, const RefMap& refMap) {
deba@2286
   637
        typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
deba@2286
   638
        for (ItemIt it(graph); it != INVALID; ++it) {
deba@2286
   639
          _map.set(it, refMap[it]);
deba@2286
   640
        }
deba@2286
   641
      }
deba@2286
   642
deba@2286
   643
    private:
deba@2286
   644
      Ref& _map;
deba@2286
   645
    };
deba@2286
   646
deba@2286
   647
    template <typename Graph, typename Item, typename RefMap, 
deba@2286
   648
              typename CrossRef>
deba@2286
   649
    class CrossRefCopy : public MapCopyBase<Graph, Item, RefMap> {
deba@2286
   650
    public:
deba@2286
   651
deba@2286
   652
      CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
deba@2286
   653
      
deba@2286
   654
      virtual void copy(const Graph& graph, const RefMap& refMap) {
deba@2286
   655
        typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
deba@2286
   656
        for (ItemIt it(graph); it != INVALID; ++it) {
deba@2286
   657
          _cmap.set(refMap[it], it);
deba@2286
   658
        }
deba@2286
   659
      }
deba@2286
   660
deba@2286
   661
    private:
deba@2286
   662
      CrossRef& _cmap;
deba@2286
   663
    };
deba@2286
   664
deba@2290
   665
    template <typename Graph, typename Enable = void>
deba@2290
   666
    struct GraphCopySelector {
deba@2290
   667
      template <typename Source, typename NodeRefMap, typename EdgeRefMap>
deba@2290
   668
      static void copy(Graph &target, const Source& source,
deba@2290
   669
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
deba@2290
   670
        for (typename Source::NodeIt it(source); it != INVALID; ++it) {
deba@2290
   671
          nodeRefMap[it] = target.addNode();
deba@2290
   672
        }
deba@2290
   673
        for (typename Source::EdgeIt it(source); it != INVALID; ++it) {
deba@2290
   674
          edgeRefMap[it] = target.addEdge(nodeRefMap[source.source(it)], 
deba@2290
   675
                                          nodeRefMap[source.target(it)]);
deba@2290
   676
        }
deba@2290
   677
      }
deba@2290
   678
    };
deba@2290
   679
deba@2290
   680
    template <typename Graph>
deba@2290
   681
    struct GraphCopySelector<
deba@2290
   682
      Graph, 
deba@2329
   683
      typename enable_if<typename Graph::BuildTag, void>::type> 
deba@2290
   684
    {
deba@2290
   685
      template <typename Source, typename NodeRefMap, typename EdgeRefMap>
deba@2290
   686
      static void copy(Graph &target, const Source& source,
deba@2290
   687
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
deba@2329
   688
        target.build(source, nodeRefMap, edgeRefMap);
deba@2290
   689
      }
deba@2290
   690
    };
deba@2290
   691
deba@2290
   692
    template <typename UGraph, typename Enable = void>
deba@2290
   693
    struct UGraphCopySelector {
deba@2290
   694
      template <typename Source, typename NodeRefMap, typename UEdgeRefMap>
deba@2290
   695
      static void copy(UGraph &target, const Source& source,
deba@2290
   696
                       NodeRefMap& nodeRefMap, UEdgeRefMap& uEdgeRefMap) {
deba@2290
   697
        for (typename Source::NodeIt it(source); it != INVALID; ++it) {
deba@2290
   698
          nodeRefMap[it] = target.addNode();
deba@2290
   699
        }
deba@2290
   700
        for (typename Source::UEdgeIt it(source); it != INVALID; ++it) {
deba@2290
   701
          uEdgeRefMap[it] = target.addEdge(nodeRefMap[source.source(it)], 
deba@2290
   702
                                          nodeRefMap[source.target(it)]);
deba@2290
   703
        }
deba@2290
   704
      }
deba@2290
   705
    };
deba@2290
   706
deba@2290
   707
    template <typename UGraph>
deba@2290
   708
    struct UGraphCopySelector<
deba@2290
   709
      UGraph, 
deba@2329
   710
      typename enable_if<typename UGraph::BuildTag, void>::type> 
deba@2290
   711
    {
deba@2290
   712
      template <typename Source, typename NodeRefMap, typename UEdgeRefMap>
deba@2290
   713
      static void copy(UGraph &target, const Source& source,
deba@2290
   714
                       NodeRefMap& nodeRefMap, UEdgeRefMap& uEdgeRefMap) {
deba@2329
   715
        target.build(source, nodeRefMap, uEdgeRefMap);
deba@2290
   716
      }
deba@2290
   717
    };
deba@2290
   718
deba@2290
   719
    template <typename BpUGraph, typename Enable = void>
deba@2290
   720
    struct BpUGraphCopySelector {
deba@2290
   721
      template <typename Source, typename ANodeRefMap, 
deba@2290
   722
                typename BNodeRefMap, typename UEdgeRefMap>
deba@2290
   723
      static void copy(BpUGraph &target, const Source& source,
deba@2290
   724
                       ANodeRefMap& aNodeRefMap, BNodeRefMap& bNodeRefMap,
deba@2290
   725
                       UEdgeRefMap& uEdgeRefMap) {
deba@2290
   726
        for (typename Source::ANodeIt it(source); it != INVALID; ++it) {
deba@2290
   727
          aNodeRefMap[it] = target.addANode();
deba@2290
   728
        }
deba@2290
   729
        for (typename Source::BNodeIt it(source); it != INVALID; ++it) {
deba@2290
   730
          bNodeRefMap[it] = target.addBNode();
deba@2290
   731
        }
deba@2290
   732
        for (typename Source::UEdgeIt it(source); it != INVALID; ++it) {
deba@2290
   733
          uEdgeRefMap[it] = target.addEdge(aNodeRefMap[source.aNode(it)], 
deba@2290
   734
                                           bNodeRefMap[source.bNode(it)]);
deba@2290
   735
        }
deba@2290
   736
      }
deba@2290
   737
    };
deba@2290
   738
deba@2290
   739
    template <typename BpUGraph>
deba@2290
   740
    struct BpUGraphCopySelector<
deba@2290
   741
      BpUGraph, 
deba@2329
   742
      typename enable_if<typename BpUGraph::BuildTag, void>::type> 
deba@2290
   743
    {
deba@2290
   744
      template <typename Source, typename ANodeRefMap, 
deba@2290
   745
                typename BNodeRefMap, typename UEdgeRefMap>
deba@2290
   746
      static void copy(BpUGraph &target, const Source& source,
deba@2290
   747
                       ANodeRefMap& aNodeRefMap, BNodeRefMap& bNodeRefMap,
deba@2290
   748
                       UEdgeRefMap& uEdgeRefMap) {
deba@2329
   749
        target.build(source, aNodeRefMap, bNodeRefMap, uEdgeRefMap);
deba@2290
   750
      }
deba@2290
   751
    };
deba@2290
   752
    
deba@2290
   753
deba@2286
   754
  }
deba@2286
   755
athos@1540
   756
  /// \brief Class to copy a graph.
deba@1531
   757
  ///
alpar@2006
   758
  /// Class to copy a graph to another graph (duplicate a graph). The
athos@1540
   759
  /// simplest way of using it is through the \c copyGraph() function.
deba@1531
   760
  template <typename Target, typename Source>
deba@1267
   761
  class GraphCopy {
deba@2286
   762
  private:
deba@2286
   763
deba@1531
   764
    typedef typename Source::Node Node;
deba@1531
   765
    typedef typename Source::NodeIt NodeIt;
deba@1531
   766
    typedef typename Source::Edge Edge;
deba@1531
   767
    typedef typename Source::EdgeIt EdgeIt;
klao@946
   768
deba@2286
   769
    typedef typename Target::Node TNode;
deba@2286
   770
    typedef typename Target::Edge TEdge;
deba@2286
   771
deba@2286
   772
    typedef typename Source::template NodeMap<TNode> NodeRefMap;
deba@2286
   773
    typedef typename Source::template EdgeMap<TEdge> EdgeRefMap;
deba@2286
   774
    
deba@2286
   775
    
deba@2286
   776
  public: 
deba@2286
   777
klao@946
   778
deba@1531
   779
    /// \brief Constructor for the GraphCopy.
deba@1531
   780
    ///
deba@1531
   781
    /// It copies the content of the \c _source graph into the
deba@2286
   782
    /// \c _target graph.
deba@1531
   783
    GraphCopy(Target& _target, const Source& _source) 
deba@2286
   784
      : source(_source), target(_target) {}
deba@2286
   785
deba@2286
   786
    /// \brief Destructor of the GraphCopy
deba@2286
   787
    ///
deba@2286
   788
    /// Destructor of the GraphCopy
deba@2286
   789
    ~GraphCopy() {
deba@2386
   790
      for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
deba@2286
   791
        delete nodeMapCopies[i];
deba@1531
   792
      }
deba@2386
   793
      for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
deba@2286
   794
        delete edgeMapCopies[i];
deba@1531
   795
      }
deba@2286
   796
deba@1267
   797
    }
klao@946
   798
deba@1531
   799
    /// \brief Copies the node references into the given map.
deba@1531
   800
    ///
deba@1531
   801
    /// Copies the node references into the given map.
deba@1531
   802
    template <typename NodeRef>
deba@2286
   803
    GraphCopy& nodeRef(NodeRef& map) {
deba@2286
   804
      nodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Node, 
deba@2286
   805
                              NodeRefMap, NodeRef>(map));
deba@1531
   806
      return *this;
deba@1267
   807
    }
deba@1531
   808
deba@2290
   809
    /// \brief Copies the node cross references into the given map.
deba@1531
   810
    ///
deba@2290
   811
    ///  Copies the node cross references (reverse references) into
deba@2290
   812
    ///  the given map.
deba@2286
   813
    template <typename NodeCrossRef>
deba@2286
   814
    GraphCopy& nodeCrossRef(NodeCrossRef& map) {
deba@2286
   815
      nodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Node,
deba@2286
   816
                              NodeRefMap, NodeCrossRef>(map));
deba@1531
   817
      return *this;
deba@1531
   818
    }
deba@1531
   819
deba@1531
   820
    /// \brief Make copy of the given map.
deba@1531
   821
    ///
deba@1531
   822
    /// Makes copy of the given map for the newly created graph. 
deba@1531
   823
    /// The new map's key type is the target graph's node type,
deba@1531
   824
    /// and the copied map's key type is the source graph's node
deba@1531
   825
    /// type.  
deba@1531
   826
    template <typename TargetMap, typename SourceMap>
deba@2286
   827
    GraphCopy& nodeMap(TargetMap& tmap, const SourceMap& map) {
deba@2286
   828
      nodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Node, 
deba@2286
   829
                              NodeRefMap, TargetMap, SourceMap>(tmap, map));
deba@2286
   830
      return *this;
deba@2286
   831
    }
deba@2286
   832
deba@2290
   833
    /// \brief Make a copy of the given node.
deba@2290
   834
    ///
deba@2290
   835
    /// Make a copy of the given node.
deba@2386
   836
    GraphCopy& node(TNode& tnode, const Node& snode) {
deba@2290
   837
      nodeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Node, 
deba@2386
   838
                              NodeRefMap, TNode>(tnode, snode));
deba@2290
   839
      return *this;
deba@2290
   840
    }
deba@2290
   841
deba@2286
   842
    /// \brief Copies the edge references into the given map.
deba@2286
   843
    ///
deba@2286
   844
    /// Copies the edge references into the given map.
deba@2286
   845
    template <typename EdgeRef>
deba@2286
   846
    GraphCopy& edgeRef(EdgeRef& map) {
deba@2286
   847
      edgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Edge, 
deba@2286
   848
                              EdgeRefMap, EdgeRef>(map));
deba@2286
   849
      return *this;
deba@2286
   850
    }
deba@2286
   851
deba@2290
   852
    /// \brief Copies the edge cross references into the given map.
deba@2286
   853
    ///
deba@2290
   854
    ///  Copies the edge cross references (reverse references) into
deba@2290
   855
    ///  the given map.
deba@2286
   856
    template <typename EdgeCrossRef>
deba@2286
   857
    GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
deba@2286
   858
      edgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Edge,
deba@2286
   859
                              EdgeRefMap, EdgeCrossRef>(map));
deba@1531
   860
      return *this;
deba@1531
   861
    }
deba@1531
   862
deba@1531
   863
    /// \brief Make copy of the given map.
deba@1531
   864
    ///
deba@1531
   865
    /// Makes copy of the given map for the newly created graph. 
deba@1531
   866
    /// The new map's key type is the target graph's edge type,
deba@1531
   867
    /// and the copied map's key type is the source graph's edge
deba@1531
   868
    /// type.  
deba@1531
   869
    template <typename TargetMap, typename SourceMap>
deba@2286
   870
    GraphCopy& edgeMap(TargetMap& tmap, const SourceMap& map) {
deba@2286
   871
      edgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Edge, 
deba@2286
   872
                              EdgeRefMap, TargetMap, SourceMap>(tmap, map));
deba@1531
   873
      return *this;
deba@1531
   874
    }
deba@1531
   875
deba@2290
   876
    /// \brief Make a copy of the given edge.
deba@2290
   877
    ///
deba@2290
   878
    /// Make a copy of the given edge.
deba@2386
   879
    GraphCopy& edge(TEdge& tedge, const Edge& sedge) {
deba@2290
   880
      edgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Edge, 
deba@2386
   881
                              EdgeRefMap, TEdge>(tedge, sedge));
deba@2290
   882
      return *this;
deba@2290
   883
    }
deba@2290
   884
deba@2286
   885
    /// \brief Executes the copies.
deba@1531
   886
    ///
deba@2286
   887
    /// Executes the copies.
deba@2286
   888
    void run() {
deba@2286
   889
      NodeRefMap nodeRefMap(source);
deba@2290
   890
      EdgeRefMap edgeRefMap(source);
deba@2290
   891
      _graph_utils_bits::GraphCopySelector<Target>::
deba@2290
   892
        copy(target, source, nodeRefMap, edgeRefMap);
deba@2386
   893
      for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
deba@2286
   894
        nodeMapCopies[i]->copy(source, nodeRefMap);
deba@2286
   895
      }
deba@2386
   896
      for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
deba@2286
   897
        edgeMapCopies[i]->copy(source, edgeRefMap);
deba@2290
   898
      }      
deba@1531
   899
    }
deba@1531
   900
deba@2290
   901
  protected:
deba@2290
   902
deba@2290
   903
deba@1531
   904
    const Source& source;
deba@1531
   905
    Target& target;
deba@1531
   906
deba@2286
   907
    std::vector<_graph_utils_bits::MapCopyBase<Source, Node, NodeRefMap>* > 
deba@2286
   908
    nodeMapCopies;
deba@2286
   909
deba@2286
   910
    std::vector<_graph_utils_bits::MapCopyBase<Source, Edge, EdgeRefMap>* > 
deba@2286
   911
    edgeMapCopies;
deba@2286
   912
deba@1267
   913
  };
klao@946
   914
alpar@2006
   915
  /// \brief Copy a graph to another graph.
deba@1531
   916
  ///
alpar@2006
   917
  /// Copy a graph to another graph.
deba@1531
   918
  /// The usage of the function:
deba@1531
   919
  /// 
alpar@1946
   920
  ///\code
deba@2286
   921
  /// copyGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr).run();
alpar@1946
   922
  ///\endcode
deba@1531
   923
  /// 
deba@1531
   924
  /// After the copy the \c nr map will contain the mapping from the
deba@1531
   925
  /// source graph's nodes to the target graph's nodes and the \c ecr will
athos@1540
   926
  /// contain the mapping from the target graph's edges to the source's
deba@1531
   927
  /// edges.
deba@2290
   928
  ///
deba@2290
   929
  /// \see GraphCopy 
deba@1531
   930
  template <typename Target, typename Source>
deba@1531
   931
  GraphCopy<Target, Source> copyGraph(Target& target, const Source& source) {
deba@1531
   932
    return GraphCopy<Target, Source>(target, source);
deba@1531
   933
  }
klao@946
   934
deba@1720
   935
  /// \brief Class to copy an undirected graph.
deba@1720
   936
  ///
alpar@2006
   937
  /// Class to copy an undirected graph to another graph (duplicate a graph).
klao@1909
   938
  /// The simplest way of using it is through the \c copyUGraph() function.
deba@1720
   939
  template <typename Target, typename Source>
klao@1909
   940
  class UGraphCopy {
deba@2286
   941
  private:
deba@2286
   942
deba@1720
   943
    typedef typename Source::Node Node;
deba@1720
   944
    typedef typename Source::NodeIt NodeIt;
deba@1720
   945
    typedef typename Source::Edge Edge;
deba@1720
   946
    typedef typename Source::EdgeIt EdgeIt;
klao@1909
   947
    typedef typename Source::UEdge UEdge;
klao@1909
   948
    typedef typename Source::UEdgeIt UEdgeIt;
deba@1720
   949
deba@2286
   950
    typedef typename Target::Node TNode;
deba@2286
   951
    typedef typename Target::Edge TEdge;
deba@2286
   952
    typedef typename Target::UEdge TUEdge;
deba@1720
   953
deba@2286
   954
    typedef typename Source::template NodeMap<TNode> NodeRefMap;
deba@2286
   955
    typedef typename Source::template UEdgeMap<TUEdge> UEdgeRefMap;
deba@1720
   956
deba@1720
   957
    struct EdgeRefMap {
deba@2286
   958
      EdgeRefMap(const Target& _target, const Source& _source,
deba@2286
   959
                 const UEdgeRefMap& _uedge_ref, const NodeRefMap& _node_ref) 
deba@2286
   960
        : target(_target), source(_source), 
deba@2286
   961
          uedge_ref(_uedge_ref), node_ref(_node_ref) {}
deba@2286
   962
deba@1720
   963
      typedef typename Source::Edge Key;
deba@1720
   964
      typedef typename Target::Edge Value;
deba@1720
   965
deba@2286
   966
      Value operator[](const Key& key) const {
deba@2386
   967
        bool forward = 
deba@2386
   968
          (source.direction(key) == 
deba@2386
   969
           (node_ref[source.source(static_cast<const UEdge&>(key))] == 
deba@2386
   970
            target.source(uedge_ref[static_cast<const UEdge&>(key)])));
deba@2286
   971
	return target.direct(uedge_ref[key], forward); 
deba@1720
   972
      }
deba@1720
   973
      
