lemon/concept/bpugraph.h
author ladanyi
Sun, 29 Jan 2006 22:06:45 +0000
changeset 1919 9704601de87f
child 1933 a876a3d6a4c7
permissions -rw-r--r--
demo for simann
     1 /* -*- C++ -*-
     2  *
     3  * lemon/concept/ugraph_component.h - Part of LEMON, a generic
     4  * C++ optimization library
     5  *
     6  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi
     7  * Kutatocsoport (Egervary Research Group on Combinatorial Optimization,
     8  * EGRES).
     9  *
    10  * Permission to use, modify and distribute this software is granted
    11  * provided that this copyright notice appears in all copies. For
    12  * precise terms see the accompanying LICENSE file.
    13  *
    14  * This software is provided "AS IS" with no warranty of any kind,
    15  * express or implied, and with no claim as to its suitability for any
    16  * purpose.
    17  *
    18  */
    19 
    20 /// \ingroup graph_concepts
    21 /// \file
    22 /// \brief Undirected bipartite graphs and components of.
    23 
    24 
    25 #ifndef LEMON_CONCEPT_BPUGRAPH_H
    26 #define LEMON_CONCEPT_BPUGRAPH_H
    27 
    28 #include <lemon/concept/graph_component.h>
    29 
    30 #include <lemon/concept/graph.h>
    31 #include <lemon/concept/ugraph.h>
    32 
    33 #include <lemon/utility.h>
    34 
    35 namespace lemon {
    36   namespace concept {
    37 
    38     /// \addtogroup graph_concepts
    39     /// @{
    40 
    41 
    42     /// \brief Class describing the concept of Bipartite Undirected Graphs.
    43     ///
    44     /// This class describes the common interface of all 
    45     /// Undirected Bipartite Graphs.
    46     ///
    47     /// As all concept describing classes it provides only interface
    48     /// without any sensible implementation. So any algorithm for
    49     /// bipartite undirected graph should compile with this class, but it 
    50     /// will not run properly, of course.
    51     ///
    52     /// In LEMON bipartite undirected graphs also fulfill the concept of 
    53     /// the undirected graphs (\ref lemon::concept::UGraph "UGraph Concept"). 
    54     ///
    55     /// You can assume that all undirected bipartite graph can be handled
    56     /// as an undirected graph and consequently as a static graph.
    57     ///
    58     /// The bipartite graph stores two types of nodes which are named
    59     /// ANode and BNode. Even so the graph type does not contain ANode
    60     /// and BNode classes, becaue the nodes can be accessed just with the
    61     /// common Node class. 
    62     ///
    63     /// The iteration on the partition can be done with the ANodeIt and 
    64     /// BNodeIt classes. The node map can be used to map values to the nodes
    65     /// and similarly we can use to map values for just the ANodes and
    66     /// BNodes the ANodeMap and BNodeMap template classes.
    67 
    68     class BpUGraph {
    69     public:
    70       /// \todo undocumented
    71       ///
    72       typedef True UTag;
    73 
    74       /// \brief The base type of node iterators, 
    75       /// or in other words, the trivial node iterator.
    76       ///
    77       /// This is the base type of each node iterator,
    78       /// thus each kind of node iterator converts to this.
    79       /// More precisely each kind of node iterator should be inherited 
    80       /// from the trivial node iterator. The Node class represents
    81       /// both of two types of nodes. 
    82       class Node {
    83       public:
    84         /// Default constructor
    85 
    86         /// @warning The default constructor sets the iterator
    87         /// to an undefined value.
    88         Node() { }
    89         /// Copy constructor.
    90 
    91         /// Copy constructor.
    92         ///
    93         Node(const Node&) { }
    94 
    95         /// Invalid constructor \& conversion.
    96 
    97         /// This constructor initializes the iterator to be invalid.
    98         /// \sa Invalid for more details.
    99         Node(Invalid) { }
   100         /// Equality operator
   101 
   102         /// Two iterators are equal if and only if they point to the
   103         /// same object or both are invalid.
