6 For testing the parameters H0, H1 of preflow.h
8 The constructor runs the algorithm.
12 T maxFlow() : returns the value of a maximum flow
14 T flowOnEdge(EdgeIt e) : for a fixed maximum flow x it returns x(e)
16 FlowMap Flow() : returns the fixed maximum flow x
18 void minMinCut(CutMap& M) : sets M to the characteristic vector of the
19 minimum min cut. M should be a map of bools initialized to false.
21 void maxMinCut(CutMap& M) : sets M to the characteristic vector of the
22 maximum min cut. M should be a map of bools initialized to false.
24 void minCut(CutMap& M) : fast function, sets M to the characteristic
25 vector of a minimum cut.
27 Different member from the other preflow_hl-s (here we have a member
30 CutMap minCut() : fast function, giving the characteristic
31 vector of a minimum cut.
36 #ifndef PREFLOW_PARAM_H
37 #define PREFLOW_PARAM_H
42 #include <time_measure.h> //for test
46 template <typename Graph, typename T,
47 typename FlowMap=typename Graph::EdgeMap<T>,
48 typename CapMap=typename Graph::EdgeMap<T> >
51 typedef typename Graph::NodeIt NodeIt;
52 typedef typename Graph::EdgeIt EdgeIt;
53 typedef typename Graph::EachNodeIt EachNodeIt;
54 typedef typename Graph::OutEdgeIt OutEdgeIt;
55 typedef typename Graph::InEdgeIt InEdgeIt;
69 preflow_param(Graph& _G, NodeIt _s, NodeIt _t, CapMap& _capacity,
71 G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity), H0(_H0), H1(_H1) {
73 bool phase=0; //phase 0 is the 1st phase, phase 1 is the 2nd
75 int heur0=(int)(H0*n); //time while running 'bound decrease'
76 int heur1=(int)(H1*n); //time while running 'highest label'
77 int heur=heur1; //starting time interval (#of relabels)
80 what_heur is 0 in case 'bound decrease'
81 and 1 in case 'highest label'
83 bool end=false; //for the 0 case
85 Needed for 'bound decrease', 'true'
86 means no active nodes are above bound b.
92 b is a bound on the highest level of the stack.
93 k is a bound on the highest nonempty level i < n.
96 typename Graph::NodeMap<int> level(G,n);
97 typename Graph::NodeMap<T> excess(G);
99 std::vector<NodeIt> active(n);
100 typename Graph::NodeMap<NodeIt> next(G);
101 //Stack of the active nodes in level i < n.
102 //We use it in both phases.
104 typename Graph::NodeMap<NodeIt> left(G);
105 typename Graph::NodeMap<NodeIt> right(G);
106 std::vector<NodeIt> level_list(n);
108 Needed for the list of the nodes in level i.
111 /*Reverse_bfs from t, to find the starting level.*/
113 std::queue<NodeIt> bfs_queue;
116 while (!bfs_queue.empty()) {
118 NodeIt v=bfs_queue.front();
120 int l=level.get(v)+1;
122 for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
124 if ( level.get(w) == n && w != s ) {
126 NodeIt first=level_list[l];
127 if ( first != 0 ) left.set(first,w);
138 /* Starting flow. It is everywhere 0 at the moment. */
139 for(OutEdgeIt e=G.template first<OutEdgeIt>(s); e.valid(); ++e)
142 if ( c == 0 ) continue;
144 if ( level.get(w) < n ) {
145 if ( excess.get(w) == 0 && w!=t ) {
146 next.set(w,active[level.get(w)]);
147 active[level.get(w)]=w;
150 excess.set(w, excess.get(w)+c);
161 Push/relabel on the highest level active nodes.
168 if ( !what_heur && !end && k > 0 ) {
176 std::queue<NodeIt> bfs_queue;
179 while (!bfs_queue.empty()) {
181 NodeIt v=bfs_queue.front();
183 int l=level.get(v)+1;
185 for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
186 if ( capacity.get(e) == flow.get(e) ) continue;
188 if ( level.get(u) >= n ) {
191 if ( excess.get(u) > 0 ) {
192 next.set(u,active[l]);
199 for(OutEdgeIt e=G.template first<OutEdgeIt>(v); e.valid(); ++e) {
200 if ( 0 == flow.get(e) ) continue;
202 if ( level.get(u) >= n ) {
205 if ( excess.get(u) > 0 ) {
206 next.set(u,active[l]);
218 if ( active[b] == 0 ) --b;
220 end=false; //needed only for phase 0, case hl2
222 NodeIt w=active[b]; //w is a highest label active node.
223 active[b]=next.get(w);
224 int lev=level.get(w);
226 int newlevel=n; //In newlevel we bound the next level of w.
