lemon/concept/bpugraph.h
changeset 1919 9704601de87f
child 1933 a876a3d6a4c7
equal deleted inserted replaced
-1:000000000000 0:62718195a916
       
     1 /* -*- C++ -*-
       
     2  *
       
     3  * lemon/concept/ugraph_component.h - Part of LEMON, a generic
       
     4  * C++ optimization library
       
     5  *
       
     6  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi
       
     7  * Kutatocsoport (Egervary Research Group on Combinatorial Optimization,
       
     8  * EGRES).
       
     9  *
       
    10  * Permission to use, modify and distribute this software is granted
       
    11  * provided that this copyright notice appears in all copies. For
       
    12  * precise terms see the accompanying LICENSE file.
       
    13  *
       
    14  * This software is provided "AS IS" with no warranty of any kind,
       
    15  * express or implied, and with no claim as to its suitability for any
       
    16  * purpose.
       
    17  *
       
    18  */
       
    19 
       
    20 /// \ingroup graph_concepts
       
    21 /// \file
       
    22 /// \brief Undirected bipartite graphs and components of.
       
    23 
       
    24 
       
    25 #ifndef LEMON_CONCEPT_BPUGRAPH_H
       
    26 #define LEMON_CONCEPT_BPUGRAPH_H
       
    27 
       
    28 #include <lemon/concept/graph_component.h>
       
    29 
       
    30 #include <lemon/concept/graph.h>
       
    31 #include <lemon/concept/ugraph.h>
       
    32 
       
    33 #include <lemon/utility.h>
       
    34 
       
    35 namespace lemon {
       
    36   namespace concept {
       
    37 
       
    38     /// \addtogroup graph_concepts
       
    39     /// @{
       
    40 
       
    41 
       
    42     /// \brief Class describing the concept of Bipartite Undirected Graphs.
       
    43     ///
       
    44     /// This class describes the common interface of all 
       
    45     /// Undirected Bipartite Graphs.
       
    46     ///
       
    47     /// As all concept describing classes it provides only interface
       
    48     /// without any sensible implementation. So any algorithm for
       
    49     /// bipartite undirected graph should compile with this class, but it 
       
    50     /// will not run properly, of course.
       
    51     ///
       
    52     /// In LEMON bipartite undirected graphs also fulfill the concept of 
       
    53     /// the undirected graphs (\ref lemon::concept::UGraph "UGraph Concept"). 
       
    54     ///
       
    55     /// You can assume that all undirected bipartite graph can be handled
       
    56     /// as an undirected graph and consequently as a static graph.
       
    57     ///
       
    58     /// The bipartite graph stores two types of nodes which are named
       
    59     /// ANode and BNode. Even so the graph type does not contain ANode
       
    60     /// and BNode classes, becaue the nodes can be accessed just with the
       
    61     /// common Node class. 
       
    62     ///
       
    63     /// The iteration on the partition can be done with the ANodeIt and 
       
    64     /// BNodeIt classes. The node map can be used to map values to the nodes
       
    65     /// and similarly we can use to map values for just the ANodes and
       
    66     /// BNodes the ANodeMap and BNodeMap template classes.
       
    67 
       
    68     class BpUGraph {
       
    69     public:
       
    70       /// \todo undocumented
       
    71       ///
       
    72       typedef True UTag;
       
    73 
       
    74       /// \brief The base type of node iterators, 
       
    75       /// or in other words, the trivial node iterator.
       
    76       ///
       
    77       /// This is the base type of each node iterator,
       
    78       /// thus each kind of node iterator converts to this.
       
    79       /// More precisely each kind of node iterator should be inherited 
       
    80       /// from the trivial node iterator. The Node class represents
       
    81       /// both of two types of nodes. 
       
    82       class Node {
       
    83       public:
       
    84         /// Default constructor
       
    85 
       
    86         /// @warning The default constructor sets the iterator
       
    87         /// to an undefined value.
       
    88         Node() { }
       
    89         /// Copy constructor.
       
    90 
       
    91         /// Copy constructor.
       
    92         ///
       
    93         Node(const Node&) { }
       
    94 
       
    95         /// Invalid constructor \& conversion.
       
    96 
       
    97         /// This constructor initializes the iterator to be invalid.
       
    98         /// \sa Invalid for more details.
       
    99         Node(Invalid) { }
       
   100         /// Equality operator
       
   101 
       
   102         /// Two iterators are equal if and only if they point to the
       
   103         /// same object or both are invalid.
       