   104         bool operator==(Node) const { return true; }
   105 
   106         /// Inequality operator
   107         
   108         /// \sa operator==(Node n)
   109         ///
   110         bool operator!=(Node) const { return true; }
   111 
   112 	/// Artificial ordering operator.
   113 	
   114 	/// To allow the use of graph descriptors as key type in std::map or
   115 	/// similar associative container we require this.
   116 	///
   117 	/// \note This operator only have to define some strict ordering of
   118 	/// the items; this order has nothing to do with the iteration
   119 	/// ordering of the items.
   120 	///
   121 	/// \bug This is a technical requirement. Do we really need this?
   122 	bool operator<(Node) const { return false; }
   123 
   124       };
   125     
   126       /// This iterator goes through each node.
   127 
   128       /// This iterator goes through each node.
   129       /// Its usage is quite simple, for example you can count the number
   130       /// of nodes in graph \c g of type \c Graph like this:
   131       /// \code
   132       /// int count=0;
   133       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
   134       /// \endcode
   135       class NodeIt : public Node {
   136       public:
   137         /// Default constructor
   138 
   139         /// @warning The default constructor sets the iterator
   140         /// to an undefined value.
   141         NodeIt() { }
   142         /// Copy constructor.
   143         
   144         /// Copy constructor.
   145         ///
   146         NodeIt(const NodeIt& n) : Node(n) { }
   147         /// Invalid constructor \& conversion.
   148 
   149         /// Initialize the iterator to be invalid.
   150         /// \sa Invalid for more details.
   151         NodeIt(Invalid) { }
   152         /// Sets the iterator to the first node.
   153 
   154         /// Sets the iterator to the first node of \c g.
   155         ///
   156         NodeIt(const BpUGraph&) { }
   157         /// Node -> NodeIt conversion.
   158 
   159         /// Sets the iterator to the node of \c the graph pointed by 
   160 	/// the trivial iterator.
   161         /// This feature necessitates that each time we 
   162         /// iterate the edge-set, the iteration order is the same.
   163         NodeIt(const BpUGraph&, const Node&) { }
   164         /// Next node.
   165 
   166         /// Assign the iterator to the next node.
   167         ///
   168         NodeIt& operator++() { return *this; }
   169       };
   170 
   171       /// This iterator goes through each ANode.
   172 
   173       /// This iterator goes through each ANode.
   174       /// Its usage is quite simple, for example you can count the number
   175       /// of nodes in graph \c g of type \c Graph like this:
   176       /// \code
   177       /// int count=0;
   178       /// for (Graph::ANodeIt n(g); n!=INVALID; ++n) ++count;
   179       /// \endcode
   180       class ANodeIt : public Node {
   181       public:
   182         /// Default constructor
   183 
   184         /// @warning The default constructor sets the iterator
   185         /// to an undefined value.
   186         ANodeIt() { }
   187         /// Copy constructor.
   188         
   189         /// Copy constructor.
   190         ///
   191         ANodeIt(const ANodeIt& n) : Node(n) { }
   192         /// Invalid constructor \& conversion.
   193 
   194         /// Initialize the iterator to be invalid.
   195         /// \sa Invalid for more details.
   196         ANodeIt(Invalid) { }
   197         /// Sets the iterator to the first node.
   198 
   199         /// Sets the iterator to the first node of \c g.
   200         ///
   201         ANodeIt(const BpUGraph&) { }
   202         /// Node -> ANodeIt conversion.
   203 
   204         /// Sets the iterator to the node of \c the graph pointed by 
   205 	/// the trivial iterator.
   206         /// This feature necessitates that each time we 
   207         /// iterate the edge-set, the iteration order is the same.
   208         ANodeIt(const BpUGraph&, const Node&) { }
   209         /// Next node.
   210 
   211         /// Assign the iterator to the next node.
   212         ///
   213         ANodeIt& operator++() { return *this; }
   214       };
   215 
   216       /// This iterator goes through each BNode.
