|
1 // -*- C++ -*- |
|
2 /* |
|
3 preflow_param.h |
|
4 by jacint. |
|
5 |
|
6 For testing the parameters H0, H1 of preflow.h |
|
7 |
|
8 The constructor runs the algorithm. |
|
9 |
|
10 Members: |
|
11 |
|
12 T maxFlow() : returns the value of a maximum flow |
|
13 |
|
14 T flowOnEdge(EdgeIt e) : for a fixed maximum flow x it returns x(e) |
|
15 |
|
16 FlowMap Flow() : returns the fixed maximum flow x |
|
17 |
|
18 void minMinCut(CutMap& M) : sets M to the characteristic vector of the |
|
19 minimum min cut. M should be a map of bools initialized to false. |
|
20 |
|
21 void maxMinCut(CutMap& M) : sets M to the characteristic vector of the |
|
22 maximum min cut. M should be a map of bools initialized to false. |
|
23 |
|
24 void minCut(CutMap& M) : fast function, sets M to the characteristic |
|
25 vector of a minimum cut. |
|
26 |
|
27 Different member from the other preflow_hl-s (here we have a member |
|
28 'NodeMap<bool> cut'). |
|
29 |
|
30 CutMap minCut() : fast function, giving the characteristic |
|
31 vector of a minimum cut. |
|
32 |
|
33 |
|
34 */ |
|
35 |
|
36 #ifndef PREFLOW_PARAM_H |
|
37 #define PREFLOW_PARAM_H |
|
38 |
|
39 #include <vector> |
|
40 #include <queue> |
|
41 |
|
42 #include <time_measure.h> //for test |
|
43 |
|
44 namespace hugo { |
|
45 |
|
46 template <typename Graph, typename T, |
|
47 typename FlowMap=typename Graph::EdgeMap<T>, |
|
48 typename CapMap=typename Graph::EdgeMap<T> > |
|
49 class preflow_param { |
|
50 |
|
51 typedef typename Graph::NodeIt NodeIt; |
|
52 typedef typename Graph::EdgeIt EdgeIt; |
|
53 typedef typename Graph::EachNodeIt EachNodeIt; |
|
54 typedef typename Graph::OutEdgeIt OutEdgeIt; |
|
55 typedef typename Graph::InEdgeIt InEdgeIt; |
|
56 |
|
57 Graph& G; |
|
58 NodeIt s; |
|
59 NodeIt t; |
|
60 FlowMap flow; |
|
61 CapMap& capacity; |
|
62 T value; |
|
63 int H0; |
|
64 int H1; |
|
65 |
|
66 public: |
|
67 double time; |
|
68 |
|
69 preflow_param(Graph& _G, NodeIt _s, NodeIt _t, CapMap& _capacity, |
|
70 int _H0, int _H1) : |
|
71 G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity), H0(_H0), H1(_H1) { |
|
72 |
|
73 bool phase=0; //phase 0 is the 1st phase, phase 1 is the 2nd |
|
74 int n=G.nodeNum(); |
|
75 int heur0=(int)(H0*n); //time while running 'bound decrease' |
|
76 int heur1=(int)(H1*n); //time while running 'highest label' |
|
77 int heur=heur1; //starting time interval (#of relabels) |
|
78 bool what_heur=1; |
|
79 /* |
|
80 what_heur is 0 in case 'bound decrease' |
|
81 and 1 in case 'highest label' |
|
82 */ |
|
83 bool end=false; //for the 0 case |
|
84 /* |
|
85 Needed for 'bound decrease', 'true' |
|
86 means no active nodes are above bound b. |
|
87 */ |
|
88 int relabel=0; |
|
89 int k=n-2; |
|
90 int b=k; |
|
91 /* |
|
92 b is a bound on the highest level of the stack. |
|
93 k is a bound on the highest nonempty level i < n. |
|
94 */ |
|
95 |
|
96 typename Graph::NodeMap<int> level(G,n); |
|
97 typename Graph::NodeMap<T> excess(G); |
|
98 |
|
99 std::vector<NodeIt> active(n); |
|
100 typename Graph::NodeMap<NodeIt> next(G); |
|
101 //Stack of the active nodes in level i < n. |
|
102 //We use it in both phases. |
|
103 |
|
104 typename Graph::NodeMap<NodeIt> left(G); |
|
105 typename Graph::NodeMap<NodeIt> right(G); |
|
106 std::vector<NodeIt> level_list(n); |
|