deba@2286
   974
      const Target& target;
deba@2286
   975
      const Source& source;
deba@2286
   976
      const UEdgeRefMap& uedge_ref;
deba@2286
   977
      const NodeRefMap& node_ref;
deba@1720
   978
    };
deba@2286
   979
deba@1720
   980
    
deba@2286
   981
  public: 
deba@1720
   982
deba@2286
   983
deba@2286
   984
    /// \brief Constructor for the GraphCopy.
deba@1720
   985
    ///
deba@1720
   986
    /// It copies the content of the \c _source graph into the
deba@2286
   987
    /// \c _target graph.
klao@1909
   988
    UGraphCopy(Target& _target, const Source& _source) 
deba@2286
   989
      : source(_source), target(_target) {}
deba@2286
   990
deba@2286
   991
    /// \brief Destructor of the GraphCopy
deba@2286
   992
    ///
deba@2286
   993
    /// Destructor of the GraphCopy
deba@2286
   994
    ~UGraphCopy() {
deba@2386
   995
      for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
deba@2286
   996
        delete nodeMapCopies[i];
deba@1720
   997
      }
deba@2386
   998
      for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
deba@2286
   999
        delete edgeMapCopies[i];
deba@1720
  1000
      }
deba@2386
  1001
      for (int i = 0; i < int(uEdgeMapCopies.size()); ++i) {
deba@2286
  1002
        delete uEdgeMapCopies[i];
deba@2286
  1003
      }
deba@2286
  1004
deba@1720
  1005
    }
deba@1720
  1006
deba@1720
  1007
    /// \brief Copies the node references into the given map.
deba@1720
  1008
    ///
deba@1720
  1009
    /// Copies the node references into the given map.
deba@1720
  1010
    template <typename NodeRef>
deba@2286
  1011
    UGraphCopy& nodeRef(NodeRef& map) {
deba@2286
  1012
      nodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Node, 
deba@2286
  1013
                              NodeRefMap, NodeRef>(map));
deba@1720
  1014
      return *this;
deba@1720
  1015
    }
deba@1720
  1016
deba@2290
  1017
    /// \brief Copies the node cross references into the given map.
deba@1720
  1018
    ///
deba@2290
  1019
    ///  Copies the node cross references (reverse references) into
deba@2290
  1020
    ///  the given map.
deba@2286
  1021
    template <typename NodeCrossRef>
deba@2286
  1022
    UGraphCopy& nodeCrossRef(NodeCrossRef& map) {
deba@2286
  1023
      nodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Node,
deba@2286
  1024
                              NodeRefMap, NodeCrossRef>(map));
deba@1720
  1025
      return *this;
deba@1720
  1026
    }
deba@1720
  1027
deba@1720
  1028
    /// \brief Make copy of the given map.
deba@1720
  1029
    ///
deba@1720
  1030
    /// Makes copy of the given map for the newly created graph. 
deba@1720
  1031
    /// The new map's key type is the target graph's node type,
deba@1720
  1032
    /// and the copied map's key type is the source graph's node
deba@1720
  1033
    /// type.  
deba@1720
  1034
    template <typename TargetMap, typename SourceMap>
deba@2286
  1035
    UGraphCopy& nodeMap(TargetMap& tmap, const SourceMap& map) {
deba@2286
  1036
      nodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Node, 
deba@2286
  1037
                              NodeRefMap, TargetMap, SourceMap>(tmap, map));
deba@2286
  1038
      return *this;
deba@2286
  1039
    }
deba@2286
  1040
deba@2290
  1041
    /// \brief Make a copy of the given node.
deba@2290
  1042
    ///
deba@2290
  1043
    /// Make a copy of the given node.
deba@2386
  1044
    UGraphCopy& node(TNode& tnode, const Node& snode) {
deba@2290
  1045
      nodeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Node, 
deba@2386
  1046
                              NodeRefMap, TNode>(tnode, snode));
deba@2290
  1047
      return *this;
deba@2290
  1048
    }
deba@2290
  1049
deba@2286
  1050
    /// \brief Copies the edge references into the given map.
deba@2286
  1051
    ///
deba@2286
  1052
    /// Copies the edge references into the given map.
deba@2286
  1053
    template <typename EdgeRef>
deba@2286
  1054
    UGraphCopy& edgeRef(EdgeRef& map) {
deba@2286
  1055
      edgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Edge, 
deba@2286
  1056
                              EdgeRefMap, EdgeRef>(map));
deba@2286
  1057
      return *this;
deba@2286
  1058
    }
deba@2286
  1059
deba@2290
  1060
    /// \brief Copies the edge cross references into the given map.
deba@2286
  1061
    ///
deba@2290
  1062
    ///  Copies the edge cross references (reverse references) into
deba@2290
  1063
    ///  the given map.
deba@2286
  1064
    template <typename EdgeCrossRef>
deba@2286
  1065
    UGraphCopy& edgeCrossRef(EdgeCrossRef& map) {
deba@2286
  1066
      edgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Edge,
deba@2286
  1067
                              EdgeRefMap, EdgeCrossRef>(map));
deba@1720
  1068
      return *this;
deba@1720
  1069
    }
deba@1720
  1070
deba@1720
  1071
    /// \brief Make copy of the given map.
deba@1720
  1072
    ///
deba@1720
  1073
    /// Makes copy of the given map for the newly created graph. 
deba@1720
  1074
    /// The new map's key type is the target graph's edge type,
deba@1720
  1075
    /// and the copied map's key type is the source graph's edge
deba@1720
  1076
    /// type.  
deba@1720
  1077
    template <typename TargetMap, typename SourceMap>
deba@2286
  1078
    UGraphCopy& edgeMap(TargetMap& tmap, const SourceMap& map) {
deba@2286
  1079
      edgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Edge, 
deba@2286
  1080
                              EdgeRefMap, TargetMap, SourceMap>(tmap, map));
deba@2286
  1081
      return *this;
deba@2286
  1082
    }
deba@2286
  1083
deba@2290
  1084
    /// \brief Make a copy of the given edge.
deba@2286
  1085
    ///
deba@2290
  1086
    /// Make a copy of the given edge.
deba@2386
  1087
    UGraphCopy& edge(TEdge& tedge, const Edge& sedge) {
deba@2290
  1088
      edgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Edge, 
deba@2386
  1089
                              EdgeRefMap, TEdge>(tedge, sedge));
deba@2290
  1090
      return *this;
deba@2290
  1091
    }
deba@2290
  1092
deba@2290
  1093
    /// \brief Copies the undirected edge references into the given map.
deba@2290
  1094
    ///
deba@2290
  1095
    /// Copies the undirected edge references into the given map.
deba@2286
  1096
    template <typename UEdgeRef>
deba@2286
  1097
    UGraphCopy& uEdgeRef(UEdgeRef& map) {
deba@2286
  1098
      uEdgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, UEdge, 
deba@2286
  1099
                               UEdgeRefMap, UEdgeRef>(map));
deba@2286
  1100
      return *this;
deba@2286
  1101
    }
deba@2286
  1102
deba@2290
  1103
    /// \brief Copies the undirected edge cross references into the given map.
deba@2286
  1104
    ///
deba@2290
  1105
    /// Copies the undirected edge cross references (reverse
deba@2290
  1106
    /// references) into the given map.
deba@2286
  1107
    template <typename UEdgeCrossRef>
deba@2286
  1108
    UGraphCopy& uEdgeCrossRef(UEdgeCrossRef& map) {
deba@2286
  1109
      uEdgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, 
deba@2286
  1110
                               UEdge, UEdgeRefMap, UEdgeCrossRef>(map));
deba@1720
  1111
      return *this;
deba@1720
  1112
    }
deba@1720
  1113
deba@1720
  1114
    /// \brief Make copy of the given map.
deba@1720
  1115
    ///
deba@1720
  1116
    /// Makes copy of the given map for the newly created graph. 
deba@2290
  1117
    /// The new map's key type is the target graph's undirected edge type,
deba@2290
  1118
    /// and the copied map's key type is the source graph's undirected edge
deba@1720
  1119
    /// type.  
deba@1720
  1120
    template <typename TargetMap, typename SourceMap>
deba@2286
  1121
    UGraphCopy& uEdgeMap(TargetMap& tmap, const SourceMap& map) {
deba@2286
  1122
      uEdgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, UEdge, 
deba@2286
  1123
                               UEdgeRefMap, TargetMap, SourceMap>(tmap, map));
deba@1720
  1124
      return *this;
deba@1720
  1125
    }
deba@1720
  1126
deba@2290
  1127
    /// \brief Make a copy of the given undirected edge.
deba@2290
  1128
    ///
deba@2290
  1129
    /// Make a copy of the given undirected edge.
deba@2386
  1130
    UGraphCopy& uEdge(TUEdge& tuedge, const UEdge& suedge) {
deba@2290
  1131
      uEdgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, UEdge, 
deba@2386
  1132
                               UEdgeRefMap, TUEdge>(tuedge, suedge));
deba@2290
  1133
      return *this;
deba@2290
  1134
    }
deba@2290
  1135
deba@2286
  1136
    /// \brief Executes the copies.
deba@1720
  1137
    ///
deba@2286
  1138
    /// Executes the copies.
deba@2286
  1139
    void run() {
deba@2286
  1140
      NodeRefMap nodeRefMap(source);
deba@2290
  1141
      UEdgeRefMap uEdgeRefMap(source);
deba@2290
  1142
      EdgeRefMap edgeRefMap(target, source, uEdgeRefMap, nodeRefMap);
deba@2290
  1143
      _graph_utils_bits::UGraphCopySelector<Target>::
deba@2290
  1144
        copy(target, source, nodeRefMap, uEdgeRefMap);
deba@2386
  1145
      for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
deba@2286
  1146
        nodeMapCopies[i]->copy(source, nodeRefMap);
deba@2286
  1147
      }
deba@2386
  1148
      for (int i = 0; i < int(uEdgeMapCopies.size()); ++i) {
deba@2286
  1149
        uEdgeMapCopies[i]->copy(source, uEdgeRefMap);
deba@2286
  1150
      }
deba@2386
  1151
      for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
deba@2286
  1152
        edgeMapCopies[i]->copy(source, edgeRefMap);
deba@2286
  1153
      }
deba@1720
  1154
    }
deba@1720
  1155
deba@1720
  1156
  private:
deba@1192
  1157
    