   217 
   218       /// This iterator goes through each BNode.
   219       /// Its usage is quite simple, for example you can count the number
   220       /// of nodes in graph \c g of type \c Graph like this:
   221       /// \code
   222       /// int count=0;
   223       /// for (Graph::BNodeIt n(g); n!=INVALID; ++n) ++count;
   224       /// \endcode
   225       class BNodeIt : public Node {
   226       public:
   227         /// Default constructor
   228 
   229         /// @warning The default constructor sets the iterator
   230         /// to an undefined value.
   231         BNodeIt() { }
   232         /// Copy constructor.
   233         
   234         /// Copy constructor.
   235         ///
   236         BNodeIt(const BNodeIt& n) : Node(n) { }
   237         /// Invalid constructor \& conversion.
   238 
   239         /// Initialize the iterator to be invalid.
   240         /// \sa Invalid for more details.
   241         BNodeIt(Invalid) { }
   242         /// Sets the iterator to the first node.
   243 
   244         /// Sets the iterator to the first node of \c g.
   245         ///
   246         BNodeIt(const BpUGraph&) { }
   247         /// Node -> BNodeIt conversion.
   248 
   249         /// Sets the iterator to the node of \c the graph pointed by 
   250 	/// the trivial iterator.
   251         /// This feature necessitates that each time we 
   252         /// iterate the edge-set, the iteration order is the same.
   253         BNodeIt(const BpUGraph&, const Node&) { }
   254         /// Next node.
   255 
   256         /// Assign the iterator to the next node.
   257         ///
   258         BNodeIt& operator++() { return *this; }
   259       };
   260     
   261     
   262       /// The base type of the undirected edge iterators.
   263 
   264       /// The base type of the undirected edge iterators.
   265       ///
   266       class UEdge {
   267       public:
   268         /// Default constructor
   269 
   270         /// @warning The default constructor sets the iterator
   271         /// to an undefined value.
   272         UEdge() { }
   273         /// Copy constructor.
   274 
   275         /// Copy constructor.
   276         ///
   277         UEdge(const UEdge&) { }
   278         /// Initialize the iterator to be invalid.
   279 
   280         /// Initialize the iterator to be invalid.
   281         ///
   282         UEdge(Invalid) { }
   283         /// Equality operator
   284 
   285         /// Two iterators are equal if and only if they point to the
   286         /// same object or both are invalid.
   287         bool operator==(UEdge) const { return true; }
   288         /// Inequality operator
   289 
   290         /// \sa operator==(UEdge n)
   291         ///
   292         bool operator!=(UEdge) const { return true; }
   293 
   294 	/// Artificial ordering operator.
   295 	
   296 	/// To allow the use of graph descriptors as key type in std::map or
   297 	/// similar associative container we require this.
   298 	///
   299 	/// \note This operator only have to define some strict ordering of
   300 	/// the items; this order has nothing to do with the iteration
   301 	/// ordering of the items.
   302 	///
   303 	/// \bug This is a technical requirement. Do we really need this?
   304 	bool operator<(UEdge) const { return false; }
   305       };
   306 
   307       /// This iterator goes through each undirected edge.
   308 
   309       /// This iterator goes through each undirected edge of a graph.
   310       /// Its usage is quite simple, for example you can count the number
   311       /// of undirected edges in a graph \c g of type \c Graph as follows:
   312       /// \code
   313       /// int count=0;
   314       /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
   315       /// \endcode
   316       class UEdgeIt : public UEdge {
   317       public:
   318         /// Default constructor
   319 
   320         /// @warning The default constructor sets the iterator
   321         /// to an undefined value.
   322         UEdgeIt() { }
   323         /// Copy constructor.
   324 
   325         /// Copy constructor.
   326         ///
   327         UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
   328         /// Initialize the iterator to be invalid.
   329 
   330         /// Initialize the iterator to be invalid.
   331         ///
   332         UEdgeIt(Invalid) { }
   333         /// This constructor sets the iterator to the first undirected edge.