   104         bool operator==(Node) const { return true; }
       
   105 
       
   106         /// Inequality operator
       
   107         
       
   108         /// \sa operator==(Node n)
       
   109         ///
       
   110         bool operator!=(Node) const { return true; }
       
   111 
       
   112 	/// Artificial ordering operator.
       
   113 	
       
   114 	/// To allow the use of graph descriptors as key type in std::map or
       
   115 	/// similar associative container we require this.
       
   116 	///
       
   117 	/// \note This operator only have to define some strict ordering of
       
   118 	/// the items; this order has nothing to do with the iteration
       
   119 	/// ordering of the items.
       
   120 	///
       
   121 	/// \bug This is a technical requirement. Do we really need this?
       
   122 	bool operator<(Node) const { return false; }
       
   123 
       
   124       };
       
   125     
       
   126       /// This iterator goes through each node.
       
   127 
       
   128       /// This iterator goes through each node.
       
   129       /// Its usage is quite simple, for example you can count the number
       
   130       /// of nodes in graph \c g of type \c Graph like this:
       
   131       /// \code
       
   132       /// int count=0;
       
   133       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
       
   134       /// \endcode
       
   135       class NodeIt : public Node {
       
   136       public:
       
   137         /// Default constructor
       
   138 
       
   139         /// @warning The default constructor sets the iterator
       
   140         /// to an undefined value.
       
   141         NodeIt() { }
       
   142         /// Copy constructor.
       
   143         
       
   144         /// Copy constructor.
       
   145         ///
       
   146         NodeIt(const NodeIt& n) : Node(n) { }
       
   147         /// Invalid constructor \& conversion.
       
   148 
       
   149         /// Initialize the iterator to be invalid.
       
   150         /// \sa Invalid for more details.
       
   151         NodeIt(Invalid) { }
       
   152         /// Sets the iterator to the first node.
       
   153 
       
   154         /// Sets the iterator to the first node of \c g.
       
   155         ///
       
   156         NodeIt(const BpUGraph&) { }
       
   157         /// Node -> NodeIt conversion.
       
   158 
       
   159         /// Sets the iterator to the node of \c the graph pointed by 
       
   160 	/// the trivial iterator.
       
   161         /// This feature necessitates that each time we 
       
   162         /// iterate the edge-set, the iteration order is the same.
       
   163         NodeIt(const BpUGraph&, const Node&) { }
       
   164         /// Next node.
       
   165 
       
   166         /// Assign the iterator to the next node.
       
   167         ///
       
   168         NodeIt& operator++() { return *this; }
       
   169       };
       
   170 
       
   171       /// This iterator goes through each ANode.
       
   172 
       
   173       /// This iterator goes through each ANode.
       
   174       /// Its usage is quite simple, for example you can count the number
       
   175       /// of nodes in graph \c g of type \c Graph like this:
       
   176       /// \code
       
   177       /// int count=0;
       
   178       /// for (Graph::ANodeIt n(g); n!=INVALID; ++n) ++count;
       
   179       /// \endcode
       
   180       class ANodeIt : public Node {
       
   181       public:
       
   182         /// Default constructor
       
   183 
       
   184         /// @warning The default constructor sets the iterator
       
   185         /// to an undefined value.
       
   186         ANodeIt() { }
       
   187         /// Copy constructor.
       
   188         
       
   189         /// Copy constructor.
       
   190         ///
       
   191         ANodeIt(const ANodeIt& n) : Node(n) { }
       
   192         /// Invalid constructor \& conversion.
       
   193 
       
   194         /// Initialize the iterator to be invalid.
       
   195         /// \sa Invalid for more details.
       
   196         ANodeIt(Invalid) { }
       
   197         /// Sets the iterator to the first node.
       
   198 
       
   199         /// Sets the iterator to the first node of \c g.
       
   200         ///
       
   201         ANodeIt(const BpUGraph&) { }
       
   202         /// Node -> ANodeIt conversion.
       
   203 
       
   204         /// Sets the iterator to the node of \c the graph pointed by 
       
   205 	/// the trivial iterator.
       
   206         /// This feature necessitates that each time we 
       
   207         /// iterate the edge-set, the iteration order is the same.
       
   208         ANodeIt(const BpUGraph&, const Node&) { }
       
   209         /// Next node.
       
   210 
       
   211         /// Assign the iterator to the next node.
       
   212         ///
       
   213         ANodeIt& operator++() { return *this; }
       
   214       };
       
   215 
       
   216       /// This iterator goes through each BNode.
       
   217 
       
   218       /// This iterator goes through each BNode.
       
