lemon/bp_matching.h
changeset 2374 b59a17034ffa
child 2391 14a343be7a5a
equal deleted inserted replaced
-1:000000000000 0:ba5124a4bc7a
       
     1 /* -*- C++ -*-
       
     2  * lemon/preflow_matching.h - Part of LEMON, a generic C++ optimization library
       
     3  *
       
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     6  *
       
     7  * Permission to use, modify and distribute this software is granted
       
     8  * provided that this copyright notice appears in all copies. For
       
     9  * precise terms see the accompanying LICENSE file.
       
    10  *
       
    11  * This software is provided "AS IS" with no warranty of any kind,
       
    12  * express or implied, and with no claim as to its suitability for any
       
    13  * purpose.
       
    14  *
       
    15  */
       
    16 
       
    17 #ifndef LEMON_BP_MATCHING
       
    18 #define LEMON_BP_MATCHING
       
    19 
       
    20 #include <lemon/graph_utils.h>
       
    21 #include <lemon/iterable_maps.h>
       
    22 #include <iostream>
       
    23 #include <queue>
       
    24 #include <lemon/counter.h>
       
    25 #include <lemon/elevator.h>
       
    26 
       
    27 ///\ingroup matching
       
    28 ///\file
       
    29 ///\brief Push-prelabel maximum matching algorithms in bipartite graphs.
       
    30 ///
       
    31 ///\todo This file slightly conflicts with \ref lemon/bipartite_matching.h
       
    32 ///\todo (Re)move the XYZ_TYPEDEFS macros
       
    33 namespace lemon {
       
    34 
       
    35 #define BIPARTITE_TYPEDEFS(Graph)		\
       
    36   GRAPH_TYPEDEFS(Graph)				\
       
    37     typedef Graph::ANodeIt ANodeIt;	\
       
    38     typedef Graph::BNodeIt BNodeIt;
       
    39 
       
    40 #define UNDIRBIPARTITE_TYPEDEFS(Graph)		\
       
    41   UNDIRGRAPH_TYPEDEFS(Graph)			\
       
    42     typedef Graph::ANodeIt ANodeIt;	\
       
    43     typedef Graph::BNodeIt BNodeIt;
       
    44 
       
    45   template<class Graph,
       
    46 	   class MT=typename Graph::template ANodeMap<typename Graph::UEdge> >
       
    47   class BpMatching {
       
    48     typedef typename Graph::Node Node;
       
    49     typedef typename Graph::ANodeIt ANodeIt;
       
    50     typedef typename Graph::BNodeIt BNodeIt;
       
    51     typedef typename Graph::UEdge UEdge;
       
    52     typedef typename Graph::IncEdgeIt IncEdgeIt;
       
    53     
       
    54     const Graph &_g;
       
    55     int _node_num;
       
    56     MT &_matching;
       
    57     Elevator<Graph,typename Graph::BNode> _levels;
       
    58     typename Graph::template BNodeMap<int> _cov;
       
    59 
       
    60   public:
       
    61     BpMatching(const Graph &g, MT &matching) :
       
    62       _g(g),
       
    63       _node_num(countBNodes(g)),
       
    64       _matching(matching),
       
    65       _levels(g,_node_num),
       
    66       _cov(g,0)
       
    67     {
       
    68     }
       
    69     
       
    70   private:
       
    71     void init() 
       
    72     {
       
    73 //     for(BNodeIt n(g);n!=INVALID;++n) cov[n]=0;
       
    74       for(ANodeIt n(_g);n!=INVALID;++n)
       
    75 	if((_matching[n]=IncEdgeIt(_g,n))!=INVALID)
       
    76 	  ++_cov[_g.oppositeNode(n,_matching[n])];
       
    77 
       
    78       std::queue<Node> q;
       
    79       _levels.initStart();
       
    80       for(BNodeIt n(_g);n!=INVALID;++n)
       
    81 	if(_cov[n]>1) {
       
    82 	  _levels.initAddItem(n);
       
    83 	  q.push(n);
       
    84 	}
       
    85       int hlev=0;
       
    86       while(!q.empty()) {
       
    87 	Node n=q.front();
       
    88 	q.pop();
       
    89 	int nlev=_levels[n]+1;
       
    90 	for(IncEdgeIt e(_g,n);e!=INVALID;++e) {
       
    91 	  Node m=_g.runningNode(e);
       
    92 	  if(e==_matching[m]) {
       
    93 	    for(IncEdgeIt f(_g,m);f!=INVALID;++f) {
       
    94 	      Node r=_g.runningNode(f);
       
    95 	      if(_levels[r]>nlev) {
       
    96 		for(;nlev>hlev;hlev++)
       