   334     
   335         /// This constructor sets the iterator to the first undirected edge.
   336         UEdgeIt(const BpUGraph&) { }
   337         /// UEdge -> UEdgeIt conversion
   338 
   339         /// Sets the iterator to the value of the trivial iterator.
   340         /// This feature necessitates that each time we
   341         /// iterate the undirected edge-set, the iteration order is the 
   342 	/// same.
   343         UEdgeIt(const BpUGraph&, const UEdge&) { } 
   344         /// Next undirected edge
   345         
   346         /// Assign the iterator to the next undirected edge.
   347         UEdgeIt& operator++() { return *this; }
   348       };
   349 
   350       /// \brief This iterator goes trough the incident undirected 
   351       /// edges of a node.
   352       ///
   353       /// This iterator goes trough the incident undirected edges
   354       /// of a certain node
   355       /// of a graph.
   356       /// Its usage is quite simple, for example you can compute the
   357       /// degree (i.e. count the number
   358       /// of incident edges of a node \c n
   359       /// in graph \c g of type \c Graph as follows.
   360       /// \code
   361       /// int count=0;
   362       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   363       /// \endcode
   364       class IncEdgeIt : public UEdge {
   365       public:
   366         /// Default constructor
   367 
   368         /// @warning The default constructor sets the iterator
   369         /// to an undefined value.
   370         IncEdgeIt() { }
   371         /// Copy constructor.
   372 
   373         /// Copy constructor.
   374         ///
   375         IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
   376         /// Initialize the iterator to be invalid.
   377 
   378         /// Initialize the iterator to be invalid.
   379         ///
   380         IncEdgeIt(Invalid) { }
   381         /// This constructor sets the iterator to first incident edge.
   382     
   383         /// This constructor set the iterator to the first incident edge of
   384         /// the node.
   385         IncEdgeIt(const BpUGraph&, const Node&) { }
   386         /// UEdge -> IncEdgeIt conversion
   387 
   388         /// Sets the iterator to the value of the trivial iterator \c e.
   389         /// This feature necessitates that each time we 
   390         /// iterate the edge-set, the iteration order is the same.
   391         IncEdgeIt(const BpUGraph&, const UEdge&) { }
   392         /// Next incident edge
   393 
   394         /// Assign the iterator to the next incident edge
   395 	/// of the corresponding node.
   396         IncEdgeIt& operator++() { return *this; }
   397       };
   398 
   399       /// The directed edge type.
   400 
   401       /// The directed edge type. It can be converted to the
   402       /// undirected edge.
   403       class Edge : public UEdge {
   404       public:
   405         /// Default constructor
   406 
   407         /// @warning The default constructor sets the iterator
   408         /// to an undefined value.
   409         Edge() { }
   410         /// Copy constructor.
   411 
   412         /// Copy constructor.
   413         ///
   414         Edge(const Edge& e) : UEdge(e) { }
   415         /// Initialize the iterator to be invalid.
   416 
   417         /// Initialize the iterator to be invalid.
   418         ///
   419         Edge(Invalid) { }
   420         /// Equality operator
   421 
   422         /// Two iterators are equal if and only if they point to the
   423         /// same object or both are invalid.
   424         bool operator==(Edge) const { return true; }
   425         /// Inequality operator
   426 
   427         /// \sa operator==(Edge n)
   428         ///
   429         bool operator!=(Edge) const { return true; }
   430 
   431 	/// Artificial ordering operator.
   432 	
   433 	/// To allow the use of graph descriptors as key type in std::map or
   434 	/// similar associative container we require this.
   435 	///
   436 	/// \note This operator only have to define some strict ordering of
   437 	/// the items; this order has nothing to do with the iteration
   438 	/// ordering of the items.
   439 	///
   440 	/// \bug This is a technical requirement. Do we really need this?
   441 	bool operator<(Edge) const { return false; }
   442 	
   443       }; 
   444       /// This iterator goes through each directed edge.
