src/hugo/preflow.h
changeset 836 f8549e3f6c5a
child 849 cc3867a7d380
equal deleted inserted replaced
-1:000000000000 0:81c0fc109d51
       
     1 // -*- C++ -*-
       
     2 #ifndef HUGO_PREFLOW_H
       
     3 #define HUGO_PREFLOW_H
       
     4 
       
     5 #include <vector>
       
     6 #include <queue>
       
     7 
       
     8 #include <hugo/invalid.h>
       
     9 #include <hugo/maps.h>
       
    10 
       
    11 /// \file
       
    12 /// \ingroup flowalgs
       
    13 
       
    14 namespace hugo {
       
    15 
       
    16   /// \addtogroup flowalgs
       
    17   /// @{                                                   
       
    18 
       
    19   ///Preflow algorithms class.
       
    20 
       
    21   ///This class provides an implementation of the \e preflow \e
       
    22   ///algorithm producing a flow of maximum value in a directed
       
    23   ///graph. The preflow algorithms are the fastest max flow algorithms
       
    24   ///up-to-date. The \e source node, the \e target node, the \e
       
    25   ///capacity of the edges and the \e starting \e flow value of the
       
    26   ///edges should be passed to the algorithm through the
       
    27   ///constructor. It is possible to change these quantities using the
       
    28   ///functions \ref setSource, \ref setTarget, \ref setCap and \ref
       
    29   ///setFlow.
       
    30   ///
       
    31   ///After running \c phase1 or \c preflow, the actual flow
       
    32   ///value can be obtained by calling \ref flowValue(). The minimum
       
    33   ///value cut can be written into a \c node map of \c bools by
       
    34   ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
       
    35   ///the inclusionwise minimum and maximum of the minimum value cuts,
       
    36   ///resp.)
       
    37   ///
       
    38   ///\param Graph The directed graph type the algorithm runs on.
       
    39   ///\param Num The number type of the capacities and the flow values.
       
    40   ///\param CapMap The capacity map type.
       
    41   ///\param FlowMap The flow map type.
       
    42   ///
       
    43   ///\author Jacint Szabo 
       
    44   template <typename Graph, typename Num,
       
    45 	    typename CapMap=typename Graph::template EdgeMap<Num>,
       
    46             typename FlowMap=typename Graph::template EdgeMap<Num> >
       
    47   class Preflow {
       
    48   protected:
       
    49     typedef typename Graph::Node Node;
       
    50     typedef typename Graph::NodeIt NodeIt;
       
    51     typedef typename Graph::EdgeIt EdgeIt;
       
    52     typedef typename Graph::OutEdgeIt OutEdgeIt;
       
    53     typedef typename Graph::InEdgeIt InEdgeIt;
       
    54 
       
    55     typedef typename Graph::template NodeMap<Node> NNMap;
       
    56     typedef typename std::vector<Node> VecNode;
       
    57 
       
    58     const Graph* g;
       
    59     Node s;
       
    60     Node t;
       
    61     const CapMap* capacity;
       
    62     FlowMap* flow;
       
    63     int n;      //the number of nodes of G
       
    64     
       
    65     typename Graph::template NodeMap<int> level;  
       
    66     typename Graph::template NodeMap<Num> excess;
       
    67 
       
    68     // constants used for heuristics
       
    69     static const int H0=20;
       
    70     static const int H1=1;
       
    71 
       
    72     public:
       
    73 
       
    74     ///Indicates the property of the starting flow map.
       
    75 
       
    76     ///Indicates the property of the starting flow map. The meanings are as follows:
       
    77     ///- \c ZERO_FLOW: constant zero flow
       
    78     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
       
    79     ///the sum of the out-flows in every node except the \e source and
       
    80     ///the \e target.
       
    81     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
       
    82     ///least the sum of the out-flows in every node except the \e source.
       
    83     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
       
    84     ///set to the constant zero flow in the beginning of the algorithm in this case.
       
    85     ///
       
    86     enum FlowEnum{
       
    87       NO_FLOW,
       
    88       ZERO_FLOW,
       
    89       GEN_FLOW,
       
    90       PRE_FLOW
       
    91     };
       
    92 
       
    93     ///Indicates the state of the preflow algorithm.
       