    97 		  _levels.initNewLevel();
       
    98 		_levels.initAddItem(r);
       
    99 		q.push(r);
       
   100 	      }
       
   101 	    }
       
   102 	  }
       
   103 	}
       
   104       }
       
   105       _levels.initFinish();
       
   106       for(BNodeIt n(_g);n!=INVALID;++n)
       
   107 	if(_cov[n]<1&&_levels[n]<_node_num)
       
   108 	  _levels.activate(n);
       
   109     }
       
   110   public:
       
   111     int run() 
       
   112     {
       
   113       init();
       
   114 
       
   115       Node act;
       
   116       Node bact=INVALID;
       
   117       Node last_activated=INVALID;
       
   118 //       while((act=last_activated!=INVALID?
       
   119 // 	     last_activated:_levels.highestActive())
       
   120 // 	    !=INVALID)
       
   121       while((act=_levels.highestActive())!=INVALID) {
       
   122 	last_activated=INVALID;
       
   123 	int actlevel=_levels[act];
       
   124 	
       
   125 	UEdge bedge=INVALID;
       
   126 	int nlevel=_node_num;
       
   127 	{
       
   128 	  int nnlevel;
       
   129 	  for(IncEdgeIt tbedge(_g,act);
       
   130 	      tbedge!=INVALID && nlevel>=actlevel;
       
   131 	      ++tbedge)
       
   132 	    if((nnlevel=_levels[_g.bNode(_matching[_g.runningNode(tbedge)])])<
       
   133 	       nlevel)
       
   134 	      {
       
   135 		nlevel=nnlevel;
       
   136 		bedge=tbedge;
       
   137 	      }
       
   138 	}
       
   139 	if(nlevel<_node_num) {
       
   140 	  if(nlevel>=actlevel)
       
   141 	    _levels.liftHighestActiveTo(nlevel+1);
       
   142 // 	    _levels.liftTo(act,nlevel+1);
       
   143 	  bact=_g.bNode(_matching[_g.aNode(bedge)]);
       
   144 	  if(--_cov[bact]<1) {
       
   145 	    _levels.activate(bact);
       
   146 	    last_activated=bact;
       
   147 	  }
       
   148 	  _matching[_g.aNode(bedge)]=bedge;
       
   149 	  _cov[act]=1;
       
   150 	  _levels.deactivate(act);
       
   151 	}
       
   152 	else {
       
   153 	  if(_node_num>actlevel) 
       
   154 	    _levels.liftHighestActiveTo(_node_num);
       
   155 //  	    _levels.liftTo(act,_node_num);
       
   156 	  _levels.deactivate(act); 
       
   157 	}
       
   158 
       
   159 	if(_levels.onLevel(actlevel)==0)
       
   160 	  _levels.liftToTop(actlevel);
       
   161       }
       
   162       
       
   163       int ret=_node_num;
       
   164       for(ANodeIt n(_g);n!=INVALID;++n)
       
   165 	if(_matching[n]==INVALID) ret--;
       
   166 	else if (_cov[_g.bNode(_matching[n])]>1) {
       
   167 	  _cov[_g.bNode(_matching[n])]--;
       
   168 	  ret--;
       
   169 	  _matching[n]=INVALID;
       
   170 	}
       
   171       return ret;
       
   172     }
       
   173     
       
   174     ///\returns -1 if there is a perfect matching, or an empty level
       
   175     ///if it doesn't exists
       
   176     int runPerfect() 
       
   177     {
       
   178       init();
       
   179 
       
   180       Node act;
       
   181       Node bact=INVALID;
       
   182       Node last_activated=INVALID;
       
   183       while((act=_levels.highestActive())!=INVALID) {
       
   184 	last_activated=INVALID;
       
   185 	int actlevel=_levels[act];
       
   186 	
       
   187 	UEdge bedge=INVALID;
       
   188 	int nlevel=_node_num;
       
   189 	{
       
   190 	  int nnlevel;
       
   191 	  for(IncEdgeIt tbedge(_g,act);
       
   192 	      tbedge!=INVALID && nlevel>=actlevel;
       
   193 	      ++tbedge)
       
   194 	    if((nnlevel=_levels[_g.bNode(_matching[_g.runningNode(tbedge)])])<
       
   195 	       nlevel)
       
