lemon/bp_matching.h
author alpar
Tue, 20 Feb 2007 13:01:22 +0000
changeset 2374 b59a17034ffa
child 2391 14a343be7a5a
permissions -rw-r--r--
Some two dimensional random distribution added.
They should be revised.
     1 /* -*- C++ -*-
     2  * lemon/preflow_matching.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_BP_MATCHING
    18 #define LEMON_BP_MATCHING
    19 
    20 #include <lemon/graph_utils.h>
    21 #include <lemon/iterable_maps.h>
    22 #include <iostream>
    23 #include <queue>
    24 #include <lemon/counter.h>
    25 #include <lemon/elevator.h>
    26 
    27 ///\ingroup matching
    28 ///\file
    29 ///\brief Push-prelabel maximum matching algorithms in bipartite graphs.
    30 ///
    31 ///\todo This file slightly conflicts with \ref lemon/bipartite_matching.h
    32 ///\todo (Re)move the XYZ_TYPEDEFS macros
    33 namespace lemon {
    34 
    35 #define BIPARTITE_TYPEDEFS(Graph)		\
    36   GRAPH_TYPEDEFS(Graph)				\
    37     typedef Graph::ANodeIt ANodeIt;	\
    38     typedef Graph::BNodeIt BNodeIt;
    39 
    40 #define UNDIRBIPARTITE_TYPEDEFS(Graph)		\
    41   UNDIRGRAPH_TYPEDEFS(Graph)			\
    42     typedef Graph::ANodeIt ANodeIt;	\
    43     typedef Graph::BNodeIt BNodeIt;
    44 
    45   template<class Graph,
    46 	   class MT=typename Graph::template ANodeMap<typename Graph::UEdge> >
    47   class BpMatching {
    48     typedef typename Graph::Node Node;
    49     typedef typename Graph::ANodeIt ANodeIt;
    50     typedef typename Graph::BNodeIt BNodeIt;
    51     typedef typename Graph::UEdge UEdge;
    52     typedef typename Graph::IncEdgeIt IncEdgeIt;
    53     
    54     const Graph &_g;
    55     int _node_num;
    56     MT &_matching;
    57     Elevator<Graph,typename Graph::BNode> _levels;
    58     typename Graph::template BNodeMap<int> _cov;
    59 
    60   public:
    61     BpMatching(const Graph &g, MT &matching) :
    62       _g(g),
    63       _node_num(countBNodes(g)),
    64       _matching(matching),
    65       _levels(g,_node_num),
    66       _cov(g,0)
    67     {
    68     }
    69     
    70   private:
    71     void init() 
    72     {
    73 //     for(BNodeIt n(g);n!=INVALID;++n) cov[n]=0;
    74       for(ANodeIt n(_g);n!=INVALID;++n)
    75 	if((_matching[n]=IncEdgeIt(_g,n))!=INVALID)
    76 	  ++_cov[_g.oppositeNode(n,_matching[n])];
    77 
    78       std::queue<Node> q;
    79       _levels.initStart();
    80       for(BNodeIt n(_g);n!=INVALID;++n)
    81 	if(_cov[n]>1) {
    82 	  _levels.initAddItem(n);
    83 	  q.push(n);
    84 	}
    85       int hlev=0;
    86       while(!q.empty()) {
    87 	Node n=q.front();
    88 	q.pop();
    89 	int nlev=_levels[n]+1;
    90 	for(IncEdgeIt e(_g,n);e!=INVALID;++e) {
    91 	  Node m=_g.runningNode(e);
    92 	  if(e==_matching[m]) {
    93 	    for(IncEdgeIt f(_g,m);f!=INVALID;++f) {
    94 	      Node r=_g.runningNode(f);
    95 	      if(_levels[r]>nlev) {
    96 		for(;nlev>hlev;hlev++)
    97 		  _levels.initNewLevel();
    98 		_levels.initAddItem(r);
    99 		q.push(r);
   100 	      }
   101 	    }
   102 	  }
   103 	}
   104       }
   105       _levels.initFinish();
   106       for(BNodeIt n(_g);n!=INVALID;++n)
   107 	if(_cov[n]<1&&_levels[n]<_node_num)
   108 	  _levels.activate(n);
   109     }
   110   public:
   111     int run() 
   112     {
   113       init();
   114 
   115       Node act;
   116       Node bact=INVALID;
   117       Node last_activated=INVALID;
   118 //       while((act=last_activated!=INVALID?