107 /* |
|
108 Needed for the list of the nodes in level i. |
|
109 */ |
|
110 |
|
111 /*Reverse_bfs from t, to find the starting level.*/ |
|
112 level.set(t,0); |
|
113 std::queue<NodeIt> bfs_queue; |
|
114 bfs_queue.push(t); |
|
115 |
|
116 while (!bfs_queue.empty()) { |
|
117 |
|
118 NodeIt v=bfs_queue.front(); |
|
119 bfs_queue.pop(); |
|
120 int l=level.get(v)+1; |
|
121 |
|
122 for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) { |
|
123 NodeIt w=G.tail(e); |
|
124 if ( level.get(w) == n && w != s ) { |
|
125 bfs_queue.push(w); |
|
126 NodeIt first=level_list[l]; |
|
127 if ( first != 0 ) left.set(first,w); |
|
128 right.set(w,first); |
|
129 level_list[l]=w; |
|
130 level.set(w, l); |
|
131 } |
|
132 } |
|
133 } |
|
134 |
|
135 level.set(s,n); |
|
136 |
|
137 |
|
138 /* Starting flow. It is everywhere 0 at the moment. */ |
|
139 for(OutEdgeIt e=G.template first<OutEdgeIt>(s); e.valid(); ++e) |
|
140 { |
|
141 T c=capacity.get(e); |
|
142 if ( c == 0 ) continue; |
|
143 NodeIt w=G.head(e); |
|
144 if ( level.get(w) < n ) { |
|
145 if ( excess.get(w) == 0 && w!=t ) { |
|
146 next.set(w,active[level.get(w)]); |
|
147 active[level.get(w)]=w; |
|
148 } |
|
149 flow.set(e, c); |
|
150 excess.set(w, excess.get(w)+c); |
|
151 } |
|
152 } |
|
153 |
|
154 /* |
|
155 End of preprocessing |
|
156 */ |
|
157 |
|
158 |
|
159 |
|
160 /* |
|
161 Push/relabel on the highest level active nodes. |
|
162 */ |
|
163 while ( true ) { |
|
164 |
|
165 if ( b == 0 ) { |
|
166 if ( phase ) break; |
|
167 |
|
168 if ( !what_heur && !end && k > 0 ) { |
|
169 b=k; |
|
170 end=true; |
|
171 } else { |
|
172 time=currTime(); |
|
173 phase=1; |
|
174 level.set(s,0); |
|
175 |
|
176 std::queue<NodeIt> bfs_queue; |
|
177 bfs_queue.push(s); |
|
178 |
|
179 while (!bfs_queue.empty()) { |
|
180 |
|
181 NodeIt v=bfs_queue.front(); |
|
182 bfs_queue.pop(); |
|
183 int l=level.get(v)+1; |
|
184 |
|
185 for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) { |
|
186 if ( capacity.get(e) == flow.get(e) ) continue; |
|
187 NodeIt u=G.tail(e); |
|
188 if ( level.get(u) >= n ) { |
|
189 bfs_queue.push(u); |
|
190 level.set(u, l); |
|
191 if ( excess.get(u) > 0 ) { |
|
192 next.set(u,active[l]); |
|
193 active[l]=u; |
|
194 } |
|
195 } |
|
196 } |
|
197 |
|
198 |
|
199 for(OutEdgeIt e=G.template first<OutEdgeIt>(v); e.valid(); ++e) { |
|
200 if ( 0 == flow.get(e) ) continue; |
|
201 NodeIt u=G.head(e); |
|
202 if ( level.get(u) >= n ) { |
|
203 bfs_queue.push(u); |
|
204 level.set(u, l); |
|
205 if ( excess.get(u) > 0 ) { |
|
206 next.set(u,active[l]); |
|
207 active[l]=u; |
|
208 } |
|
209 } |
|
210 } |
|
211 } |
|
212 b=n-2; |
|
213 } |
|
214 |
|
215 } |
|
216 |
|
217 |
|
218 if ( active[b] == 0 ) --b; |
|
219 else { |
|
220 end=false; //needed only for phase 0, case hl2 |
|
221 |
|
222 NodeIt w=active[b]; //w is a highest label active node. |
|
223 active[b]=next.get(w); |
|
224 int lev=level.get(w); |
|
225 T exc=excess.get(w); |
|
226 int newlevel=n; //In newlevel we bound the next level of w. |
|
227 |
|
228 for(OutEdgeIt e=G.template first<OutEdgeIt>(w); e.valid(); ++e) { |
|
229 |
|
230 if ( flow.get(e) == capacity.get(e) ) continue; |
|
231 NodeIt v=G.head(e); |
|
232 //e=wv |
|
233 |
|
234 if( lev > level.get(v) ) { |
|
235 /*Push is allowed now*/ |
|
236 |
|