    94 
       
    95     ///Indicates the state of the preflow algorithm. The meanings are as follows:
       
    96     ///- \c AFTER_NOTHING: before running the algorithm or at an unspecified state.
       
    97     ///- \c AFTER_PREFLOW_PHASE_1: right after running \c phase1
       
    98     ///- \c AFTER_PREFLOW_PHASE_2: after running \ref phase2()
       
    99     ///
       
   100     enum StatusEnum {
       
   101       AFTER_NOTHING,
       
   102       AFTER_PREFLOW_PHASE_1,      
       
   103       AFTER_PREFLOW_PHASE_2
       
   104     };
       
   105     
       
   106     protected: 
       
   107       FlowEnum flow_prop;
       
   108     StatusEnum status; // Do not needle this flag only if necessary.
       
   109     
       
   110   public: 
       
   111     ///The constructor of the class.
       
   112 
       
   113     ///The constructor of the class. 
       
   114     ///\param _G The directed graph the algorithm runs on. 
       
   115     ///\param _s The source node.
       
   116     ///\param _t The target node.
       
   117     ///\param _capacity The capacity of the edges. 
       
   118     ///\param _flow The flow of the edges. 
       
   119     ///Except the graph, all of these parameters can be reset by
       
   120     ///calling \ref setSource, \ref setTarget, \ref setCap and \ref
       
   121     ///setFlow, resp.
       
   122       Preflow(const Graph& _G, Node _s, Node _t, 
       
   123 	      const CapMap& _capacity, FlowMap& _flow) :
       
   124 	g(&_G), s(_s), t(_t), capacity(&_capacity),
       
   125 	flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
       
   126 	flow_prop(NO_FLOW), status(AFTER_NOTHING) { }
       
   127 
       
   128 
       
   129                                                                               
       
   130     ///Runs the preflow algorithm.  
       
   131 
       
   132     ///Runs the preflow algorithm. 
       
   133     void run() {
       
   134       phase1(flow_prop);
       
   135       phase2();
       
   136     }
       
   137     
       
   138     ///Runs the preflow algorithm.  
       
   139     
       
   140     ///Runs the preflow algorithm. 
       
   141     ///\pre The starting flow map must be
       
   142     /// - a constant zero flow if \c fp is \c ZERO_FLOW,
       
   143     /// - an arbitrary flow if \c fp is \c GEN_FLOW,
       
   144     /// - an arbitrary preflow if \c fp is \c PRE_FLOW,
       
   145     /// - any map if \c fp is NO_FLOW.
       
   146     ///If the starting flow map is a flow or a preflow then 
       
   147     ///the algorithm terminates faster.
       
   148     void run(FlowEnum fp) {
       
   149       flow_prop=fp;
       
   150       run();
       
   151     }
       
   152       
       
   153     ///Runs the first phase of the preflow algorithm.
       
   154 
       
   155     ///The preflow algorithm consists of two phases, this method runs the
       
   156     ///first phase. After the first phase the maximum flow value and a
       
   157     ///minimum value cut can already be computed, though a maximum flow
       
   158     ///is not yet obtained. So after calling this method \ref flowValue
       
   159     ///and \ref minCut gives proper results.
       
   160     ///\warning: \ref minMinCut and \ref maxMinCut do not
       
   161     ///give minimum value cuts unless calling \ref phase2.
       
   162     ///\pre The starting flow must be
       
   163     /// - a constant zero flow if \c fp is \c ZERO_FLOW,
       
   164     /// - an arbitary flow if \c fp is \c GEN_FLOW,
       
   165     /// - an arbitary preflow if \c fp is \c PRE_FLOW,
       
   166     /// - any map if \c fp is NO_FLOW.
       
   167     void phase1(FlowEnum fp)
       
   168     {
       
   169       flow_prop=fp;
       
   170       phase1();
       
   171     }
       
   172 
       
   173     
       
   174     ///Runs the first phase of the preflow algorithm.
       
   175 
       
   176     ///The preflow algorithm consists of two phases, this method runs the
       
   177     ///first phase. After the first phase the maximum flow value and a
       
   178     ///minimum value cut can already be computed, though a maximum flow
       
   179     ///is not yet obtained. So after calling this method \ref flowValue
       
   180     ///and \ref actMinCut gives proper results.
       
