src/work/peter/hierarchygraph.h
author alpar
Mon, 14 Jun 2004 09:46:03 +0000
changeset 681 06a3cba90f94
child 690 a0f95e1b17fc
permissions -rw-r--r--
Nothing
     1 // -*- c++ -*-
     2 #ifndef HUGO_NET_GRAPH_H
     3 #define HUGO_NET_GRAPH_H
     4 
     5 ///\file
     6 ///\brief Declaration of HierarchyGraph.
     7 
     8 #include <hugo/invalid.h>
     9 #include <hugo/maps.h>
    10 
    11 /// The namespace of HugoLib
    12 namespace hugo {
    13 
    14   // @defgroup empty_graph The HierarchyGraph class
    15   // @{
    16 
    17   /// A graph class in that a simple edge can represent a path.
    18   
    19   /// This class provides common features of a graph structure
    20   /// that represents a network. You can handle with it layers. This
    21   /// means that a node in one layer can be a complete network in a nother
    22   /// layer.
    23 
    24   template <class Gact, class Gsub>
    25   class HierarchyGraph
    26   {
    27 
    28   public:
    29 
    30     /// The actual layer
    31     Gact actuallayer;
    32 
    33 
    34     /// Map of subnetworks that are represented by the nodes of this layer
    35     typename Gact::template NodeMap<Gsub> subnetwork;
    36 
    37 
    38 
    39     /// Defalult constructor.
    40     /// We don't need any extra lines, because the actuallayer
    41     /// variable has run its constructor, when we have created this class
    42     /// So only the two maps has to be initialised here.
    43     HierarchyGraph() : subnetwork(actuallayer)
    44     {
    45     }
    46 
    47 
    48     ///Copy consructor.
    49     HierarchyGraph(const HierarchyGraph<Gact, Gsub> & HG ) : actuallayer(HG.actuallayer), subnetwork(actuallayer)
    50     {
    51     }
    52 
    53  
    54     /// The base type of the node iterators.
    55 
    56     /// This is the base type of each node iterators,
    57     /// thus each kind of node iterator will convert to this.
    58     /// The Node type of the HierarchyGraph is the Node type of the actual layer.
    59     typedef typename Gact::Node Node;
    60 
    61     
    62     /// This iterator goes through each node.
    63 
    64     /// Its usage is quite simple, for example you can count the number
    65     /// of nodes in graph \c G of type \c Graph like this:
    66     /// \code
    67     ///int count=0;
    68     ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++;
    69     /// \endcode
    70     /// The NodeIt type of the HierarchyGraph is the NodeIt type of the actual layer.
    71     typedef typename Gact::NodeIt NodeIt;
    72     
    73     
    74     /// The base type of the edge iterators.
    75     /// The Edge type of the HierarchyGraph is the Edge type of the actual layer.
    76     typedef typename  Gact::Edge Edge;
    77 
    78     
    79     /// This iterator goes trough the outgoing edges of a node.
    80 
    81     /// This iterator goes trough the \e outgoing edges of a certain node
    82     /// of a graph.
    83     /// Its usage is quite simple, for example you can count the number
    84     /// of outgoing edges of a node \c n
    85     /// in graph \c G of type \c Graph as follows.
    86     /// \code
    87     ///int count=0;
    88     ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
    89     /// \endcode
    90     /// The OutEdgeIt type of the HierarchyGraph is the OutEdgeIt type of the actual layer.
    91     typedef typename Gact::OutEdgeIt OutEdgeIt;
    92 
    93 
    94     /// This iterator goes trough the incoming edges of a node.
    95 
    96     /// This iterator goes trough the \e incoming edges of a certain node
    97     /// of a graph.
    98     /// Its usage is quite simple, for example you can count the number
    99     /// of outgoing edges of a node \c n
   100     /// in graph \c G of type \c Graph as follows.
   101     /// \code
   102     ///int count=0;
   103     ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
   104     /// \endcode
   105     /// The InEdgeIt type of the HierarchyGraph is the InEdgeIt type of the actual layer.
   106     typedef typename Gact::InEdgeIt InEdgeIt;
   107 
   108 
   109     /// This iterator goes through each edge.
   110 
   111     /// This iterator goes through each edge of a graph.
   112     /// Its usage is quite simple, for example you can count the number
   113     /// of edges in a graph \c G of type \c Graph as follows:
   114     /// \code
   115     ///int count=0;
   116     ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++;
   117     /// \endcode
   118     /// The EdgeIt type of the HierarchyGraph is the EdgeIt type of the actual layer.