deba@1720
  1158
    const Source& source;
deba@1720
  1159
    Target& target;
alpar@947
  1160
deba@2286
  1161
    std::vector<_graph_utils_bits::MapCopyBase<Source, Node, NodeRefMap>* > 
deba@2286
  1162
    nodeMapCopies;
deba@2286
  1163
deba@2286
  1164
    std::vector<_graph_utils_bits::MapCopyBase<Source, Edge, EdgeRefMap>* > 
deba@2286
  1165
    edgeMapCopies;
deba@2286
  1166
deba@2286
  1167
    std::vector<_graph_utils_bits::MapCopyBase<Source, UEdge, UEdgeRefMap>* > 
deba@2286
  1168
    uEdgeMapCopies;
deba@2286
  1169
deba@1192
  1170
  };
deba@1192
  1171
deba@2290
  1172
  /// \brief Copy an undirected graph to another graph.
deba@1720
  1173
  ///
deba@2290
  1174
  /// Copy an undirected graph to another graph.
deba@1720
  1175
  /// The usage of the function:
deba@1720
  1176
  /// 
alpar@1946
  1177
  ///\code
deba@2286
  1178
  /// copyUGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr).run();
alpar@1946
  1179
  ///\endcode
deba@1720
  1180
  /// 
deba@1720
  1181
  /// After the copy the \c nr map will contain the mapping from the
deba@1720
  1182
  /// source graph's nodes to the target graph's nodes and the \c ecr will
deba@1720
  1183
  /// contain the mapping from the target graph's edges to the source's
deba@1720
  1184
  /// edges.
deba@2290
  1185
  ///
deba@2290
  1186
  /// \see UGraphCopy 
deba@1720
  1187
  template <typename Target, typename Source>
klao@1909
  1188
  UGraphCopy<Target, Source> 
klao@1909
  1189
  copyUGraph(Target& target, const Source& source) {
klao@1909
  1190
    return UGraphCopy<Target, Source>(target, source);
deba@1720
  1191
  }
deba@1192
  1192
deba@2290
  1193
  /// \brief Class to copy a bipartite undirected graph.
deba@2290
  1194
  ///
deba@2290
  1195
  /// Class to copy a bipartite undirected graph to another graph
deba@2290
  1196
  /// (duplicate a graph).  The simplest way of using it is through
deba@2290
  1197
  /// the \c copyBpUGraph() function.
deba@2290
  1198
  template <typename Target, typename Source>
deba@2290
  1199
  class BpUGraphCopy {
deba@2290
  1200
  private:
deba@2290
  1201
deba@2290
  1202
    typedef typename Source::Node Node;
deba@2290
  1203
    typedef typename Source::ANode ANode;
deba@2290
  1204
    typedef typename Source::BNode BNode;
deba@2290
  1205
    typedef typename Source::NodeIt NodeIt;
deba@2290
  1206
    typedef typename Source::Edge Edge;
deba@2290
  1207
    typedef typename Source::EdgeIt EdgeIt;
deba@2290
  1208
    typedef typename Source::UEdge UEdge;
deba@2290
  1209
    typedef typename Source::UEdgeIt UEdgeIt;
deba@2290
  1210
deba@2290
  1211
    typedef typename Target::Node TNode;
deba@2290
  1212
    typedef typename Target::Edge TEdge;
deba@2290
  1213
    typedef typename Target::UEdge TUEdge;
deba@2290
  1214
deba@2290
  1215
    typedef typename Source::template ANodeMap<TNode> ANodeRefMap;
deba@2290
  1216
    typedef typename Source::template BNodeMap<TNode> BNodeRefMap;
deba@2290
  1217
    typedef typename Source::template UEdgeMap<TUEdge> UEdgeRefMap;
deba@2290
  1218
deba@2290
  1219
    struct NodeRefMap {
deba@2290
  1220
      NodeRefMap(const Source& _source, const ANodeRefMap& _anode_ref,
deba@2290
  1221
                 const BNodeRefMap& _bnode_ref)
deba@2290
  1222
        : source(_source), anode_ref(_anode_ref), bnode_ref(_bnode_ref) {}
deba@2290
  1223
deba@2290
  1224
      typedef typename Source::Node Key;
deba@2290
  1225
      typedef typename Target::Node Value;
deba@2290
  1226
deba@2290
  1227
      Value operator[](const Key& key) const {
deba@2290
  1228
	return source.aNode(key) ? anode_ref[key] : bnode_ref[key]; 
deba@2290
  1229
      }
deba@2290
  1230
      
deba@2290
  1231
      const Source& source;
deba@2290
  1232
      const ANodeRefMap& anode_ref;
deba@2290
  1233
      const BNodeRefMap& bnode_ref;
deba@2290
  1234
    };
deba@2290
  1235
deba@2290
  1236
    struct EdgeRefMap {
deba@2290
  1237
      EdgeRefMap(const Target& _target, const Source& _source,
deba@2290
  1238
                 const UEdgeRefMap& _uedge_ref, const NodeRefMap& _node_ref) 
deba@2290
  1239
        : target(_target), source(_source), 
deba@2290
  1240
          uedge_ref(_uedge_ref), node_ref(_node_ref) {}
deba@2290
  1241
deba@2290
  1242
      typedef typename Source::Edge Key;
deba@2290
  1243
      typedef typename Target::Edge Value;
deba@2290
  1244
deba@2290
  1245
      Value operator[](const Key& key) const {
deba@2386
  1246
        bool forward = 
deba@2386
  1247
          (source.direction(key) == 
deba@2386
  1248
           (node_ref[source.source(static_cast<const UEdge&>(key))] == 
deba@2386
  1249
            target.source(uedge_ref[static_cast<const UEdge&>(key)])));
deba@2290
  1250
	return target.direct(uedge_ref[key], forward); 
deba@2290
  1251
      }
deba@2290
  1252
      
deba@2290
  1253
      const Target& target;
deba@2290
  1254
      const Source& source;
deba@2290
  1255
      const UEdgeRefMap& uedge_ref;
deba@2290
  1256
      const NodeRefMap& node_ref;
deba@2290
  1257
    };
deba@2290
  1258
    
deba@2290
  1259
  public: 
deba@2290
  1260
deba@2290
  1261
deba@2290
  1262
    /// \brief Constructor for the GraphCopy.
deba@2290
  1263
    ///
deba@2290
  1264
    /// It copies the content of the \c _source graph into the
deba@2290
  1265
    /// \c _target graph.
deba@2290
  1266
    BpUGraphCopy(Target& _target, const Source& _source) 
deba@2290
  1267
      : source(_source), target(_target) {}
deba@2290
  1268
deba@2290
  1269
    /// \brief Destructor of the GraphCopy
deba@2290
  1270
    ///
deba@2290
  1271
    /// Destructor of the GraphCopy
deba@2290
  1272
    ~BpUGraphCopy() {
deba@2386
  1273
      for (int i = 0; i < int(aNodeMapCopies.size()); ++i) {
deba@2290
  1274
        delete aNodeMapCopies[i];
deba@2290
  1275
      }
deba@2386
  1276
      for (int i = 0; i < int(bNodeMapCopies.size()); ++i) {
deba@2290
  1277
        delete bNodeMapCopies[i];
deba@2290
  1278
      }
deba@2386
  1279
      for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
deba@2290
  1280
        delete nodeMapCopies[i];
deba@2290
  1281
      }
deba@2386
  1282
      for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
deba@2290
  1283
        delete edgeMapCopies[i];
deba@2290
  1284
      }
deba@2386
  1285
      for (int i = 0; i < int(uEdgeMapCopies.size()); ++i) {
deba@2290
  1286
        delete uEdgeMapCopies[i];
deba@2290
  1287
      }
deba@2290
  1288
deba@2290
  1289
    }
deba@2290
  1290
deba@2290
  1291
    /// \brief Copies the A-node references into the given map.
deba@2290
  1292
    ///
deba@2290
  1293
    /// Copies the A-node references into the given map.
deba@2290
  1294
    template <typename ANodeRef>
deba@2290
  1295
    BpUGraphCopy& aNodeRef(ANodeRef& map) {
deba@2290
  1296
      aNodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, ANode, 
deba@2290
  1297
                               ANodeRefMap, ANodeRef>(map));
deba@2290
  1298
      return *this;
deba@2290
  1299
    }
deba@2290
  1300
deba@2290
  1301
    /// \brief Copies the A-node cross references into the given map.
deba@2290
  1302
    ///
deba@2290
  1303
    /// Copies the A-node cross references (reverse references) into
deba@2290
  1304
    /// the given map.
deba@2290
  1305
    template <typename ANodeCrossRef>
deba@2290
  1306
    BpUGraphCopy& aNodeCrossRef(ANodeCrossRef& map) {
deba@2290
  1307
      aNodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, 
deba@2290
  1308
                               ANode, ANodeRefMap, ANodeCrossRef>(map));
deba@2290
  1309
      return *this;
deba@2290
  1310
    }
deba@2290
  1311
deba@2290
  1312
    /// \brief Make copy of the given A-node map.
deba@2290
  1313
    ///
deba@2290
  1314
    /// Makes copy of the given map for the newly created graph. 
deba@2290
  1315
    /// The new map's key type is the target graph's node type,
deba@2290
  1316
    /// and the copied map's key type is the source graph's node
deba@2290
  1317
    /// type.  
deba@2290
  1318
    template <typename TargetMap, typename SourceMap>
deba@2290
  1319
    BpUGraphCopy& aNodeMap(TargetMap& tmap, const SourceMap& map) {
deba@2290
  1320
      aNodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, ANode, 
deba@2290
  1321
                               ANodeRefMap, TargetMap, SourceMap>(tmap, map));
deba@2290
  1322
      return *this;
deba@2290
  1323
    }
deba@2290
  1324
deba@2290
  1325
    /// \brief Copies the B-node references into the given map.
deba@2290
  1326
    ///
deba@2290
  1327
    /// Copies the B-node references into the given map.
deba@2290
  1328
    template <typename BNodeRef>
deba@2290
  1329
    BpUGraphCopy& bNodeRef(BNodeRef& map) {
deba@2290
  1330
      bNodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, BNode, 
deba@2290
  1331
                               BNodeRefMap, BNodeRef>(map));
deba@2290
  1332
      return *this;
deba@2290
  1333
    }
deba@2290
  1334
deba@2290
  1335
    /// \brief Copies the B-node cross references into the given map.
deba@2290
  1336
    ///
deba@2290
  1337
    ///  Copies the B-node cross references (reverse references) into
deba@2290
  1338
    ///  the given map.
deba@2290
  1339
    template <typename BNodeCrossRef>
deba@2290
  1340
    BpUGraphCopy& bNodeCrossRef(BNodeCrossRef& map) {
deba@2290
  1341
      bNodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, 
deba@2290
  1342
                              BNode, BNodeRefMap, BNodeCrossRef>(map));
deba@2290
  1343
      return *this;
deba@2290
  1344
    }
deba@2290
  1345
deba@2290
  1346
    /// \brief Make copy of the given B-node map.
deba@2290
  1347
    ///
deba@2290
  1348
    /// Makes copy of the given map for the newly created graph. 
deba@2290
  1349
    /// The new map's key type is the target graph's node type,
deba@2290
  1350
    /// and the copied map's key type is the source graph's node
deba@2290
  1351
    /// type.  
deba@2290
  1352
    template <typename TargetMap, typename SourceMap>
deba@2290
  1353
    BpUGraphCopy& bNodeMap(TargetMap& tmap, const SourceMap& map) {
deba@2290
  1354
      bNodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, BNode, 
deba@2290
  1355
                               BNodeRefMap, TargetMap, SourceMap>(tmap, map));
deba@2290
  1356
      return *this;
deba@2290
  1357
    }
deba@2290
  1358
    /// \brief Copies the node references into the given map.
deba@2290
  1359
    ///
deba@2290
  1360
    /// Copies the node references into the given map.
deba@2290
  1361
    template <typename NodeRef>
deba@2290
  1362
    BpUGraphCopy& nodeRef(NodeRef& map) {
deba@2290
  1363
      nodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Node, 
deba@2290
  1364
                              NodeRefMap, NodeRef>(map));
deba@2290
  1365
      return *this;
deba@2290
  1366
    }
deba@2290
  1367
deba@2290
  1368
    /// \brief Copies the node cross references into the given map.
deba@2290
  1369
    ///
deba@2290
  1370
    ///  Copies the node cross references (reverse references) into
deba@2290
  1371
    ///  the given map.
deba@2290
  1372
    template <typename NodeCrossRef>
deba@2290
  1373
    BpUGraphCopy& nodeCrossRef(NodeCrossRef& map) {
deba@2290
  1374
      nodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Node,
deba@2290
  1375
                              NodeRefMap, NodeCrossRef>(map));
deba@2290
  1376
      return *this;
deba@2290
  1377
    }
deba@2290
  1378
deba@2290
  1379
    /// \brief Make copy of the given map.
deba@2290
  1380
    ///
deba@2290
  1381
    /// Makes copy of the given map for the newly created graph. 
deba@2290
  1382
    /// The new map's key type is the target graph's node type,
deba@2290
  1383
    /// and the copied map's key type is the source graph's node
deba@2290
  1384
    /// type.  
deba@2290
  1385
    template <typename TargetMap, typename SourceMap>
deba@2290
  1386
    BpUGraphCopy& nodeMap(TargetMap& tmap, const SourceMap& map) {
deba@2290
  1387
      nodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Node, 
deba@2290
  1388
                              NodeRefMap, TargetMap, SourceMap>(tmap, map));
deba@2290
  1389
      return *this;
deba@2290
  1390
    }
deba@2290
  1391
deba@2290
  1392
    /// \brief Make a copy of the given node.
deba@2290
  1393
    ///
deba@2290
  1394
    /// Make a copy of the given node.
deba@2386
  1395
    BpUGraphCopy& node(TNode& tnode, const Node& snode) {
deba@2290
  1396
      nodeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Node, 
deba@2386
  1397
                              NodeRefMap, TNode>(tnode, snode));
deba@2290
  1398
      return *this;
deba@2290
  1399
    }
deba@2290
  1400
deba@2290
  1401
    /// \brief Copies the edge references into the given map.
deba@2290
  1402
    ///
deba@2290
  1403
    /// Copies the edge references into the given map.
deba@2290
  1404
    template <typename EdgeRef>
deba@2290
  1405
    BpUGraphCopy& edgeRef(EdgeRef& map) {
deba@2290
  1406
      edgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Edge, 
deba@2290
  1407
                              EdgeRefMap, EdgeRef>(map));
deba@2290
  1408
      return *this;
deba@2290
  1409
    }
deba@2290
  1410
deba@2290
  1411
    /// \brief Copies the edge cross references into the given map.
deba@2290
  1412
    ///
deba@2290
  1413
    ///  Copies the edge cross references (reverse references) into
deba@2290
  1414
    ///  the given map.
deba@2290
  1415
    template <typename EdgeCrossRef>
deba@2290
  1416
    BpUGraphCopy& edgeCrossRef(EdgeCrossRef& map) {
deba@2290
  1417
      edgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Edge,
deba@2290
  1418
                              EdgeRefMap, EdgeCrossRef>(map));
deba@2290
  1419
      return *this;
deba@2290
  1420
    }
deba@2290
  1421
deba@2290
  1422
    /// \brief Make copy of the given map.
deba@2290
  1423
    ///
deba@2290
  1424
    /// Makes copy of the given map for the newly created graph. 
deba@2290
  1425
    /// The new map's key type is the target graph's edge type,
deba@2290
  1426
    /// and the copied map's key type is the source graph's edge
deba@2290
  1427
    /// type.  
deba@2290
  1428
    template <typename TargetMap, typename SourceMap>
deba@2290
  1429
    BpUGraphCopy& edgeMap(TargetMap& tmap, const SourceMap& map) {
deba@2290
  1430
      edgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Edge, 
deba@2290
  1431
                              EdgeRefMap, TargetMap, SourceMap>(tmap, map));
deba@2290
  1432
      return *this;
deba@2290
  1433
    }
deba@2290
  1434
deba@2290
  1435
    /// \brief Make a copy of the given edge.
deba@2290
  1436
    ///
deba@2290
  1437
    /// Make a copy of the given edge.
deba@2386
  1438
    BpUGraphCopy& edge(TEdge& tedge, const Edge& sedge) {
deba@2290
  1439
      edgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, Edge, 
deba@2386
  1440
                              EdgeRefMap, TEdge>(tedge, sedge));
deba@2290
  1441
      return *this;
deba@2290
  1442
    }
deba@2290
  1443
deba@2290
  1444
    /// \brief Copies the undirected edge references into the given map.
deba@2290
  1445
    ///
deba@2290
  1446
    /// Copies the undirected edge references into the given map.
deba@2290
  1447
    template <typename UEdgeRef>
deba@2290
  1448
    BpUGraphCopy& uEdgeRef(UEdgeRef& map) {
deba@2290
  1449
      uEdgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, UEdge, 
deba@2290
  1450
                               UEdgeRefMap, UEdgeRef>(map));
deba@2290
  1451
      return *this;
deba@2290
  1452
    }
deba@2290
  1453
deba@2290
  1454
    /// \brief Copies the undirected edge cross references into the given map.
deba@2290
  1455
    ///
deba@2290
  1456
    /// Copies the undirected edge cross references (reverse
deba@2290
  1457
    /// references) into the given map.
deba@2290
  1458
    template <typename UEdgeCrossRef>
deba@2290
  1459
    BpUGraphCopy& uEdgeCrossRef(UEdgeCrossRef& map) {
deba@2290
  1460
      uEdgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, 
deba@2290
  1461
                               UEdge, UEdgeRefMap, UEdgeCrossRef>(map));
deba@2290
  1462
      return *this;
deba@2290
  1463
    }
deba@2290
  1464
deba@2290
  1465
    /// \brief Make copy of the given map.
deba@2290
  1466
    ///
deba@2290
  1467
    /// Makes copy of the given map for the newly created graph. 
deba@2290
  1468
    /// The new map's key type is the target graph's undirected edge type,
deba@2290
  1469
    /// and the copied map's key type is the source graph's undirected edge
deba@2290
  1470
    /// type.  
deba@2290
  1471
    template <typename TargetMap, typename SourceMap>
deba@2290
  1472
    BpUGraphCopy& uEdgeMap(TargetMap& tmap, const SourceMap& map) {
deba@2290
  1473
      uEdgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, UEdge, 
deba@2290
  1474
                               UEdgeRefMap, TargetMap, SourceMap>(tmap, map));
deba@2290
  1475
      return *this;
deba@2290
  1476
    }
deba@2290
  1477
deba@2290
  1478
    /// \brief Make a copy of the given undirected edge.
deba@2290
  1479
    ///
deba@2290
  1480
    /// Make a copy of the given undirected edge.
deba@2386
  1481
    BpUGraphCopy& uEdge(TUEdge& tuedge, const UEdge& suedge) {
deba@2290
  1482
      uEdgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<Source, UEdge, 
deba@2386
  1483
                               UEdgeRefMap, TUEdge>(tuedge, suedge));
deba@2290
  1484
      return *this;
deba@2290
  1485
    }
deba@2290
  1486
deba@2290
  1487
    /// \brief Executes the copies.
deba@2290
  1488
    ///
deba@2290
  1489
    /// Executes the copies.
deba@2290
  1490
    void run() {
deba@2290
  1491
      ANodeRefMap aNodeRefMap(source);
deba@2290
  1492
      BNodeRefMap bNodeRefMap(source);
deba@2290
  1493
      NodeRefMap nodeRefMap(source, aNodeRefMap, bNodeRefMap);
deba@2290
  1494
      UEdgeRefMap uEdgeRefMap(source);
deba@2290
  1495
      EdgeRefMap edgeRefMap(target, source, uEdgeRefMap, nodeRefMap);
deba@2290
  1496
      _graph_utils_bits::BpUGraphCopySelector<Target>::
deba@2290
  1497
        copy(target, source, aNodeRefMap, bNodeRefMap, uEdgeRefMap);
deba@2386
  1498
      for (int i = 0; i < int(aNodeMapCopies.size()); ++i) {
deba@2290
  1499
        aNodeMapCopies[i]->copy(source, aNodeRefMap);
deba@2290
  1500
      }
deba@2386
  1501
      for (int i = 0; i < int(bNodeMapCopies.size()); ++i) {
deba@2290
  1502
        bNodeMapCopies[i]->copy(source, bNodeRefMap);
deba@2290
  1503
      }
deba@2386
  1504
      for (int i = 0; i < int(nodeMapCopies.size()); ++i) {
deba@2290
  1505
        nodeMapCopies[i]->copy(source, nodeRefMap);
deba@2290
  1506
      }
deba@2386
  1507
      for (int i = 0; i < int(uEdgeMapCopies.size()); ++i) {
deba@2290
  1508
        uEdgeMapCopies[i]->copy(source, uEdgeRefMap);
deba@2290
  1509
      }
deba@2386
  1510
      for (int i = 0; i < int(edgeMapCopies.size()); ++i) {
deba@2290
  1511
        edgeMapCopies[i]->copy(source, edgeRefMap);
deba@2290
  1512
      }
deba@2290
  1513
    }
deba@2290
  1514
deba@2290
  1515
  private:
deba@2290
  1516
    