   181     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
       
   182     ///give minimum value cuts unless calling \ref phase2.
       
   183     void phase1()
       
   184     {
       
   185       int heur0=(int)(H0*n);  //time while running 'bound decrease'
       
   186       int heur1=(int)(H1*n);  //time while running 'highest label'
       
   187       int heur=heur1;         //starting time interval (#of relabels)
       
   188       int numrelabel=0;
       
   189 
       
   190       bool what_heur=1;
       
   191       //It is 0 in case 'bound decrease' and 1 in case 'highest label'
       
   192 
       
   193       bool end=false;
       
   194       //Needed for 'bound decrease', true means no active 
       
   195       //nodes are above bound b.
       
   196 
       
   197       int k=n-2;  //bound on the highest level under n containing a node
       
   198       int b=k;    //bound on the highest level under n of an active node
       
   199 
       
   200       VecNode first(n, INVALID);
       
   201       NNMap next(*g, INVALID);
       
   202 
       
   203       NNMap left(*g, INVALID);
       
   204       NNMap right(*g, INVALID);
       
   205       VecNode level_list(n,INVALID);
       
   206       //List of the nodes in level i<n, set to n.
       
   207 
       
   208       preflowPreproc(first, next, level_list, left, right);
       
   209 
       
   210       //Push/relabel on the highest level active nodes.
       
   211       while ( true ) {
       
   212 	if ( b == 0 ) {
       
   213 	  if ( !what_heur && !end && k > 0 ) {
       
   214 	    b=k;
       
   215 	    end=true;
       
   216 	  } else break;
       
   217 	}
       
   218 
       
   219 	if ( first[b]==INVALID ) --b;
       
   220 	else {
       
   221 	  end=false;
       
   222 	  Node w=first[b];
       
   223 	  first[b]=next[w];
       
   224 	  int newlevel=push(w, next, first);
       
   225 	  if ( excess[w] > 0 ) relabel(w, newlevel, first, next, level_list, 
       
   226 				       left, right, b, k, what_heur);
       
   227 
       
   228 	  ++numrelabel;
       
   229 	  if ( numrelabel >= heur ) {
       
   230 	    numrelabel=0;
       
   231 	    if ( what_heur ) {
       
   232 	      what_heur=0;
       
   233 	      heur=heur0;
       
   234 	      end=false;
       
   235 	    } else {
       
   236 	      what_heur=1;
       
   237 	      heur=heur1;
       
   238 	      b=k;
       
   239 	    }
       
   240 	  }
       
   241 	}
       
   242       }
       
   243       flow_prop=PRE_FLOW;
       
   244       status=AFTER_PREFLOW_PHASE_1;
       
   245     }
       
   246     // Heuristics:
       
   247     //   2 phase
       
   248     //   gap
       
   249     //   list 'level_list' on the nodes on level i implemented by hand
       
   250     //   stack 'active' on the active nodes on level i      
       
   251     //   runs heuristic 'highest label' for H1*n relabels
       
   252     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
       
   253     //   Parameters H0 and H1 are initialized to 20 and 1.
       
   254 
       
   255 
       
   256     ///Runs the second phase of the preflow algorithm.
       
   257 
       
   258     ///The preflow algorithm consists of two phases, this method runs
       
   259     ///the second phase. After calling \ref phase1 and then
       
   260     ///\ref phase2 the methods \ref flowValue, \ref minCut,
       
   261     ///\ref minMinCut and \ref maxMinCut give proper results.
       
   262     ///\pre \ref phase1 must be called before.
       