   445 
   446       /// This iterator goes through each edge of a graph.
   447       /// Its usage is quite simple, for example you can count the number
   448       /// of edges in a graph \c g of type \c Graph as follows:
   449       /// \code
   450       /// int count=0;
   451       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
   452       /// \endcode
   453       class EdgeIt : public Edge {
   454       public:
   455         /// Default constructor
   456 
   457         /// @warning The default constructor sets the iterator
   458         /// to an undefined value.
   459         EdgeIt() { }
   460         /// Copy constructor.
   461 
   462         /// Copy constructor.
   463         ///
   464         EdgeIt(const EdgeIt& e) : Edge(e) { }
   465         /// Initialize the iterator to be invalid.
   466 
   467         /// Initialize the iterator to be invalid.
   468         ///
   469         EdgeIt(Invalid) { }
   470         /// This constructor sets the iterator to the first edge.
   471     
   472         /// This constructor sets the iterator to the first edge of \c g.
   473         ///@param g the graph
   474         EdgeIt(const BpUGraph &g) { ignore_unused_variable_warning(g); }
   475         /// Edge -> EdgeIt conversion
   476 
   477         /// Sets the iterator to the value of the trivial iterator \c e.
   478         /// This feature necessitates that each time we 
   479         /// iterate the edge-set, the iteration order is the same.
   480         EdgeIt(const BpUGraph&, const Edge&) { } 
   481         ///Next edge
   482         
   483         /// Assign the iterator to the next edge.
   484         EdgeIt& operator++() { return *this; }
   485       };
   486    
   487       /// This iterator goes trough the outgoing directed edges of a node.
   488 
   489       /// This iterator goes trough the \e outgoing edges of a certain node
   490       /// of a graph.
   491       /// Its usage is quite simple, for example you can count the number
   492       /// of outgoing edges of a node \c n
   493       /// in graph \c g of type \c Graph as follows.
   494       /// \code
   495       /// int count=0;
   496       /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   497       /// \endcode
   498     
   499       class OutEdgeIt : public Edge {
   500       public:
   501         /// Default constructor
   502 
   503         /// @warning The default constructor sets the iterator
   504         /// to an undefined value.
   505         OutEdgeIt() { }
   506         /// Copy constructor.
   507 
   508         /// Copy constructor.
   509         ///
   510         OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
   511         /// Initialize the iterator to be invalid.
   512 
   513         /// Initialize the iterator to be invalid.
   514         ///
   515         OutEdgeIt(Invalid) { }
   516         /// This constructor sets the iterator to the first outgoing edge.
   517     
   518         /// This constructor sets the iterator to the first outgoing edge of
   519         /// the node.
   520         ///@param n the node
   521         ///@param g the graph
   522         OutEdgeIt(const BpUGraph& n, const Node& g) {
   523 	  ignore_unused_variable_warning(n);
   524 	  ignore_unused_variable_warning(g);
   525 	}
   526         /// Edge -> OutEdgeIt conversion
   527 
   528         /// Sets the iterator to the value of the trivial iterator.
   529 	/// This feature necessitates that each time we 
   530         /// iterate the edge-set, the iteration order is the same.
   531         OutEdgeIt(const BpUGraph&, const Edge&) { }
   532         ///Next outgoing edge
   533         
   534         /// Assign the iterator to the next 
   535         /// outgoing edge of the corresponding node.
   536         OutEdgeIt& operator++() { return *this; }
   537       };
   538 
   539       /// This iterator goes trough the incoming directed edges of a node.
   540 
   541       /// This iterator goes trough the \e incoming edges of a certain node
   542       /// of a graph.
   543       /// Its usage is quite simple, for example you can count the number
   544       /// of outgoing edges of a node \c n
   545       /// in graph \c g of type \c Graph as follows.
   546       /// \code
   547       /// int count=0;
   548       /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   549       /// \endcode
   550 
   551       class InEdgeIt : public Edge {
   552       public:
   553         /// Default constructor
   554 
   555         /// @warning The default constructor sets the iterator
   556         /// to an undefined value.