   219       /// Its usage is quite simple, for example you can count the number
       
   220       /// of nodes in graph \c g of type \c Graph like this:
       
   221       /// \code
       
   222       /// int count=0;
       
   223       /// for (Graph::BNodeIt n(g); n!=INVALID; ++n) ++count;
       
   224       /// \endcode
       
   225       class BNodeIt : public Node {
       
   226       public:
       
   227         /// Default constructor
       
   228 
       
   229         /// @warning The default constructor sets the iterator
       
   230         /// to an undefined value.
       
   231         BNodeIt() { }
       
   232         /// Copy constructor.
       
   233         
       
   234         /// Copy constructor.
       
   235         ///
       
   236         BNodeIt(const BNodeIt& n) : Node(n) { }
       
   237         /// Invalid constructor \& conversion.
       
   238 
       
   239         /// Initialize the iterator to be invalid.
       
   240         /// \sa Invalid for more details.
       
   241         BNodeIt(Invalid) { }
       
   242         /// Sets the iterator to the first node.
       
   243 
       
   244         /// Sets the iterator to the first node of \c g.
       
   245         ///
       
   246         BNodeIt(const BpUGraph&) { }
       
   247         /// Node -> BNodeIt conversion.
       
   248 
       
   249         /// Sets the iterator to the node of \c the graph pointed by 
       
   250 	/// the trivial iterator.
       
   251         /// This feature necessitates that each time we 
       
   252         /// iterate the edge-set, the iteration order is the same.
       
   253         BNodeIt(const BpUGraph&, const Node&) { }
       
   254         /// Next node.
       
   255 
       
   256         /// Assign the iterator to the next node.
       
   257         ///
       
   258         BNodeIt& operator++() { return *this; }
       
   259       };
       
   260     
       
   261     
       
   262       /// The base type of the undirected edge iterators.
       
   263 
       
   264       /// The base type of the undirected edge iterators.
       
   265       ///
       
   266       class UEdge {
       
   267       public:
       
   268         /// Default constructor
       
   269 
       
   270         /// @warning The default constructor sets the iterator
       
   271         /// to an undefined value.
       
   272         UEdge() { }
       
   273         /// Copy constructor.
       
   274 
       
   275         /// Copy constructor.
       
   276         ///
       
   277         UEdge(const UEdge&) { }
       
   278         /// Initialize the iterator to be invalid.
       
   279 
       
   280         /// Initialize the iterator to be invalid.
       
   281         ///
       
   282         UEdge(Invalid) { }
       
   283         /// Equality operator
       
   284 
       
   285         /// Two iterators are equal if and only if they point to the
       
   286         /// same object or both are invalid.
       
   287         bool operator==(UEdge) const { return true; }
       
   288         /// Inequality operator
       
   289 
       
   290         /// \sa operator==(UEdge n)
       
   291         ///
       
   292         bool operator!=(UEdge) const { return true; }
       
   293 
       
   294 	/// Artificial ordering operator.
       
   295 	
       
   296 	/// To allow the use of graph descriptors as key type in std::map or
       
   297 	/// similar associative container we require this.
       
   298 	///
       
   299 	/// \note This operator only have to define some strict ordering of
       
   300 	/// the items; this order has nothing to do with the iteration
       
   301 	/// ordering of the items.
       
   302 	///
       
   303 	/// \bug This is a technical requirement. Do we really need this?
       
   304 	bool operator<(UEdge) const { return false; }
       
   305       };
       
   306 
       
   307       /// This iterator goes through each undirected edge.
       
   308 
       
   309       /// This iterator goes through each undirected edge of a graph.
       
   310       /// Its usage is quite simple, for example you can count the number
       
   311       /// of undirected edges in a graph \c g of type \c Graph as follows:
       
   312       /// \code
       
   313       /// int count=0;
       
   314       /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
       
   315       /// \endcode
       
   316       class UEdgeIt : public UEdge {
       
   317       public:
       
   318         /// Default constructor
       
   319 
       
   320         /// @warning The default constructor sets the iterator
       
   321         /// to an undefined value.
       
   322         UEdgeIt() { }
       
   323         /// Copy constructor.
       
   324 
       
   325         /// Copy constructor.
       
   326         ///
       
   327         UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
       
   328         /// Initialize the iterator to be invalid.
       
   329 
       
   330         /// Initialize the iterator to be invalid.
       
   331         ///
       
   332         UEdgeIt(Invalid) { }
       
   333         /// This constructor sets the iterator to the first undirected edge.
       
   334     
       
   335         /// This constructor sets the iterator to the first undirected edge.
       