   263     void phase2()
       
   264     {
       
   265 
       
   266       int k=n-2;  //bound on the highest level under n containing a node
       
   267       int b=k;    //bound on the highest level under n of an active node
       
   268 
       
   269     
       
   270       VecNode first(n, INVALID);
       
   271       NNMap next(*g, INVALID); 
       
   272       level.set(s,0);
       
   273       std::queue<Node> bfs_queue;
       
   274       bfs_queue.push(s);
       
   275 
       
   276       while ( !bfs_queue.empty() ) {
       
   277 
       
   278 	Node v=bfs_queue.front();
       
   279 	bfs_queue.pop();
       
   280 	int l=level[v]+1;
       
   281 
       
   282 	for(InEdgeIt e(*g,v); e!=INVALID; ++e) {
       
   283 	  if ( (*capacity)[e] <= (*flow)[e] ) continue;
       
   284 	  Node u=g->tail(e);
       
   285 	  if ( level[u] >= n ) {
       
   286 	    bfs_queue.push(u);
       
   287 	    level.set(u, l);
       
   288 	    if ( excess[u] > 0 ) {
       
   289 	      next.set(u,first[l]);
       
   290 	      first[l]=u;
       
   291 	    }
       
   292 	  }
       
   293 	}
       
   294 
       
   295 	for(OutEdgeIt e(*g,v); e!=INVALID; ++e) {
       
   296 	  if ( 0 >= (*flow)[e] ) continue;
       
   297 	  Node u=g->head(e);
       
   298 	  if ( level[u] >= n ) {
       
   299 	    bfs_queue.push(u);
       
   300 	    level.set(u, l);
       
   301 	    if ( excess[u] > 0 ) {
       
   302 	      next.set(u,first[l]);
       
   303 	      first[l]=u;
       
   304 	    }
       
   305 	  }
       
   306 	}
       
   307       }
       
   308       b=n-2;
       
   309 
       
   310       while ( true ) {
       
   311 
       
   312 	if ( b == 0 ) break;
       
   313 	if ( first[b]==INVALID ) --b;
       
   314 	else {
       
   315 	  Node w=first[b];
       
   316 	  first[b]=next[w];
       
   317 	  int newlevel=push(w,next, first);
       
   318 	  
       
   319 	  //relabel
       
   320 	  if ( excess[w] > 0 ) {
       
   321 	    level.set(w,++newlevel);
       
   322 	    next.set(w,first[newlevel]);
       
   323 	    first[newlevel]=w;
       
   324 	    b=newlevel;
       
   325 	  }
       
   326 	} 
       
   327       } // while(true)
       
   328       flow_prop=GEN_FLOW;
       
   329       status=AFTER_PREFLOW_PHASE_2;
       
   330     }
       
   331 
       
   332     /// Returns the value of the maximum flow.
       
   333 
       
   334     /// Returns the value of the maximum flow by returning the excess
       
   335     /// of the target node \ref t. This value equals to the value of
       
   336     /// the maximum flow already after running \ref phase1.
       
   337     Num flowValue() const {
       
   338       return excess[t];
       
   339     }
       
   340 
       
   341 
       
   342     ///Returns a minimum value cut.
       
   343 
       
   344     ///Sets \c M to the characteristic vector of a minimum value
       
   345     ///cut. This method can be called both after running \ref
       
   346     ///phase1 and \ref phase2. It is much faster after
       
   347     ///\ref phase1.  \pre M should be a node map of bools. \pre
       
   348     ///If \ref mincut is called after \ref phase2 then M should
       
   349     ///be initialized to false.
       
   350     template<typename _CutMap>
       
   351     void minCut(_CutMap& M) const {
       
   352       switch ( status ) {
       
   353 	case AFTER_PREFLOW_PHASE_1:
       
   354 	for(NodeIt v(*g); v!=INVALID; ++v) {
       
   355 	  if (level[v] < n) {
       
   356 	    M.set(v, false);
       
   357 	  } else {
       
   358 	    M.set(v, true);
       
   359 	  }
       
   360 	}
       
   361 	break;
       
   362 	case AFTER_PREFLOW_PHASE_2:
       
   363 	minMinCut(M);
       
   364 	break;
       
   365 	case AFTER_NOTHING:
       
   366 	break;
       
   367       }
       
   368     }
       
   369 
       
   370     ///Returns the inclusionwise minimum of the minimum value cuts.
       
   371 
       
   372     ///Sets \c M to the characteristic vector of the minimum value cut
       
   373     ///which is inclusionwise minimum. It is computed by processing a
       
   374     ///bfs from the source node \c s in the residual graph.  \pre M
       
   375     ///should be a node map of bools initialized to false.  \pre \ref
       
   376     ///phase2 should already be run.
       