deba@2290
  1517
    const Source& source;
deba@2290
  1518
    Target& target;
deba@2290
  1519
deba@2290
  1520
    std::vector<_graph_utils_bits::MapCopyBase<Source, ANode, ANodeRefMap>* > 
deba@2290
  1521
    aNodeMapCopies;
deba@2290
  1522
deba@2290
  1523
    std::vector<_graph_utils_bits::MapCopyBase<Source, BNode, BNodeRefMap>* > 
deba@2290
  1524
    bNodeMapCopies;
deba@2290
  1525
deba@2290
  1526
    std::vector<_graph_utils_bits::MapCopyBase<Source, Node, NodeRefMap>* > 
deba@2290
  1527
    nodeMapCopies;
deba@2290
  1528
deba@2290
  1529
    std::vector<_graph_utils_bits::MapCopyBase<Source, Edge, EdgeRefMap>* > 
deba@2290
  1530
    edgeMapCopies;
deba@2290
  1531
deba@2290
  1532
    std::vector<_graph_utils_bits::MapCopyBase<Source, UEdge, UEdgeRefMap>* > 
deba@2290
  1533
    uEdgeMapCopies;
deba@2290
  1534
deba@2290
  1535
  };
deba@2290
  1536
deba@2290
  1537
  /// \brief Copy a bipartite undirected graph to another graph.
deba@2290
  1538
  ///
deba@2290
  1539
  /// Copy a bipartite undirected graph to another graph.
deba@2290
  1540
  /// The usage of the function:
deba@2290
  1541
  /// 
deba@2290
  1542
  ///\code
deba@2290
  1543
  /// copyBpUGraph(trg, src).aNodeRef(anr).edgeCrossRef(ecr).run();
deba@2290
  1544
  ///\endcode
deba@2290
  1545
  /// 
deba@2290
  1546
  /// After the copy the \c nr map will contain the mapping from the
deba@2290
  1547
  /// source graph's nodes to the target graph's nodes and the \c ecr will
deba@2290
  1548
  /// contain the mapping from the target graph's edges to the source's
deba@2290
  1549
  /// edges.
deba@2290
  1550
  ///
deba@2290
  1551
  /// \see BpUGraphCopy
deba@2290
  1552
  template <typename Target, typename Source>
deba@2290
  1553
  BpUGraphCopy<Target, Source> 
deba@2290
  1554
  copyBpUGraph(Target& target, const Source& source) {
deba@2290
  1555
    return BpUGraphCopy<Target, Source>(target, source);
deba@2290
  1556
  }
deba@2290
  1557
deba@1192
  1558
deba@1192
  1559
  /// @}
alpar@1402
  1560
alpar@1402
  1561
  /// \addtogroup graph_maps
alpar@1402
  1562
  /// @{
alpar@1402
  1563
deba@1413
  1564
  /// Provides an immutable and unique id for each item in the graph.
deba@1413
  1565
athos@1540
  1566
  /// The IdMap class provides a unique and immutable id for each item of the
athos@1540
  1567
  /// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
athos@1540
  1568
  /// different items (nodes) get different ids <li>\b immutable: the id of an
athos@1540
  1569
  /// item (node) does not change (even if you delete other nodes).  </ul>
athos@1540
  1570
  /// Through this map you get access (i.e. can read) the inner id values of
athos@1540
  1571
  /// the items stored in the graph. This map can be inverted with its member
athos@1540
  1572
  /// class \c InverseMap.
deba@1413
  1573
  ///
deba@1413
  1574
  template <typename _Graph, typename _Item>
deba@1413
  1575
  class IdMap {
deba@1413
  1576
  public:
deba@1413
  1577
    typedef _Graph Graph;
deba@1413
  1578
    typedef int Value;
deba@1413
  1579
    typedef _Item Item;
deba@1413
  1580
    typedef _Item Key;
deba@1413
  1581
deba@1413
  1582
    /// \brief Constructor.
deba@1413
  1583
    ///
deba@2331
  1584
    /// Constructor of the map.
deba@2286
  1585
    explicit IdMap(const Graph& _graph) : graph(&_graph) {}
deba@1413
  1586
deba@1413
  1587
    /// \brief Gives back the \e id of the item.
deba@1413
  1588
    ///
deba@2331
  1589
    /// Gives back the immutable and unique \e id of the item.
deba@1413
  1590
    int operator[](const Item& item) const { return graph->id(item);}
deba@1413
  1591
deba@2331
  1592
    /// \brief Gives back the item by its id.
deba@2331
  1593
    ///
deba@2331
  1594
    /// Gives back the item by its id.
deba@2331
  1595
    Item operator()(int id) { return graph->fromId(id, Item()); }
deba@1413
  1596
deba@1413
  1597
  private:
deba@1413
  1598
    const Graph* graph;
deba@1413
  1599
deba@1413
  1600
  public:
deba@1413
  1601
athos@1540
  1602
    /// \brief The class represents the inverse of its owner (IdMap).
deba@1413
  1603
    ///
athos@1540
  1604
    /// The class represents the inverse of its owner (IdMap).
deba@1413
  1605
    /// \see inverse()
deba@1413
  1606
    class InverseMap {
deba@1413
  1607
    public:
deba@1419
  1608
deba@1413
  1609
      /// \brief Constructor.
deba@1413
  1610
      ///
deba@1413
  1611
      /// Constructor for creating an id-to-item map.
deba@2286
  1612
      explicit InverseMap(const Graph& _graph) : graph(&_graph) {}
deba@1413
  1613
deba@1413
  1614
      /// \brief Constructor.
deba@1413
  1615
      ///
deba@1413
  1616
      /// Constructor for creating an id-to-item map.
deba@2286
  1617
      explicit InverseMap(const IdMap& idMap) : graph(idMap.graph) {}
deba@1413
  1618
deba@1413
  1619
      /// \brief Gives back the given item from its id.
deba@1413
  1620
      ///
deba@1413
  1621
      /// Gives back the given item from its id.
deba@1413
  1622
      /// 
deba@1413
  1623
      Item operator[](int id) const { return graph->fromId(id, Item());}
deba@2331
  1624
deba@1413
  1625
    private:
deba@1413
  1626
      const Graph* graph;
deba@1413
  1627
    };
deba@1413
  1628
deba@1413
  1629
    /// \brief Gives back the inverse of the map.
deba@1413
  1630
    ///
athos@1540
  1631
    /// Gives back the inverse of the IdMap.
deba@1413
  1632
    InverseMap inverse() const { return InverseMap(*graph);} 
deba@1413
  1633
deba@1413
  1634
  };
deba@1413
  1635
deba@1413
  1636
  