   336         UEdgeIt(const BpUGraph&) { }
       
   337         /// UEdge -> UEdgeIt conversion
       
   338 
       
   339         /// Sets the iterator to the value of the trivial iterator.
       
   340         /// This feature necessitates that each time we
       
   341         /// iterate the undirected edge-set, the iteration order is the 
       
   342 	/// same.
       
   343         UEdgeIt(const BpUGraph&, const UEdge&) { } 
       
   344         /// Next undirected edge
       
   345         
       
   346         /// Assign the iterator to the next undirected edge.
       
   347         UEdgeIt& operator++() { return *this; }
       
   348       };
       
   349 
       
   350       /// \brief This iterator goes trough the incident undirected 
       
   351       /// edges of a node.
       
   352       ///
       
   353       /// This iterator goes trough the incident undirected edges
       
   354       /// of a certain node
       
   355       /// of a graph.
       
   356       /// Its usage is quite simple, for example you can compute the
       
   357       /// degree (i.e. count the number
       
   358       /// of incident edges of a node \c n
       
   359       /// in graph \c g of type \c Graph as follows.
       
   360       /// \code
       
   361       /// int count=0;
       
   362       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
       
   363       /// \endcode
       
   364       class IncEdgeIt : public UEdge {
       
   365       public:
       
   366         /// Default constructor
       
   367 
       
   368         /// @warning The default constructor sets the iterator
       
   369         /// to an undefined value.
       
   370         IncEdgeIt() { }
       
   371         /// Copy constructor.
       
   372 
       
   373         /// Copy constructor.
       
   374         ///
       
   375         IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
       
   376         /// Initialize the iterator to be invalid.
       
   377 
       
   378         /// Initialize the iterator to be invalid.
       
   379         ///
       
   380         IncEdgeIt(Invalid) { }
       
   381         /// This constructor sets the iterator to first incident edge.
       
   382     
       
   383         /// This constructor set the iterator to the first incident edge of
       
   384         /// the node.
       
   385         IncEdgeIt(const BpUGraph&, const Node&) { }
       
   386         /// UEdge -> IncEdgeIt conversion
       
   387 
       
   388         /// Sets the iterator to the value of the trivial iterator \c e.
       
   389         /// This feature necessitates that each time we 
       
   390         /// iterate the edge-set, the iteration order is the same.
       
   391         IncEdgeIt(const BpUGraph&, const UEdge&) { }
       
   392         /// Next incident edge
       
   393 
       
   394         /// Assign the iterator to the next incident edge
       
   395 	/// of the corresponding node.
       
   396         IncEdgeIt& operator++() { return *this; }
       
   397       };
       
   398 
       
   399       /// The directed edge type.
       
   400 
       
   401       /// The directed edge type. It can be converted to the
       
   402       /// undirected edge.
       
   403       class Edge : public UEdge {
       
   404       public:
       
   405         /// Default constructor
       
   406 
       
   407         /// @warning The default constructor sets the iterator
       
   408         /// to an undefined value.
       
   409         Edge() { }
       
   410         /// Copy constructor.
       
   411 
       
   412         /// Copy constructor.
       
   413         ///
       
   414         Edge(const Edge& e) : UEdge(e) { }
       
   415         /// Initialize the iterator to be invalid.
       
   416 
       
   417         /// Initialize the iterator to be invalid.
       
   418         ///
       
   419         Edge(Invalid) { }
       
   420         /// Equality operator
       
   421 
       
   422         /// Two iterators are equal if and only if they point to the
       
   423         /// same object or both are invalid.
       
   424         bool operator==(Edge) const { return true; }
       
   425         /// Inequality operator
       
   426 
       
   427         /// \sa operator==(Edge n)
       
   428         ///
       
   429         bool operator!=(Edge) const { return true; }
       
   430 
       
   431 	/// Artificial ordering operator.
       
   432 	
       
   433 	/// To allow the use of graph descriptors as key type in std::map or
       
   434 	/// similar associative container we require this.
       
   435 	///
       
   436 	/// \note This operator only have to define some strict ordering of
       
   437 	/// the items; this order has nothing to do with the iteration
       
   438 	/// ordering of the items.
       
   439 	///
       
   440 	/// \bug This is a technical requirement. Do we really need this?
       
   441 	bool operator<(Edge) const { return false; }
       
   442 	
       
   443       }; 
       
   444       /// This iterator goes through each directed edge.
       
   445 
       
   446       /// This iterator goes through each edge of a graph.
       