   119     typedef typename Gact::EdgeIt EdgeIt;
   120 
   121 
   122     /// First node of the graph.
   123 
   124     /// \retval i the first node.
   125     /// \return the first node.
   126     typename Gact::NodeIt &first(typename Gact::NodeIt &i) const { return actuallayer.first(i);}
   127 
   128 
   129     /// The first incoming edge.
   130     typename Gact::InEdgeIt &first(typename Gact::InEdgeIt &i, typename Gact::Node) const { return actuallayer.first(i);}
   131 
   132 
   133     /// The first outgoing edge.
   134     typename Gact::OutEdgeIt &first(typename Gact::OutEdgeIt &i, typename Gact::Node) const { return actuallayer.first(i);}
   135 
   136 
   137     //  SymEdgeIt &first(SymEdgeIt &, Node) const { return i;}
   138     /// The first edge of the Graph.
   139     typename Gact::EdgeIt &first(typename Gact::EdgeIt &i) const { return actuallayer.first(i);}
   140 
   141 
   142 //     Node getNext(Node) const {}
   143 //     InEdgeIt getNext(InEdgeIt) const {}
   144 //     OutEdgeIt getNext(OutEdgeIt) const {}
   145 //     //SymEdgeIt getNext(SymEdgeIt) const {}
   146 //     EdgeIt getNext(EdgeIt) const {}
   147 
   148 
   149     /// Go to the next node.
   150     typename Gact::NodeIt &next(typename Gact::NodeIt &i) const { return actuallayer.next(i);}
   151     /// Go to the next incoming edge.
   152     typename Gact::InEdgeIt &next(typename Gact::InEdgeIt &i) const { return actuallayer.next(i);}
   153     /// Go to the next outgoing edge.
   154     typename Gact::OutEdgeIt &next(typename Gact::OutEdgeIt &i) const { return actuallayer.next(i);}
   155     //SymEdgeIt &next(SymEdgeIt &) const {}
   156     /// Go to the next edge.
   157     typename Gact::EdgeIt &next(typename Gact::EdgeIt &i) const { return actuallayer.next(i);}
   158 
   159     ///Gives back the head node of an edge.
   160     typename Gact::Node head(typename Gact::Edge edge) const { return actuallayer.head(edge); }
   161     ///Gives back the tail node of an edge.
   162     typename Gact::Node tail(typename Gact::Edge edge) const { return actuallayer.tail(edge); }
   163   
   164     //   Node aNode(InEdgeIt) const {}
   165     //   Node aNode(OutEdgeIt) const {}
   166     //   Node aNode(SymEdgeIt) const {}
   167 
   168     //   Node bNode(InEdgeIt) const {}
   169     //   Node bNode(OutEdgeIt) const {}
   170     //   Node bNode(SymEdgeIt) const {}
   171 
   172     /// Checks if a node iterator is valid
   173 
   174     ///\todo Maybe, it would be better if iterator converted to
   175     ///bool directly, as Jacint prefers.
   176     bool valid(const typename Gact::Node& node) const { return actuallayer.valid(node);}
   177     /// Checks if an edge iterator is valid
   178 
   179     ///\todo Maybe, it would be better if iterator converted to
   180     ///bool directly, as Jacint prefers.
   181     bool valid(const typename Gact::Edge& edge) const { return actuallayer.valid(edge);}
   182 
   183     ///Gives back the \e id of a node.
   184 
   185     ///\warning Not all graph structures provide this feature.
   186     ///
   187     int id(const typename Gact::Node & node) const { return actuallayer.id(node);}
   188     ///Gives back the \e id of an edge.
   189 
   190     ///\warning Not all graph structures provide this feature.
   191     ///
   192     int id(const typename Gact::Edge & edge) const { return actuallayer.id(edge);}
   193 
   194     //void setInvalid(Node &) const {};
   195     //void setInvalid(Edge &) const {};
   196   
   197     ///Add a new node to the graph.
   198 
   199     /// \return the new node.
   200     ///
   201     typename Gact::Node addNode() { return actuallayer.addNode();}
   202     ///Add a new edge to the graph.
   203 
   204     ///Add a new edge to the graph with tail node \c tail
   205     ///and head node \c head.
   206     ///\return the new edge.
   207     typename Gact::Edge addEdge(typename Gact::Node node1, typename Gact::Node node2) { return actuallayer.addEdge(node1, node2);}
   208     
   209     /// Resets the graph.
   210 
   211     /// This function deletes all edges and nodes of the graph.