athos@1526
  1637
  /// \brief General invertable graph-map type.
alpar@1402
  1638
athos@1540
  1639
  /// This type provides simple invertable graph-maps. 
athos@1526
  1640
  /// The InvertableMap wraps an arbitrary ReadWriteMap 
athos@1526
  1641
  /// and if a key is set to a new value then store it
alpar@1402
  1642
  /// in the inverse map.
deba@1931
  1643
  ///
deba@1931
  1644
  /// The values of the map can be accessed
deba@1931
  1645
  /// with stl compatible forward iterator.
deba@1931
  1646
  ///
alpar@1402
  1647
  /// \param _Graph The graph type.
deba@1830
  1648
  /// \param _Item The item type of the graph.
deba@1830
  1649
  /// \param _Value The value type of the map.
deba@1931
  1650
  ///
deba@1931
  1651
  /// \see IterableValueMap
deba@1830
  1652
  template <typename _Graph, typename _Item, typename _Value>
deba@2287
  1653
  class InvertableMap : protected DefaultMap<_Graph, _Item, _Value> {
deba@1931
  1654
  private:
deba@1931
  1655
    
deba@2287
  1656
    typedef DefaultMap<_Graph, _Item, _Value> Map;
deba@1931
  1657
    typedef _Graph Graph;
deba@1931
  1658
deba@2287
  1659
    typedef std::map<_Value, _Item> Container;
deba@1931
  1660
    Container invMap;    
deba@1931
  1661
deba@1931
  1662
  public:
deba@1931
  1663
 
deba@2287
  1664
    /// The key type of InvertableMap (Node, Edge, UEdge).
deba@2287
  1665
    typedef typename Map::Key Key;
deba@2287
  1666
    /// The value type of the InvertableMap.
deba@2287
  1667
    typedef typename Map::Value Value;
deba@2287
  1668
deba@1931
  1669
deba@1931
  1670
alpar@1402
  1671
    /// \brief Constructor.
alpar@1402
  1672
    ///
deba@1413
  1673
    /// Construct a new InvertableMap for the graph.
alpar@1402
  1674
    ///
deba@2286
  1675
    explicit InvertableMap(const Graph& graph) : Map(graph) {} 
deba@1931
  1676
deba@1931
  1677
    /// \brief Forward iterator for values.
deba@1931
  1678
    ///
deba@1931
  1679
    /// This iterator is an stl compatible forward
deba@1931
  1680
    /// iterator on the values of the map. The values can
deba@1931
  1681
    /// be accessed in the [beginValue, endValue) range.
deba@1931
  1682
    ///
deba@1931
  1683
    class ValueIterator 
deba@1931
  1684
      : public std::iterator<std::forward_iterator_tag, Value> {
deba@1931
  1685
      friend class InvertableMap;
deba@1931
  1686
    private:
deba@1931
  1687
      ValueIterator(typename Container::const_iterator _it) 
deba@1931
  1688
        : it(_it) {}
deba@1931
  1689
    public:
deba@1931
  1690
      
deba@1931
  1691
      ValueIterator() {}
deba@1931
  1692
deba@1931
  1693
      ValueIterator& operator++() { ++it; return *this; }
deba@1931
  1694
      ValueIterator operator++(int) { 
deba@1931
  1695
        ValueIterator tmp(*this); 
deba@1931
  1696
        operator++();
deba@1931
  1697
        return tmp; 
deba@1931
  1698
      }
deba@1931
  1699
deba@1931
  1700
      const Value& operator*() const { return it->first; }
deba@1931
  1701
      const Value* operator->() const { return &(it->first); }
deba@1931
  1702
deba@1931
  1703
      bool operator==(ValueIterator jt) const { return it == jt.it; }
deba@1931
  1704
      bool operator!=(ValueIterator jt) const { return it != jt.it; }
deba@1931
  1705
      
deba@1931
  1706
    private:
deba@1931
  1707
      typename Container::const_iterator it;
deba@1931
  1708
    };
deba@1931
  1709
deba@1931
  1710
    /// \brief Returns an iterator to the first value.
deba@1931
  1711
    ///
deba@1931
  1712
    /// Returns an stl compatible iterator to the 
deba@1931
  1713
    /// first value of the map. The values of the
deba@1931
  1714
    /// map can be accessed in the [beginValue, endValue)
deba@1931
  1715
    /// range.
deba@1931
  1716
    ValueIterator beginValue() const {
deba@1931
  1717
      return ValueIterator(invMap.begin());
deba@1931
  1718
    }
deba@1931
  1719
deba@1931
  1720
    /// \brief Returns an iterator after the last value.
deba@1931
  1721
    ///
deba@1931
  1722
    /// Returns an stl compatible iterator after the 
deba@1931
  1723
    /// last value of the map. The values of the
deba@1931
  1724
    /// map can be accessed in the [beginValue, endValue)
deba@1931
  1725
    /// range.
deba@1931
  1726
    ValueIterator endValue() const {
deba@1931
  1727
      return ValueIterator(invMap.end());
deba@1931
  1728
    }
alpar@1402
  1729
    
alpar@1402
  1730
    /// \brief The setter function of the map.
alpar@1402
  1731
    ///
deba@1413
  1732
    /// Sets the mapped value.
alpar@1402
  1733
    void set(const Key& key, const Value& val) {
alpar@1402
  1734
      Value oldval = Map::operator[](key);
deba@1413
  1735
      typename Container::iterator it = invMap.find(oldval);
alpar@1402
  1736
      if (it != invMap.end() && it->second == key) {
alpar@1402
  1737
	invMap.erase(it);
alpar@1402
  1738
      }      
alpar@1402
  1739
      invMap.insert(make_pair(val, key));
alpar@1402
  1740
      Map::set(key, val);
alpar@1402
  1741
    }
alpar@1402
  1742
alpar@1402
  1743
    /// \brief The getter function of the map.
alpar@1402
  1744
    ///
alpar@1402
  1745
    /// It gives back the value associated with the key.
deba@1931
  1746
    typename MapTraits<Map>::ConstReturnValue 
deba@1931
  1747
    operator[](const Key& key) const {
alpar@1402
  1748
      return Map::operator[](key);
alpar@1402
  1749
    }
alpar@1402
  1750
deba@2331
  1751
    /// \brief Gives back the item by its value.
deba@2331
  1752
    ///
deba@2331
  1753
    /// Gives back the item by its value.
deba@2331
  1754
    Key operator()(const Value& key) const {
deba@2331
  1755
      typename Container::const_iterator it = invMap.find(key);
deba@2331
  1756
      return it != invMap.end() ? it->second : INVALID;
deba@2331
  1757
    }
deba@2331
  1758
deba@1515
  1759
  protected:
deba@1515
  1760
alpar@1402
  1761
    /// \brief Erase the key from the map.
alpar@1402
  1762
    ///
alpar@1402
  1763
    /// Erase the key to the map. It is called by the
alpar@1402
  1764
    /// \c AlterationNotifier.
alpar@1402
  1765
    virtual void erase(const Key& key) {
alpar@1402
  1766
      Value val = Map::operator[](key);
deba@1413
  1767
      typename Container::iterator it = invMap.find(val);
alpar@1402
  1768
      if (it != invMap.end() && it->second == key) {
alpar@1402
  1769
	invMap.erase(it);
alpar@1402
  1770
      }
alpar@1402
  1771
      Map::erase(key);
alpar@1402
  1772
    }
alpar@1402
  1773
deba@1829
  1774
    /// \brief Erase more keys from the map.
deba@1829
  1775
    ///
deba@1829
  1776
    /// Erase more keys from the map. It is called by the
deba@1829
  1777
    /// \c AlterationNotifier.
deba@1829
  1778
    virtual void erase(const std::vector<Key>& keys) {
deba@2386
  1779
      for (int i = 0; i < int(keys.size()); ++i) {
deba@1829
  1780
	Value val = Map::operator[](keys[i]);
deba@1829
  1781
	typename Container::iterator it = invMap.find(val);
deba@1829
  1782
	if (it != invMap.end() && it->second == keys[i]) {
deba@1829
  1783
	  invMap.erase(it);
deba@1829
  1784
	}
deba@1829
  1785
      }
deba@1829
  1786
      Map::erase(keys);
deba@1829
  1787
    }
deba@1829
  1788
alpar@1402
  1789
    /// \brief Clear the keys from the map and inverse map.
alpar@1402
  1790
    ///
alpar@1402
  1791
    /// Clear the keys from the map and inverse map. It is called by the
alpar@1402
  1792
    /// \c AlterationNotifier.
alpar@1402
  1793
    virtual void clear() {
alpar@1402
  1794
      invMap.clear();
alpar@1402
  1795
      Map::clear();
alpar@1402
  1796
    }
alpar@1402
  1797
deba@1413
  1798
  public:
deba@1413
  1799
deba@1413
  1800
    /// \brief The inverse map type.
deba@1413
  1801
    ///
deba@1413
  1802
    /// The inverse of this map. The subscript operator of the map
deba@1413
  1803
    /// gives back always the item what was last assigned to the value. 
deba@1413
  1804
    class InverseMap {
deba@1413
  1805
    public:
deba@1413
  1806
      /// \brief Constructor of the InverseMap.
deba@1413
  1807
      ///
deba@1413
  1808
      /// Constructor of the InverseMap.
deba@2286
  1809
      explicit InverseMap(const InvertableMap& _inverted) 
deba@2286
  1810
        : inverted(_inverted) {}
deba@1413
  1811
deba@1413
  1812
      /// The value type of the InverseMap.
deba@1413
  1813
      typedef typename InvertableMap::Key Value;
deba@1413
  1814
      /// The key type of the InverseMap.
deba@1413
  1815
      typedef typename InvertableMap::Value Key; 
deba@1413
  1816
deba@1413
  1817
      /// \brief Subscript operator. 
deba@1413
  1818
      ///
deba@1413
  1819
      /// Subscript operator. It gives back always the item 
deba@1413
  1820
      /// what was last assigned to the value.
deba@1413
  1821
      Value operator[](const Key& key) const {
deba@2331
  1822
	return inverted(key);
deba@1413
  1823
      }
deba@1413
  1824
      
deba@1413
  1825
    private:
deba@1413
  1826
      const InvertableMap& inverted;
deba@1413
  1827
    };
deba@1413
  1828
alpar@2094
  1829
    /// \brief It gives back the just readable inverse map.
alpar@1402
  1830
    ///
alpar@2094
  1831
    /// It gives back the just readable inverse map.
deba@1413
  1832
    InverseMap inverse() const {
deba@1413
  1833
      return InverseMap(*this);
alpar@1402
  1834
    } 
alpar@1402
  1835
alpar@1402
  1836
deba@1413
  1837
    
alpar@1402
  1838
  };
alpar@1402
  1839
alpar@1402
  1840
  /// \brief Provides a mutable, continuous and unique descriptor for each 
alpar@1402
  1841
  /// item in the graph.
alpar@1402
  1842
  ///
athos@1540
  1843
  /// The DescriptorMap class provides a unique and continuous (but mutable)
athos@1540
  1844
  /// descriptor (id) for each item of the same type (e.g. node) in the
athos@1540
  1845
  /// graph. This id is <ul><li>\b unique: different items (nodes) get
athos@1540
  1846
  /// different ids <li>\b continuous: the range of the ids is the set of
athos@1540
  1847
  /// integers between 0 and \c n-1, where \c n is the number of the items of
athos@1540
  1848
  /// this type (e.g. nodes) (so the id of a node can change if you delete an
athos@1540
  1849
  /// other node, i.e. this id is mutable).  </ul> This map can be inverted
athos@1540
  1850
  /// with its member class \c InverseMap.
alpar@1402
  1851
  ///
alpar@1402
  1852
  /// \param _Graph The graph class the \c DescriptorMap belongs to.
alpar@1402
  1853
  /// \param _Item The Item is the Key of the Map. It may be Node, Edge or 
klao@1909
  1854
  /// UEdge.
deba@1830
  1855
  template <typename _Graph, typename _Item>
deba@2287
  1856
  class DescriptorMap : protected DefaultMap<_Graph, _Item, int> {
alpar@1402
  1857
alpar@1402
  1858
    typedef _Item Item;
deba@2287
  1859
    typedef DefaultMap<_Graph, _Item, int> Map;
alpar@1402
  1860
alpar@1402
  1861
  public:
alpar@1402
  1862
    /// The graph class of DescriptorMap.
alpar@1402
  1863
    typedef _Graph Graph;
alpar@1402
  1864
klao@1909
  1865
    /// The key type of DescriptorMap (Node, Edge, UEdge).
deba@2287
  1866
    typedef typename Map::Key Key;
alpar@1402
  1867
    /// The value type of DescriptorMap.
deba@2287
  1868
    typedef typename Map::Value Value;
alpar@1402
  1869
alpar@1402
  1870
    /// \brief Constructor.
alpar@1402
  1871
    ///
deba@1413
  1872
    /// Constructor for descriptor map.
deba@2286
  1873
    explicit DescriptorMap(const Graph& _graph) : Map(_graph) {
deba@2201
  1874
      Item it;
deba@2386
  1875
      const typename Map::Notifier* nf = Map::notifier(); 
deba@2386
  1876
      for (nf->first(it); it != INVALID; nf->next(it)) {
deba@2201
  1877
	Map::set(it, invMap.size());
deba@2201
  1878
	invMap.push_back(it);	
deba@2201
  1879
      }      
alpar@1402
  1880
    }
alpar@1402
  1881
deba@1515
  1882
  protected:
deba@1515
  1883
alpar@1402
  1884
    /// \brief Add a new key to the map.
alpar@1402
  1885
    ///
alpar@1402
  1886
    /// Add a new key to the map. It is called by the
alpar@1402
  1887
    /// \c AlterationNotifier.
alpar@1402
  1888
    virtual void add(const Item& item) {
alpar@1402
  1889
      Map::add(item);
alpar@1402
  1890
      Map::set(item, invMap.size());
alpar@1402
  1891
      invMap.push_back(item);
alpar@1402
  1892
    }
alpar@1402
  1893
deba@1829
  1894
    /// \brief Add more new keys to the map.
deba@1829
  1895
    ///
deba@1829
  1896
    /// Add more new keys to the map. It is called by the
deba@1829
  1897
    /// \c AlterationNotifier.
deba@1829
  1898
    virtual void add(const std::vector<Item>& items) {
deba@1829
  1899
      Map::add(items);
deba@2386
  1900
      for (int i = 0; i < int(items.size()); ++i) {
deba@1829
  1901
	Map::set(items[i], invMap.size());
deba@1829
  1902
	invMap.push_back(items[i]);
deba@1829
  1903
      }
deba@1829
  1904
    }
deba@1829
  1905
alpar@1402
  1906
    /// \brief Erase the key from the map.
alpar@1402
  1907
    ///
deba@1829
  1908
    /// Erase the key from the map. It is called by the
alpar@1402
  1909
    /// \c AlterationNotifier.
alpar@1402
  1910
    virtual void erase(const Item& item) {
alpar@1402
  1911
      Map::set(invMap.back(), Map::operator[](item));
alpar@1402
  1912
      invMap[Map::operator[](item)] = invMap.back();
deba@1413
  1913
      invMap.pop_back();
alpar@1402
  1914
      Map::erase(item);
alpar@1402
  1915
    }
alpar@1402
  1916
deba@1829
  1917
    /// \brief Erase more keys from the map.
deba@1829
  1918
    ///
deba@1829
  1919
    /// Erase more keys from the map. It is called by the
deba@1829
  1920
    /// \c AlterationNotifier.
deba@1829
  1921
    virtual void erase(const std::vector<Item>& items) {
deba@2386
  1922
      for (int i = 0; i < int(items.size()); ++i) {
deba@1829
  1923
	Map::set(invMap.back(), Map::operator[](items[i]));
deba@1829
  1924
	invMap[Map::operator[](items[i])] = invMap.back();
deba@1829
  1925
	invMap.pop_back();
deba@1829
  1926
      }
deba@1829
  1927
      Map::erase(items);
deba@1829
  1928
    }
deba@1829
  1929
alpar@1402
  1930
    /// \brief Build the unique map.
alpar@1402
  1931
    ///
alpar@1402
  1932
    /// Build the unique map. It is called by the
alpar@1402
  1933
    /// \c AlterationNotifier.
alpar@1402
  1934
    virtual void build() {
alpar@1402
  1935
      Map::build();
alpar@1402
  1936
      Item it;
deba@2386
  1937
      const typename Map::Notifier* nf = Map::notifier(); 
deba@2386
  1938
      for (nf->first(it); it != INVALID; nf->next(it)) {
alpar@1402
  1939
	Map::set(it, invMap.size());
alpar@1402
  1940
	invMap.push_back(it);	
alpar@1402
  1941
      }      
alpar@1402
  1942
    }
alpar@1402
  1943
    