   377     template<typename _CutMap>
       
   378     void minMinCut(_CutMap& M) const {
       
   379 
       
   380       std::queue<Node> queue;
       
   381       M.set(s,true);
       
   382       queue.push(s);
       
   383       
       
   384       while (!queue.empty()) {
       
   385 	Node w=queue.front();
       
   386 	queue.pop();
       
   387 	
       
   388 	for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
       
   389 	  Node v=g->head(e);
       
   390 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
       
   391 	    queue.push(v);
       
   392 	    M.set(v, true);
       
   393 	  }
       
   394 	}
       
   395 	
       
   396 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
       
   397 	  Node v=g->tail(e);
       
   398 	  if (!M[v] && (*flow)[e] > 0 ) {
       
   399 	    queue.push(v);
       
   400 	    M.set(v, true);
       
   401 	  }
       
   402 	}
       
   403       }
       
   404     }
       
   405     
       
   406     ///Returns the inclusionwise maximum of the minimum value cuts.
       
   407 
       
   408     ///Sets \c M to the characteristic vector of the minimum value cut
       
   409     ///which is inclusionwise maximum. It is computed by processing a
       
   410     ///backward bfs from the target node \c t in the residual graph.
       
   411     ///\pre \ref phase2() or preflow() should already be run.
       
   412     template<typename _CutMap>
       
   413     void maxMinCut(_CutMap& M) const {
       
   414 
       
   415       for(NodeIt v(*g) ; v!=INVALID; ++v) M.set(v, true);
       
   416 
       
   417       std::queue<Node> queue;
       
   418 
       
   419       M.set(t,false);
       
   420       queue.push(t);
       
   421 
       
   422       while (!queue.empty()) {
       
   423         Node w=queue.front();
       
   424 	queue.pop();
       
   425 
       
   426 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
       
   427 	  Node v=g->tail(e);
       
   428 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
       
   429 	    queue.push(v);
       
   430 	    M.set(v, false);
       
   431 	  }
       
   432 	}
       
   433 
       
   434 	for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
       
   435 	  Node v=g->head(e);
       
   436 	  if (M[v] && (*flow)[e] > 0 ) {
       
   437 	    queue.push(v);
       
   438 	    M.set(v, false);
       
   439 	  }
       
   440 	}
       
   441       }
       
   442     }
       
   443 
       
   444     ///Sets the source node to \c _s.
       
   445 
       
   446     ///Sets the source node to \c _s.
       
   447     /// 
       
   448     void setSource(Node _s) { 
       
   449       s=_s; 
       
   450       if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW;
       
   451       status=AFTER_NOTHING; 
       
   452     }
       
   453 
       
   454     ///Sets the target node to \c _t.
       
   455 
       
   456     ///Sets the target node to \c _t.
       
   457     ///
       
   458     void setTarget(Node _t) { 
       
   459       t=_t; 
       
   460       if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW;
       
   461       status=AFTER_NOTHING; 
       
   462     }
       
   463 
       
   464     /// Sets the edge map of the capacities to _cap.
       
   465 
       
   466     /// Sets the edge map of the capacities to _cap.
       
   467     /// 
       
   468     void setCap(const CapMap& _cap) { 
       
   469       capacity=&_cap; 
       
   470       status=AFTER_NOTHING; 
       
   471     }
       
   472 
       
   473     /// Sets the edge map of the flows to _flow.
       
   474 
       
   475     /// Sets the edge map of the flows to _flow.
       
   476     /// 
       
   477     void setFlow(FlowMap& _flow) { 
       
   478       flow=&_flow; 
       
   479       flow_prop=NO_FLOW;
       
   480       status=AFTER_NOTHING; 
       
   481     }
       
   482 
       
   483 
       
   484   private:
       
   485 
       
   486     int push(Node w, NNMap& next, VecNode& first) {
       
   487 
       
   488       int lev=level[w];
       
   489       Num exc=excess[w];
       
   490       int newlevel=n;       //bound on the next level of w
       
   491 
       
   492       for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
       
   493 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
       
   494 	Node v=g->head(e);
       
   495 
       
   496 	if( lev > level[v] ) { //Push is allowed now
       
   497 	  
       
   498 	  if ( excess[v]<=0 && v!=t && v!=s ) {
       
   499 	    next.set(v,first[level[v]]);
       
   500 	    first[level[v]]=v;
       
   501 	  }
       
   502 
       
   503 	  Num cap=(*capacity)[e];
       
   504 	  Num flo=(*flow)[e];
       
   505 	  Num remcap=cap-flo;
       
   506 	  
       
   507 	  if ( remcap >= exc ) { //A nonsaturating push.
       