   119 // 	     last_activated:_levels.highestActive())
   120 // 	    !=INVALID)
   121       while((act=_levels.highestActive())!=INVALID) {
   122 	last_activated=INVALID;
   123 	int actlevel=_levels[act];
   124 	
   125 	UEdge bedge=INVALID;
   126 	int nlevel=_node_num;
   127 	{
   128 	  int nnlevel;
   129 	  for(IncEdgeIt tbedge(_g,act);
   130 	      tbedge!=INVALID && nlevel>=actlevel;
   131 	      ++tbedge)
   132 	    if((nnlevel=_levels[_g.bNode(_matching[_g.runningNode(tbedge)])])<
   133 	       nlevel)
   134 	      {
   135 		nlevel=nnlevel;
   136 		bedge=tbedge;
   137 	      }
   138 	}
   139 	if(nlevel<_node_num) {
   140 	  if(nlevel>=actlevel)
   141 	    _levels.liftHighestActiveTo(nlevel+1);
   142 // 	    _levels.liftTo(act,nlevel+1);
   143 	  bact=_g.bNode(_matching[_g.aNode(bedge)]);
   144 	  if(--_cov[bact]<1) {
   145 	    _levels.activate(bact);
   146 	    last_activated=bact;
   147 	  }
   148 	  _matching[_g.aNode(bedge)]=bedge;
   149 	  _cov[act]=1;
   150 	  _levels.deactivate(act);
   151 	}
   152 	else {
   153 	  if(_node_num>actlevel) 
   154 	    _levels.liftHighestActiveTo(_node_num);
   155 //  	    _levels.liftTo(act,_node_num);
   156 	  _levels.deactivate(act); 
   157 	}
   158 
   159 	if(_levels.onLevel(actlevel)==0)
   160 	  _levels.liftToTop(actlevel);
   161       }
   162       
   163       int ret=_node_num;
   164       for(ANodeIt n(_g);n!=INVALID;++n)
   165 	if(_matching[n]==INVALID) ret--;
   166 	else if (_cov[_g.bNode(_matching[n])]>1) {
   167 	  _cov[_g.bNode(_matching[n])]--;
   168 	  ret--;
   169 	  _matching[n]=INVALID;
   170 	}
   171       return ret;
   172     }
   173     
   174     ///\returns -1 if there is a perfect matching, or an empty level
   175     ///if it doesn't exists
   176     int runPerfect() 
   177     {
   178       init();
   179 
   180       Node act;
   181       Node bact=INVALID;
   182       Node last_activated=INVALID;
   183       while((act=_levels.highestActive())!=INVALID) {
   184 	last_activated=INVALID;
   185 	int actlevel=_levels[act];
   186 	
   187 	UEdge bedge=INVALID;
   188 	int nlevel=_node_num;
   189 	{
   190 	  int nnlevel;
   191 	  for(IncEdgeIt tbedge(_g,act);
   192 	      tbedge!=INVALID && nlevel>=actlevel;
   193 	      ++tbedge)
   194 	    if((nnlevel=_levels[_g.bNode(_matching[_g.runningNode(tbedge)])])<
   195 	       nlevel)
   196 	      {
   197 		nlevel=nnlevel;
   198 		bedge=tbedge;
   199 	      }
   200 	}
   201 	if(nlevel<_node_num) {
   202 	  if(nlevel>=actlevel)
   203 	    _levels.liftHighestActiveTo(nlevel+1);
   204 	  bact=_g.bNode(_matching[_g.aNode(bedge)]);
   205 	  if(--_cov[bact]<1) {
   206 	    _levels.activate(bact);
   207 	    last_activated=bact;
   208 	  }
   209 	  _matching[_g.aNode(bedge)]=bedge;
   210 	  _cov[act]=1;
   211 	  _levels.deactivate(act);
   212 	}
   213 	else {
   214 	  if(_node_num>actlevel) 
   215 	    _levels.liftHighestActiveTo(_node_num);