alpar@1402
  1944
    /// \brief Clear the keys from the map.
alpar@1402
  1945
    ///
alpar@1402
  1946
    /// Clear the keys from the map. It is called by the
alpar@1402
  1947
    /// \c AlterationNotifier.
alpar@1402
  1948
    virtual void clear() {
alpar@1402
  1949
      invMap.clear();
alpar@1402
  1950
      Map::clear();
alpar@1402
  1951
    }
alpar@1402
  1952
deba@1538
  1953
  public:
deba@1538
  1954
deba@1931
  1955
    /// \brief Returns the maximal value plus one.
deba@1931
  1956
    ///
deba@1931
  1957
    /// Returns the maximal value plus one in the map.
deba@1931
  1958
    unsigned int size() const {
deba@1931
  1959
      return invMap.size();
deba@1931
  1960
    }
deba@1931
  1961
deba@1552
  1962
    /// \brief Swaps the position of the two items in the map.
deba@1552
  1963
    ///
deba@1552
  1964
    /// Swaps the position of the two items in the map.
deba@1552
  1965
    void swap(const Item& p, const Item& q) {
deba@1552
  1966
      int pi = Map::operator[](p);
deba@1552
  1967
      int qi = Map::operator[](q);
deba@1552
  1968
      Map::set(p, qi);
deba@1552
  1969
      invMap[qi] = p;
deba@1552
  1970
      Map::set(q, pi);
deba@1552
  1971
      invMap[pi] = q;
deba@1552
  1972
    }
deba@1552
  1973
alpar@1402
  1974
    /// \brief Gives back the \e descriptor of the item.
alpar@1402
  1975
    ///
alpar@1402
  1976
    /// Gives back the mutable and unique \e descriptor of the map.
alpar@1402
  1977
    int operator[](const Item& item) const {
alpar@1402
  1978
      return Map::operator[](item);
alpar@1402
  1979
    }
deba@2331
  1980
deba@2331
  1981
    /// \brief Gives back the item by its descriptor.
deba@2331
  1982
    ///
deba@2331
  1983
    /// Gives back th item by its descriptor.
deba@2331
  1984
    Item operator()(int id) const {
deba@2331
  1985
      return invMap[id];
deba@2331
  1986
    }
alpar@1402
  1987
    
deba@1413
  1988
  private:
deba@1413
  1989
deba@1413
  1990
    typedef std::vector<Item> Container;
deba@1413
  1991
    Container invMap;
deba@1413
  1992
deba@1413
  1993
  public:
athos@1540
  1994
    /// \brief The inverse map type of DescriptorMap.
deba@1413
  1995
    ///
athos@1540
  1996
    /// The inverse map type of DescriptorMap.
deba@1413
  1997
    class InverseMap {
deba@1413
  1998
    public:
deba@1413
  1999
      /// \brief Constructor of the InverseMap.
deba@1413
  2000
      ///
deba@1413
  2001
      /// Constructor of the InverseMap.
deba@2286
  2002
      explicit InverseMap(const DescriptorMap& _inverted) 
deba@1413
  2003
	: inverted(_inverted) {}
deba@1413
  2004
deba@1413
  2005
deba@1413
  2006
      /// The value type of the InverseMap.
deba@1413
  2007
      typedef typename DescriptorMap::Key Value;
deba@1413
  2008
      /// The key type of the InverseMap.
deba@1413
  2009
      typedef typename DescriptorMap::Value Key; 
deba@1413
  2010
deba@1413
  2011
      /// \brief Subscript operator. 
deba@1413
  2012
      ///
deba@1413
  2013
      /// Subscript operator. It gives back the item 
deba@1413
  2014
      /// that the descriptor belongs to currently.
deba@1413
  2015
      Value operator[](const Key& key) const {
deba@2331
  2016
	return inverted(key);
deba@1413
  2017
      }
deba@1470
  2018
deba@1470
  2019
      /// \brief Size of the map.
deba@1470
  2020
      ///
deba@1470
  2021
      /// Returns the size of the map.
deba@1931
  2022
      unsigned int size() const {
deba@2331
  2023
	return inverted.size();
deba@1470
  2024
      }
deba@1413
  2025
      
deba@1413
  2026
    private:
deba@1413
  2027
      const DescriptorMap& inverted;
deba@1413
  2028
    };
deba@1413
  2029
alpar@1402
  2030
    /// \brief Gives back the inverse of the map.
alpar@1402
  2031
    ///
alpar@1402
  2032
    /// Gives back the inverse of the map.
alpar@1402
  2033
    const InverseMap inverse() const {
deba@1413
  2034
      return InverseMap(*this);
alpar@1402
  2035
    }
alpar@1402
  2036
  };
alpar@1402
  2037
alpar@1402
  2038
  /// \brief Returns the source of the given edge.
alpar@1402
  2039
  ///
alpar@1402
  2040
  /// The SourceMap gives back the source Node of the given edge. 
kpeter@2474
  2041
  /// \see TargetMap
alpar@1402
  2042
  /// \author Balazs Dezso
alpar@1402
  2043
  template <typename Graph>
alpar@1402
  2044
  class SourceMap {
alpar@1402
  2045
  public:
deba@1419
  2046
alpar@1402
  2047
    typedef typename Graph::Node Value;
alpar@1402
  2048
    typedef typename Graph::Edge Key;
alpar@1402
  2049
alpar@1402
  2050
    /// \brief Constructor
alpar@1402
  2051
    ///
alpar@1402
  2052
    /// Constructor
alpar@1402
  2053
    /// \param _graph The graph that the map belongs to.
deba@2286
  2054
    explicit SourceMap(const Graph& _graph) : graph(_graph) {}
alpar@1402
  2055
alpar@1402
  2056
    /// \brief The subscript operator.
alpar@1402
  2057
    ///
alpar@1402
  2058
    /// The subscript operator.
alpar@1402
  2059
    /// \param edge The edge 
alpar@1402
  2060
    /// \return The source of the edge 
deba@1679
  2061
    Value operator[](const Key& edge) const {
alpar@1402
  2062
      return graph.source(edge);
alpar@1402
  2063
    }
alpar@1402
  2064
alpar@1402
  2065
  private:
alpar@1402
  2066
    const Graph& graph;
alpar@1402
  2067
  };
alpar@1402
  2068
kpeter@2474
  2069
  /// \brief Returns a \ref SourceMap class.
alpar@1402
  2070
  ///
alpar@1402
  2071
  /// This function just returns an \ref SourceMap class.
alpar@1402
  2072
  /// \relates SourceMap
alpar@1402
  2073
  template <typename Graph>
alpar@1402
  2074
  inline SourceMap<Graph> sourceMap(const Graph& graph) {
alpar@1402
  2075
    return SourceMap<Graph>(graph);
alpar@1402
  2076
  } 
alpar@1402
  2077
alpar@1402
  2078
  /// \brief Returns the target of the given edge.
alpar@1402
  2079
  ///
alpar@1402
  2080
  /// The TargetMap gives back the target Node of the given edge. 
kpeter@2474
  2081
  /// \see SourceMap
alpar@1402
  2082
  /// \author Balazs Dezso
alpar@1402
  2083
  template <typename Graph>
alpar@1402
  2084
  class TargetMap {
alpar@1402
  2085
  public:
deba@1419
  2086
alpar@1402
  2087
    typedef typename Graph::Node Value;
alpar@1402
  2088
    typedef typename Graph::Edge Key;
alpar@1402
  2089
alpar@1402
  2090
    /// \brief Constructor
alpar@1402
  2091
    ///
alpar@1402
  2092
    /// Constructor
alpar@1402
  2093
    /// \param _graph The graph that the map belongs to.
deba@2286
  2094
    explicit TargetMap(const Graph& _graph) : graph(_graph) {}
alpar@1402
  2095
alpar@1402
  2096
    /// \brief The subscript operator.
alpar@1402
  2097
    ///
alpar@1402
  2098
    /// The subscript operator.
alpar@1536
  2099
    /// \param e The edge 
alpar@1402
  2100
    /// \return The target of the edge 
deba@1679
  2101
    Value operator[](const Key& e) const {
alpar@1536
  2102
      return graph.target(e);
alpar@1402
  2103
    }
alpar@1402
  2104
alpar@1402
  2105
  private:
alpar@1402
  2106
    const Graph& graph;
alpar@1402
  2107
  };
alpar@1402
  2108
kpeter@2474
  2109
  /// \brief Returns a \ref TargetMap class.
deba@1515
  2110
  ///
athos@1540
  2111
  /// This function just returns a \ref TargetMap class.
alpar@1402
  2112
  /// \relates TargetMap
alpar@1402
  2113
  template <typename Graph>
alpar@1402
  2114
  inline TargetMap<Graph> targetMap(const Graph& graph) {
alpar@1402
  2115
    return TargetMap<Graph>(graph);
alpar@1402
  2116
  }
alpar@1402
  2117
athos@1540
  2118
  /// \brief Returns the "forward" directed edge view of an undirected edge.
deba@1419
  2119
  ///
athos@1540
  2120
  /// Returns the "forward" directed edge view of an undirected edge.
kpeter@2474
  2121
  /// \see BackwardMap
deba@1419
  2122
  /// \author Balazs Dezso
deba@1419
  2123
  template <typename Graph>
deba@1419
  2124
  class ForwardMap {
deba@1419
  2125
  public:
deba@1419
  2126
deba@1419
  2127
    typedef typename Graph::Edge Value;
klao@1909
  2128
    typedef typename Graph::UEdge Key;
deba@1419
  2129
deba@1419
  2130
    /// \brief Constructor
deba@1419
  2131
    ///
deba@1419
  2132
    /// Constructor
deba@1419
  2133
    /// \param _graph The graph that the map belongs to.
deba@2286
  2134
    explicit ForwardMap(const Graph& _graph) : graph(_graph) {}
deba@1419
  2135
deba@1419
  2136
    /// \brief The subscript operator.
deba@1419
  2137
    ///
deba@1419
  2138
    /// The subscript operator.
deba@1419
  2139
    /// \param key An undirected edge 
deba@1419
  2140
    /// \return The "forward" directed edge view of undirected edge 
deba@1419
  2141
    Value operator[](const Key& key) const {
deba@1627
  2142
      return graph.direct(key, true);
deba@1419
  2143
    }
deba@1419
  2144
deba@1419
  2145
  private:
deba@1419
  2146
    const Graph& graph;
deba@1419
  2147
  };
deba@1419
  2148
kpeter@2474
  2149
  /// \brief Returns a \ref ForwardMap class.
deba@1515
  2150
  ///
deba@1419
  2151
  /// This function just returns an \ref ForwardMap class.
deba@1419
  2152
  /// \relates ForwardMap
deba@1419
  2153
  template <typename Graph>
deba@1419
  2154
  inline ForwardMap<Graph> forwardMap(const Graph& graph) {
deba@1419
  2155
    return ForwardMap<Graph>(graph);
deba@1419
  2156
  }
deba@1419
  2157
athos@1540
  2158
  /// \brief Returns the "backward" directed edge view of an undirected edge.
deba@1419
  2159
  ///
athos@1540
  2160
  /// Returns the "backward" directed edge view of an undirected edge.
kpeter@2474
  2161
  /// \see ForwardMap
deba@1419
  2162
  /// \author Balazs Dezso
deba@1419
  2163
  template <typename Graph>
deba@1419
  2164
  class BackwardMap {
deba@1419
  2165
  public:
deba@1419
  2166
deba@1419
  2167
    typedef typename Graph::Edge Value;
klao@1909
  2168
    typedef typename Graph::UEdge Key;
deba@1419
  2169
deba@1419
  2170
    /// \brief Constructor
deba@1419
  2171
    ///
deba@1419
  2172
    /// Constructor
deba@1419
  2173
    /// \param _graph The graph that the map belongs to.
deba@2286
  2174
    explicit BackwardMap(const Graph& _graph) : graph(_graph) {}
deba@1419
  2175
deba@1419
  2176
    /// \brief The subscript operator.
deba@1419
  2177
    ///
deba@1419
  2178
    /// The subscript operator.
deba@1419
  2179
    /// \param key An undirected edge 
deba@1419
  2180
    /// \return The "backward" directed edge view of undirected edge 
deba@1419
  2181
    Value operator[](const Key& key) const {
deba@1627
  2182
      return graph.direct(key, false);
deba@1419
  2183
    }
deba@1419
  2184
deba@1419
  2185
  private:
deba@1419
  2186
    const Graph& graph;
deba@1419
  2187
  };
deba@1419
  2188
deba@1419
  2189
  /// \brief Returns a \ref BackwardMap class
deba@1419
  2190
athos@1540
  2191
  /// This function just returns a \ref BackwardMap class.
deba@1419
  2192
  /// \relates BackwardMap
deba@1419
  2193
  template <typename Graph>
deba@1419
  2194
  inline BackwardMap<Graph> backwardMap(const Graph& graph) {
deba@1419
  2195
    return BackwardMap<Graph>(graph);
deba@1419
  2196
  }
deba@1419
  2197
deba@1695
  2198
  /// \brief Potential difference map
deba@1695
  2199
  ///
deba@1695
  2200
  /// If there is an potential map on the nodes then we
deba@1695
  2201
  /// can get an edge map as we get the substraction of the
deba@1695
  2202
  /// values of the target and source.
deba@1695
  2203
  template <typename Graph, typename NodeMap>
deba@1695
  2204
  class PotentialDifferenceMap {
deba@1515
  2205
  public:
deba@1695
  2206
    typedef typename Graph::Edge Key;
deba@1695
  2207
    typedef typename NodeMap::Value Value;
deba@1695
  2208
deba@1695
  2209
    /// \brief Constructor
deba@1695
  2210
    ///
deba@1695
  2211
    /// Contructor of the map
deba@2286
  2212
    explicit PotentialDifferenceMap(const Graph& _graph, 
deba@2286
  2213
                                    const NodeMap& _potential) 
deba@1695
  2214
      : graph(_graph), potential(_potential) {}
deba@1695
  2215
deba@1695
  2216
    /// \brief Const subscription operator
deba@1695
  2217
    ///
deba@1695
  2218
    /// Const subscription operator
deba@1695
  2219
    Value operator[](const Key& edge) const {
deba@1695
  2220
      return potential[graph.target(edge)] - potential[graph.source(edge)];
deba@1695
  2221
    }
deba@1695
  2222
deba@1695
  2223
  private:
deba@1695
  2224
    const Graph& graph;
deba@1695
  2225
    const NodeMap& potential;
deba@1695
  2226
  };
deba@1695
  2227
kpeter@2474
  2228
  /// \brief Returns a PotentialDifferenceMap.
deba@1695
  2229
  ///
kpeter@2474
  2230
  /// This function just returns a PotentialDifferenceMap.
deba@1695
  2231
  /// \relates PotentialDifferenceMap
deba@1695
  2232
  template <typename Graph, typename NodeMap>
deba@1695
  2233
  PotentialDifferenceMap<Graph, NodeMap> 
deba@1695
  2234
  potentialDifferenceMap(const Graph& graph, const NodeMap& potential) {
deba@1695
  2235
    return PotentialDifferenceMap<Graph, NodeMap>(graph, potential);
deba@1695
  2236
  }
deba@1695
  2237
deba@1515
  2238
  /// \brief Map of the node in-degrees.
alpar@1453
  2239
  ///
athos@1540
  2240
  /// This map returns the in-degree of a node. Once it is constructed,
deba@1515
  2241
  /// the degrees are stored in a standard NodeMap, so each query is done
athos@1540
  2242
  /// in constant time. On the other hand, the values are updated automatically
deba@1515
  2243
  /// whenever the graph changes.
deba@1515
  2244
  ///
deba@1729
  2245
  /// \warning Besides addNode() and addEdge(), a graph structure may provide
deba@1730
  2246
  /// alternative ways to modify the graph. The correct behavior of InDegMap
deba@1829
  2247
  /// is not guarantied if these additional features are used. For example
deba@1829
  2248
  /// the functions \ref ListGraph::changeSource() "changeSource()",
deba@1729
  2249
  /// \ref ListGraph::changeTarget() "changeTarget()" and
deba@1729
  2250
  /// \ref ListGraph::reverseEdge() "reverseEdge()"
deba@1729
  2251
  /// of \ref ListGraph will \e not update the degree values correctly.
deba@1729
  2252
  ///
deba@1515
  2253
  /// \sa OutDegMap
deba@1515
  2254
alpar@1453
  2255
  template <typename _Graph>
deba@1515
  2256
  class InDegMap  
deba@1999
  2257
    : protected ItemSetTraits<_Graph, typename _Graph::Edge>
deba@1999
  2258
      ::ItemNotifier::ObserverBase {
deba@1515
  2259
alpar@1453
  2260
  public:
deba@1515
  2261
    