   557         InEdgeIt() { }
   558         /// Copy constructor.
   559 
   560         /// Copy constructor.
   561         ///
   562         InEdgeIt(const InEdgeIt& e) : Edge(e) { }
   563         /// Initialize the iterator to be invalid.
   564 
   565         /// Initialize the iterator to be invalid.
   566         ///
   567         InEdgeIt(Invalid) { }
   568         /// This constructor sets the iterator to first incoming edge.
   569     
   570         /// This constructor set the iterator to the first incoming edge of
   571         /// the node.
   572         ///@param n the node
   573         ///@param g the graph
   574         InEdgeIt(const BpUGraph& g, const Node& n) { 
   575 	  ignore_unused_variable_warning(n);
   576 	  ignore_unused_variable_warning(g);
   577 	}
   578         /// Edge -> InEdgeIt conversion
   579 
   580         /// Sets the iterator to the value of the trivial iterator \c e.
   581         /// This feature necessitates that each time we 
   582         /// iterate the edge-set, the iteration order is the same.
   583         InEdgeIt(const BpUGraph&, const Edge&) { }
   584         /// Next incoming edge
   585 
   586         /// Assign the iterator to the next inedge of the corresponding node.
   587         ///
   588         InEdgeIt& operator++() { return *this; }
   589       };
   590 
   591       /// \brief Read write map of the nodes to type \c T.
   592       /// 
   593       /// ReadWrite map of the nodes to type \c T.
   594       /// \sa Reference
   595       /// \warning Making maps that can handle bool type (NodeMap<bool>)
   596       /// needs some extra attention!
   597       /// \todo Wrong documentation
   598       template<class T> 
   599       class NodeMap : public ReadWriteMap< Node, T >
   600       {
   601       public:
   602 
   603         ///\e
   604         NodeMap(const BpUGraph&) { }
   605         ///\e
   606         NodeMap(const BpUGraph&, T) { }
   607 
   608         ///Copy constructor
   609         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   610         ///Assignment operator
   611         NodeMap& operator=(const NodeMap&) { return *this; }
   612         // \todo fix this concept
   613       };
   614 
   615       /// \brief Read write map of the ANodes to type \c T.
   616       /// 
   617       /// ReadWrite map of the ANodes to type \c T.
   618       /// \sa Reference
   619       /// \warning Making maps that can handle bool type (NodeMap<bool>)
   620       /// needs some extra attention!
   621       /// \todo Wrong documentation
   622       template<class T> 
   623       class ANodeMap : public ReadWriteMap< Node, T >
   624       {
   625       public:
   626 
   627         ///\e
   628         ANodeMap(const BpUGraph&) { }
   629         ///\e
   630         ANodeMap(const BpUGraph&, T) { }
   631 
   632         ///Copy constructor
   633         ANodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   634         ///Assignment operator
   635         ANodeMap& operator=(const NodeMap&) { return *this; }
   636         // \todo fix this concept
   637       };
   638 
   639       /// \brief Read write map of the BNodes to type \c T.
   640       /// 
   641       /// ReadWrite map of the BNodes to type \c T.
   642       /// \sa Reference
   643       /// \warning Making maps that can handle bool type (NodeMap<bool>)
   644       /// needs some extra attention!
   645       /// \todo Wrong documentation
   646       template<class T> 
   647       class BNodeMap : public ReadWriteMap< Node, T >
   648       {
   649       public:
   650 
   651         ///\e
   652         BNodeMap(const BpUGraph&) { }
   653         ///\e
   654         BNodeMap(const BpUGraph&, T) { }
   655 
   656         ///Copy constructor
   657         BNodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   658         ///Assignment operator
   659         BNodeMap& operator=(const NodeMap&) { return *this; }
   660         // \todo fix this concept
   661       };
   662 
   663       /// \brief Read write map of the directed edges to type \c T.
   664       ///
   665       /// Reference map of the directed edges to type \c T.
