src/work/peter/hierarchygraph.h
changeset 681 06a3cba90f94
child 690 a0f95e1b17fc
equal deleted inserted replaced
-1:000000000000 0:14b28fe61d51
       
     1 // -*- c++ -*-
       
     2 #ifndef HUGO_NET_GRAPH_H
       
     3 #define HUGO_NET_GRAPH_H
       
     4 
       
     5 ///\file
       
     6 ///\brief Declaration of HierarchyGraph.
       
     7 
       
     8 #include <hugo/invalid.h>
       
     9 #include <hugo/maps.h>
       
    10 
       
    11 /// The namespace of HugoLib
       
    12 namespace hugo {
       
    13 
       
    14   // @defgroup empty_graph The HierarchyGraph class
       
    15   // @{
       
    16 
       
    17   /// A graph class in that a simple edge can represent a path.
       
    18   
       
    19   /// This class provides common features of a graph structure
       
    20   /// that represents a network. You can handle with it layers. This
       
    21   /// means that a node in one layer can be a complete network in a nother
       
    22   /// layer.
       
    23 
       
    24   template <class Gact, class Gsub>
       
    25   class HierarchyGraph
       
    26   {
       
    27 
       
    28   public:
       
    29 
       
    30     /// The actual layer
       
    31     Gact actuallayer;
       
    32 
       
    33 
       
    34     /// Map of subnetworks that are represented by the nodes of this layer
       
    35     typename Gact::template NodeMap<Gsub> subnetwork;
       
    36 
       
    37 
       
    38 
       
    39     /// Defalult constructor.
       
    40     /// We don't need any extra lines, because the actuallayer
       
    41     /// variable has run its constructor, when we have created this class
       
    42     /// So only the two maps has to be initialised here.
       
    43     HierarchyGraph() : subnetwork(actuallayer)
       
    44     {
       
    45     }
       
    46 
       
    47 
       
    48     ///Copy consructor.
       
    49     HierarchyGraph(const HierarchyGraph<Gact, Gsub> & HG ) : actuallayer(HG.actuallayer), subnetwork(actuallayer)
       
    50     {
       
    51     }
       
    52 
       
    53  
       
    54     /// The base type of the node iterators.
       
    55 
       
    56     /// This is the base type of each node iterators,
       
    57     /// thus each kind of node iterator will convert to this.
       
    58     /// The Node type of the HierarchyGraph is the Node type of the actual layer.
       
    59     typedef typename Gact::Node Node;
       
    60 
       
    61     
       
    62     /// This iterator goes through each node.
       
    63 
       
    64     /// Its usage is quite simple, for example you can count the number
       
    65     /// of nodes in graph \c G of type \c Graph like this:
       
    66     /// \code
       
    67     ///int count=0;
       
    68     ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++;
       
    69     /// \endcode
       
    70     /// The NodeIt type of the HierarchyGraph is the NodeIt type of the actual layer.
       
    71     typedef typename Gact::NodeIt NodeIt;
       
    72     
       
    73     
       
    74     /// The base type of the edge iterators.
       
    75     /// The Edge type of the HierarchyGraph is the Edge type of the actual layer.
       
    76     typedef typename  Gact::Edge Edge;
       
    77 
       
    78     
       
    79     /// This iterator goes trough the outgoing edges of a node.
       
    80 
       
    81     /// This iterator goes trough the \e outgoing edges of a certain node
       
    82     /// of a graph.
       
    83     /// Its usage is quite simple, for example you can count the number
       
    84     /// of outgoing edges of a node \c n
       
    85     /// in graph \c G of type \c Graph as follows.
       
    86     /// \code
       
    87     ///int count=0;
       
    88     ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
       
    89     /// \endcode
       
    90     /// The OutEdgeIt type of the HierarchyGraph is the OutEdgeIt type of the actual layer.
       
    91     typedef typename Gact::OutEdgeIt OutEdgeIt;
       
    92 
       
    93 
       
    94     /// This iterator goes trough the incoming edges of a node.
       
    95 
       
    96     /// This iterator goes trough the \e incoming edges of a certain node
       
    97     /// of a graph.
       
    98     /// Its usage is quite simple, for example you can count the number
       
    99     /// of outgoing edges of a node \c n
       
   100     /// in graph \c G of type \c Graph as follows.
       
   101     /// \code
       
   102     ///int count=0;
       
   103     ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
       
   104     /// \endcode
       
   105     /// The InEdgeIt type of the HierarchyGraph is the InEdgeIt type of the actual layer.
       
   106     typedef typename Gact::InEdgeIt InEdgeIt;
       
   107 
       
   108 
       
   109     /// This iterator goes through each edge.
       
   110 
       
   111     /// This iterator goes through each edge of a graph.
       
   112     /// Its usage is quite simple, for example you can count the number
       
   113     /// of edges in a graph \c G of type \c Graph as follows:
       
   114     /// \code
       
   115     ///int count=0;
       
   116     ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++;
       
   117     /// \endcode
       
   118     /// The EdgeIt type of the HierarchyGraph is the EdgeIt type of the actual layer.
       