deba@1515
  2262
    typedef _Graph Graph;
alpar@1453
  2263
    typedef int Value;
deba@1515
  2264
    typedef typename Graph::Node Key;
deba@1515
  2265
deba@1999
  2266
    typedef typename ItemSetTraits<_Graph, typename _Graph::Edge>
deba@1999
  2267
    ::ItemNotifier::ObserverBase Parent;
deba@1999
  2268
deba@1515
  2269
  private:
deba@1515
  2270
deba@1990
  2271
    class AutoNodeMap : public DefaultMap<_Graph, Key, int> {
deba@1515
  2272
    public:
deba@1515
  2273
deba@1990
  2274
      typedef DefaultMap<_Graph, Key, int> Parent;
deba@2002
  2275
      typedef typename Parent::Graph Graph;
deba@1515
  2276
deba@1515
  2277
      AutoNodeMap(const Graph& graph) : Parent(graph, 0) {}
deba@1515
  2278
      
deba@1829
  2279
      virtual void add(const Key& key) {
deba@1515
  2280
	Parent::add(key);
deba@1515
  2281
	Parent::set(key, 0);
deba@1515
  2282
      }
deba@1931
  2283
deba@1829
  2284
      virtual void add(const std::vector<Key>& keys) {
deba@1829
  2285
	Parent::add(keys);
deba@2386
  2286
	for (int i = 0; i < int(keys.size()); ++i) {
deba@1829
  2287
	  Parent::set(keys[i], 0);
deba@1829
  2288
	}
deba@1829
  2289
      }
deba@1515
  2290
    };
deba@1515
  2291
deba@1515
  2292
  public:
alpar@1453
  2293
alpar@1453
  2294
    /// \brief Constructor.
alpar@1453
  2295
    ///
alpar@1453
  2296
    /// Constructor for creating in-degree map.
deba@2286
  2297
    explicit InDegMap(const Graph& _graph) : graph(_graph), deg(_graph) {
deba@2384
  2298
      Parent::attach(graph.notifier(typename _Graph::Edge()));
deba@1515
  2299
      
deba@1515
  2300
      for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
deba@1515
  2301
	deg[it] = countInEdges(graph, it);
deba@1515
  2302
      }
alpar@1453
  2303
    }
alpar@1453
  2304
    
alpar@1459
  2305
    /// Gives back the in-degree of a Node.
deba@1515
  2306
    int operator[](const Key& key) const {
deba@1515
  2307
      return deg[key];
alpar@1459
  2308
    }
alpar@1453
  2309
alpar@1453
  2310
  protected:
deba@1515
  2311
    
deba@1515
  2312
    typedef typename Graph::Edge Edge;
deba@1515
  2313
deba@1515
  2314
    virtual void add(const Edge& edge) {
deba@1515
  2315
      ++deg[graph.target(edge)];
alpar@1453
  2316
    }
alpar@1453
  2317
deba@1931
  2318
    virtual void add(const std::vector<Edge>& edges) {
deba@2386
  2319
      for (int i = 0; i < int(edges.size()); ++i) {
deba@1931
  2320
        ++deg[graph.target(edges[i])];
deba@1931
  2321
      }
deba@1931
  2322
    }
deba@1931
  2323
deba@1515
  2324
    virtual void erase(const Edge& edge) {
deba@1515
  2325
      --deg[graph.target(edge)];
deba@1515
  2326
    }
deba@1515
  2327
deba@1931
  2328
    virtual void erase(const std::vector<Edge>& edges) {
deba@2386
  2329
      for (int i = 0; i < int(edges.size()); ++i) {
deba@1931
  2330
        --deg[graph.target(edges[i])];
deba@1931
  2331
      }
deba@1931
  2332
    }
deba@1931
  2333
deba@1515
  2334
    virtual void build() {
deba@1515
  2335
      for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
deba@1515
  2336
	deg[it] = countInEdges(graph, it);
deba@1515
  2337
      }      
deba@1515
  2338
    }
deba@1515
  2339
deba@1515
  2340
    virtual void clear() {
deba@1515
  2341
      for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
deba@1515
  2342
	deg[it] = 0;
deba@1515
  2343
      }
deba@1515
  2344
    }
deba@1515
  2345
  private:
alpar@1506
  2346
    
deba@1515
  2347
    const _Graph& graph;
deba@1515
  2348
    AutoNodeMap deg;
alpar@1459
  2349
  };
alpar@1459
  2350
deba@1515
  2351
  /// \brief Map of the node out-degrees.
deba@1515
  2352
  ///
athos@1540
  2353
  /// This map returns the out-degree of a node. Once it is constructed,
deba@1515
  2354
  /// the degrees are stored in a standard NodeMap, so each query is done
athos@1540
  2355
  /// in constant time. On the other hand, the values are updated automatically
deba@1515
  2356
  /// whenever the graph changes.
deba@1515
  2357
  ///
deba@1729
  2358
  /// \warning Besides addNode() and addEdge(), a graph structure may provide
deba@1730
  2359
  /// alternative ways to modify the graph. The correct behavior of OutDegMap
deba@1829
  2360
  /// is not guarantied if these additional features are used. For example
deba@1829
  2361
  /// the functions \ref ListGraph::changeSource() "changeSource()",
deba@1729
  2362
  /// \ref ListGraph::changeTarget() "changeTarget()" and
deba@1729
  2363
  /// \ref ListGraph::reverseEdge() "reverseEdge()"
deba@1729
  2364
  /// of \ref ListGraph will \e not update the degree values correctly.
deba@1729
  2365
  ///
alpar@1555
  2366
  /// \sa InDegMap
alpar@1459
  2367
alpar@1459
  2368
  template <typename _Graph>
deba@1515
  2369
  class OutDegMap  
deba@1999
  2370
    : protected ItemSetTraits<_Graph, typename _Graph::Edge>
deba@1999
  2371
      ::ItemNotifier::ObserverBase {
deba@1515
  2372
alpar@1459
  2373
  public:
deba@1999
  2374
deba@1999
  2375
    typedef typename ItemSetTraits<_Graph, typename _Graph::Edge>
deba@1999
  2376
    ::ItemNotifier::ObserverBase Parent;
deba@1515
  2377
    
deba@1515
  2378
    typedef _Graph Graph;
alpar@1459
  2379
    typedef int Value;
deba@1515
  2380
    typedef typename Graph::Node Key;
deba@1515
  2381
deba@1515
  2382
  private:
deba@1515
  2383
deba@1990
  2384
    class AutoNodeMap : public DefaultMap<_Graph, Key, int> {
deba@1515
  2385
    public:
deba@1515
  2386
deba@1990
  2387
      typedef DefaultMap<_Graph, Key, int> Parent;
deba@2002
  2388
      typedef typename Parent::Graph Graph;
deba@1515
  2389
deba@1515
  2390
      AutoNodeMap(const Graph& graph) : Parent(graph, 0) {}
deba@1515
  2391
      
deba@1829
  2392
      virtual void add(const Key& key) {
deba@1515
  2393
	Parent::add(key);
deba@1515
  2394
	Parent::set(key, 0);
deba@1515
  2395
      }
deba@1829
  2396
      virtual void add(const std::vector<Key>& keys) {
deba@1829
  2397
	Parent::add(keys);
deba@2386
  2398
	for (int i = 0; i < int(keys.size()); ++i) {
deba@1829
  2399
	  Parent::set(keys[i], 0);
deba@1829
  2400
	}
deba@1829
  2401
      }
deba@1515
  2402
    };
deba@1515
  2403
deba@1515
  2404
  public:
alpar@1459
  2405
alpar@1459
  2406
    /// \brief Constructor.
alpar@1459
  2407
    ///
alpar@1459
  2408
    /// Constructor for creating out-degree map.
deba@2286
  2409
    explicit OutDegMap(const Graph& _graph) : graph(_graph), deg(_graph) {
deba@2384
  2410
      Parent::attach(graph.notifier(typename _Graph::Edge()));
deba@1515
  2411
      
deba@1515
  2412
      for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
deba@1515
  2413
	deg[it] = countOutEdges(graph, it);
deba@1515
  2414
      }
alpar@1459
  2415
    }
alpar@1459
  2416
deba@1990
  2417
    /// Gives back the out-degree of a Node.
deba@1515
  2418
    int operator[](const Key& key) const {
deba@1515
  2419
      return deg[key];
alpar@1459
  2420
    }
alpar@1459
  2421
alpar@1459
  2422
  protected:
deba@1515
  2423
    
deba@1515
  2424
    typedef typename Graph::Edge Edge;
deba@1515
  2425
deba@1515
  2426
    virtual void add(const Edge& edge) {
deba@1515
  2427
      ++deg[graph.source(edge)];
alpar@1459
  2428
    }
alpar@1459
  2429
deba@1931
  2430
    virtual void add(const std::vector<Edge>& edges) {
deba@2386
  2431
      for (int i = 0; i < int(edges.size()); ++i) {
deba@1931
  2432
        ++deg[graph.source(edges[i])];
deba@1931
  2433
      }
deba@1931
  2434
    }
deba@1931
  2435
deba@1515
  2436
    virtual void erase(const Edge& edge) {
deba@1515
  2437
      --deg[graph.source(edge)];
deba@1515
  2438
    }
deba@1515
  2439
deba@1931
  2440
    virtual void erase(const std::vector<Edge>& edges) {
deba@2386
  2441
      for (int i = 0; i < int(edges.size()); ++i) {
deba@1931
  2442
        --deg[graph.source(edges[i])];
deba@1931
  2443
      }
deba@1931
  2444
    }
deba@1931
  2445
deba@1515
  2446
    virtual void build() {
deba@1515
  2447
      for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
deba@1515
  2448
	deg[it] = countOutEdges(graph, it);
deba@1515
  2449
      }      
deba@1515
  2450
    }
deba@1515
  2451
deba@1515
  2452
    virtual void clear() {
deba@1515
  2453
      for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
deba@1515
  2454
	deg[it] = 0;
deba@1515
  2455
      }
deba@1515
  2456
    }
deba@1515
  2457
  private:
alpar@1506
  2458
    