   216 	  _levels.deactivate(act); 
   217 	}
   218 
   219 	if(_levels.onLevel(actlevel)==0)
   220 	  return actlevel;
   221       }
   222       return -1;
   223     }
   224  
   225     template<class GT>
   226     void aBarrier(GT &bar,int empty_level=-1) 
   227     {
   228       if(empty_level==-1)
   229 	for(empty_level=0;_levels.onLevel(empty_level);empty_level++) ;
   230       for(ANodeIt n(_g);n!=INVALID;++n)
   231 	bar[n] = _matching[n]==INVALID ||
   232 	  _levels[_g.bNode(_matching[n])]<empty_level;  
   233     }  
   234     template<class GT>
   235     void bBarrier(GT &bar, int empty_level=-1) 
   236     {
   237       if(empty_level==-1)
   238 	for(empty_level=0;_levels.onLevel(empty_level);empty_level++) ;
   239       for(BNodeIt n(_g);n!=INVALID;++n) bar[n]=(_levels[n]>empty_level);  
   240     }  
   241   
   242   };
   243   
   244   
   245   ///Maximum cardinality of the matchings in a bipartite graph
   246 
   247   ///\ingroup matching
   248   ///This function finds the maximum cardinality of the matchings
   249   ///in a bipartite graph \c g.
   250   ///\param g An undirected bipartite graph.
   251   ///\return The cardinality of the maximum matching.
   252   ///
   253   ///\note The the implementation is based
   254   ///on the push-relabel principle.
   255   template<class Graph>
   256   int maxBpMatching(const Graph &g)
   257   {
   258     typename Graph::template ANodeMap<typename Graph::UEdge> matching(g);
   259     return maxBpMatching(g,matching);
   260   }
   261 
   262   ///Maximum cardinality matching in a bipartite graph
   263 
   264   ///\ingroup matching
   265   ///This function finds a maximum cardinality matching
   266   ///in a bipartite graph \c g.
   267   ///\param g An undirected bipartite graph.
   268   ///\retval matching A readwrite ANodeMap of value type \c Edge.
   269   /// The found edges will be returned in this map,
   270   /// i.e. for an \c ANode \c n,
   271   /// the edge <tt>matching[n]</tt> is the one that covers the node \c n, or
   272   /// \ref INVALID if it is uncovered.
   273   ///\return The cardinality of the maximum matching.
   274   ///
   275   ///\note The the implementation is based
   276   ///on the push-relabel principle.
   277   template<class Graph,class MT>
   278   int maxBpMatching(const Graph &g,MT &matching) 
   279   {
   280     return BpMatching<Graph,MT>(g,matching).run();
   281   }
   282 
   283   ///Maximum cardinality matching in a bipartite graph
   284 
   285   ///\ingroup matching
   286   ///This function finds a maximum cardinality matching
   287   ///in a bipartite graph \c g.
   288   ///\param g An undirected bipartite graph.
   289   ///\retval matching A readwrite ANodeMap of value type \c Edge.
   290   /// The found edges will be returned in this map,
   291   /// i.e. for an \c ANode \c n,
   292   /// the edge <tt>matching[n]</tt> is the one that covers the node \c n, or
   293   /// \ref INVALID if it is uncovered.