   119     typedef typename Gact::EdgeIt EdgeIt;
       
   120 
       
   121 
       
   122     /// First node of the graph.
       
   123 
       
   124     /// \retval i the first node.
       
   125     /// \return the first node.
       
   126     typename Gact::NodeIt &first(typename Gact::NodeIt &i) const { return actuallayer.first(i);}
       
   127 
       
   128 
       
   129     /// The first incoming edge.
       
   130     typename Gact::InEdgeIt &first(typename Gact::InEdgeIt &i, typename Gact::Node) const { return actuallayer.first(i);}
       
   131 
       
   132 
       
   133     /// The first outgoing edge.
       
   134     typename Gact::OutEdgeIt &first(typename Gact::OutEdgeIt &i, typename Gact::Node) const { return actuallayer.first(i);}
       
   135 
       
   136 
       
   137     //  SymEdgeIt &first(SymEdgeIt &, Node) const { return i;}
       
   138     /// The first edge of the Graph.
       
   139     typename Gact::EdgeIt &first(typename Gact::EdgeIt &i) const { return actuallayer.first(i);}
       
   140 
       
   141 
       
   142 //     Node getNext(Node) const {}
       
   143 //     InEdgeIt getNext(InEdgeIt) const {}
       
   144 //     OutEdgeIt getNext(OutEdgeIt) const {}
       
   145 //     //SymEdgeIt getNext(SymEdgeIt) const {}
       
   146 //     EdgeIt getNext(EdgeIt) const {}
       
   147 
       
   148 
       
   149     /// Go to the next node.
       
   150     typename Gact::NodeIt &next(typename Gact::NodeIt &i) const { return actuallayer.next(i);}
       
   151     /// Go to the next incoming edge.
       
   152     typename Gact::InEdgeIt &next(typename Gact::InEdgeIt &i) const { return actuallayer.next(i);}
       
   153     /// Go to the next outgoing edge.
       
   154     typename Gact::OutEdgeIt &next(typename Gact::OutEdgeIt &i) const { return actuallayer.next(i);}
       
   155     //SymEdgeIt &next(SymEdgeIt &) const {}
       
   156     /// Go to the next edge.
       
   157     typename Gact::EdgeIt &next(typename Gact::EdgeIt &i) const { return actuallayer.next(i);}
       
   158 
       
   159     ///Gives back the head node of an edge.
       
   160     typename Gact::Node head(typename Gact::Edge edge) const { return actuallayer.head(edge); }
       
   161     ///Gives back the tail node of an edge.
       
   162     typename Gact::Node tail(typename Gact::Edge edge) const { return actuallayer.tail(edge); }
       
   163   
       
   164     //   Node aNode(InEdgeIt) const {}
       
   165     //   Node aNode(OutEdgeIt) const {}
       
   166     //   Node aNode(SymEdgeIt) const {}
       
   167 
       
   168     //   Node bNode(InEdgeIt) const {}
       
   169     //   Node bNode(OutEdgeIt) const {}
       
   170     //   Node bNode(SymEdgeIt) const {}
       
   171 
       
   172     /// Checks if a node iterator is valid
       
   173 
       
   174     ///\todo Maybe, it would be better if iterator converted to
       
   175     ///bool directly, as Jacint prefers.
       
   176     bool valid(const typename Gact::Node& node) const { return actuallayer.valid(node);}
       
   177     /// Checks if an edge iterator is valid
       
   178 
       
   179     ///\todo Maybe, it would be better if iterator converted to
       
   180     ///bool directly, as Jacint prefers.
       
   181     bool valid(const typename Gact::Edge& edge) const { return actuallayer.valid(edge);}
       
   182 
       
   183     ///Gives back the \e id of a node.
       
   184 
       
   185     ///\warning Not all graph structures provide this feature.
       
   186     ///
       
   187     int id(const typename Gact::Node & node) const { return actuallayer.id(node);}
       
   188     ///Gives back the \e id of an edge.
       
   189 
       
   190     ///\warning Not all graph structures provide this feature.
       
   191     ///
       
   192     int id(const typename Gact::Edge & edge) const { return actuallayer.id(edge);}
       
   193 
       
   194     //void setInvalid(Node &) const {};
       
   195     //void setInvalid(Edge &) const {};
       
   196   
       
   197     ///Add a new node to the graph.
       
   198 
       
   199     /// \return the new node.
       
   200     ///
       
   201     typename Gact::Node addNode() { return actuallayer.addNode();}
       
   202     ///Add a new edge to the graph.
       
   203 
       
   204     ///Add a new edge to the graph with tail node \c tail
       
   205     ///and head node \c head.
       
   206     ///\return the new edge.
       
   207     typename Gact::Edge addEdge(typename Gact::Node node1, typename Gact::Node node2) { return actuallayer.addEdge(node1, node2);}
       
   208     
       
   209     /// Resets the graph.
       
   210 
       
   211     /// This function deletes all edges and nodes of the graph.
       
   212     /// It also frees the memory allocated to store them.
       