   666       /// \sa Reference
   667       /// \warning Making maps that can handle bool type (EdgeMap<bool>)
   668       /// needs some extra attention!
   669       /// \todo Wrong documentation
   670       template<class T> 
   671       class EdgeMap : public ReadWriteMap<Edge,T>
   672       {
   673       public:
   674 
   675         ///\e
   676         EdgeMap(const BpUGraph&) { }
   677         ///\e
   678         EdgeMap(const BpUGraph&, T) { }
   679         ///Copy constructor
   680         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
   681         ///Assignment operator
   682         EdgeMap& operator=(const EdgeMap&) { return *this; }
   683         // \todo fix this concept    
   684       };
   685 
   686       /// Read write map of the undirected edges to type \c T.
   687 
   688       /// Reference map of the edges to type \c T.
   689       /// \sa Reference
   690       /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
   691       /// needs some extra attention!
   692       /// \todo Wrong documentation
   693       template<class T> 
   694       class UEdgeMap : public ReadWriteMap<UEdge,T>
   695       {
   696       public:
   697 
   698         ///\e
   699         UEdgeMap(const BpUGraph&) { }
   700         ///\e
   701         UEdgeMap(const BpUGraph&, T) { }
   702         ///Copy constructor
   703         UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
   704         ///Assignment operator
   705         UEdgeMap &operator=(const UEdgeMap&) { return *this; }
   706         // \todo fix this concept    
   707       };
   708 
   709       /// \brief Direct the given undirected edge.
   710       ///
   711       /// Direct the given undirected edge. The returned edge source
   712       /// will be the given edge.
   713       Edge direct(const UEdge&, const Node&) const {
   714 	return INVALID;
   715       }
   716 
   717       /// \brief Direct the given undirected edge.
   718       ///
   719       /// Direct the given undirected edge. The returned edge source
   720       /// will be the source of the undirected edge if the given bool
   721       /// is true.
   722       Edge direct(const UEdge&, bool) const {
   723 	return INVALID;
   724       }
   725 
   726       /// \brief Returns true when the given node is an ANode.
   727       ///
   728       /// Returns true when the given node is an ANode.
   729       bool aNode(Node) const { return true;}
   730 
   731       /// \brief Returns true when the given node is an BNode.
   732       ///
   733       /// Returns true when the given node is an BNode.
   734       bool bNode(Node) const { return true;}
   735 
   736       /// \brief Returns the edge's end node which is in the ANode set.
   737       ///
   738       /// Returns the edge's end node which is in the ANode set.
   739       Node aNode(UEdge) const { return INVALID;}
   740 
   741       /// \brief Returns the edge's end node which is in the BNode set.
   742       ///
   743       /// Returns the edge's end node which is in the BNode set.
   744       Node bNode(UEdge) const { return INVALID;}
   745 
   746       /// \brief Returns true if the edge has default orientation.
   747       ///
   748       /// Returns whether the given directed edge is same orientation as
   749       /// the corresponding undirected edge.
   750       bool direction(Edge) const { return true; }
   751 
   752       /// \brief Returns the opposite directed edge.
   753       ///
   754       /// Returns the opposite directed edge.
   755       Edge oppositeEdge(Edge) const { return INVALID; }
   756 
   757       /// \brief Opposite node on an edge
   758       ///
   759       /// \return the opposite of the given Node on the given Edge
   760       Node oppositeNode(Node, UEdge) const { return INVALID; }
   761 
   762       /// \brief First node of the undirected edge.
   763       ///
   764       /// \return the first node of the given UEdge.
   765       ///
   766       /// Naturally uectected edges don't have direction and thus
   767       /// don't have source and target node. But we use these two methods
   768       /// to query the two endnodes of the edge. The direction of the edge
   769       /// which arises this way is called the inherent direction of the
   770       /// undirected edge, and is used to define the "default" direction
   771       /// of the directed versions of the edges.
   772       /// \sa direction
   773       Node source(UEdge) const { return INVALID; }
   774 
   775       /// \brief Second node of the undirected edge.