   447       /// Its usage is quite simple, for example you can count the number
       
   448       /// of edges in a graph \c g of type \c Graph as follows:
       
   449       /// \code
       
   450       /// int count=0;
       
   451       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
       
   452       /// \endcode
       
   453       class EdgeIt : public Edge {
       
   454       public:
       
   455         /// Default constructor
       
   456 
       
   457         /// @warning The default constructor sets the iterator
       
   458         /// to an undefined value.
       
   459         EdgeIt() { }
       
   460         /// Copy constructor.
       
   461 
       
   462         /// Copy constructor.
       
   463         ///
       
   464         EdgeIt(const EdgeIt& e) : Edge(e) { }
       
   465         /// Initialize the iterator to be invalid.
       
   466 
       
   467         /// Initialize the iterator to be invalid.
       
   468         ///
       
   469         EdgeIt(Invalid) { }
       
   470         /// This constructor sets the iterator to the first edge.
       
   471     
       
   472         /// This constructor sets the iterator to the first edge of \c g.
       
   473         ///@param g the graph
       
   474         EdgeIt(const BpUGraph &g) { ignore_unused_variable_warning(g); }
       
   475         /// Edge -> EdgeIt conversion
       
   476 
       
   477         /// Sets the iterator to the value of the trivial iterator \c e.
       
   478         /// This feature necessitates that each time we 
       
   479         /// iterate the edge-set, the iteration order is the same.
       
   480         EdgeIt(const BpUGraph&, const Edge&) { } 
       
   481         ///Next edge
       
   482         
       
   483         /// Assign the iterator to the next edge.
       
   484         EdgeIt& operator++() { return *this; }
       
   485       };
       
   486    
       
   487       /// This iterator goes trough the outgoing directed edges of a node.
       
   488 
       
   489       /// This iterator goes trough the \e outgoing edges of a certain node
       
   490       /// of a graph.
       
   491       /// Its usage is quite simple, for example you can count the number
       
   492       /// of outgoing edges of a node \c n
       
   493       /// in graph \c g of type \c Graph as follows.
       
   494       /// \code
       
   495       /// int count=0;
       
   496       /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
       
   497       /// \endcode
       
   498     
       
   499       class OutEdgeIt : public Edge {
       
   500       public:
       
   501         /// Default constructor
       
   502 
       
   503         /// @warning The default constructor sets the iterator
       
   504         /// to an undefined value.
       
   505         OutEdgeIt() { }
       
   506         /// Copy constructor.
       
   507 
       
   508         /// Copy constructor.
       
   509         ///
       
   510         OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
       
   511         /// Initialize the iterator to be invalid.
       
   512 
       
   513         /// Initialize the iterator to be invalid.
       
   514         ///
       
   515         OutEdgeIt(Invalid) { }
       
   516         /// This constructor sets the iterator to the first outgoing edge.
       
   517     
       
   518         /// This constructor sets the iterator to the first outgoing edge of
       
   519         /// the node.
       
   520         ///@param n the node
       
   521         ///@param g the graph
       
   522         OutEdgeIt(const BpUGraph& n, const Node& g) {
       
   523 	  ignore_unused_variable_warning(n);
       
   524 	  ignore_unused_variable_warning(g);
       
   525 	}
       
   526         /// Edge -> OutEdgeIt conversion
       
   527 
       
   528         /// Sets the iterator to the value of the trivial iterator.
       
   529 	/// This feature necessitates that each time we 
       
   530         /// iterate the edge-set, the iteration order is the same.
       
   531         OutEdgeIt(const BpUGraph&, const Edge&) { }
       
   532         ///Next outgoing edge
       
   533         
       
   534         /// Assign the iterator to the next 
       
   535         /// outgoing edge of the corresponding node.
       
   536         OutEdgeIt& operator++() { return *this; }
       
   537       };
       
   538 
       
   539       /// This iterator goes trough the incoming directed edges of a node.
       
   540 
       
   541       /// This iterator goes trough the \e incoming edges of a certain node
       
   542       /// of a graph.
       
   543       /// Its usage is quite simple, for example you can count the number
       
   544       /// of outgoing edges of a node \c n
       
   545       /// in graph \c g of type \c Graph as follows.
       
   546       /// \code
       
   547       /// int count=0;
       
   548       /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
       
   549       /// \endcode
       
   550 
       
   551       class InEdgeIt : public Edge {
       
   552       public:
       
   553         /// Default constructor
       
   554 
       
   555         /// @warning The default constructor sets the iterator
       
   556         /// to an undefined value.
       