   294   ///\retval barrier A \c bool WriteMap on the BNodes. The map will be set
   295   /// exactly once for each BNode. The nodes with \c true value represent
   296   /// a barrier \e B, i.e. the cardinality of \e B minus the number of its
   297   /// neighbor is equal to the number of the <tt>BNode</tt>s minus the
   298   /// cardinality of the maximum matching.
   299   ///\return The cardinality of the maximum matching.
   300   ///
   301   ///\note The the implementation is based
   302   ///on the push-relabel principle.
   303   template<class Graph,class MT, class GT>
   304   int maxBpMatching(const Graph &g,MT &matching,GT &barrier) 
   305   {
   306     BpMatching<Graph,MT> bpm(g,matching);
   307     int ret=bpm.run();
   308     bpm.barrier(barrier);
   309     return ret;
   310   }  
   311 
   312   ///Perfect matching in a bipartite graph
   313 
   314   ///\ingroup matching
   315   ///This function checks whether the bipartite graph \c g
   316   ///has a perfect matching.
   317   ///\param g An undirected bipartite graph.
   318   ///\return \c true iff \c g has a perfect matching.
   319   ///
   320   ///\note The the implementation is based
   321   ///on the push-relabel principle.
   322   template<class Graph>
   323   bool perfectBpMatching(const Graph &g)
   324   {
   325     typename Graph::template ANodeMap<typename Graph::UEdge> matching(g);
   326     return perfectBpMatching(g,matching);
   327   }
   328 
   329   ///Perfect matching in a bipartite graph
   330 
   331   ///\ingroup matching
   332   ///This function finds a perfect matching in a bipartite graph \c g.
   333   ///\param g An undirected bipartite graph.
   334   ///\retval matching A readwrite ANodeMap of value type \c Edge.
   335   /// The found edges will be returned in this map,
   336   /// i.e. for an \c ANode \c n,
   337   /// the edge <tt>matching[n]</tt> is the one that covers the node \c n.
   338   /// The values are unspecified if the graph
   339   /// has no perfect matching.
   340   ///\return \c true iff \c g has a perfect matching.
   341   ///
   342   ///\note The the implementation is based
   343   ///on the push-relabel principle.
   344   template<class Graph,class MT>
   345   bool perfectBpMatching(const Graph &g,MT &matching) 
   346   {
   347     return BpMatching<Graph,MT>(g,matching).runPerfect()<0;
   348   }
   349 
   350   ///Perfect matching in a bipartite graph
   351 
   352   ///\ingroup matching
   353   ///This function finds a perfect matching in a bipartite graph \c g.
   354   ///\param g An undirected bipartite graph.
   355   ///\retval matching A readwrite ANodeMap of value type \c Edge.
   356   /// The found edges will be returned in this map,
   357   /// i.e. for an \c ANode \c n,
   358   /// the edge <tt>matching[n]</tt> is the one that covers the node \c n.
   359   /// The values are unspecified if the graph
   360   /// has no perfect matching.
   361   ///\retval barrier A \c bool WriteMap on the BNodes. The map will only
   362   /// be set if \c g has no perfect matching. In this case it is set 
   363   /// exactly once for each BNode. The nodes with \c true value represent
   364   /// a barrier, i.e. a subset \e B a of BNodes with the property that
   365   /// the cardinality of \e B is greater than the numner of its neighbors.
   366   ///\return \c true iff \c g has a perfect matching.
   367   ///
   368   ///\note The the implementation is based
   369   ///on the push-relabel principle.
   370   template<class Graph,class MT, class GT>
   371   int perfectBpMatching(const Graph &g,MT &matching,GT &barrier) 
   372   {
   373     BpMatching<Graph,MT> bpm(g,matching);
   374     int ret=bpm.run();
   375     if(ret>=0)
   376       bpm.barrier(barrier,ret);
   377     return ret<0;
   378   }  
   379 }
   380 
   381 #endif