237 if ( excess.get(v)==0 && v!=t && v!=s ) { |
|
238 int lev_v=level.get(v); |
|
239 next.set(v,active[lev_v]); |
|
240 active[lev_v]=v; |
|
241 } |
|
242 /*v becomes active.*/ |
|
243 |
|
244 T cap=capacity.get(e); |
|
245 T flo=flow.get(e); |
|
246 T remcap=cap-flo; |
|
247 |
|
248 if ( remcap >= exc ) { |
|
249 /*A nonsaturating push.*/ |
|
250 |
|
251 flow.set(e, flo+exc); |
|
252 excess.set(v, excess.get(v)+exc); |
|
253 exc=0; |
|
254 break; |
|
255 |
|
256 } else { |
|
257 /*A saturating push.*/ |
|
258 |
|
259 flow.set(e, cap); |
|
260 excess.set(v, excess.get(v)+remcap); |
|
261 exc-=remcap; |
|
262 } |
|
263 } else if ( newlevel > level.get(v) ){ |
|
264 newlevel = level.get(v); |
|
265 } |
|
266 |
|
267 } //for out edges wv |
|
268 |
|
269 |
|
270 if ( exc > 0 ) { |
|
271 for( InEdgeIt e=G.template first<InEdgeIt>(w); e.valid(); ++e) { |
|
272 |
|
273 if( flow.get(e) == 0 ) continue; |
|
274 NodeIt v=G.tail(e); |
|
275 //e=vw |
|
276 |
|
277 if( lev > level.get(v) ) { |
|
278 /*Push is allowed now*/ |
|
279 |
|
280 if ( excess.get(v)==0 && v!=t && v!=s ) { |
|
281 int lev_v=level.get(v); |
|
282 next.set(v,active[lev_v]); |
|
283 active[lev_v]=v; |
|
284 /*v becomes active.*/ |
|
285 } |
|
286 |
|
287 T flo=flow.get(e); |
|
288 |
|
289 if ( flo >= exc ) { |
|
290 /*A nonsaturating push.*/ |
|
291 |
|
292 flow.set(e, flo-exc); |
|
293 excess.set(v, excess.get(v)+exc); |
|
294 exc=0; |
|
295 break; |
|
296 } else { |
|
297 /*A saturating push.*/ |
|
298 |
|
299 excess.set(v, excess.get(v)+flo); |
|
300 exc-=flo; |
|
301 flow.set(e,0); |
|
302 } |
|
303 } else if ( newlevel > level.get(v) ) { |
|
304 newlevel = level.get(v); |
|
305 } |
|
306 } //for in edges vw |
|
307 |
|
308 } // if w still has excess after the out edge for cycle |
|
309 |
|
310 excess.set(w, exc); |
|
311 |
|
312 /* |
|
313 Relabel |
|
314 */ |
|
315 |
|
316 |
|
317 if ( exc > 0 ) { |
|
318 //now 'lev' is the old level of w |
|
319 |
|
320 if ( phase ) { |
|
321 level.set(w,++newlevel); |
|
322 next.set(w,active[newlevel]); |
|
323 active[newlevel]=w; |
|
324 b=newlevel; |
|
325 } else { |
|
326 //unlacing |
|
327 NodeIt right_n=right.get(w); |
|
328 NodeIt left_n=left.get(w); |
|
329 |
|
330 if ( right_n != 0 ) { |
|
331 if ( left_n != 0 ) { |
|
332 right.set(left_n, right_n); |
|
333 left.set(right_n, left_n); |
|
334 } else { |
|
335 level_list[lev]=right_n; |
|
336 left.set(right_n, 0); |
|
337 } |
|
338 } else { |
|
339 if ( left_n != 0 ) { |
|
340 right.set(left_n, 0); |
|
341 } else { |
|
342 level_list[lev]=0; |
|
343 |
|
344 } |
|
345 } |
|
346 |
|
347 if ( level_list[lev]==0 ) { |
|
348 |
|
349 for (int i=lev; i!=k ; ) { |
|
350 NodeIt v=level_list[++i]; |
|
351 while ( v != 0 ) { |
|
352 level.set(v,n); |
|
353 v=right.get(v); |
|
354 } |
|
355 level_list[i]=0; |
|
356 if ( !what_heur ) active[i]=0; |
|
357 } |
|
358 |
|
359 level.set(w,n); |
|
360 b=lev-1; |
|
361 k=b; |
|
362 |
|
363 } else { |
|
364 |
|
365 if ( newlevel == n ) level.set(w,n); |
|
366 else { |
|
367 level.set(w,++newlevel); |
|
368 next.set(w,active[newlevel]); |
|
369 active[newlevel]=w; |
|
370 if ( what_heur ) b=newlevel; |
|
371 if ( k < newlevel ) ++k; |
|
372 NodeIt first=level_list[newlevel]; |
|
373 if ( first != 0 ) left.set(first,w); |
|
374 right.set(w,first); |
|
375 left.set(w,0); |
|