deba@1515
  2459
    const _Graph& graph;
deba@1515
  2460
    AutoNodeMap deg;
alpar@1453
  2461
  };
alpar@1453
  2462
deba@1695
  2463
alpar@2235
  2464
  ///Fast edge look up between given endpoints.
alpar@2235
  2465
  
alpar@2235
  2466
  ///\ingroup gutils
alpar@2235
  2467
  ///Using this class, you can find an edge in a graph from a given
alpar@2235
  2468
  ///source to a given target in time <em>O(log d)</em>,
alpar@2235
  2469
  ///where <em>d</em> is the out-degree of the source node.
alpar@2235
  2470
  ///
alpar@2235
  2471
  ///It is not possible to find \e all parallel edges between two nodes.
alpar@2235
  2472
  ///Use \ref AllEdgeLookUp for this purpose.
alpar@2235
  2473
  ///
alpar@2235
  2474
  ///\warning This class is static, so you should refresh() (or at least
alpar@2235
  2475
  ///refresh(Node)) this data structure
alpar@2235
  2476
  ///whenever the graph changes. This is a time consuming (superlinearly
alpar@2235
  2477
  ///proportional (<em>O(m</em>log<em>m)</em>) to the number of edges).
alpar@2235
  2478
  ///
alpar@2235
  2479
  ///\param G The type of the underlying graph.
alpar@2235
  2480
  ///
alpar@2235
  2481
  ///\sa AllEdgeLookUp  
alpar@2235
  2482
  template<class G>
alpar@2235
  2483
  class EdgeLookUp 
alpar@2235
  2484
  {
alpar@2235
  2485
  public:
alpar@2235
  2486
    GRAPH_TYPEDEFS(typename G)
alpar@2235
  2487
    typedef G Graph;
alpar@2235
  2488
alpar@2235
  2489
  protected:
alpar@2235
  2490
    const Graph &_g;
alpar@2235
  2491
    typename Graph::template NodeMap<Edge> _head;
alpar@2235
  2492
    typename Graph::template EdgeMap<Edge> _left;
alpar@2235
  2493
    typename Graph::template EdgeMap<Edge> _right;
alpar@2235
  2494
    
alpar@2235
  2495
    class EdgeLess {
alpar@2235
  2496
      const Graph &g;
alpar@2235
  2497
    public:
alpar@2235
  2498
      EdgeLess(const Graph &_g) : g(_g) {}
alpar@2235
  2499
      bool operator()(Edge a,Edge b) const 
alpar@2235
  2500
      {
alpar@2235
  2501
	return g.target(a)<g.target(b);
alpar@2235
  2502
      }
alpar@2235
  2503
    };
alpar@2235
  2504
    
alpar@2235
  2505
  public:
alpar@2235
  2506
    
alpar@2235
  2507
    ///Constructor
alpar@2235
  2508
alpar@2235
  2509
    ///Constructor.
alpar@2235
  2510
    ///
alpar@2235
  2511
    ///It builds up the search database, which remains valid until the graph
alpar@2235
  2512
    ///changes.
alpar@2235
  2513
    EdgeLookUp(const Graph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
alpar@2235
  2514
    
alpar@2235
  2515
  private:
alpar@2235
  2516
    Edge refresh_rec(std::vector<Edge> &v,int a,int b) 
alpar@2235
  2517
    {
alpar@2235
  2518
      int m=(a+b)/2;
alpar@2235
  2519
      Edge me=v[m];
alpar@2235
  2520
      _left[me] = a<m?refresh_rec(v,a,m-1):INVALID;
alpar@2235
  2521
      _right[me] = m<b?refresh_rec(v,m+1,b):INVALID;
alpar@2235
  2522
      return me;
alpar@2235
  2523
    }
alpar@2235
  2524
  public:
alpar@2235
  2525
    ///Refresh the data structure at a node.
alpar@2235
  2526
alpar@2235
  2527
    ///Build up the search database of node \c n.
alpar@2235
  2528
    ///
alpar@2235
  2529
    ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
alpar@2235
  2530
    ///the number of the outgoing edges of \c n.
alpar@2235
  2531
    void refresh(Node n) 
alpar@2235
  2532
    {
alpar@2235
  2533
      std::vector<Edge> v;
alpar@2235
  2534
      for(OutEdgeIt e(_g,n);e!=INVALID;++e) v.push_back(e);
alpar@2235
  2535
      if(v.size()) {
alpar@2235
  2536
	std::sort(v.begin(),v.end(),EdgeLess(_g));
alpar@2235
  2537
	_head[n]=refresh_rec(v,0,v.size()-1);
alpar@2235
  2538
      }
alpar@2235
  2539
      else _head[n]=INVALID;
alpar@2235
  2540
    }
alpar@2235
  2541
    ///Refresh the full data structure.
alpar@2235
  2542
alpar@2235
  2543
    ///Build up the full search database. In fact, it simply calls
alpar@2235
  2544
    ///\ref refresh(Node) "refresh(n)" for each node \c n.
alpar@2235
  2545
    ///
alpar@2235
  2546
    ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
alpar@2235
  2547
    ///the number of the edges of \c n and <em>D</em> is the maximum
alpar@2235
  2548
    ///out-degree of the graph.
alpar@2235
  2549
alpar@2235
  2550
    void refresh() 
alpar@2235
  2551
    {
alpar@2235
  2552
      for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
alpar@2235
  2553
    }
alpar@2235
  2554
    
alpar@2235
  2555
    ///Find an edge between two nodes.
alpar@2235
  2556
    
alpar@2235
  2557
    ///Find an edge between two nodes in time <em>O(</em>log<em>d)</em>, where
alpar@2235
  2558
    /// <em>d</em> is the number of outgoing edges of \c s.
alpar@2235
  2559
    ///\param s The source node
alpar@2235
  2560
    ///\param t The target node
alpar@2235
  2561
    ///\return An edge from \c s to \c t if there exists,
alpar@2235
  2562
    ///\ref INVALID otherwise.
alpar@2235
  2563
    ///
alpar@2235
  2564
    ///\warning If you change the graph, refresh() must be called before using
alpar@2235
  2565
    ///this operator. If you change the outgoing edges of
alpar@2235
  2566
    ///a single node \c n, then
alpar@2235
  2567
    ///\ref refresh(Node) "refresh(n)" is enough.
alpar@2235
  2568
    ///
alpar@2235
  2569
    Edge operator()(Node s, Node t) const
alpar@2235
  2570
    {
alpar@2235
  2571
      Edge e;
alpar@2235
  2572
      for(e=_head[s];
alpar@2235
  2573
	  e!=INVALID&&_g.target(e)!=t;
alpar@2235
  2574
	  e = t < _g.target(e)?_left[e]:_right[e]) ;
alpar@2235
  2575
      return e;
alpar@2235
  2576
    }
alpar@2235
  2577
alpar@2235
  2578
  };
alpar@2235
  2579
alpar@2235
  2580
  ///Fast look up of all edges between given endpoints.
alpar@2235
  2581
  
alpar@2235
  2582
  ///\ingroup gutils
alpar@2235
  2583
  ///This class is the same as \ref EdgeLookUp, with the addition
alpar@2235
  2584
  ///that it makes it possible to find all edges between given endpoints.
alpar@2235
  2585
  ///
alpar@2235
  2586
  ///\warning This class is static, so you should refresh() (or at least
alpar@2235
  2587
  ///refresh(Node)) this data structure
alpar@2235
  2588
  ///whenever the graph changes. This is a time consuming (superlinearly
alpar@2235
  2589
  ///proportional (<em>O(m</em>log<em>m)</em>) to the number of edges).
alpar@2235
  2590
  ///
alpar@2235
  2591
  ///\param G The type of the underlying graph.
alpar@2235
  2592
  ///
alpar@2235
  2593
  ///\sa EdgeLookUp  
alpar@2235
  2594
  template<class G>
alpar@2235
  2595
  class AllEdgeLookUp : public EdgeLookUp<G>
alpar@2235
  2596
  {
alpar@2235
  2597
    using EdgeLookUp<G>::_g;
alpar@2235
  2598
    using EdgeLookUp<G>::_right;
alpar@2235
  2599
    using EdgeLookUp<G>::_left;
alpar@2235
  2600
    using EdgeLookUp<G>::_head;
alpar@2235
  2601
alpar@2235
  2602
    GRAPH_TYPEDEFS(typename G)
alpar@2235
  2603
    typedef G Graph;
alpar@2235
  2604
    
alpar@2235
  2605
    typename Graph::template EdgeMap<Edge> _next;
alpar@2235
  2606
    
alpar@2235
  2607
    Edge refreshNext(Edge head,Edge next=INVALID)
alpar@2235
  2608
    {
alpar@2235
  2609
      if(head==INVALID) return next;
alpar@2235
  2610
      else {
alpar@2235
  2611
	next=refreshNext(_right[head],next);
alpar@2235
  2612
// 	_next[head]=next;
alpar@2235
  2613
	_next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
alpar@2235
  2614
	  ? next : INVALID;
alpar@2235
  2615
	return refreshNext(_left[head],head);
alpar@2235
  2616
      }
alpar@2235
  2617
    }
alpar@2235
  2618
    
alpar@2235
  2619
    void refreshNext()
alpar@2235
  2620
    {
alpar@2235
  2621
      for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
alpar@2235
  2622
    }
alpar@2235
  2623
    
alpar@2235
  2624
  public:
alpar@2235
  2625
    ///Constructor
alpar@2235
  2626
alpar@2235
  2627
    ///Constructor.
alpar@2235
  2628
    ///
alpar@2235
  2629
    ///It builds up the search database, which remains valid until the graph
alpar@2235
  2630
    ///changes.
alpar@2235
  2631
    AllEdgeLookUp(const Graph &g) : EdgeLookUp<G>(g), _next(g) {refreshNext();}
alpar@2235
  2632
alpar@2235
  2633
    ///Refresh the data structure at a node.
alpar@2235
  2634
alpar@2235
  2635
    ///Build up the search database of node \c n.
alpar@2235
  2636
    ///
alpar@2235
  2637
    ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
alpar@2235
  2638
    ///the number of the outgoing edges of \c n.
alpar@2235
  2639
    
alpar@2235
  2640
    void refresh(Node n) 
alpar@2235
  2641
    {
alpar@2235
  2642
      EdgeLookUp<G>::refresh(n);
alpar@2235
  2643
      refreshNext(_head[n]);
alpar@2235
  2644
    }
alpar@2235
  2645
    
alpar@2235
  2646
    ///Refresh the full data structure.
alpar@2235
  2647
alpar@2235
  2648
    ///Build up the full search database. In fact, it simply calls
alpar@2235
  2649
    ///\ref refresh(Node) "refresh(n)" for each node \c n.
alpar@2235
  2650
    ///
alpar@2235
  2651
    ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
alpar@2235
  2652
    ///the number of the edges of \c n and <em>D</em> is the maximum
alpar@2235
  2653
    ///out-degree of the graph.
alpar@2235
  2654
alpar@2235
  2655
    void refresh() 
alpar@2235
  2656
    {
alpar@2235
  2657
      for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
alpar@2235
  2658
    }
alpar@2235
  2659
    
alpar@2235
  2660
    ///Find an edge between two nodes.
alpar@2235
  2661
    
alpar@2235
  2662
    ///Find an edge between two nodes.
alpar@2235
  2663
    ///\param s The source node
alpar@2235
  2664
    ///\param t The target node
alpar@2235
  2665
    ///\param prev The previous edge between \c s and \c t. It it is INVALID or
alpar@2235
  2666
    ///not given, the operator finds the first appropriate edge.
alpar@2350
  2667
    ///\return An edge from \c s to \c t after \c prev or
alpar@2235
  2668
    ///\ref INVALID if there is no more.
alpar@2235
  2669
    ///
alpar@2235
  2670
    ///For example, you can count the number of edges from \c u to \c v in the
alpar@2235
  2671
    ///following way.
alpar@2235
  2672
    ///\code
alpar@2235
  2673
    ///AllEdgeLookUp<ListGraph> ae(g);
alpar@2235
  2674
    ///...
alpar@2235
  2675
    ///int n=0;
alpar@2235
  2676
    ///for(Edge e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++;
alpar@2235
  2677
    ///\endcode
alpar@2235
  2678
    ///
alpar@2235
  2679
    ///Finding the first edge take <em>O(</em>log<em>d)</em> time, where
alpar@2235
  2680
    /// <em>d</em> is the number of outgoing edges of \c s. Then, the
alpar@2235
  2681
    ///consecutive edges are found in constant time.
alpar@2235
  2682
    ///
alpar@2235
  2683
    ///\warning If you change the graph, refresh() must be called before using
alpar@2235
  2684
    ///this operator. If you change the outgoing edges of
alpar@2235
  2685
    ///a single node \c n, then
alpar@2235
  2686
    ///\ref refresh(Node) "refresh(n)" is enough.
alpar@2235
  2687
    ///
alpar@2235
  2688
#ifdef DOXYGEN
alpar@2235
  2689
    Edge operator()(Node s, Node t, Edge prev=INVALID) const {}
alpar@2235
  2690
#else
alpar@2235
  2691
    using EdgeLookUp<G>::operator() ;
alpar@2235
  2692
    Edge operator()(Node s, Node t, Edge prev) const
alpar@2235
  2693
    {
alpar@2235
  2694
      return prev==INVALID?(*this)(s,t):_next[prev];
alpar@2235
  2695
    }
alpar@2235
  2696
#endif
alpar@2235
  2697
      
alpar@2235
  2698
  };
alpar@2235
  2699
alpar@1402
  2700
  /// @}
alpar@1402
  2701
alpar@947
  2702
} //END OF NAMESPACE LEMON
klao@946
  2703
klao@946
  2704
#endif