   557         InEdgeIt() { }
       
   558         /// Copy constructor.
       
   559 
       
   560         /// Copy constructor.
       
   561         ///
       
   562         InEdgeIt(const InEdgeIt& e) : Edge(e) { }
       
   563         /// Initialize the iterator to be invalid.
       
   564 
       
   565         /// Initialize the iterator to be invalid.
       
   566         ///
       
   567         InEdgeIt(Invalid) { }
       
   568         /// This constructor sets the iterator to first incoming edge.
       
   569     
       
   570         /// This constructor set the iterator to the first incoming edge of
       
   571         /// the node.
       
   572         ///@param n the node
       
   573         ///@param g the graph
       
   574         InEdgeIt(const BpUGraph& g, const Node& n) { 
       
   575 	  ignore_unused_variable_warning(n);
       
   576 	  ignore_unused_variable_warning(g);
       
   577 	}
       
   578         /// Edge -> InEdgeIt conversion
       
   579 
       
   580         /// Sets the iterator to the value of the trivial iterator \c e.
       
   581         /// This feature necessitates that each time we 
       
   582         /// iterate the edge-set, the iteration order is the same.
       
   583         InEdgeIt(const BpUGraph&, const Edge&) { }
       
   584         /// Next incoming edge
       
   585 
       
   586         /// Assign the iterator to the next inedge of the corresponding node.
       
   587         ///
       
   588         InEdgeIt& operator++() { return *this; }
       
   589       };
       
   590 
       
   591       /// \brief Read write map of the nodes to type \c T.
       
   592       /// 
       
   593       /// ReadWrite map of the nodes to type \c T.
       
   594       /// \sa Reference
       
   595       /// \warning Making maps that can handle bool type (NodeMap<bool>)
       
   596       /// needs some extra attention!
       
   597       /// \todo Wrong documentation
       
   598       template<class T> 
       
   599       class NodeMap : public ReadWriteMap< Node, T >
       
   600       {
       
   601       public:
       
   602 
       
   603         ///\e
       
   604         NodeMap(const BpUGraph&) { }
       
   605         ///\e
       
   606         NodeMap(const BpUGraph&, T) { }
       
   607 
       
   608         ///Copy constructor
       
   609         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
       
   610         ///Assignment operator
       
   611         NodeMap& operator=(const NodeMap&) { return *this; }
       
   612         // \todo fix this concept
       
   613       };
       
   614 
       
   615       /// \brief Read write map of the ANodes to type \c T.
       
   616       /// 
       
   617       /// ReadWrite map of the ANodes to type \c T.
       
   618       /// \sa Reference
       
   619       /// \warning Making maps that can handle bool type (NodeMap<bool>)
       
   620       /// needs some extra attention!
       
   621       /// \todo Wrong documentation
       
   622       template<class T> 
       
   623       class ANodeMap : public ReadWriteMap< Node, T >
       
   624       {
       
   625       public:
       
   626 
       
   627         ///\e
       
   628         ANodeMap(const BpUGraph&) { }
       
   629         ///\e
       
   630         ANodeMap(const BpUGraph&, T) { }
       
   631 
       
   632         ///Copy constructor
       
   633         ANodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
       
   634         ///Assignment operator
       
   635         ANodeMap& operator=(const NodeMap&) { return *this; }
       
   636         // \todo fix this concept
       
   637       };
       
   638 
       
   639       /// \brief Read write map of the BNodes to type \c T.
       
   640       /// 
       
   641       /// ReadWrite map of the BNodes to type \c T.
       
   642       /// \sa Reference
       
   643       /// \warning Making maps that can handle bool type (NodeMap<bool>)
       
   644       /// needs some extra attention!
       
   645       /// \todo Wrong documentation
       
   646       template<class T> 
       
   647       class BNodeMap : public ReadWriteMap< Node, T >
       
   648       {
       
   649       public:
       
   650 
       
   651         ///\e
       
   652         BNodeMap(const BpUGraph&) { }
       
   653         ///\e
       
   654         BNodeMap(const BpUGraph&, T) { }
       
   655 
       
   656         ///Copy constructor
       
   657         BNodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
       
   658         ///Assignment operator
       
   659         BNodeMap& operator=(const NodeMap&) { return *this; }
       
   660         // \todo fix this concept
       
   661       };
       
   662 
       
   663       /// \brief Read write map of the directed edges to type \c T.
       
   664       ///
       
   665       /// Reference map of the directed edges to type \c T.
       
   666       /// \sa Reference
       
   667       /// \warning Making maps that can handle bool type (EdgeMap<bool>)
       
   668       /// needs some extra attention!
       