   508 	    
       
   509 	    flow->set(e, flo+exc);
       
   510 	    excess.set(v, excess[v]+exc);
       
   511 	    exc=0;
       
   512 	    break;
       
   513 
       
   514 	  } else { //A saturating push.
       
   515 	    flow->set(e, cap);
       
   516 	    excess.set(v, excess[v]+remcap);
       
   517 	    exc-=remcap;
       
   518 	  }
       
   519 	} else if ( newlevel > level[v] ) newlevel = level[v];
       
   520       } //for out edges wv
       
   521 
       
   522       if ( exc > 0 ) {
       
   523 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
       
   524 	  
       
   525 	  if( (*flow)[e] <= 0 ) continue;
       
   526 	  Node v=g->tail(e);
       
   527 
       
   528 	  if( lev > level[v] ) { //Push is allowed now
       
   529 
       
   530 	    if ( excess[v]<=0 && v!=t && v!=s ) {
       
   531 	      next.set(v,first[level[v]]);
       
   532 	      first[level[v]]=v;
       
   533 	    }
       
   534 
       
   535 	    Num flo=(*flow)[e];
       
   536 
       
   537 	    if ( flo >= exc ) { //A nonsaturating push.
       
   538 
       
   539 	      flow->set(e, flo-exc);
       
   540 	      excess.set(v, excess[v]+exc);
       
   541 	      exc=0;
       
   542 	      break;
       
   543 	    } else {  //A saturating push.
       
   544 
       
   545 	      excess.set(v, excess[v]+flo);
       
   546 	      exc-=flo;
       
   547 	      flow->set(e,0);
       
   548 	    }
       
   549 	  } else if ( newlevel > level[v] ) newlevel = level[v];
       
   550 	} //for in edges vw
       
   551 
       
   552       } // if w still has excess after the out edge for cycle
       
   553 
       
   554       excess.set(w, exc);
       
   555       
       
   556       return newlevel;
       
   557     }
       
   558     
       
   559     
       
   560     
       
   561     void preflowPreproc(VecNode& first, NNMap& next, 
       
   562 			VecNode& level_list, NNMap& left, NNMap& right)
       
   563     {
       
   564       for(NodeIt v(*g); v!=INVALID; ++v) level.set(v,n);
       
   565       std::queue<Node> bfs_queue;
       
   566       
       
   567       if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) {
       
   568 	//Reverse_bfs from t in the residual graph,
       
   569 	//to find the starting level.
       
   570 	level.set(t,0);
       
   571 	bfs_queue.push(t);
       
   572 	
       
   573 	while ( !bfs_queue.empty() ) {
       
   574 	  
       
   575 	  Node v=bfs_queue.front();
       
   576 	  bfs_queue.pop();
       
   577 	  int l=level[v]+1;
       
   578 	  
       
   579 	  for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) {
       
   580 	    if ( (*capacity)[e] <= (*flow)[e] ) continue;
       
   581 	    Node w=g->tail(e);
       
   582 	    if ( level[w] == n && w != s ) {
       
   583 	      bfs_queue.push(w);
       
   584 	      Node z=level_list[l];
       
   585 	      if ( z!=INVALID ) left.set(z,w);
       
   586 	      right.set(w,z);
       
   587 	      level_list[l]=w;
       
   588 	      level.set(w, l);
       
   589 	    }
       
   590 	  }
       
   591 	  
       
   592 	  for(OutEdgeIt e(*g,v) ; e!=INVALID; ++e) {
       
   593 	    if ( 0 >= (*flow)[e] ) continue;
       
   594 	    Node w=g->head(e);
       
   595 	    if ( level[w] == n && w != s ) {
       
   596 	      bfs_queue.push(w);
       
