|
1 /* |
|
2 *dijkstra |
|
3 *by jacint |
|
4 *Performs Dijkstra's algorithm from node s. |
|
5 * |
|
6 *Constructor: |
|
7 * |
|
8 *dijkstra(graph_type& G, node_iterator s, edge_property_vector& distance) |
|
9 * |
|
10 * |
|
11 * |
|
12 *Member functions: |
|
13 * |
|
14 *void run() |
|
15 * |
|
16 * The following function should be used after run() was already run. |
|
17 * |
|
18 * |
|
19 *T dist(node_iterator v) : returns the distance from s to v. |
|
20 * It is 0 if v is not reachable from s. |
|
21 * |
|
22 * |
|
23 *edge_iterator pred(node_iterator v) |
|
24 * Returns the last edge of a shortest s-v path. |
|
25 * Returns an invalid iterator if v=s or v is not |
|
26 * reachable from s. |
|
27 * |
|
28 * |
|
29 *bool reach(node_iterator v) : true if v is reachable from s |
|
30 * |
|
31 * |
|
32 * |
|
33 * |
|
34 * |
|
35 *Problems: |
|
36 * |
|
37 *Heap implementation is needed, because the priority queue of stl |
|
38 *does not have a mathod for key-decrease, so we had to use here a |
|
39 *g\'any solution. |
|
40 * |
|
41 *The implementation of infinity would be desirable, see after line 100. |
|
42 */ |
|
43 |
|
44 #ifndef DIJKSTRA_HH |
|
45 #define DIJKSTRA_HH |
|
46 |
|
47 #include <queue> |
|
48 #include <algorithm> |
|
49 |
|
50 #include <marci_graph_traits.hh> |
|
51 #include <marci_property_vector.hh> |
|
52 |
|
53 |
|
54 namespace std { |
|
55 namespace marci { |
|
56 |
|
57 |
|
58 |
|
59 |
|
60 |
|
61 template <typename graph_type, typename T> |
|
62 class dijkstra{ |
|
63 typedef typename graph_traits<graph_type>::node_iterator node_iterator; |
|
64 typedef typename graph_traits<graph_type>::edge_iterator edge_iterator; |
|
65 typedef typename graph_traits<graph_type>::each_node_iterator each_node_iterator; |
|
66 typedef typename graph_traits<graph_type>::in_edge_iterator in_edge_iterator; |
|
67 typedef typename graph_traits<graph_type>::out_edge_iterator out_edge_iterator; |
|
68 |
|
69 |
|
70 graph_type& G; |
|
71 node_iterator s; |
|
72 node_property_vector<graph_type, edge_iterator> predecessor; |
|
73 node_property_vector<graph_type, T> distance; |
|
74 edge_property_vector<graph_type, T> length; |
|
75 node_property_vector<graph_type, bool> reached; |
|
76 |
|
77 public : |
|
78 |
|
79 /* |
|
80 The distance of all the nodes is 0. |
|
81 */ |
|
82 dijkstra(graph_type& _G, node_iterator _s, edge_property_vector<graph_type, T>& _length) : |
|
83 G(_G), s(_s), predecessor(G, 0), distance(G, 0), length(_length), reached(G, false) { } |
|
84 |
|
85 |
|
86 |
|
87 /*By Misi.*/ |
|
88 struct node_dist_comp |
|
89 { |
|
90 node_property_vector<graph_type, T> &d; |
|
91 node_dist_comp(node_property_vector<graph_type, T> &_d) : d(_d) {} |
|
92 |
|
93 bool operator()(const node_iterator& u, const node_iterator& v) const |
|
94 { return d.get(u) < d.get(v); } |
|
95 }; |
|
96 |
|
97 |
|
98 |
|
99 void run() { |
|
100 |
|
101 node_property_vector<graph_type, bool> scanned(G, false); |
|
102 std::priority_queue<node_iterator, vector<node_iterator>, node_dist_comp> |
|
103 heap(( node_dist_comp(distance) )); |
|
104 |
|
105 heap.push(s); |
|
106 reached.put(s, true); |
|
107 |
|
108 while (!heap.empty()) { |
|
109 |
|
110 node_iterator v=heap.top(); |
|
111 heap.pop(); |
|
112 |
|
113 |
|
114 if (!scanned.get(v)) { |
|
115 |
|
116 for(out_edge_iterator e=G.first_out_edge(v); e.valid(); ++e) { |
|
117 node_iterator w=G.head(e); |
|
118 |
|
119 if (!scanned.get(w)) { |
|
120 if (!reached.get(w)) { |
|
121 reached.put(w,true); |
|
122 distance.put(w, distance.get(v)-length.get(e)); |
|
123 predecessor.put(w,e); |
|
124 } else if (distance.get(v)-length.get(e)>distance.get(w)) { |
|
125 distance.put(w, distance.get(v)-length.get(e)); |
|
126 predecessor.put(w,e); |
|
127 } |
|
128 |
|
129 heap.push(w); |
|
130 |
|
131 } |
|
132 |
|
133 } |
|
134 scanned.put(v,true); |
|
135 |
|
136 } // if (!scanned.get(v)) |
|
137 |
|
138 |
|
139 |
|
140 } // while (!heap.empty()) |
|
141 |
|
142 |
|
143 } //void run() |
|
144 |
|
145 |
|
146 |
|
147 |
|
148 |
|
149 /* |
|
150 *Returns the distance of the node v. |
|
151 *It is 0 for the root and for the nodes not |
|
152 *reachable form the root. |
|
153 */ |
|
154 T dist(node_iterator v) { |
|
155 return -distance.get(v); |
|
156 } |
|
157 |
|
158 |
|
159 |
|
160 /* |
|
161 * Returns the last edge of a shortest s-v path. |
|
162 * Returns an invalid iterator if v=root or v is not |
|
163 * reachable from the root. |
|
164 */ |
|
165 edge_iterator pred(node_iterator v) { |
|
166 if (v!=s) { return predecessor.get(v);} |
|
167 else {return edge_iterator();} |
|
168 } |
|
169 |
|
170 |
|
171 |
|
172 bool reach(node_iterator v) { |
|
173 return reached.get(v); |
|
174 } |
|
175 |
|
176 |
|
177 |
|
178 |
|
179 |
|
180 |
|
181 |
|
182 |
|
183 |
|
184 };// class dijkstra |
|
185 |
|
186 |
|
187 |
|
188 } // namespace marci |
|
189 } |
|
190 #endif //DIJKSTRA_HH |
|
191 |
|
192 |