   669       /// \todo Wrong documentation
       
   670       template<class T> 
       
   671       class EdgeMap : public ReadWriteMap<Edge,T>
       
   672       {
       
   673       public:
       
   674 
       
   675         ///\e
       
   676         EdgeMap(const BpUGraph&) { }
       
   677         ///\e
       
   678         EdgeMap(const BpUGraph&, T) { }
       
   679         ///Copy constructor
       
   680         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
       
   681         ///Assignment operator
       
   682         EdgeMap& operator=(const EdgeMap&) { return *this; }
       
   683         // \todo fix this concept    
       
   684       };
       
   685 
       
   686       /// Read write map of the undirected edges to type \c T.
       
   687 
       
   688       /// Reference map of the edges to type \c T.
       
   689       /// \sa Reference
       
   690       /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
       
   691       /// needs some extra attention!
       
   692       /// \todo Wrong documentation
       
   693       template<class T> 
       
   694       class UEdgeMap : public ReadWriteMap<UEdge,T>
       
   695       {
       
   696       public:
       
   697 
       
   698         ///\e
       
   699         UEdgeMap(const BpUGraph&) { }
       
   700         ///\e
       
   701         UEdgeMap(const BpUGraph&, T) { }
       
   702         ///Copy constructor
       
   703         UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
       
   704         ///Assignment operator
       
   705         UEdgeMap &operator=(const UEdgeMap&) { return *this; }
       
   706         // \todo fix this concept    
       
   707       };
       
   708 
       
   709       /// \brief Direct the given undirected edge.
       
   710       ///
       
   711       /// Direct the given undirected edge. The returned edge source
       
   712       /// will be the given edge.
       
   713       Edge direct(const UEdge&, const Node&) const {
       
   714 	return INVALID;
       
   715       }
       
   716 
       
   717       /// \brief Direct the given undirected edge.
       
   718       ///
       
   719       /// Direct the given undirected edge. The returned edge source
       
   720       /// will be the source of the undirected edge if the given bool
       
   721       /// is true.
       
   722       Edge direct(const UEdge&, bool) const {
       
   723 	return INVALID;
       
   724       }
       
   725 
       
   726       /// \brief Returns true when the given node is an ANode.
       
   727       ///
       
   728       /// Returns true when the given node is an ANode.
       
   729       bool aNode(Node) const { return true;}
       
   730 
       
   731       /// \brief Returns true when the given node is an BNode.
       
   732       ///
       
   733       /// Returns true when the given node is an BNode.
       
   734       bool bNode(Node) const { return true;}
       
   735 
       
   736       /// \brief Returns the edge's end node which is in the ANode set.
       
   737       ///
       
   738       /// Returns the edge's end node which is in the ANode set.
       
   739       Node aNode(UEdge) const { return INVALID;}
       
   740 
       
   741       /// \brief Returns the edge's end node which is in the BNode set.
       
   742       ///
       
   743       /// Returns the edge's end node which is in the BNode set.
       
   744       Node bNode(UEdge) const { return INVALID;}
       
   745 
       
   746       /// \brief Returns true if the edge has default orientation.
       
   747       ///
       
   748       /// Returns whether the given directed edge is same orientation as
       
   749       /// the corresponding undirected edge.
       
   750       bool direction(Edge) const { return true; }
       
   751 
       
   752       /// \brief Returns the opposite directed edge.
       
   753       ///
       
   754       /// Returns the opposite directed edge.
       
   755       Edge oppositeEdge(Edge) const { return INVALID; }
       
   756 
       
   757       /// \brief Opposite node on an edge
       
   758       ///
       
   759       /// \return the opposite of the given Node on the given Edge
       
   760       Node oppositeNode(Node, UEdge) const { return INVALID; }
       
   761 
       
   762       /// \brief First node of the undirected edge.
       
   763       ///
       
   764       /// \return the first node of the given UEdge.
       
   765       ///
       
   766       /// Naturally uectected edges don't have direction and thus
       
   767       /// don't have source and target node. But we use these two methods
       
   768       /// to query the two endnodes of the edge. The direction of the edge
       
   769       /// which arises this way is called the inherent direction of the
       
   770       /// undirected edge, and is used to define the "default" direction
       
   771       /// of the directed versions of the edges.
       
   772       /// \sa direction
       
   773       Node source(UEdge) const { return INVALID; }
       
   774 
       
   775       /// \brief Second node of the undirected edge.
       