   212     /// It also frees the memory allocated to store them.
   213     void clear() {actuallayer.clear();}
   214 
   215     int nodeNum() const { return actuallayer.nodeNum();}
   216     int edgeNum() const { return actuallayer.edgeNum();}
   217 
   218     ///Read/write/reference map of the nodes to type \c T.
   219 
   220     ///Read/write/reference map of the nodes to type \c T.
   221     /// \sa MemoryMapSkeleton
   222     /// \todo We may need copy constructor
   223     /// \todo We may need conversion from other nodetype
   224     /// \todo We may need operator=
   225     /// \warning Making maps that can handle bool type (NodeMap<bool>)
   226     /// needs extra attention!
   227 
   228     template<class T> class NodeMap
   229     {
   230     public:
   231       typedef T ValueType;
   232       typedef Node KeyType;
   233 
   234       NodeMap(const HierarchyGraph &) {}
   235       NodeMap(const HierarchyGraph &, T) {}
   236 
   237       template<typename TT> NodeMap(const NodeMap<TT> &) {}
   238 
   239       /// Sets the value of a node.
   240 
   241       /// Sets the value associated with node \c i to the value \c t.
   242       ///
   243       void set(Node, T) {}
   244       // Gets the value of a node.
   245       //T get(Node i) const {return *(T*)0;}  //FIXME: Is it necessary?
   246       T &operator[](Node) {return *(T*)0;}
   247       const T &operator[](Node) const {return *(T*)0;}
   248 
   249       /// Updates the map if the graph has been changed
   250 
   251       /// \todo Do we need this?
   252       ///
   253       void update() {}
   254       void update(T a) {}   //FIXME: Is it necessary
   255     };
   256 
   257     ///Read/write/reference map of the edges to type \c T.
   258 
   259     ///Read/write/reference map of the edges to type \c T.
   260     ///It behaves exactly in the same way as \ref NodeMap.
   261     /// \sa NodeMap
   262     /// \sa MemoryMapSkeleton
   263     /// \todo We may need copy constructor
   264     /// \todo We may need conversion from other edgetype
   265     /// \todo We may need operator=
   266     template<class T> class EdgeMap
   267     {
   268     public:
   269       typedef T ValueType;
   270       typedef Edge KeyType;
   271 
   272       EdgeMap(const HierarchyGraph &) {}
   273       EdgeMap(const HierarchyGraph &, T ) {}
   274     
   275       ///\todo It can copy between different types.
   276       ///
   277       template<typename TT> EdgeMap(const EdgeMap<TT> &) {}
   278 
   279       void set(Edge, T) {}
   280       //T get(Edge) const {return *(T*)0;}
   281       T &operator[](Edge) {return *(T*)0;}
   282       const T &operator[](Edge) const {return *(T*)0;}
   283     
   284       void update() {}
   285       void update(T a) {}   //FIXME: Is it necessary
   286     };
   287   };
   288 
   289   /// An empty eraseable graph class.
   290   
   291   /// This class provides all the common features of an \e eraseable graph
   292   /// structure,
   293   /// however completely without implementations and real data structures
   294   /// behind the interface.
   295   /// All graph algorithms should compile with this class, but it will not
   296   /// run properly, of course.
   297   ///
   298   /// \todo This blabla could be replaced by a sepatate description about
   299   /// Skeletons.
   300   ///
   301   /// It can be used for checking the interface compatibility,
   302   /// or it can serve as a skeleton of a new graph structure.
   303   /// 
   304   /// Also, you will find here the full documentation of a certain graph
   305   /// feature, the documentation of a real graph imlementation
   306   /// like @ref ListGraph or
   307   /// @ref SmartGraph will just refer to this structure.
   308   template <typename Gact, typename Gsub>
   309   class EraseableHierarchyGraph : public HierarchyGraph<Gact, Gsub>
   310   {
   311   public:
   312     /// Deletes a node.
   313     void erase(typename Gact::Node n) {actuallayer.erase(n);}
   314     /// Deletes an edge.
   315     void erase(typename Gact::Edge e) {actuallayer.erase(e);}
   316 
   317     /// Defalult constructor.
   318     EraseableHierarchyGraph() {}
   319     ///Copy consructor.
   320     EraseableHierarchyGraph(const HierarchyGraph<Gact, Gsub> &EPG) {}
   321   };
   322 
   323   
   324   // @}
   325 
   326 } //namespace hugo
   327 
   328 
   329 #endif // HUGO_SKELETON_GRAPH_H