   597 	      Node z=level_list[l];
       
   598 	      if ( z!=INVALID ) left.set(z,w);
       
   599 	      right.set(w,z);
       
   600 	      level_list[l]=w;
       
   601 	      level.set(w, l);
       
   602 	    }
       
   603 	  }
       
   604 	} //while
       
   605       } //if
       
   606 
       
   607 
       
   608       switch (flow_prop) {
       
   609 	case NO_FLOW:  
       
   610 	for(EdgeIt e(*g); e!=INVALID; ++e) flow->set(e,0);
       
   611 	case ZERO_FLOW:
       
   612 	for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0);
       
   613 	
       
   614 	//Reverse_bfs from t, to find the starting level.
       
   615 	level.set(t,0);
       
   616 	bfs_queue.push(t);
       
   617 	
       
   618 	while ( !bfs_queue.empty() ) {
       
   619 	  
       
   620 	  Node v=bfs_queue.front();
       
   621 	  bfs_queue.pop();
       
   622 	  int l=level[v]+1;
       
   623 	  
       
   624 	  for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) {
       
   625 	    Node w=g->tail(e);
       
   626 	    if ( level[w] == n && w != s ) {
       
   627 	      bfs_queue.push(w);
       
   628 	      Node z=level_list[l];
       
   629 	      if ( z!=INVALID ) left.set(z,w);
       
   630 	      right.set(w,z);
       
   631 	      level_list[l]=w;
       
   632 	      level.set(w, l);
       
   633 	    }
       
   634 	  }
       
   635 	}
       
   636 	
       
   637 	//the starting flow
       
   638 	for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) {
       
   639 	  Num c=(*capacity)[e];
       
   640 	  if ( c <= 0 ) continue;
       
   641 	  Node w=g->head(e);
       
   642 	  if ( level[w] < n ) {
       
   643 	    if ( excess[w] <= 0 && w!=t ) { //putting into the stack
       
   644 	      next.set(w,first[level[w]]);
       
   645 	      first[level[w]]=w;
       
   646 	    }
       
   647 	    flow->set(e, c);
       
   648 	    excess.set(w, excess[w]+c);
       
   649 	  }
       
   650 	}
       
   651 	break;
       
   652 
       
   653 	case GEN_FLOW:
       
   654 	for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0);
       
   655 	{
       
   656 	  Num exc=0;
       
   657 	  for(InEdgeIt e(*g,t) ; e!=INVALID; ++e) exc+=(*flow)[e];
       
   658 	  for(OutEdgeIt e(*g,t) ; e!=INVALID; ++e) exc-=(*flow)[e];
       
   659 	  excess.set(t,exc);
       
   660 	}
       
   661 
       
   662 	//the starting flow
       
   663 	for(OutEdgeIt e(*g,s); e!=INVALID; ++e)	{
       
   664 	  Num rem=(*capacity)[e]-(*flow)[e];
       
   665 	  if ( rem <= 0 ) continue;
       
   666 	  Node w=g->head(e);
       
   667 	  if ( level[w] < n ) {
       
   668 	    if ( excess[w] <= 0 && w!=t ) { //putting into the stack
       
   669 	      next.set(w,first[level[w]]);
       
   670 	      first[level[w]]=w;
       
   671 	    }   
       
   672 	    flow->set(e, (*capacity)[e]);
       
   673 	    excess.set(w, excess[w]+rem);
       
   674 	  }
       
   675 	}
       
   676 	
       
   677 	for(InEdgeIt e(*g,s); e!=INVALID; ++e) {
       
   678 	  if ( (*flow)[e] <= 0 ) continue;
       
   679 	  Node w=g->tail(e);
       
   680 	  if ( level[w] < n ) {
       
   681 	    if ( excess[w] <= 0 && w!=t ) {
       
   682 	      next.set(w,first[level[w]]);
       
   683 	      first[level[w]]=w;
       
   684 	    }  
       
   685 	    excess.set(w, excess[w]+(*flow)[e]);
       
   686 	    flow->set(e, 0);
       
   687 	  }
       
   688 	}
       
   689 	break;
       
   690 
       
   691 	case PRE_FLOW:	
       