   776       Node target(UEdge) const { return INVALID; }
       
   777 
       
   778       /// \brief Source node of the directed edge.
       
   779       Node source(Edge) const { return INVALID; }
       
   780 
       
   781       /// \brief Target node of the directed edge.
       
   782       Node target(Edge) const { return INVALID; }
       
   783 
       
   784       /// \brief Base node of the iterator
       
   785       ///
       
   786       /// Returns the base node (the source in this case) of the iterator
       
   787       Node baseNode(OutEdgeIt e) const {
       
   788 	return source(e);
       
   789       }
       
   790 
       
   791       /// \brief Running node of the iterator
       
   792       ///
       
   793       /// Returns the running node (the target in this case) of the
       
   794       /// iterator
       
   795       Node runningNode(OutEdgeIt e) const {
       
   796 	return target(e);
       
   797       }
       
   798 
       
   799       /// \brief Base node of the iterator
       
   800       ///
       
   801       /// Returns the base node (the target in this case) of the iterator
       
   802       Node baseNode(InEdgeIt e) const {
       
   803 	return target(e);
       
   804       }
       
   805       /// \brief Running node of the iterator
       
   806       ///
       
   807       /// Returns the running node (the source in this case) of the
       
   808       /// iterator
       
   809       Node runningNode(InEdgeIt e) const {
       
   810 	return source(e);
       
   811       }
       
   812 
       
   813       /// \brief Base node of the iterator
       
   814       ///
       
   815       /// Returns the base node of the iterator
       
   816       Node baseNode(IncEdgeIt) const {
       
   817 	return INVALID;
       
   818       }
       
   819       
       
   820       /// \brief Running node of the iterator
       
   821       ///
       
   822       /// Returns the running node of the iterator
       
   823       Node runningNode(IncEdgeIt) const {
       
   824 	return INVALID;
       
   825       }
       
   826 
       
   827       template <typename Graph>
       
   828       struct Constraints {
       
   829 	void constraints() {
       
   830 	}
       
   831       };
       
   832 
       
   833     };
       
   834 
       
   835     /// \brief An empty non-static undirected graph class.
       
   836     ///    
       
   837     /// This class provides everything that \ref BpUGraph does.
       
   838     /// Additionally it enables building graphs from scratch.
       
   839     class ExtendableBpUGraph : public BpUGraph {
       
   840     public:
       
   841       
       
   842       /// \brief Add a new ANode to the graph.
       
   843       ///
       
   844       /// Add a new ANode to the graph.
       
   845       /// \return the new node.
       
   846       Node addANode();
       
   847 
       
   848       /// \brief Add a new ANode to the graph.
       
   849       ///
       
   850       /// Add a new ANode to the graph.
       
   851       /// \return the new node.
       
   852       Node addBNode();
       
   853 
       
   854       /// \brief Add a new undirected edge to the graph.
       
   855       ///
       
   856       /// Add a new undirected edge to the graph. One of the nodes
       
   857       /// should be ANode and the other should be BNode.
       
   858       /// \pre The nodes are not in the same nodeset.
       
   859       /// \return the new edge.
       
   860       UEdge addEdge(const Node& from, const Node& to);
       
   861 
       
   862       /// \brief Resets the graph.
       
   863       ///
       
   864       /// This function deletes all undirected edges and nodes of the graph.
       
   865       /// It also frees the memory allocated to store them.
       
   866       void clear() { }
       
   867 
       
   868       template <typename Graph>
       
   869       struct Constraints {
       
   870 	void constraints() {}
       
   871       };
       
   872 
       
   873     };
       
   874 
       
   875     /// \brief An empty erasable undirected graph class.
       
   876     ///
       
   877     /// This class is an extension of \ref ExtendableBpUGraph. It makes it
       
   878     /// possible to erase undirected edges or nodes.
       
   879     class ErasableBpUGraph : public ExtendableBpUGraph {
       
   880     public:
       
   881 
       
   882       /// \brief Deletes a node.
       
   883       ///
       
   884       /// Deletes a node.
       
   885       ///
       
   886       void erase(Node) { }
       
   887       /// \brief Deletes an undirected edge.
       
   888       ///
       
   889       /// Deletes an undirected edge.
       
   890       ///
       
   891       void erase(UEdge) { }
       
   892 
       
   893       template <typename Graph>
       
   894       struct Constraints {
       
   895 	void constraints() {}
       
   896       };
       
   897 
       
   898     };
       
   899 
       
   900     /// @}
       
   901 
       
   902   }
       
   903 
       
   904 }
       
   905 
       
   906 #endif