228 for(OutEdgeIt e=G.template first<OutEdgeIt>(w); e.valid(); ++e) {
230 if ( flow.get(e) == capacity.get(e) ) continue;
234 if( lev > level.get(v) ) {
235 /*Push is allowed now*/
237 if ( excess.get(v)==0 && v!=t && v!=s ) {
238 int lev_v=level.get(v);
239 next.set(v,active[lev_v]);
242 /*v becomes active.*/
244 T cap=capacity.get(e);
248 if ( remcap >= exc ) {
249 /*A nonsaturating push.*/
251 flow.set(e, flo+exc);
252 excess.set(v, excess.get(v)+exc);
257 /*A saturating push.*/
260 excess.set(v, excess.get(v)+remcap);
263 } else if ( newlevel > level.get(v) ){
264 newlevel = level.get(v);
271 for( InEdgeIt e=G.template first<InEdgeIt>(w); e.valid(); ++e) {
273 if( flow.get(e) == 0 ) continue;
277 if( lev > level.get(v) ) {
278 /*Push is allowed now*/
280 if ( excess.get(v)==0 && v!=t && v!=s ) {
281 int lev_v=level.get(v);
282 next.set(v,active[lev_v]);
284 /*v becomes active.*/
290 /*A nonsaturating push.*/
292 flow.set(e, flo-exc);
293 excess.set(v, excess.get(v)+exc);
297 /*A saturating push.*/
299 excess.set(v, excess.get(v)+flo);
303 } else if ( newlevel > level.get(v) ) {
304 newlevel = level.get(v);
308 } // if w still has excess after the out edge for cycle
318 //now 'lev' is the old level of w
321 level.set(w,++newlevel);
322 next.set(w,active[newlevel]);
327 NodeIt right_n=right.get(w);
328 NodeIt left_n=left.get(w);
330 if ( right_n != 0 ) {
332 right.set(left_n, right_n);
333 left.set(right_n, left_n);
335 level_list[lev]=right_n;
336 left.set(right_n, 0);
340 right.set(left_n, 0);
347 if ( level_list[lev]==0 ) {
349 for (int i=lev; i!=k ; ) {
350 NodeIt v=level_list[++i];
356 if ( !what_heur ) active[i]=0;
365 if ( newlevel == n ) level.set(w,n);
367 level.set(w,++newlevel);
368 next.set(w,active[newlevel]);
370 if ( what_heur ) b=newlevel;
371 if ( k < newlevel ) ++k;
372 NodeIt first=level_list[newlevel];
373 if ( first != 0 ) left.set(first,w);
376 level_list[newlevel]=w;
382 if ( relabel >= heur ) {
400 } // if stack[b] is nonempty
405 value = excess.get(t);
415 Returns the maximum value of a flow.
425 For the maximum flow x found by the algorithm,
426 it returns the flow value on edge e, i.e. x(e).
429 T flowOnEdge(EdgeIt e) {
441 void Flow(FlowMap& _flow ) {
442 for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v)
443 _flow.set(v,flow.get(v));
449 Returns the minimum min cut, by a bfs from s in the residual graph.
452 template<typename CutMap>
453 void minCut(CutMap& M) {
455 std::queue<NodeIt> queue;
460 while (!queue.empty()) {
461 NodeIt w=queue.front();
464 for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
466 if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
472 for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
474 if (!M.get(v) && flow.get(e) > 0 ) {
487 Returns the maximum min cut, by a reverse bfs
488 from t in the residual graph.
491 template<typename CutMap>
492 void maxMinCut(CutMap& M) {
494 std::queue<NodeIt> queue;
499 while (!queue.empty()) {
500 NodeIt w=queue.front();
503 for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
505 if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
511 for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
513 if (!M.get(v) && flow.get(e) > 0 ) {
520 for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v) {
528 template<typename CutMap>
529 void minMinCut(CutMap& M) {