   213     void clear() {actuallayer.clear();}
       
   214 
       
   215     int nodeNum() const { return actuallayer.nodeNum();}
       
   216     int edgeNum() const { return actuallayer.edgeNum();}
       
   217 
       
   218     ///Read/write/reference map of the nodes to type \c T.
       
   219 
       
   220     ///Read/write/reference map of the nodes to type \c T.
       
   221     /// \sa MemoryMapSkeleton
       
   222     /// \todo We may need copy constructor
       
   223     /// \todo We may need conversion from other nodetype
       
   224     /// \todo We may need operator=
       
   225     /// \warning Making maps that can handle bool type (NodeMap<bool>)
       
   226     /// needs extra attention!
       
   227 
       
   228     template<class T> class NodeMap
       
   229     {
       
   230     public:
       
   231       typedef T ValueType;
       
   232       typedef Node KeyType;
       
   233 
       
   234       NodeMap(const HierarchyGraph &) {}
       
   235       NodeMap(const HierarchyGraph &, T) {}
       
   236 
       
   237       template<typename TT> NodeMap(const NodeMap<TT> &) {}
       
   238 
       
   239       /// Sets the value of a node.
       
   240 
       
   241       /// Sets the value associated with node \c i to the value \c t.
       
   242       ///
       
   243       void set(Node, T) {}
       
   244       // Gets the value of a node.
       
   245       //T get(Node i) const {return *(T*)0;}  //FIXME: Is it necessary?
       
   246       T &operator[](Node) {return *(T*)0;}
       
   247       const T &operator[](Node) const {return *(T*)0;}
       
   248 
       
   249       /// Updates the map if the graph has been changed
       
   250 
       
   251       /// \todo Do we need this?
       
   252       ///
       
   253       void update() {}
       
   254       void update(T a) {}   //FIXME: Is it necessary
       
   255     };
       
   256 
       
   257     ///Read/write/reference map of the edges to type \c T.
       
   258 
       
   259     ///Read/write/reference map of the edges to type \c T.
       
   260     ///It behaves exactly in the same way as \ref NodeMap.
       
   261     /// \sa NodeMap
       
   262     /// \sa MemoryMapSkeleton
       
   263     /// \todo We may need copy constructor
       
   264     /// \todo We may need conversion from other edgetype
       
   265     /// \todo We may need operator=
       
   266     template<class T> class EdgeMap
       
   267     {
       
   268     public:
       
   269       typedef T ValueType;
       
   270       typedef Edge KeyType;
       
   271 
       
   272       EdgeMap(const HierarchyGraph &) {}
       
   273       EdgeMap(const HierarchyGraph &, T ) {}
       
   274     
       
   275       ///\todo It can copy between different types.
       
   276       ///
       
   277       template<typename TT> EdgeMap(const EdgeMap<TT> &) {}
       
   278 
       
   279       void set(Edge, T) {}
       
   280       //T get(Edge) const {return *(T*)0;}
       
   281       T &operator[](Edge) {return *(T*)0;}
       
   282       const T &operator[](Edge) const {return *(T*)0;}
       
   283     
       
   284       void update() {}
       
   285       void update(T a) {}   //FIXME: Is it necessary
       
   286     };
       
   287   };
       
   288 
       
   289   /// An empty eraseable graph class.
       
   290   
       
   291   /// This class provides all the common features of an \e eraseable graph
       
   292   /// structure,
       
   293   /// however completely without implementations and real data structures
       
   294   /// behind the interface.
       
   295   /// All graph algorithms should compile with this class, but it will not
       
   296   /// run properly, of course.
       
   297   ///
       
   298   /// \todo This blabla could be replaced by a sepatate description about
       
   299   /// Skeletons.
       
   300   ///
       
   301   /// It can be used for checking the interface compatibility,
       
   302   /// or it can serve as a skeleton of a new graph structure.
       
   303   /// 
       
   304   /// Also, you will find here the full documentation of a certain graph
       
   305   /// feature, the documentation of a real graph imlementation
       
   306   /// like @ref ListGraph or
       
   307   /// @ref SmartGraph will just refer to this structure.
       
   308   template <typename Gact, typename Gsub>
       
   309   class EraseableHierarchyGraph : public HierarchyGraph<Gact, Gsub>
       
   310   {
       
   311   public:
       
   312     /// Deletes a node.
       
   313     void erase(typename Gact::Node n) {actuallayer.erase(n);}
       
   314     /// Deletes an edge.
       
   315     void erase(typename Gact::Edge e) {actuallayer.erase(e);}
       
   316 
       
   317     /// Defalult constructor.
       
   318     EraseableHierarchyGraph() {}
       
   319     ///Copy consructor.
       
   320     EraseableHierarchyGraph(const HierarchyGraph<Gact, Gsub> &EPG) {}
       
   321   };
       
   322 
       
   323   
       
   324   // @}
       
   325 
       
   326 } //namespace hugo
       
   327 
       
   328 
       
   329 #endif // HUGO_SKELETON_GRAPH_H