   692 	//the starting flow
       
   693 	for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) {
       
   694 	  Num rem=(*capacity)[e]-(*flow)[e];
       
   695 	  if ( rem <= 0 ) continue;
       
   696 	  Node w=g->head(e);
       
   697 	  if ( level[w] < n ) flow->set(e, (*capacity)[e]);
       
   698 	}
       
   699 	
       
   700 	for(InEdgeIt e(*g,s) ; e!=INVALID; ++e) {
       
   701 	  if ( (*flow)[e] <= 0 ) continue;
       
   702 	  Node w=g->tail(e);
       
   703 	  if ( level[w] < n ) flow->set(e, 0);
       
   704 	}
       
   705 	
       
   706 	//computing the excess
       
   707 	for(NodeIt w(*g); w!=INVALID; ++w) {
       
   708 	  Num exc=0;
       
   709 	  for(InEdgeIt e(*g,w); e!=INVALID; ++e) exc+=(*flow)[e];
       
   710 	  for(OutEdgeIt e(*g,w); e!=INVALID; ++e) exc-=(*flow)[e];
       
   711 	  excess.set(w,exc);
       
   712 	  
       
   713 	  //putting the active nodes into the stack
       
   714 	  int lev=level[w];
       
   715 	    if ( exc > 0 && lev < n && Node(w) != t ) {
       
   716 	      next.set(w,first[lev]);
       
   717 	      first[lev]=w;
       
   718 	    }
       
   719 	}
       
   720 	break;
       
   721       } //switch
       
   722     } //preflowPreproc
       
   723 
       
   724 
       
   725     void relabel(Node w, int newlevel, VecNode& first, NNMap& next, 
       
   726 		 VecNode& level_list, NNMap& left,
       
   727 		 NNMap& right, int& b, int& k, bool what_heur )
       
   728     {
       
   729 
       
   730       int lev=level[w];
       
   731 
       
   732       Node right_n=right[w];
       
   733       Node left_n=left[w];
       
   734 
       
   735       //unlacing starts
       
   736       if ( right_n!=INVALID ) {
       
   737 	if ( left_n!=INVALID ) {
       
   738 	  right.set(left_n, right_n);
       
   739 	  left.set(right_n, left_n);
       
   740 	} else {
       
   741 	  level_list[lev]=right_n;
       
   742 	  left.set(right_n, INVALID);
       
   743 	}
       
   744       } else {
       
   745 	if ( left_n!=INVALID ) {
       
   746 	  right.set(left_n, INVALID);
       
   747 	} else {
       
   748 	  level_list[lev]=INVALID;
       
   749 	}
       
   750       }
       
   751       //unlacing ends
       
   752 
       
   753       if ( level_list[lev]==INVALID ) {
       
   754 
       
   755 	//gapping starts
       
   756 	for (int i=lev; i!=k ; ) {
       
   757 	  Node v=level_list[++i];
       
   758 	  while ( v!=INVALID ) {
       
   759 	    level.set(v,n);
       
   760 	    v=right[v];
       
   761 	  }
       
   762 	  level_list[i]=INVALID;
       
   763 	  if ( !what_heur ) first[i]=INVALID;
       
   764 	}
       
   765 
       
   766 	level.set(w,n);
       
   767 	b=lev-1;
       
   768 	k=b;
       
   769 	//gapping ends
       
   770 
       
   771       } else {
       
   772 
       
   773 	if ( newlevel == n ) level.set(w,n);
       
   774 	else {
       
   775 	  level.set(w,++newlevel);
       
   776 	  next.set(w,first[newlevel]);
       
   777 	  first[newlevel]=w;
       
   778 	  if ( what_heur ) b=newlevel;
       
   779 	  if ( k < newlevel ) ++k;      //now k=newlevel
       
   780 	  Node z=level_list[newlevel];
       
   781 	  if ( z!=INVALID ) left.set(z,w);
       
   782 	  right.set(w,z);
       
   783 	  left.set(w,INVALID);
       
   784 	  level_list[newlevel]=w;
       
   785 	}
       
   786       }
       
   787     } //relabel
       
   788 
       
   789   }; 
       
   790 } //namespace hugo
       
   791 
       
   792 #endif //HUGO_PREFLOW_H
       
   793 
       
   794 
       
   795 
       
   796