   196 	      {
       
   197 		nlevel=nnlevel;
       
   198 		bedge=tbedge;
       
   199 	      }
       
   200 	}
       
   201 	if(nlevel<_node_num) {
       
   202 	  if(nlevel>=actlevel)
       
   203 	    _levels.liftHighestActiveTo(nlevel+1);
       
   204 	  bact=_g.bNode(_matching[_g.aNode(bedge)]);
       
   205 	  if(--_cov[bact]<1) {
       
   206 	    _levels.activate(bact);
       
   207 	    last_activated=bact;
       
   208 	  }
       
   209 	  _matching[_g.aNode(bedge)]=bedge;
       
   210 	  _cov[act]=1;
       
   211 	  _levels.deactivate(act);
       
   212 	}
       
   213 	else {
       
   214 	  if(_node_num>actlevel) 
       
   215 	    _levels.liftHighestActiveTo(_node_num);
       
   216 	  _levels.deactivate(act); 
       
   217 	}
       
   218 
       
   219 	if(_levels.onLevel(actlevel)==0)
       
   220 	  return actlevel;
       
   221       }
       
   222       return -1;
       
   223     }
       
   224  
       
   225     template<class GT>
       
   226     void aBarrier(GT &bar,int empty_level=-1) 
       
   227     {
       
   228       if(empty_level==-1)
       
   229 	for(empty_level=0;_levels.onLevel(empty_level);empty_level++) ;
       
   230       for(ANodeIt n(_g);n!=INVALID;++n)
       
   231 	bar[n] = _matching[n]==INVALID ||
       
   232 	  _levels[_g.bNode(_matching[n])]<empty_level;  
       
   233     }  
       
   234     template<class GT>
       
   235     void bBarrier(GT &bar, int empty_level=-1) 
       
   236     {
       
   237       if(empty_level==-1)
       
   238 	for(empty_level=0;_levels.onLevel(empty_level);empty_level++) ;
       
   239       for(BNodeIt n(_g);n!=INVALID;++n) bar[n]=(_levels[n]>empty_level);  
       
   240     }  
       
   241   
       
   242   };
       
   243   
       
   244   
       
   245   ///Maximum cardinality of the matchings in a bipartite graph
       
   246 
       
   247   ///\ingroup matching
       
   248   ///This function finds the maximum cardinality of the matchings
       
   249   ///in a bipartite graph \c g.
       
   250   ///\param g An undirected bipartite graph.
       
   251   ///\return The cardinality of the maximum matching.
       
   252   ///
       
   253   ///\note The the implementation is based
       
   254   ///on the push-relabel principle.
       
   255   template<class Graph>
       
   256   int maxBpMatching(const Graph &g)
       
   257   {
       
   258     typename Graph::template ANodeMap<typename Graph::UEdge> matching(g);
       
   259     return maxBpMatching(g,matching);
       
   260   }
       
   261 
       
   262   ///Maximum cardinality matching in a bipartite graph
       
   263 
       
   264   ///\ingroup matching
       
   265   ///This function finds a maximum cardinality matching
       
   266   ///in a bipartite graph \c g.
       
   267   ///\param g An undirected bipartite graph.
       
   268   ///\retval matching A readwrite ANodeMap of value type \c Edge.
       
   269   /// The found edges will be returned in this map,
       
   270   /// i.e. for an \c ANode \c n,
       
   271   /// the edge <tt>matching[n]</tt> is the one that covers the node \c n, or
       
   272   /// \ref INVALID if it is uncovered.
       
   273   ///\return The cardinality of the maximum matching.
       
   274   ///
       
   275   ///\note The the implementation is based
       
   276   ///on the push-relabel principle.
       
   277   template<class Graph,class MT>
       
   278   int maxBpMatching(const Graph &g,MT &matching) 
       
   279   {
       
   280     return BpMatching<Graph,MT>(g,matching).run();
       
   281   }
       
   282 
       
   283   ///Maximum cardinality matching in a bipartite graph
       
   284 
       
   285   ///\ingroup matching
       
   286   ///This function finds a maximum cardinality matching
       
   287   ///in a bipartite graph \c g.
       
   288   ///\param g An undirected bipartite graph.
       
   289   ///\retval matching A readwrite ANodeMap of value type \c Edge.
       
   290   /// The found edges will be returned in this map,
       
   291   /// i.e. for an \c ANode \c n,
       
   292   /// the edge <tt>matching[n]</tt> is the one that covers the node \c n, or
       
   293   /// \ref INVALID if it is uncovered.
       