   776       Node target(UEdge) const { return INVALID; }
   777 
   778       /// \brief Source node of the directed edge.
   779       Node source(Edge) const { return INVALID; }
   780 
   781       /// \brief Target node of the directed edge.
   782       Node target(Edge) const { return INVALID; }
   783 
   784       /// \brief Base node of the iterator
   785       ///
   786       /// Returns the base node (the source in this case) of the iterator
   787       Node baseNode(OutEdgeIt e) const {
   788 	return source(e);
   789       }
   790 
   791       /// \brief Running node of the iterator
   792       ///
   793       /// Returns the running node (the target in this case) of the
   794       /// iterator
   795       Node runningNode(OutEdgeIt e) const {
   796 	return target(e);
   797       }
   798 
   799       /// \brief Base node of the iterator
   800       ///
   801       /// Returns the base node (the target in this case) of the iterator
   802       Node baseNode(InEdgeIt e) const {
   803 	return target(e);
   804       }
   805       /// \brief Running node of the iterator
   806       ///
   807       /// Returns the running node (the source in this case) of the
   808       /// iterator
   809       Node runningNode(InEdgeIt e) const {
   810 	return source(e);
   811       }
   812 
   813       /// \brief Base node of the iterator
   814       ///
   815       /// Returns the base node of the iterator
   816       Node baseNode(IncEdgeIt) const {
   817 	return INVALID;
   818       }
   819       
   820       /// \brief Running node of the iterator
   821       ///
   822       /// Returns the running node of the iterator
   823       Node runningNode(IncEdgeIt) const {
   824 	return INVALID;
   825       }
   826 
   827       template <typename Graph>
   828       struct Constraints {
   829 	void constraints() {
   830 	}
   831       };
   832 
   833     };
   834 
   835     /// \brief An empty non-static undirected graph class.
   836     ///    
   837     /// This class provides everything that \ref BpUGraph does.
   838     /// Additionally it enables building graphs from scratch.
   839     class ExtendableBpUGraph : public BpUGraph {
   840     public:
   841       
   842       /// \brief Add a new ANode to the graph.
   843       ///
   844       /// Add a new ANode to the graph.
   845       /// \return the new node.
   846       Node addANode();
   847 
   848       /// \brief Add a new ANode to the graph.
   849       ///
   850       /// Add a new ANode to the graph.
   851       /// \return the new node.
   852       Node addBNode();
   853 
   854       /// \brief Add a new undirected edge to the graph.
   855       ///
   856       /// Add a new undirected edge to the graph. One of the nodes
   857       /// should be ANode and the other should be BNode.
   858       /// \pre The nodes are not in the same nodeset.
   859       /// \return the new edge.
   860       UEdge addEdge(const Node& from, const Node& to);
   861 
   862       /// \brief Resets the graph.
   863       ///
   864       /// This function deletes all undirected edges and nodes of the graph.
   865       /// It also frees the memory allocated to store them.
   866       void clear() { }
   867 
   868       template <typename Graph>
   869       struct Constraints {
   870 	void constraints() {}
   871       };
   872 
   873     };
   874 
   875     /// \brief An empty erasable undirected graph class.
   876     ///
   877     /// This class is an extension of \ref ExtendableBpUGraph. It makes it
   878     /// possible to erase undirected edges or nodes.
   879     class ErasableBpUGraph : public ExtendableBpUGraph {
   880     public:
   881 
   882       /// \brief Deletes a node.
   883       ///
   884       /// Deletes a node.
   885       ///
   886       void erase(Node) { }
   887       /// \brief Deletes an undirected edge.
   888       ///
   889       /// Deletes an undirected edge.
   890       ///
   891       void erase(UEdge) { }
   892 
   893       template <typename Graph>
   894       struct Constraints {
   895 	void constraints() {}
   896       };
   897 
   898     };
   899 
   900     /// @}
   901 
   902   }
   903 
   904 }
   905 
   906 #endif