376 level_list[newlevel]=w; |
|
377 } |
|
378 } |
|
379 |
|
380 |
|
381 ++relabel; |
|
382 if ( relabel >= heur ) { |
|
383 relabel=0; |
|
384 if ( what_heur ) { |
|
385 what_heur=0; |
|
386 heur=heur0; |
|
387 end=false; |
|
388 } else { |
|
389 what_heur=1; |
|
390 heur=heur1; |
|
391 b=k; |
|
392 } |
|
393 } |
|
394 } //phase 0 |
|
395 |
|
396 |
|
397 } // if ( exc > 0 ) |
|
398 |
|
399 |
|
400 } // if stack[b] is nonempty |
|
401 |
|
402 } // while(true) |
|
403 |
|
404 |
|
405 value = excess.get(t); |
|
406 /*Max flow value.*/ |
|
407 |
|
408 } //void run() |
|
409 |
|
410 |
|
411 |
|
412 |
|
413 |
|
414 /* |
|
415 Returns the maximum value of a flow. |
|
416 */ |
|
417 |
|
418 T maxFlow() { |
|
419 return value; |
|
420 } |
|
421 |
|
422 |
|
423 |
|
424 /* |
|
425 For the maximum flow x found by the algorithm, |
|
426 it returns the flow value on edge e, i.e. x(e). |
|
427 */ |
|
428 |
|
429 T flowOnEdge(EdgeIt e) { |
|
430 return flow.get(e); |
|
431 } |
|
432 |
|
433 |
|
434 |
|
435 FlowMap Flow() { |
|
436 return flow; |
|
437 } |
|
438 |
|
439 |
|
440 |
|
441 void Flow(FlowMap& _flow ) { |
|
442 for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v) |
|
443 _flow.set(v,flow.get(v)); |
|
444 } |
|
445 |
|
446 |
|
447 |
|
448 /* |
|
449 Returns the minimum min cut, by a bfs from s in the residual graph. |
|
450 */ |
|
451 |
|
452 template<typename CutMap> |
|
453 void minCut(CutMap& M) { |
|
454 |
|
455 std::queue<NodeIt> queue; |
|
456 |
|
457 M.set(s,true); |
|
458 queue.push(s); |
|
459 |
|
460 while (!queue.empty()) { |
|
461 NodeIt w=queue.front(); |
|
462 queue.pop(); |
|
463 |
|
464 for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) { |
|
465 NodeIt v=G.head(e); |
|
466 if (!M.get(v) && flow.get(e) < capacity.get(e) ) { |
|
467 queue.push(v); |
|
468 M.set(v, true); |
|
469 } |
|
470 } |
|
471 |
|
472 for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) { |
|
473 NodeIt v=G.tail(e); |
|
474 if (!M.get(v) && flow.get(e) > 0 ) { |
|
475 queue.push(v); |
|
476 M.set(v, true); |
|
477 } |
|
478 } |
|
479 |
|
480 } |
|
481 |
|
482 } |
|
483 |
|
484 |
|
485 |
|
486 /* |
|
487 Returns the maximum min cut, by a reverse bfs |
|
488 from t in the residual graph. |
|
489 */ |
|
490 |
|
491 template<typename CutMap> |
|
492 void maxMinCut(CutMap& M) { |
|
493 |
|
494 std::queue<NodeIt> queue; |
|
495 |
|
496 M.set(t,true); |
|
497 queue.push(t); |
|
498 |
|
499 while (!queue.empty()) { |
|
500 NodeIt w=queue.front(); |
|
501 queue.pop(); |
|
502 |
|
503 for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) { |
|
504 NodeIt v=G.tail(e); |
|
505 if (!M.get(v) && flow.get(e) < capacity.get(e) ) { |
|
506 queue.push(v); |
|
507 M.set(v, true); |
|
508 } |
|
509 } |
|
510 |
|
511 for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) { |
|
512 NodeIt v=G.head(e); |
|
513 if (!M.get(v) && flow.get(e) > 0 ) { |
|
514 queue.push(v); |
|
515 M.set(v, true); |
|
516 } |
|
517 } |
|
518 } |
|
519 |
|
520 for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v) { |
|
521 M.set(v, !M.get(v)); |
|
522 } |
|
523 |
|
524 } |
|
525 |
|
526 |
|
527 |
|
528 template<typename CutMap> |
|
529 void minMinCut(CutMap& M) { |
|
530 minCut(M); |
|
531 } |
|
532 |
|
533 |
|
534 |
|
535 }; |
|
536 }//namespace |
|
537 #endif |
|
538 |
|
539 |
|
540 |
|
541 |