   294   ///\retval barrier A \c bool WriteMap on the BNodes. The map will be set
       
   295   /// exactly once for each BNode. The nodes with \c true value represent
       
   296   /// a barrier \e B, i.e. the cardinality of \e B minus the number of its
       
   297   /// neighbor is equal to the number of the <tt>BNode</tt>s minus the
       
   298   /// cardinality of the maximum matching.
       
   299   ///\return The cardinality of the maximum matching.
       
   300   ///
       
   301   ///\note The the implementation is based
       
   302   ///on the push-relabel principle.
       
   303   template<class Graph,class MT, class GT>
       
   304   int maxBpMatching(const Graph &g,MT &matching,GT &barrier) 
       
   305   {
       
   306     BpMatching<Graph,MT> bpm(g,matching);
       
   307     int ret=bpm.run();
       
   308     bpm.barrier(barrier);
       
   309     return ret;
       
   310   }  
       
   311 
       
   312   ///Perfect matching in a bipartite graph
       
   313 
       
   314   ///\ingroup matching
       
   315   ///This function checks whether the bipartite graph \c g
       
   316   ///has a perfect matching.
       
   317   ///\param g An undirected bipartite graph.
       
   318   ///\return \c true iff \c g has a perfect matching.
       
   319   ///
       
   320   ///\note The the implementation is based
       
   321   ///on the push-relabel principle.
       
   322   template<class Graph>
       
   323   bool perfectBpMatching(const Graph &g)
       
   324   {
       
   325     typename Graph::template ANodeMap<typename Graph::UEdge> matching(g);
       
   326     return perfectBpMatching(g,matching);
       
   327   }
       
   328 
       
   329   ///Perfect matching in a bipartite graph
       
   330 
       
   331   ///\ingroup matching
       
   332   ///This function finds a perfect matching in a bipartite graph \c g.
       
   333   ///\param g An undirected bipartite graph.
       
   334   ///\retval matching A readwrite ANodeMap of value type \c Edge.
       
   335   /// The found edges will be returned in this map,
       
   336   /// i.e. for an \c ANode \c n,
       
   337   /// the edge <tt>matching[n]</tt> is the one that covers the node \c n.
       
   338   /// The values are unspecified if the graph
       
   339   /// has no perfect matching.
       
   340   ///\return \c true iff \c g has a perfect matching.
       
   341   ///
       
   342   ///\note The the implementation is based
       
   343   ///on the push-relabel principle.
       
   344   template<class Graph,class MT>
       
   345   bool perfectBpMatching(const Graph &g,MT &matching) 
       
   346   {
       
   347     return BpMatching<Graph,MT>(g,matching).runPerfect()<0;
       
   348   }
       
   349 
       
   350   ///Perfect matching in a bipartite graph
       
   351 
       
   352   ///\ingroup matching
       
   353   ///This function finds a perfect matching in a bipartite graph \c g.
       
   354   ///\param g An undirected bipartite graph.
       
   355   ///\retval matching A readwrite ANodeMap of value type \c Edge.
       
   356   /// The found edges will be returned in this map,
       
   357   /// i.e. for an \c ANode \c n,
       
   358   /// the edge <tt>matching[n]</tt> is the one that covers the node \c n.
       
   359   /// The values are unspecified if the graph
       
   360   /// has no perfect matching.
       
   361   ///\retval barrier A \c bool WriteMap on the BNodes. The map will only
       
   362   /// be set if \c g has no perfect matching. In this case it is set 
       
   363   /// exactly once for each BNode. The nodes with \c true value represent
       
   364   /// a barrier, i.e. a subset \e B a of BNodes with the property that
       
   365   /// the cardinality of \e B is greater than the numner of its neighbors.
       
   366   ///\return \c true iff \c g has a perfect matching.
       
   367   ///
       
   368   ///\note The the implementation is based
       
   369   ///on the push-relabel principle.
       
   370   template<class Graph,class MT, class GT>
       
   371   int perfectBpMatching(const Graph &g,MT &matching,GT &barrier) 
       
   372   {
       
   373     BpMatching<Graph,MT> bpm(g,matching);
       
   374     int ret=bpm.run();
       
   375     if(ret>=0)
       
   376       bpm.barrier(barrier,ret);
       
   377     return ret<0;
       
   378   }  
       
   379 }
       
   380 
       
   381 #endif